parallel_executor.cc 33.2 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
Q
qingqing01 已提交
17
#include <memory>
C
chengduoZH 已提交
18
#include <string>
19
#include <tuple>
Q
Qiao Longfei 已提交
20
#include <utility>
Q
qiaolongfei 已提交
21
#include <vector>
Q
Qiao Longfei 已提交
22
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
Y
yuyang18 已提交
23
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
24
#include "paddle/fluid/framework/details/multi_devices_helper.h"
25
#include "paddle/fluid/framework/details/op_handle_base.h"
Y
Yancey1989 已提交
26
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
28
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
29 30
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
31
#include "paddle/fluid/framework/ir/memory_optimize_pass/memory_optimization_var_info.h"
32
#include "paddle/fluid/framework/ir/memory_optimize_pass/reference_count_pass_helper.h"
33
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
34

35 36
DECLARE_bool(use_ngraph);

Y
Yu Yang 已提交
37
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
38
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
39
#endif
Y
Yu Yang 已提交
40
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
41 42
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
43
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
44
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
45

Y
Yang Yang 已提交
46
namespace paddle {
Y
Yu Yang 已提交
47 48
namespace framework {

Y
Yu Yang 已提交
49
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
50
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
51
static bool gProfileStarted = false;
Y
Yu Yang 已提交
52
#endif
53

Y
Yu Yang 已提交
54 55 56
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
57
      : places_(places) {
Y
Yu Yang 已提交
58
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
59 60
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
61
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
62 63 64
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
65
          "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
66 67 68 69
#endif
      });
    }
  }
Y
Yu Yang 已提交
70

71 72 73 74 75 76 77 78 79 80 81
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
82

83
  ir::Graph *ApplyMemoryOptimizePass(ir::Graph *graph);
S
sneaxiy 已提交
84 85 86

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
  /**
   * NOTE(zengjinle): the feeded variables of users should not be reused,
   * because users may feed them into another network. Changing the feeded
   * variables that users can visit may cause calculation wrong, which is
   * a very subtle bug when traning networks. However, these variables
   * can be garbage collected.
   *
   * ParallelExecutor provides 2 methods to feed variables:
   *
   *  - FeedTensorsIntoLocalScopes: this method would share memory of feeded
   *                                variables, so we have to skip these.
   *
   *  - FeedAndSplitTensorIntoLocalScopes: this method would copy data of feeded
   *                                       variables, so we do not need to skip
   *                                       them.
   */
  inline void SetSkipMemoryReuse(size_t scope_idx, const std::string &name) {
    auto iter = mem_opt_var_infos_[scope_idx].find(name);
    if (iter != mem_opt_var_infos_[scope_idx].end()) {
      iter->second->SetSkipMemoryReuse(true);
    }
  }

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
  void InitNCCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "nccl comm num:" << bst.nccl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    if (bst.use_hierarchical_allreduce_) {
      VLOG(1) << ", use_hierarchical_allreduce:"
              << bst.use_hierarchical_allreduce_ << ", inter_trainers_num:"
              << bst.hierarchical_allreduce_inter_nranks_
              << ", exter_trainers_num:"
              << bst.hierarchical_allreduce_exter_nranks_;
    }

    std::vector<ncclUniqueId *> flat_nccl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create ncclid when nranks==1
127 128
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
129 130 131 132 133 134 135 136 137 138 139 140
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one ncclid in pg model";

      ncclUniqueId *nccl_id = nullptr;

      std::string var_name = platform::GetFlatNCCLVarName(0);
      auto nccl_id_var = scope->FindVar(var_name);
      if (nccl_id_var) {
        nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
141
        VLOG(10) << "find nccl_id_var:" << var_name << ", nccl_id:" << nccl_id;
142 143 144
      } else {
        nccl_id = new ncclUniqueId();
        PADDLE_ENFORCE(platform::dynload::ncclGetUniqueId(nccl_id));
145 146
        VLOG(10) << "can't find nccl_id_var:" << var_name
                 << ", nccl_id:" << nccl_id;
147 148 149 150
      }

      flat_nccl_ids.push_back(nccl_id);

151 152
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
153 154 155 156 157 158
      VLOG(1) << "init bst nccl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
159 160
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
161 162 163 164 165 166 167 168 169 170 171
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
      std::string var_name = platform::GetFlatNCCLVarName(i);
      auto nccl_id_var = scope->FindVar(var_name);
      PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
      auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      flat_nccl_ids.push_back(nccl_id);
    }

172 173
    nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                             bst.trainer_id_);
174 175

    if (bst.use_hierarchical_allreduce_) {
G
gongweibao 已提交
176 177 178 179 180 181 182 183
      std::vector<ncclUniqueId *> inter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalInterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
        PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
        auto inter_nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        inter_nccl_ids.push_back(inter_nccl_id);
      }
184 185 186 187 188 189 190 191 192

      std::vector<ncclUniqueId *> exter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalExterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
        PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
        auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        exter_nccl_ids.push_back(nccl_id);
      }
G
gongweibao 已提交
193

194 195 196 197
      nccl_ctxs_->InitHierarchicalCtxs(
          places_, inter_nccl_ids, exter_nccl_ids, bst.num_trainers_,
          bst.trainer_id_, bst.hierarchical_allreduce_inter_nranks_,
          bst.hierarchical_allreduce_exter_nranks_);
198 199
    }
  }
200

201
  void InitOrGetNCCLCommunicator(framework::Scope *scope, BuildStrategy *bst) {
202 203 204 205 206 207 208 209 210 211 212
    const std::string var_name = "NCCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
      PADDLE_ENFORCE(var->IsInitialized(),
                     "if %s exists, it must be initialized", var_name);
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      nccl_ctxs_ = var->GetMutable<platform::NCCLCommunicator>();
      return;
    }

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    if (bst->use_hierarchical_allreduce_) {
      PADDLE_ENFORCE(bst->num_trainers_ > 1, "num_trainers:%llu < 1",
                     bst->num_trainers_);
      PADDLE_ENFORCE(bst->hierarchical_allreduce_inter_nranks_ > 1,
                     "inter_nranks:%d < 1",
                     bst->hierarchical_allreduce_inter_nranks_);
      PADDLE_ENFORCE(
          (bst->num_trainers_ % bst->hierarchical_allreduce_inter_nranks_ == 0),
          "num_trainers:%llu mod inter_nranks:%d != 0", bst->num_trainers_,
          bst->hierarchical_allreduce_inter_nranks_);

      bst->hierarchical_allreduce_exter_nranks_ =
          bst->num_trainers_ / bst->hierarchical_allreduce_inter_nranks_;
    }

228 229
    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    nccl_ctxs_ = scope->Var(var_name)->GetMutable<platform::NCCLCommunicator>();
230
    InitNCCLCtxs(scope, *bst);
231
  }
232 233
#endif

234 235 236 237 238
  inline bool IsPersistable(const std::string &name) const {
    auto iter = is_persistable_.find(name);
    return iter != is_persistable_.end() && iter->second;
  }

D
dzhwinter 已提交
239
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
240 241
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
242
  std::vector<Scope *> local_exec_scopes_;
243
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
244
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
245

246 247
  std::unordered_map<std::string, bool> is_persistable_;

P
peizhilin 已提交
248
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
249
  platform::NCCLCommunicator *nccl_ctxs_{nullptr};
Y
Yu Yang 已提交
250
#endif
C
chengduoZH 已提交
251 252
  bool own_local_scope_;
  bool use_cuda_;
253
  bool use_all_reduce_;
254
  size_t nranks_;
S
sneaxiy 已提交
255

256
  ir::MemOptVarInfoMapList mem_opt_var_infos_;
257
  ir::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
258 259
};

260
ir::Graph *ParallelExecutorPrivate::ApplyMemoryOptimizePass(ir::Graph *graph) {
261 262 263 264 265 266 267
  if (FLAGS_use_ngraph) {
    LOG_FIRST_N(WARNING, 1)
        << "FLAGS_use_ngraph=True, memory optimization strategy is "
           "disabled in ParallelExecutor";
    return graph;
  }

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
  std::vector<ir::LastLiveOpsOfVars> last_live_ops_of_vars;

  auto ref_cnt_pass = ir::PassRegistry::Instance().Get("reference_count_pass");
  ref_cnt_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
  ref_cnt_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
  graph = ref_cnt_pass->Apply(graph);
  VLOG(10) << "ReferenceCountPass Applied";

  if (build_strategy_.enable_inplace_) {
    auto inplace_pass =
        ir::PassRegistry::Instance().Get("buffer_shared_inplace_pass");
    inplace_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    inplace_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
    inplace_pass->SetNotOwned(ir::kUseCuda, &use_cuda_);
    VLOG(10) << "Start to apply buffer_shared_inplace_pass";
    graph = inplace_pass->Apply(graph);
    VLOG(10) << "buffer_shared_inplace_pass Applied";
Z
Zeng Jinle 已提交
285 286
    LOG(INFO) << "Inplace strategy is enabled, when "
                 "build_strategy.enable_inplace = True";
287 288
  }

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
  /**
   * NOTE(zengjinle): If BuildStrategy.memory_optimize = None in Python,
   * set BuildStrategy.memory_optimize according to whether gc is enabled.
   * If gc is enabled, BuildStrategy.memory_optimize = False.
   * If gc is disabled, BuildStrategy.memory_optimize = True.
   * This is because gc+memory_optimize is worse than gc only.
   *
   * As an option, users can enable BuildStrategy.memory_optimize forcely
   * by setting True, and disable it forcely by setting False.
   */
  bool is_gc_enabled = (GetEagerDeletionThreshold() >= 0);
  if (!build_strategy_.memory_optimize_) {
    build_strategy_.memory_optimize_ = !is_gc_enabled;
  }

  if (build_strategy_.memory_optimize_.get()) {
305 306 307 308 309 310 311 312 313 314
    auto cross_op_memory_reuse_pass = ir::PassRegistry::Instance().Get(
        "buffer_shared_cross_op_memory_reuse_pass");
    cross_op_memory_reuse_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                            &mem_opt_var_infos_);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
                                            &last_live_ops_of_vars);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kUseCuda, &use_cuda_);
    VLOG(10) << "Start to apply buffer_shared_cross_op_memory_reuse_pass";
    graph = cross_op_memory_reuse_pass->Apply(graph);
    VLOG(10) << "buffer_shared_cross_op_memory_reuse_pass Applied";
Z
Zeng Jinle 已提交
315 316 317
    LOG(INFO) << "Cross op memory reuse strategy is enabled, when "
                 "build_strategy.memory_optimize = True or garbage collection "
                 "strategy is disabled, which is not recommended";
318
  }
319

320
  if (!is_gc_enabled) {
321 322 323 324
    return graph;
  }
  size_t max_memory_size = static_cast<size_t>(GetEagerDeletionThreshold());

S
sneaxiy 已提交
325 326 327 328 329
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
330
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
331
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
332 333
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
334 335
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
336
      } else {
S
sneaxiy 已提交
337 338
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
339 340
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
341
    } else {
S
sneaxiy 已提交
342
#endif
S
sneaxiy 已提交
343 344 345 346 347 348 349
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
350 351 352 353
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
354
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
355 356
  }

S
sneaxiy 已提交
357
  if (!gcs_.empty()) {
S
sneaxiy 已提交
358 359
    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
360 361
    eager_deletion_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                     &mem_opt_var_infos_);
362 363
    eager_deletion_pass->SetNotOwned(ir::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
S
sneaxiy 已提交
364
                                     &last_live_ops_of_vars);
365
    eager_deletion_pass->SetNotOwned(ir::kAllPlaces, &places_);
366
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
367
    VLOG(10) << "EagerDeletionPass Applied";
368 369 370
    LOG(INFO) << "Garbage collection strategy is enabled, when "
              << "FLAGS_eager_delete_tensor_gb = "
              << (static_cast<double>(GetEagerDeletionThreshold()) / (1 << 30));
S
sneaxiy 已提交
371 372 373 374
  }
  return graph;
}

375 376 377 378
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

379 380 381 382 383 384 385 386 387 388 389 390 391 392
void ParallelExecutor::DropLocalExeScopes() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  if (executor) {
    executor->DropLocalExeScopes();
  }
}

bool ParallelExecutor::NeedCreateLocalExeScope() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  return executor && executor->NeedCreateLocalExeScope();
}

Y
Yan Xu 已提交
393 394 395 396 397 398 399 400
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
Y
Yu Yang 已提交
401
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
402
  member_->global_scope_ = scope;
403
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
404
  member_->build_strategy_ = build_strategy;
C
chengduo 已提交
405 406
  member_->use_all_reduce_ = member_->build_strategy_.reduce_ ==
                             BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
407
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
C
chengduo 已提交
408 409 410 411 412 413 414
  if (!member_->use_all_reduce_ && member_->nranks_ == 1) {
    LOG(INFO) << "If you set build_strategy.reduce with 'Reduce',"
                 "the number of places should be greater than 1.";
    member_->build_strategy_.reduce_ =
        BuildStrategy::ReduceStrategy::kAllReduce;
    member_->use_all_reduce_ = true;
  }
415 416 417 418 419
#if defined(PADDLE_WITH_CUDA) && defined(_WIN32)
  if (member_->use_cuda_) {
    PADDLE_ENFORCE(places.size() == 1, "Windows can support Single GPU only.");
  }
#endif
Y
Yancey1989 已提交
420

421
  LOG(INFO) << string::Sprintf(
C
chengduo 已提交
422 423 424 425 426
      "The number of %s, which is used in ParallelExecutor, is %lu. And "
      "the Program will be copied %lu copies",
      (member_->use_cuda_ ? "CUDAPlace" : "CPUPlace"), places.size(),
      places.size());

427
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
428
  // Create local scopes
429
  if (local_scopes.empty()) {
C
chengduoZH 已提交
430
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
431 432
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
433
      member_->local_scopes_.emplace_back(&scope->NewScope());
434 435
    }
  } else {
C
chengduoZH 已提交
436
    member_->own_local_scope_ = false;
437 438
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
439
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
440
    }
Y
Yu Yang 已提交
441 442
  }

Q
Qiao Longfei 已提交
443
  std::vector<ir::Graph *> graphs;
C
chengduo 已提交
444
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
445 446
    PADDLE_ENFORCE(!member_->use_cuda_,
                   "gpu mode does not support async_mode_ now!");
Q
Qiao Longfei 已提交
447
    graphs.push_back(graph);
D
dongdaxiang 已提交
448
    for (size_t i = 1; i < places.size(); ++i) {
Q
Qiao Longfei 已提交
449 450 451 452
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
Q
Qiao Longfei 已提交
453
  }
Q
Qiao Longfei 已提交
454

Y
Yancey1989 已提交
455 456 457
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
C
chengduo 已提交
458 459 460 461
  member_->build_strategy_.enable_parallel_graph_ =
      EnableParallelGraphExecution(*graph, exec_strategy,
                                   member_->build_strategy_);
  if (member_->build_strategy_.enable_parallel_graph_) {
462 463 464 465
    LOG(INFO) << "The Executor would execute the graph by ParallelGraph "
                 "Execution which can get better performance,"
              << "you can force it off by env FLAGS_enable_parallel_graph=0";
  }
Y
Yancey1989 已提交
466

467
  if (member_->use_cuda_ && member_->nranks_ > 1) {
P
peizhilin 已提交
468
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
469
    member_->InitOrGetNCCLCommunicator(scope, &member_->build_strategy_);
Q
qingqing01 已提交
470

W
Wu Yi 已提交
471 472 473
    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
Q
qingqing01 已提交
474
    // be rewrite and there will be some problem.
W
Wu Yi 已提交
475 476 477
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
478 479
    auto *nccl_ctxs =
        member_->nccl_ctxs_->GetSyncBatchNormCtx(scope, member_->places_);
480
    auto &pool = platform::DeviceContextPool::Instance();
Q
qingqing01 已提交
481 482 483
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
484
      auto &nccl_ctx = nccl_ctxs->at(member_->places_[dev_id]);
485
      dev_ctx->set_nccl_comm(nccl_ctx.comm());
Q
qingqing01 已提交
486
    }
Y
Yu Yang 已提交
487
#endif
C
chengduoZH 已提交
488
  }
Y
Yan Xu 已提交
489 490
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
C
chengduo 已提交
491
    if (member_->build_strategy_.num_trainers_ > 1) {
Y
Yan Xu 已提交
492 493 494 495 496 497 498 499 500
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };
501
  // Bcast Parameters to all GPUs
Y
Yan Xu 已提交
502
  if (need_broadcast()) {
C
chengduo 已提交
503
    BCastParamsToDevices(bcast_vars, member_->build_strategy_.trainer_id_);
Y
Yu Yang 已提交
504
  }
505

Q
Qiao Longfei 已提交
506
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
507

Q
Qiao Longfei 已提交
508 509 510
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<ir::Graph *> async_graphs(places.size());
P
peizhilin 已提交
511
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
C
chengduo 已提交
512
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
513
    VLOG(3) << "use local async mode";
C
chengduo 已提交
514 515 516 517
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_cuda_,
        member_->nccl_ctxs_);
D
dongdaxiang 已提交
518
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
519 520 521 522
      graphs[i] = member_->build_strategy_.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, 1, member_->use_cuda_,
          member_->nccl_ctxs_);
523
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
524
    }
Q
Qiao Longfei 已提交
525
  } else {
C
chengduo 已提交
526 527 528
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_, member_->nccl_ctxs_);
Q
Qiao Longfei 已提交
529
  }
C
chengduoZH 已提交
530
#else
C
chengduo 已提交
531
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
532
    VLOG(3) << "use local async mode";
C
chengduo 已提交
533 534 535
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_cuda_);
536
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
537
      graphs[i] = member_->build_strategy_.Apply(
538
          graphs[i], {member_->places_[i]}, loss_var_name,
Q
Qiao Longfei 已提交
539
          {member_->local_scopes_[i]}, 1, member_->use_cuda_);
540
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
541
    }
Q
can run  
Qiao Longfei 已提交
542
  } else {
C
chengduo 已提交
543 544 545
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_);
Q
can run  
Qiao Longfei 已提交
546
  }
Y
Yu Yang 已提交
547
#endif
548

549
  graph = member_->ApplyMemoryOptimizePass(graph);
Y
Yancey1989 已提交
550

Q
Qiao Longfei 已提交
551 552
  async_graphs[0] = graph;

553 554
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
555
  std::vector<details::VariableInfo> var_infos;
Q
Qiao Longfei 已提交
556 557 558 559 560 561
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
562 563 564

      member_->is_persistable_.emplace(node->Var()->Name(),
                                       node->Var()->Persistable());
Y
Yancey1989 已提交
565 566
    }
  }
Y
Yancey1989 已提交
567

568 569 570 571 572 573 574 575 576 577 578 579
  std::unordered_map<Scope *, Scope *> scope_map;
  for (auto *scope : member_->local_scopes_) {
    auto &local_exec_scope = scope->NewScope();
    member_->local_exec_scopes_.emplace_back(&local_exec_scope);
    scope_map.emplace(scope, &local_exec_scope);
  }

  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(),
                    member_->local_exec_scopes_.size());

  std::vector<ir::Graph *> final_graphs;

C
chengduo 已提交
580
  if (member_->build_strategy_.async_mode_) {
Q
can run  
Qiao Longfei 已提交
581 582
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
583 584 585
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, async_graphs));
    final_graphs = async_graphs;
C
chengduo 已提交
586
  } else if (member_->build_strategy_.enable_parallel_graph_) {
Q
can run  
Qiao Longfei 已提交
587
    VLOG(3) << "use ParallelSSAGraphExecutor";
Y
Yancey1989 已提交
588
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
589 590
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
591 592 593 594 595
    auto *pg_exe = new details::ParallelSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, graph);
    final_graphs = pg_exe->Graphs();
    member_->executor_.reset(pg_exe);
Y
Yancey1989 已提交
596 597 598 599
#else
    PADDLE_THROW(
        "Paddle should be compiled with CUDA for ParallelGraph Execution.");
#endif
Y
yuyang18 已提交
600
  } else {
Y
Yancey1989 已提交
601
    if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
Q
can run  
Qiao Longfei 已提交
602
      VLOG(3) << "use ThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
603
      member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
604 605
          exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
          member_->places_, graph));
Y
Yancey1989 已提交
606
    } else {
Q
can run  
Qiao Longfei 已提交
607
      VLOG(3) << "use FastThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
608
      member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
609 610
          exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
          member_->places_, graph));
Y
Yancey1989 已提交
611
    }
612
    final_graphs.emplace_back(graph);
C
chengduoZH 已提交
613
  }
Y
yuyang18 已提交
614

Q
can run  
Qiao Longfei 已提交
615
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
C
chengduo 已提交
616
  if (!member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
617
    member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
618 619 620 621 622 623 624 625 626
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        std::move(var_infos), member_->places_, std::move(member_->executor_)));
  }

  for (auto *g : final_graphs) {
    auto ops = ir::FilterByNodeWrapper<details::OpHandleBase>(*g);
    for (auto *op : ops) {
      op->SetLocalExecScopes(scope_map);
    }
Q
Qiao Longfei 已提交
627
  }
Y
Yu Yang 已提交
628 629
}

Y
Yancey1989 已提交
630
void ParallelExecutor::BCastParamsToDevices(
Y
Yan Xu 已提交
631
    const std::vector<std::string> &vars, int trainer_id) const {
Q
Qiao Longfei 已提交
632
  VLOG(3) << "BCastParamsToDevices";
X
Xin Pan 已提交
633
  // the initializing bcast, all vars would be bcast from device(0).
634
  for (auto &var : vars) {
X
Xin Pan 已提交
635
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
636
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
637 638 639 640
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
641
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
642
      VLOG(3) << "one in var not inited, return!";
643 644
      continue;
    }
645 646
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
647
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
648
      std::vector<void *> buffers;
C
chengduo 已提交
649
      buffers.reserve(member_->places_.size());
650 651 652 653 654
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
655

Y
Yan Xu 已提交
656
        if (i == 0 && trainer_id == 0) {
657 658
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
659
          auto local_scope = member_->local_scopes_[i];
660
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
661
          t->Resize(dims);
662
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
663
        }
664
        buffers.push_back(buffer);
665
      }
666

667 668 669
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
670
        auto *nccl_ctxs = member_->nccl_ctxs_->DefaultFlatCtx();
671 672
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
673
          auto &nccl_ctx = nccl_ctxs->at(member_->places_[i]);
X
Xin Pan 已提交
674 675
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
676
        }
677
        nccl_ctxs->WaitAll();
678
      }
C
chengduoZH 已提交
679
#endif
680 681
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
682
      for (size_t i = 1; i < member_->places_.size(); ++i) {
683 684
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
685

Q
Qiao Longfei 已提交
686
        auto copy_memory = [&] {
687 688 689
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
690 691
        };

Q
Qiao Longfei 已提交
692
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
693 694 695 696 697 698 699

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
        } else if (member_->use_all_reduce_ || member_->use_cuda_ ||
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
700
        } else {
Q
can run  
Qiao Longfei 已提交
701
          share_memory();
702
        }
Y
Yu Yang 已提交
703
      }
Y
Stash  
Yu Yang 已提交
704 705
    }
  }
Y
Yu Yang 已提交
706
}
Y
Yu Yang 已提交
707

708 709
FeedFetchList ParallelExecutor::Run(
    const std::vector<std::string> &fetch_tensors) {
710
  VLOG(3) << "enter ParallelExecutor Run";
Y
Yu Yang 已提交
711 712 713
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
714 715
  }
#endif
Y
Yu Yang 已提交
716

X
Xin Pan 已提交
717
  platform::RecordBlock b(0);
718 719 720

  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_), fetch_tensors,
                                member_->HasGarbageCollectors());
721 722

  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
S
sneaxiy 已提交
723
  auto fetch_data = member_->executor_->Run(fetch_tensors);
724
  return fetch_data;
Y
Yu Yang 已提交
725
}
Y
Yu Yang 已提交
726

Y
Yu Yang 已提交
727 728 729 730 731 732 733
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    for (auto &pair : map) {
734
      bool is_persistable = member_->IsPersistable(pair.first);
735 736 737
      if (!is_persistable) {
        member_->SetSkipMemoryReuse(i, pair.first);
      }
738 739 740 741 742
      auto *feed_scope = is_persistable ? member_->local_scopes_[i]
                                        : member_->local_exec_scopes_[i];
      auto *feed_var = feed_scope->Var(pair.first);

      auto *trg = feed_var->GetMutable<LoDTensor>();
Y
Yu Yang 已提交
743 744 745 746 747 748 749 750
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
751
  size_t num_places = member_->places_.size();
752
  for (auto &pair : tensors) {
753 754 755 756
    bool is_persistable = member_->IsPersistable(pair.first);
    VLOG(3) << "Split " << (is_persistable ? "persistable" : "no persistable")
            << " data (" << pair.first << "), dim:" << pair.second.dims()
            << ", place: " << pair.second.place();
Y
Yu Yang 已提交
757
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
758 759
    bool is_cpu_place = platform::is_cpu_place(member_->places_.front());
    if (!is_persistable && num_places != lod_tensors.size()) {
C
chengduo 已提交
760
      auto error_info = string::Sprintf(
761 762 763
          "The number(%d) of samples[%s] of current batch is less than the "
          "count(%d) of devices(%s), currently, it is not allowed. ",
          lod_tensors.size(), pair.first, num_places,
C
chengduo 已提交
764 765 766 767 768 769 770
          (is_cpu_place ? "CPU" : "GPU"));
      if (is_cpu_place) {
        error_info +=
            "You should set the environment variable CPU_NUM in the system "
            "to determine the number of devices you need.";
      }
      PADDLE_THROW(error_info);
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
    } else if (is_persistable) {
      if (lod_tensors.size() == 1) {
        lod_tensors.reserve(num_places);
        auto &tensor = lod_tensors.front();
        PADDLE_ENFORCE_EQ(tensor.dims(), pair.second.dims(),
                          "The dim doesn't match.");
        PADDLE_ENFORCE_EQ(tensor.place(), member_->places_.at(0),
                          "The place doesn't match.");
        for (size_t i = 1; i < num_places; ++i) {
          lod_tensors.emplace_back();
          auto &tmp = lod_tensors.back();
          framework::TensorCopy(pair.second, member_->places_.at(i), &tmp);
        }
      }
      if (lod_tensors.size() != num_places) {
        auto error_info = string::Sprintf(
            "The number(%d) of samples[%s] of the current batch does not match "
            "the count(%d) of devices(%s). Because that %s is a persistable "
            "variable, you can feed just one sample, in that case, the input "
            "sample will be copied in %d copies and be sent to different "
            "places separately. If you need that different place has different "
            "value, you should feed %d samples.",
            lod_tensors.size(), pair.first, num_places,
            (is_cpu_place ? "CPU" : "GPU"), pair.first, num_places, num_places);
        PADDLE_THROW(error_info);
      }
C
chengduo 已提交
797
    }
798

799
    for (size_t j = 0; j < num_places; ++j) {
800 801 802 803 804
      auto *feed_scope = is_persistable ? member_->local_scopes_[j]
                                        : member_->local_exec_scopes_[j];
      auto *feed_var = feed_scope->Var(pair.first);

      auto t = feed_var->GetMutable<LoDTensor>();
805 806
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
807 808 809 810
    }
  }
}

X
Xin Pan 已提交
811 812 813 814 815 816 817
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

818
bool ParallelExecutor::EnableParallelGraphExecution(
X
Xin Pan 已提交
819
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
820
    const BuildStrategy &build_strategy) const {
821 822 823
  if (!FLAGS_enable_parallel_graph) {
    return false;
  }
824

Y
Yancey1989 已提交
825
  bool enable_parallel_graph = true;
826

X
Xin Pan 已提交
827 828 829 830 831 832 833 834 835 836 837 838 839
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
840 841 842
    }
  }

843
  if (!member_->use_all_reduce_ || !member_->use_cuda_) {
Y
Yancey1989 已提交
844
    if (build_strategy.enable_sequential_execution_ ||
845
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental) {
Y
Yancey1989 已提交
846
      enable_parallel_graph = false;
847 848 849 850 851 852 853 854 855
    }
  }

#ifdef WIN32
  VLOG(1) << "Windows has no support to parallel graph, enable_parallel_graph "
             "would be forced to false.";
  enable_parallel_graph = false;
#endif

Y
Yancey1989 已提交
856
  return enable_parallel_graph;
857 858
}

Y
Yu Yang 已提交
859
}  // namespace framework
Y
Yang Yang 已提交
860
}  // namespace paddle
S
sneaxiy 已提交
861

S
sneaxiy 已提交
862
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
863
USE_PASS(eager_deletion_pass);
864
USE_PASS(buffer_shared_inplace_pass);
865
USE_PASS(buffer_shared_cross_op_memory_reuse_pass);