提交 86a61c17 编写于 作者: Y yuyang18

Add ScopeBufferedSSAGraphExecutor

上级 01bbe532
......@@ -87,7 +87,7 @@ cc_library(executor SRCS executor.cc DEPS op_registry device_context scope
framework_proto glog lod_rank_table feed_fetch_method)
cc_library(parallel_executor SRCS parallel_executor.cc DEPS multi_devices_graph_builder threaded_ssa_graph_executor)
cc_library(parallel_executor SRCS parallel_executor.cc DEPS multi_devices_graph_builder threaded_ssa_graph_executor scope_buffered_ssa_graph_executor)
cc_library(prune SRCS prune.cc DEPS framework_proto)
cc_test(prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_context)
......
......@@ -36,5 +36,6 @@ cc_test(broadcast_op_test SRCS broadcast_op_handle_test.cc DEPS var_handle op_ha
device_context broadcast_op_handle)
cc_test(gather_op_test SRCS gather_op_handle_test.cc DEPS var_handle op_handle_base scope ddim memory
device_context gather_op_handle)
cc_library(scope_buffered_ssa_graph_executor SRCS scope_buffered_ssa_graph_executor.cc DEPS ssa_graph_executor)
#cc_test(reduce_op_handle_test SRCS reduce_op_handle_test.cc DEPS var_handle op_handle_base scope ddim memory
# device_context reduce_op_handle )
......@@ -22,6 +22,7 @@ struct ExecutionStrategy {
size_t num_threads_{0};
bool use_event_{true};
bool allow_op_delay_{false};
size_t num_iteration_per_drop_scope_{100};
};
} // namespace details
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
#include <string>
#include <vector>
#include "paddle/fluid/framework/executor.h"
namespace paddle {
namespace framework {
namespace details {
ScopeBufferedSSAGraphExecutor::ScopeBufferedSSAGraphExecutor(
ExecutionStrategy strategy, std::vector<Scope *> local_scopes,
std::vector<VariableInfo> var_infos, std::vector<platform::Place> places,
std::unique_ptr<SSAGraphExecutor> &&underlying_executor)
: strategy_(std::move(strategy)),
underlying_executor_(std::move(underlying_executor)),
local_scopes_(std::move(local_scopes)),
var_infos_(std::move(var_infos)),
places_(std::move(places)) {}
FeedFetchList ScopeBufferedSSAGraphExecutor::Run(
const std::vector<std::string> &fetch_tensors) {
if (drop_scope_counter_ == 0) {
// Create local scopes.
for (auto it = local_scopes_.rbegin(); it != local_scopes_.rend(); ++it) {
auto &scope = *it;
Scope &local_scope = scope->NewScope();
*scope->Var(details::kLocalExecScopeName)->GetMutable<Scope *>() =
&local_scope;
for (auto &info : var_infos_) {
if (scope->FindVar(info.name_) != nullptr) {
continue;
}
if (info.persistable_) { // Persistable
InitializeVariable(scope->Var(info.name_), info.type_);
} else {
InitializeVariable(local_scope.Var(info.name_), info.type_);
}
}
}
}
auto fetch_data = underlying_executor_->Run(fetch_tensors);
drop_scope_counter_ += 1;
if (!fetch_tensors.empty() ||
drop_scope_counter_ == strategy_.num_iteration_per_drop_scope_) {
drop_scope_counter_ = 0;
// Wait All computational streams
for (auto p : places_) {
platform::DeviceContextPool::Instance().Get(p)->Wait();
}
for (auto &scope : local_scopes_) {
auto &local_scope =
*scope->Var(details::kLocalExecScopeName)->GetMutable<Scope *>();
scope->DeleteScope(local_scope);
}
}
return fetch_data;
}
} // namespace details
} // namespace framework
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/details/execution_strategy.h"
#include "paddle/fluid/framework/details/ssa_graph_executor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/platform/place.h"
namespace paddle {
namespace framework {
namespace details {
struct VariableInfo {
std::string name_;
proto::VarType::Type type_;
bool persistable_;
};
class ScopeBufferedSSAGraphExecutor : public SSAGraphExecutor {
public:
ScopeBufferedSSAGraphExecutor(
ExecutionStrategy strategy, std::vector<Scope*> local_scopes,
std::vector<VariableInfo> var_infos, std::vector<platform::Place> places,
std::unique_ptr<SSAGraphExecutor>&& underlying_executor);
FeedFetchList Run(const std::vector<std::string>& fetch_tensors) override;
private:
size_t drop_scope_counter_{0};
ExecutionStrategy strategy_;
std::unique_ptr<SSAGraphExecutor> underlying_executor_;
std::vector<Scope*> local_scopes_;
std::vector<VariableInfo> var_infos_;
std::vector<platform::Place> places_;
};
} // namespace details
} // namespace framework
} // namespace paddle
......@@ -17,10 +17,6 @@
namespace paddle {
namespace framework {
namespace details {
SSAGraphExecutor::SSAGraphExecutor(std::unique_ptr<SSAGraph> &&graph)
: graph_(std::move(graph)) {}
SSAGraphExecutor::~SSAGraphExecutor() {}
} // namespace details
......
......@@ -28,15 +28,11 @@ class SSAGraphExecutor {
DISABLE_COPY_AND_ASSIGN(SSAGraphExecutor);
public:
// Steal graph inside
explicit SSAGraphExecutor(std::unique_ptr<SSAGraph> &&graph);
SSAGraphExecutor() {}
virtual ~SSAGraphExecutor();
virtual FeedFetchList Run(const std::vector<std::string> &fetch_tensors) = 0;
protected:
std::unique_ptr<SSAGraph> graph_;
};
} // namespace details
} // namespace framework
......
......@@ -21,7 +21,7 @@ ThreadedSSAGraphExecutor::ThreadedSSAGraphExecutor(
const ExecutionStrategy &strategy, const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places,
std::unique_ptr<SSAGraph> &&graph)
: SSAGraphExecutor(std::move(graph)),
: graph_(std::move(graph)),
pool_(strategy.num_threads_ >= 2 ? new ::ThreadPool(strategy.num_threads_)
: nullptr),
local_scopes_(local_scopes),
......@@ -189,7 +189,9 @@ void ThreadedSSAGraphExecutor::RunOp(
BlockingQueue<VarHandleBase *> *ready_var_q, details::OpHandleBase *op) {
auto op_run = [ready_var_q, op, this] {
try {
VLOG(10) << op << " " << op->Name() << " : " << op->DebugString();
if (VLOG_IS_ON(10)) {
VLOG(10) << op << " " << op->Name() << " : " << op->DebugString();
}
op->Run(strategy_.use_event_);
VLOG(10) << op << " " << op->Name() << " Done ";
running_ops_--;
......
......@@ -51,6 +51,7 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
details::OpHandleBase *op);
private:
std::unique_ptr<SSAGraph> graph_;
std::unique_ptr<::ThreadPool> pool_;
std::vector<Scope *> local_scopes_;
std::vector<platform::Place> places_;
......
......@@ -23,6 +23,7 @@ limitations under the License. */
#endif
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
#include "paddle/fluid/platform/profiler.h"
......@@ -42,8 +43,6 @@ class ParallelExecutorPrivate {
#ifdef PADDLE_WITH_CUDA
std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
#endif
std::vector<std::tuple<std::string, proto::VarType::Type, bool>> var_types_;
bool own_local_scope;
};
......@@ -92,9 +91,18 @@ ParallelExecutor::ParallelExecutor(
local_scopes.empty()) { // Is CUDA
BCastParamsToGPUs(bcast_vars);
}
// Startup Program has been run. All local scopes has correct parameters.
// Startup Program has been run. All local scopes has correct parameters.
// Step 2. Create vars in each scope;
std::vector<details::VariableInfo> var_infos;
for (auto *var : main_program.Block(0).AllVars()) {
var_infos.emplace_back();
var_infos.back().name_ = var->Name();
var_infos.back().type_ = var->GetType();
var_infos.back().persistable_ = var->Persistable();
}
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
// Step 3. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
#ifdef PADDLE_WITH_CUDA
details::MultiDevSSAGraphBuilder builder(
......@@ -105,16 +113,15 @@ ParallelExecutor::ParallelExecutor(
params, member_->local_scopes_,
build_strategy);
#endif
auto graph = builder.Build(main_program);
member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
exec_strategy, member_->local_scopes_, places, std::move(graph)));
// Step 3. Create vars in each scope;
for (auto *var : main_program.Block(0).AllVars()) {
member_->var_types_.emplace_back(var->Name(), var->GetType(),
var->Persistable());
}
member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
exec_strategy, member_->local_scopes_, std::move(var_infos),
member_->places_, std::move(member_->executor_)));
}
void ParallelExecutor::BCastParamsToGPUs(
......@@ -169,42 +176,9 @@ void ParallelExecutor::BCastParamsToGPUs(
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
const std::string &fetched_var_name) {
platform::RecordBlock b(0);
// Create local scopes.
for (auto it = member_->local_scopes_.rbegin();
it != member_->local_scopes_.rend(); ++it) {
auto &scope = *it;
Scope &local_scope = scope->NewScope();
*scope->Var(details::kLocalExecScopeName)->GetMutable<Scope *>() =
&local_scope;
for (auto &name_type_pair : member_->var_types_) {
if (scope->FindVar(std::get<0>(name_type_pair)) != nullptr) {
continue;
}
if (std::get<2>(name_type_pair)) { // Persistable
InitializeVariable(scope->Var(std::get<0>(name_type_pair)),
std::get<1>(name_type_pair));
} else {
InitializeVariable(local_scope.Var(std::get<0>(name_type_pair)),
std::get<1>(name_type_pair));
}
}
}
auto fetch_data = member_->executor_->Run(fetch_tensors);
*member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
fetch_data;
// Wait All computational streams
for (auto p : member_->places_) {
platform::DeviceContextPool::Instance().Get(p)->Wait();
}
for (auto &scope : member_->local_scopes_) {
auto &local_scope =
*scope->Var(details::kLocalExecScopeName)->GetMutable<Scope *>();
scope->DeleteScope(local_scope);
}
}
void ParallelExecutor::FeedTensorsIntoLocalScopes(
......
......@@ -519,6 +519,14 @@ All parameter, weight, gradient are variables in Paddle.
[](const ExecutionStrategy &self) { return self.allow_op_delay_; },
[](ExecutionStrategy &self, bool allow_op_delay) {
self.allow_op_delay_ = allow_op_delay;
})
.def_property(
"num_iteration_per_drop_scope",
[](const ExecutionStrategy &self) {
return self.num_iteration_per_drop_scope_;
},
[](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
});
py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy");
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册