parallel_executor.cc 25.9 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
Q
qingqing01 已提交
17
#include <memory>
C
chengduoZH 已提交
18
#include <string>
19
#include <tuple>
Q
Qiao Longfei 已提交
20
#include <utility>
Q
qiaolongfei 已提交
21
#include <vector>
Q
Qiao Longfei 已提交
22
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
Y
yuyang18 已提交
23
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
24
#include "paddle/fluid/framework/details/multi_devices_helper.h"
Y
Yancey1989 已提交
25
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
Y
yuyang18 已提交
26
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
27
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
28 29
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
30
#include "paddle/fluid/framework/ir/memory_optimize_pass/reference_count_pass_helper.h"
31
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
32

Y
Yu Yang 已提交
33
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
34
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
35
#endif
Y
Yu Yang 已提交
36
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
37 38
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
39
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
40
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
41

Y
Yang Yang 已提交
42
namespace paddle {
Y
Yu Yang 已提交
43 44
namespace framework {

Y
Yu Yang 已提交
45
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
46
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
47
static bool gProfileStarted = false;
Y
Yu Yang 已提交
48
#endif
49

Y
Yu Yang 已提交
50 51 52
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
53
      : places_(places) {
Y
Yu Yang 已提交
54
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
55 56
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
57
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
58 59 60
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
61
          "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
62 63 64 65
#endif
      });
    }
  }
Y
Yu Yang 已提交
66

67 68 69 70 71 72 73 74 75 76 77
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
78

79
  ir::Graph *PrepareGCAndRefCnts(ir::Graph *graph, size_t max_memory_size);
S
sneaxiy 已提交
80 81 82 83 84 85 86 87 88 89 90 91

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

  void ResetRuntimeReferenceCount(const std::vector<std::string> &fetch_tensors,
                                  const std::string &fetched_var_name) {
    for (size_t i = 0; i < runtime_ref_cnts_.size(); ++i) {
      for (auto &pair : global_ref_cnts_[i]) {
        runtime_ref_cnts_[i][pair.first] = pair.second;
      }

      for (auto &fetch_name : fetch_tensors) {
        runtime_ref_cnts_[i].erase(fetch_name);
S
sneaxiy 已提交
92
      }
S
sneaxiy 已提交
93
      runtime_ref_cnts_[i].erase(fetched_var_name);
S
sneaxiy 已提交
94 95 96
    }
  }

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
  void InitNCCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "nccl comm num:" << bst.nccl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    if (bst.use_hierarchical_allreduce_) {
      VLOG(1) << ", use_hierarchical_allreduce:"
              << bst.use_hierarchical_allreduce_ << ", inter_trainers_num:"
              << bst.hierarchical_allreduce_inter_nranks_
              << ", exter_trainers_num:"
              << bst.hierarchical_allreduce_exter_nranks_;
    }

    std::vector<ncclUniqueId *> flat_nccl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create ncclid when nranks==1
      nccl_ctxs_.InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                              bst.trainer_id_);
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one ncclid in pg model";

      ncclUniqueId *nccl_id = nullptr;

      std::string var_name = platform::GetFlatNCCLVarName(0);
      auto nccl_id_var = scope->FindVar(var_name);
      if (nccl_id_var) {
        nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      } else {
        nccl_id = new ncclUniqueId();
        PADDLE_ENFORCE(platform::dynload::ncclGetUniqueId(nccl_id));
      }

      flat_nccl_ids.push_back(nccl_id);

      nccl_ctxs_.InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                              bst.trainer_id_);
      VLOG(1) << "init bst nccl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
      nccl_ctxs_.InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                              bst.trainer_id_);
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
      std::string var_name = platform::GetFlatNCCLVarName(i);
      auto nccl_id_var = scope->FindVar(var_name);
      PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
      auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      flat_nccl_ids.push_back(nccl_id);
    }

    nccl_ctxs_.InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                            bst.trainer_id_);

    if (bst.use_hierarchical_allreduce_) {
G
gongweibao 已提交
160 161 162 163 164 165 166 167
      std::vector<ncclUniqueId *> inter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalInterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
        PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
        auto inter_nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        inter_nccl_ids.push_back(inter_nccl_id);
      }
168 169 170 171 172 173 174 175 176

      std::vector<ncclUniqueId *> exter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalExterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
        PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
        auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        exter_nccl_ids.push_back(nccl_id);
      }
G
gongweibao 已提交
177 178

      nccl_ctxs_.InitHierarchicalCtxs(places_, inter_nccl_ids, exter_nccl_ids,
179 180 181 182 183 184 185
                                      bst.num_trainers_, bst.trainer_id_,
                                      bst.hierarchical_allreduce_inter_nranks_,
                                      bst.hierarchical_allreduce_exter_nranks_);
    }
  }
#endif

D
dzhwinter 已提交
186
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
187 188
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
189
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
190
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
191

P
peizhilin 已提交
192
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
193
  platform::MultiNCCLContextMap nccl_ctxs_;
Y
Yu Yang 已提交
194
#endif
C
chengduoZH 已提交
195 196
  bool own_local_scope_;
  bool use_cuda_;
197
  bool use_all_reduce_;
198
  size_t nranks_;
S
sneaxiy 已提交
199

S
sneaxiy 已提交
200 201 202
  // global_ref_cnts_ is only initialized when ParallelExecutor constructs, and
  // then keeps unchanged
  // Before each iteration, runtime_ref_cnts_ is reset to global_ref_cnts_
203 204 205
  std::vector<ir::ReferenceCountMap> global_ref_cnts_;
  std::vector<ir::AtomicReferenceCountMap> runtime_ref_cnts_;
  ir::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
206 207
};

208 209
ir::Graph *ParallelExecutorPrivate::PrepareGCAndRefCnts(
    ir::Graph *graph, size_t max_memory_size) {
S
sneaxiy 已提交
210 211 212 213 214
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
215
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
216
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
217 218
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
219 220
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
221
      } else {
S
sneaxiy 已提交
222 223
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
224 225
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
226
    } else {
S
sneaxiy 已提交
227
#endif
S
sneaxiy 已提交
228 229 230 231 232 233 234
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
235 236 237 238
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
239
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
240 241
  }

S
sneaxiy 已提交
242
  if (!gcs_.empty()) {
243
    std::vector<ir::LastLiveOpsOfVars> last_live_ops_of_vars;
S
sneaxiy 已提交
244 245 246

    auto ref_cnt_pass =
        ir::PassRegistry::Instance().Get("reference_count_pass");
247 248
    ref_cnt_pass->SetNotOwned(ir::kGlobalReferenceCount, &global_ref_cnts_);
    ref_cnt_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
249
    graph = ref_cnt_pass->Apply(graph);
S
sneaxiy 已提交
250 251 252 253
    VLOG(10) << "ReferenceCountPass Applied";

    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
254
    eager_deletion_pass->SetNotOwned(ir::kRuntimeReferenceCount,
S
sneaxiy 已提交
255
                                     &runtime_ref_cnts_);
256 257
    eager_deletion_pass->SetNotOwned(ir::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
S
sneaxiy 已提交
258
                                     &last_live_ops_of_vars);
259
    eager_deletion_pass->SetNotOwned(ir::kAllPlaces, &places_);
260
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
261 262 263 264 265
    VLOG(10) << "EagerDeletionPass Applied";
  }
  return graph;
}

266 267 268 269
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

270 271 272 273 274 275 276 277 278 279 280 281 282 283
void ParallelExecutor::DropLocalExeScopes() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  if (executor) {
    executor->DropLocalExeScopes();
  }
}

bool ParallelExecutor::NeedCreateLocalExeScope() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  return executor && executor->NeedCreateLocalExeScope();
}

Y
Yan Xu 已提交
284 285 286 287 288 289 290 291
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
Y
Yu Yang 已提交
292
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
293
  member_->global_scope_ = scope;
294
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
295
  member_->build_strategy_ = build_strategy;
296 297
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
298
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
299 300 301 302 303
#if defined(PADDLE_WITH_CUDA) && defined(_WIN32)
  if (member_->use_cuda_) {
    PADDLE_ENFORCE(places.size() == 1, "Windows can support Single GPU only.");
  }
#endif
304 305 306 307
  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
Y
Yancey1989 已提交
308 309
  }

310
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
311
  // Create local scopes
312
  if (local_scopes.empty()) {
C
chengduoZH 已提交
313
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
314 315
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
316
      member_->local_scopes_.emplace_back(&scope->NewScope());
317 318
    }
  } else {
C
chengduoZH 已提交
319
    member_->own_local_scope_ = false;
320 321
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
322
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
323
    }
Y
Yu Yang 已提交
324 325
  }

Q
Qiao Longfei 已提交
326
  std::vector<ir::Graph *> graphs;
Q
Qiao Longfei 已提交
327 328 329
  if (build_strategy.async_mode_) {
    PADDLE_ENFORCE(!member_->use_cuda_,
                   "gpu mode does not support async_mode_ now!");
Q
Qiao Longfei 已提交
330
    graphs.push_back(graph);
D
dongdaxiang 已提交
331
    for (size_t i = 1; i < places.size(); ++i) {
Q
Qiao Longfei 已提交
332 333 334 335
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
Q
Qiao Longfei 已提交
336
  }
Q
Qiao Longfei 已提交
337

Y
Yancey1989 已提交
338 339 340
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
341 342
  build_strategy.enable_parallel_graph_ =
      EnableParallelGraphExecution(*graph, exec_strategy, build_strategy);
Y
Yancey1989 已提交
343 344 345 346
  if (build_strategy.enable_parallel_graph_)
    VLOG(0) << "The Executor would execute the graph by ParallelGraph "
               "Execution which can get better performance,"
            << "you can force it off by env FLAGS_enable_parallel_graph=0";
Y
Yancey1989 已提交
347

C
chengduoZH 已提交
348
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
349
// Bcast Parameters to all GPUs
P
peizhilin 已提交
350
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
351
    member_->InitNCCLCtxs(scope, build_strategy);
Q
qingqing01 已提交
352

W
Wu Yi 已提交
353 354 355
    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
Q
qingqing01 已提交
356
    // be rewrite and there will be some problem.
W
Wu Yi 已提交
357 358 359
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
Q
qingqing01 已提交
360 361 362 363 364
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
365 366 367
      auto &nccl_ctx =
          member_->nccl_ctxs_.DefaultFlatCtx()->at(member_->places_[dev_id]);
      dev_ctx->set_nccl_comm(nccl_ctx.comm());
Q
qingqing01 已提交
368
    }
Y
Yu Yang 已提交
369
#endif
C
chengduoZH 已提交
370
  }
Y
Yan Xu 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
    if (build_strategy.num_trainers_ > 1) {
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };

  if (need_broadcast()) {
    BCastParamsToDevices(bcast_vars, build_strategy.trainer_id_);
Y
Yu Yang 已提交
386
  }
Q
Qiao Longfei 已提交
387
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
388

Q
Qiao Longfei 已提交
389 390 391
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<ir::Graph *> async_graphs(places.size());
P
peizhilin 已提交
392
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Q
Qiao Longfei 已提交
393
  if (build_strategy.async_mode_) {
Q
Qiao Longfei 已提交
394
    VLOG(3) << "use local async mode";
395 396
    graph = build_strategy.Apply(graph, {member_->places_[0]}, loss_var_name,
                                 {member_->local_scopes_[0]}, 1,
397
                                 member_->use_cuda_, &member_->nccl_ctxs_);
D
dongdaxiang 已提交
398
    for (size_t i = 1; i < member_->places_.size(); ++i) {
399 400 401
      graphs[i] =
          build_strategy.Apply(graphs[i], {member_->places_[i]}, loss_var_name,
                               {member_->local_scopes_[i]}, 1,
402
                               member_->use_cuda_, &member_->nccl_ctxs_);
403
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
404
    }
Q
Qiao Longfei 已提交
405
  } else {
406 407
    graph = build_strategy.Apply(graph, member_->places_, loss_var_name,
                                 member_->local_scopes_, member_->nranks_,
408
                                 member_->use_cuda_, &member_->nccl_ctxs_);
Q
Qiao Longfei 已提交
409
  }
C
chengduoZH 已提交
410
#else
Q
Qiao Longfei 已提交
411
  if (build_strategy.async_mode_) {
Q
Qiao Longfei 已提交
412
    VLOG(3) << "use local async mode";
413 414 415
    graph = build_strategy.Apply(graph, {member_->places_[0]}, loss_var_name,
                                 {member_->local_scopes_[0]}, 1,
                                 member_->use_cuda_);
416
    for (size_t i = 1; i < member_->places_.size(); ++i) {
417 418
      graphs[i] = build_strategy.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
Q
Qiao Longfei 已提交
419
          {member_->local_scopes_[i]}, 1, member_->use_cuda_);
420
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
421
    }
Q
can run  
Qiao Longfei 已提交
422
  } else {
423 424 425
    graph = build_strategy.Apply(graph, member_->places_, loss_var_name,
                                 member_->local_scopes_, member_->nranks_,
                                 member_->use_cuda_);
Q
can run  
Qiao Longfei 已提交
426
  }
Y
Yu Yang 已提交
427
#endif
428

Y
Yancey1989 已提交
429
  auto max_memory_size = GetEagerDeletionThreshold();
D
dzhwinter 已提交
430 431
  VLOG(10) << "Eager Deletion Threshold "
           << static_cast<float>(max_memory_size) / (1 << 30);
Y
Yancey1989 已提交
432
  if (max_memory_size >= 0) {
433 434
    graph = member_->PrepareGCAndRefCnts(graph,
                                         static_cast<size_t>(max_memory_size));
Y
Yancey1989 已提交
435 436
  }

Q
Qiao Longfei 已提交
437 438
  async_graphs[0] = graph;

439 440
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
441
  std::vector<details::VariableInfo> var_infos;
Q
Qiao Longfei 已提交
442 443 444 445 446 447
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
Y
Yancey1989 已提交
448 449
    }
  }
Y
Yancey1989 已提交
450

W
Wu Yi 已提交
451 452
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
Q
Qiao Longfei 已提交
453
    size_t graph_num = ir::GraphNum(*graph);
C
chengduo 已提交
454 455 456 457
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
Q
Qiao Longfei 已提交
458
          << ir::GraphNum(*graph)
C
chengduo 已提交
459 460 461 462 463
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
464 465
  }

Q
Qiao Longfei 已提交
466
  if (build_strategy.async_mode_) {
Q
can run  
Qiao Longfei 已提交
467 468
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
Q
Qiao Longfei 已提交
469
        exec_strategy, member_->local_scopes_, member_->places_, async_graphs));
Q
can run  
Qiao Longfei 已提交
470 471
  } else if (build_strategy.enable_parallel_graph_) {
    VLOG(3) << "use ParallelSSAGraphExecutor";
Y
Yancey1989 已提交
472
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
473 474
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
Y
Yancey1989 已提交
475
    member_->executor_.reset(new details::ParallelSSAGraphExecutor(
X
Xin Pan 已提交
476
        exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
477 478 479 480
#else
    PADDLE_THROW(
        "Paddle should be compiled with CUDA for ParallelGraph Execution.");
#endif
Y
yuyang18 已提交
481
  } else {
Y
Yancey1989 已提交
482
    if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
Q
can run  
Qiao Longfei 已提交
483
      VLOG(3) << "use ThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
484
      member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
X
Xin Pan 已提交
485
          exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
486
    } else {
Q
can run  
Qiao Longfei 已提交
487
      VLOG(3) << "use FastThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
488
      member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
X
Xin Pan 已提交
489
          exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
490
    }
C
chengduoZH 已提交
491
  }
Y
yuyang18 已提交
492

Q
can run  
Qiao Longfei 已提交
493
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
Q
Qiao Longfei 已提交
494 495 496 497 498
  if (!build_strategy.async_mode_) {
    member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, std::move(var_infos),
        member_->places_, std::move(member_->executor_)));
  }
Y
Yu Yang 已提交
499 500
}

Y
Yancey1989 已提交
501
void ParallelExecutor::BCastParamsToDevices(
Y
Yan Xu 已提交
502
    const std::vector<std::string> &vars, int trainer_id) const {
Q
Qiao Longfei 已提交
503
  VLOG(3) << "BCastParamsToDevices";
X
Xin Pan 已提交
504
  // the initializing bcast, all vars would be bcast from device(0).
505
  for (auto &var : vars) {
X
Xin Pan 已提交
506
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
507
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
508 509 510 511
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
512
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
513
      VLOG(3) << "one in var not inited, return!";
514 515
      continue;
    }
516 517
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
518
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
519
      std::vector<void *> buffers;
C
chengduo 已提交
520
      buffers.reserve(member_->places_.size());
521 522 523 524 525
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
526

Y
Yan Xu 已提交
527
        if (i == 0 && trainer_id == 0) {
528 529
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
530
          auto local_scope = member_->local_scopes_[i];
531
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
532
          t->Resize(dims);
533
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
534
        }
535
        buffers.push_back(buffer);
536
      }
537

538 539 540
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
541
        auto *nccl_ctxs = member_->nccl_ctxs_.DefaultFlatCtx();
542 543
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
544
          auto &nccl_ctx = nccl_ctxs->at(member_->places_[i]);
X
Xin Pan 已提交
545 546
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
547
        }
548
        nccl_ctxs->WaitAll();
549
      }
C
chengduoZH 已提交
550
#endif
551 552
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
553
      for (size_t i = 1; i < member_->places_.size(); ++i) {
554 555
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
556

Q
Qiao Longfei 已提交
557
        auto copy_memory = [&] {
558 559 560
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
561 562
        };

Q
Qiao Longfei 已提交
563
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
564 565 566 567 568 569 570

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
        } else if (member_->use_all_reduce_ || member_->use_cuda_ ||
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
571
        } else {
Q
can run  
Qiao Longfei 已提交
572
          share_memory();
573
        }
Y
Yu Yang 已提交
574
      }
Y
Stash  
Yu Yang 已提交
575 576
    }
  }
Y
Yu Yang 已提交
577
}
Y
Yu Yang 已提交
578

Y
Yu Yang 已提交
579 580
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
581
  VLOG(3) << "enter ParallelExecutor Run";
Y
Yu Yang 已提交
582 583 584
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
585 586
  }
#endif
Y
Yu Yang 已提交
587

X
Xin Pan 已提交
588
  platform::RecordBlock b(0);
S
sneaxiy 已提交
589
  if (member_->HasGarbageCollectors()) {
590
    platform::RecordEvent event("PrepareGarbageCollectors");
S
sneaxiy 已提交
591
    member_->ResetRuntimeReferenceCount(fetch_tensors, fetched_var_name);
S
sneaxiy 已提交
592
  }
593 594

  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
S
sneaxiy 已提交
595 596 597
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
598
}
Y
Yu Yang 已提交
599

Y
Yu Yang 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
C
chengduo 已提交
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
    if (member_->places_.size() != lod_tensors.size()) {
      bool is_cpu_place = platform::is_cpu_place(member_->places_.front());
      auto error_info = string::Sprintf(
          "The number(%d) of samples of "
          "current batch is less than the count(%d) of "
          "devices(%s), currently, it is not allowed. ",
          member_->places_.size(), lod_tensors.size(),
          (is_cpu_place ? "CPU" : "GPU"));
      if (is_cpu_place) {
        error_info +=
            "You should set the environment variable CPU_NUM in the system "
            "to determine the number of devices you need.";
      }
      PADDLE_THROW(error_info);
    }
X
Xin Pan 已提交
634 635
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
636
      auto t =
Y
Yu Yang 已提交
637
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
638 639
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
640 641 642 643
    }
  }
}

X
Xin Pan 已提交
644 645 646 647 648 649 650
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

651
bool ParallelExecutor::EnableParallelGraphExecution(
X
Xin Pan 已提交
652
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
653
    const BuildStrategy &build_strategy) const {
654 655 656
  if (!FLAGS_enable_parallel_graph) {
    return false;
  }
657

Y
Yancey1989 已提交
658
  bool enable_parallel_graph = true;
659

X
Xin Pan 已提交
660 661 662 663 664 665 666 667 668 669 670 671 672
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
673 674 675
    }
  }

676
  if (!member_->use_all_reduce_ || !member_->use_cuda_) {
Y
Yancey1989 已提交
677
    if (build_strategy.enable_sequential_execution_ ||
678
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental) {
Y
Yancey1989 已提交
679
      enable_parallel_graph = false;
680 681 682 683 684 685 686 687 688
    }
  }

#ifdef WIN32
  VLOG(1) << "Windows has no support to parallel graph, enable_parallel_graph "
             "would be forced to false.";
  enable_parallel_graph = false;
#endif

Y
Yancey1989 已提交
689
  return enable_parallel_graph;
690 691
}

Y
Yu Yang 已提交
692
}  // namespace framework
Y
Yang Yang 已提交
693
}  // namespace paddle
S
sneaxiy 已提交
694

S
sneaxiy 已提交
695
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
696
USE_PASS(eager_deletion_pass);