parallel_executor.cc 41.3 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
Q
qingqing01 已提交
17
#include <memory>
C
chengduoZH 已提交
18
#include <string>
19
#include <tuple>
Q
Qiao Longfei 已提交
20
#include <utility>
Q
qiaolongfei 已提交
21
#include <vector>
Q
Qiao Longfei 已提交
22
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
Y
yuyang18 已提交
23
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
24
#include "paddle/fluid/framework/details/multi_devices_helper.h"
25
#include "paddle/fluid/framework/details/op_handle_base.h"
Y
Yancey1989 已提交
26
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
28
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
29 30
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
31
#include "paddle/fluid/framework/ir/memory_optimize_pass/memory_optimization_var_info.h"
32
#include "paddle/fluid/framework/ir/memory_optimize_pass/reference_count_pass_helper.h"
33
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
34

35 36
DECLARE_double(eager_delete_tensor_gb);

Y
Yu Yang 已提交
37
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
38
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
39
#endif
Y
Yu Yang 已提交
40
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
41 42
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
43
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
44
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
45

Y
Yang Yang 已提交
46
namespace paddle {
Y
Yu Yang 已提交
47 48
namespace framework {

Y
Yu Yang 已提交
49
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
50
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
51
static bool gProfileStarted = false;
Y
Yu Yang 已提交
52
#endif
53

Y
Yu Yang 已提交
54 55
class ParallelExecutorPrivate {
 public:
56 57 58
  ParallelExecutorPrivate(const std::vector<platform::Place> &places,
                          Scope *global_scope)
      : places_(places), global_scope_(global_scope) {
Y
Yu Yang 已提交
59
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
60 61
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
62
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
63 64 65
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
66
          "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
67 68 69 70
#endif
      });
    }
  }
Y
Yu Yang 已提交
71

72 73 74 75 76 77 78 79 80 81 82
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
83

84 85 86 87 88 89 90 91 92 93 94 95 96
  void InitReaderDeviceCount(ir::Graph *graph) const {
    auto pass =
        ir::PassRegistry::Instance().Get("init_reader_device_count_pass");
    pass->SetNotOwned<const Scope>(details::kGlobalScope, global_scope_);
    pass->SetNotOwned<const std::vector<platform::Place>>(details::kPlaces,
                                                          &places_);
    pass->Apply(graph);
  }

  void SetHasFeed(size_t dev_idx, bool has_feed = true);

  bool AllowPartialFeed() const;

97
  ir::Graph *ApplyMemoryOptimizePass(ir::Graph *graph);
S
sneaxiy 已提交
98 99 100

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

101
  /**
T
tianshuo78520a 已提交
102 103
   * NOTE(zengjinle): the fed variables of users should not be reused,
   * because users may feed them into another network. Changing the fed
104 105 106 107 108 109
   * variables that users can visit may cause calculation wrong, which is
   * a very subtle bug when traning networks. However, these variables
   * can be garbage collected.
   *
   * ParallelExecutor provides 2 methods to feed variables:
   *
T
tianshuo78520a 已提交
110
   *  - FeedTensorsIntoLocalScopes: this method would share memory of fed
111 112
   *                                variables, so we have to skip these.
   *
T
tianshuo78520a 已提交
113
   *  - FeedAndSplitTensorIntoLocalScopes: this method would copy data of fed
114 115 116 117 118 119 120 121 122 123
   *                                       variables, so we do not need to skip
   *                                       them.
   */
  inline void SetSkipMemoryReuse(size_t scope_idx, const std::string &name) {
    auto iter = mem_opt_var_infos_[scope_idx].find(name);
    if (iter != mem_opt_var_infos_[scope_idx].end()) {
      iter->second->SetSkipMemoryReuse(true);
    }
  }

124
#if defined(PADDLE_WITH_NCCL)
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
  void InitNCCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "nccl comm num:" << bst.nccl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    if (bst.use_hierarchical_allreduce_) {
      VLOG(1) << ", use_hierarchical_allreduce:"
              << bst.use_hierarchical_allreduce_ << ", inter_trainers_num:"
              << bst.hierarchical_allreduce_inter_nranks_
              << ", exter_trainers_num:"
              << bst.hierarchical_allreduce_exter_nranks_;
    }

    std::vector<ncclUniqueId *> flat_nccl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create ncclid when nranks==1
141 142
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
143 144 145 146 147 148 149 150 151 152 153 154
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one ncclid in pg model";

      ncclUniqueId *nccl_id = nullptr;

      std::string var_name = platform::GetFlatNCCLVarName(0);
      auto nccl_id_var = scope->FindVar(var_name);
      if (nccl_id_var) {
        nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
155
        VLOG(10) << "find nccl_id_var:" << var_name << ", nccl_id:" << nccl_id;
156 157
      } else {
        nccl_id = new ncclUniqueId();
158 159 160
        PADDLE_ENFORCE_EQ(
            platform::dynload::ncclGetUniqueId(nccl_id), ncclSuccess,
            platform::errors::PreconditionNotMet("Get NCCL unique ID failed."));
161 162
        VLOG(10) << "can't find nccl_id_var:" << var_name
                 << ", nccl_id:" << nccl_id;
163 164 165 166
      }

      flat_nccl_ids.push_back(nccl_id);

167 168
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
169 170 171 172 173 174
      VLOG(1) << "init bst nccl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
175 176
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
177 178 179 180 181 182
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
      std::string var_name = platform::GetFlatNCCLVarName(i);
      auto nccl_id_var = scope->FindVar(var_name);
183 184 185
      PADDLE_ENFORCE_NOT_NULL(
          nccl_id_var,
          platform::errors::NotFound("Can't find nccl_id_var '%s'.", var_name));
186 187 188 189
      auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      flat_nccl_ids.push_back(nccl_id);
    }

190 191
    nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                             bst.trainer_id_);
192 193

    if (bst.use_hierarchical_allreduce_) {
G
gongweibao 已提交
194 195 196 197
      std::vector<ncclUniqueId *> inter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalInterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
198 199 200
        PADDLE_ENFORCE_NOT_NULL(nccl_id_var,
                                platform::errors::NotFound(
                                    "Can't find nccl_id_var '%s'.", var_name));
G
gongweibao 已提交
201 202 203
        auto inter_nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        inter_nccl_ids.push_back(inter_nccl_id);
      }
204 205 206 207 208

      std::vector<ncclUniqueId *> exter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalExterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
209 210 211
        PADDLE_ENFORCE_NOT_NULL(nccl_id_var,
                                platform::errors::NotFound(
                                    "Can't find nccl_id_var '%s'.", var_name));
212 213 214
        auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        exter_nccl_ids.push_back(nccl_id);
      }
G
gongweibao 已提交
215

216 217 218 219
      nccl_ctxs_->InitHierarchicalCtxs(
          places_, inter_nccl_ids, exter_nccl_ids, bst.num_trainers_,
          bst.trainer_id_, bst.hierarchical_allreduce_inter_nranks_,
          bst.hierarchical_allreduce_exter_nranks_);
220 221
    }
  }
222

223
  void InitOrGetNCCLCommunicator(framework::Scope *scope, BuildStrategy *bst) {
224 225 226
    const std::string var_name = "NCCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
227 228 229
      PADDLE_ENFORCE_EQ(var->IsInitialized(), true,
                        platform::errors::PreconditionNotMet(
                            "if %s exists, it must be initialized", var_name));
230 231 232 233 234 235
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      nccl_ctxs_ = var->GetMutable<platform::NCCLCommunicator>();
      return;
    }

236
    if (bst->use_hierarchical_allreduce_) {
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
      PADDLE_ENFORCE_GT(
          bst->num_trainers_, 1,
          platform::errors::PreconditionNotMet(
              "The num_trainers should be greater than 1, but received %llu.",
              bst->num_trainers_));
      PADDLE_ENFORCE_GT(
          bst->hierarchical_allreduce_inter_nranks_, 1,
          platform::errors::PreconditionNotMet(
              "The inter_nranks should be greater than 1, but received %d.",
              bst->hierarchical_allreduce_inter_nranks_));
      PADDLE_ENFORCE_EQ(
          bst->num_trainers_ % bst->hierarchical_allreduce_inter_nranks_, 0,
          platform::errors::PreconditionNotMet(
              "num_trainers:%llu mod inter_nranks:%d != 0", bst->num_trainers_,
              bst->hierarchical_allreduce_inter_nranks_));
252 253 254 255 256

      bst->hierarchical_allreduce_exter_nranks_ =
          bst->num_trainers_ / bst->hierarchical_allreduce_inter_nranks_;
    }

257 258
    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    nccl_ctxs_ = scope->Var(var_name)->GetMutable<platform::NCCLCommunicator>();
259
    InitNCCLCtxs(scope, *bst);
260
  }
261 262
#endif

263 264 265 266 267
  inline bool IsPersistable(const std::string &name) const {
    auto iter = is_persistable_.find(name);
    return iter != is_persistable_.end() && iter->second;
  }

D
dzhwinter 已提交
268
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
269 270
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
271
  std::vector<Scope *> local_exec_scopes_;
272
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
273
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
274

275 276
  std::unordered_map<std::string, bool> is_persistable_;

277
#if defined(PADDLE_WITH_NCCL)
278
  platform::NCCLCommunicator *nccl_ctxs_{nullptr};
Y
Yu Yang 已提交
279
#endif
C
chengduoZH 已提交
280 281
  bool own_local_scope_;
  bool use_cuda_;
282
  bool use_all_reduce_;
283
  size_t nranks_;
S
sneaxiy 已提交
284

285
  ir::MemOptVarInfoMapList mem_opt_var_infos_;
286
  ir::GarbageCollectorMap gcs_;
287 288

  details::ParallelSSAGraphExecutor *inference_executor_{nullptr};
Y
Yu Yang 已提交
289 290
};

291 292 293 294 295 296 297 298 299 300
void ParallelExecutorPrivate::SetHasFeed(size_t dev_idx, bool has_feed) {
  if (inference_executor_) {
    inference_executor_->SetHasFeed(dev_idx, has_feed);
  }
}

bool ParallelExecutorPrivate::AllowPartialFeed() const {
  return inference_executor_ && inference_executor_->SupportPartialFeed();
}

301
ir::Graph *ParallelExecutorPrivate::ApplyMemoryOptimizePass(ir::Graph *graph) {
Z
Zeng Jinle 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
  /**
   * NOTE(zengjinle): If BuildStrategy.memory_optimize = None in Python,
   * set BuildStrategy.memory_optimize according to whether gc is enabled.
   * If gc is enabled, BuildStrategy.memory_optimize = False.
   * If gc is disabled, BuildStrategy.memory_optimize = True.
   * This is because gc+memory_optimize is worse than gc only.
   *
   * As an option, users can enable BuildStrategy.memory_optimize forcely
   * by setting True, and disable it forcely by setting False.
   */
  bool is_gc_enabled = (GetEagerDeletionThreshold() >= 0);
  if (!build_strategy_.memory_optimize_) {
    build_strategy_.memory_optimize_ = !is_gc_enabled;
  }

  bool need_mem_opt = build_strategy_.enable_inplace_ ||
                      build_strategy_.memory_optimize_.get() || is_gc_enabled;

  if (!need_mem_opt) return graph;

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
  std::vector<ir::LastLiveOpsOfVars> last_live_ops_of_vars;

  auto ref_cnt_pass = ir::PassRegistry::Instance().Get("reference_count_pass");
  ref_cnt_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
  ref_cnt_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
  graph = ref_cnt_pass->Apply(graph);
  VLOG(10) << "ReferenceCountPass Applied";

  if (build_strategy_.enable_inplace_) {
    auto inplace_pass =
        ir::PassRegistry::Instance().Get("buffer_shared_inplace_pass");
    inplace_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    inplace_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
    inplace_pass->SetNotOwned(ir::kUseCuda, &use_cuda_);
    VLOG(10) << "Start to apply buffer_shared_inplace_pass";
    graph = inplace_pass->Apply(graph);
    VLOG(10) << "buffer_shared_inplace_pass Applied";
339 340
    VLOG(1) << "Inplace strategy is enabled, when "
               "build_strategy.enable_inplace = True";
341 342
  }

343
  if (build_strategy_.memory_optimize_.get()) {
344 345 346 347 348 349 350 351 352 353
    auto cross_op_memory_reuse_pass = ir::PassRegistry::Instance().Get(
        "buffer_shared_cross_op_memory_reuse_pass");
    cross_op_memory_reuse_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                            &mem_opt_var_infos_);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
                                            &last_live_ops_of_vars);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kUseCuda, &use_cuda_);
    VLOG(10) << "Start to apply buffer_shared_cross_op_memory_reuse_pass";
    graph = cross_op_memory_reuse_pass->Apply(graph);
    VLOG(10) << "buffer_shared_cross_op_memory_reuse_pass Applied";
Z
Zeng Jinle 已提交
354 355 356
    LOG(INFO) << "Cross op memory reuse strategy is enabled, when "
                 "build_strategy.memory_optimize = True or garbage collection "
                 "strategy is disabled, which is not recommended";
357
  }
358

359
  if (!is_gc_enabled) {
360 361 362 363
    return graph;
  }
  size_t max_memory_size = static_cast<size_t>(GetEagerDeletionThreshold());

S
sneaxiy 已提交
364 365 366 367 368
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
369
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
370
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
371 372
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
373 374
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
375
      } else {
S
sneaxiy 已提交
376 377
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
378 379
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
380
    } else {
S
sneaxiy 已提交
381
#endif
S
sneaxiy 已提交
382 383 384 385 386
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
387 388
        PADDLE_THROW(platform::errors::PreconditionNotMet(
            "Unsupported place for garbage collection"));
S
sneaxiy 已提交
389
      }
S
sneaxiy 已提交
390 391 392 393
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
394
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
395 396
  }

S
sneaxiy 已提交
397
  if (!gcs_.empty()) {
S
sneaxiy 已提交
398 399
    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
400 401
    eager_deletion_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                     &mem_opt_var_infos_);
402 403
    eager_deletion_pass->SetNotOwned(ir::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
S
sneaxiy 已提交
404
                                     &last_live_ops_of_vars);
405
    eager_deletion_pass->SetNotOwned(ir::kAllPlaces, &places_);
406
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
407
    VLOG(10) << "EagerDeletionPass Applied";
408 409 410
    VLOG(1) << "Garbage collection strategy is enabled, when "
            << "FLAGS_eager_delete_tensor_gb = "
            << FLAGS_eager_delete_tensor_gb;
S
sneaxiy 已提交
411 412 413 414
  }
  return graph;
}

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
class ResetHasFeedGuard {
 public:
  explicit ResetHasFeedGuard(ParallelExecutorPrivate *pe_member)
      : pe_member_(pe_member) {}

  ~ResetHasFeedGuard() {
    for (size_t i = 0; i < pe_member_->places_.size(); ++i) {
      pe_member_->SetHasFeed(i, false);
    }
  }

 private:
  ParallelExecutorPrivate *pe_member_;
};

430 431
size_t ParallelExecutor::DeviceCount() const { return member_->places_.size(); }

432 433 434 435
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

436 437 438 439 440 441 442 443 444 445 446 447 448 449
void ParallelExecutor::DropLocalExeScopes() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  if (executor) {
    executor->DropLocalExeScopes();
  }
}

bool ParallelExecutor::NeedCreateLocalExeScope() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  return executor && executor->NeedCreateLocalExeScope();
}

Y
Yan Xu 已提交
450 451 452 453 454 455 456 457
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
458 459
    : member_(new ParallelExecutorPrivate(places, scope)) {
  member_->InitReaderDeviceCount(graph);
460
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
461
  member_->build_strategy_ = build_strategy;
C
chengduo 已提交
462 463
  member_->use_all_reduce_ = member_->build_strategy_.reduce_ ==
                             BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
464
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
C
chengduo 已提交
465 466 467 468 469 470 471
  if (!member_->use_all_reduce_ && member_->nranks_ == 1) {
    LOG(INFO) << "If you set build_strategy.reduce with 'Reduce',"
                 "the number of places should be greater than 1.";
    member_->build_strategy_.reduce_ =
        BuildStrategy::ReduceStrategy::kAllReduce;
    member_->use_all_reduce_ = true;
  }
472 473
#if defined(PADDLE_WITH_CUDA) && defined(_WIN32)
  if (member_->use_cuda_) {
474 475 476
    PADDLE_ENFORCE_EQ(
        places.size(), 1,
        platform::errors::Unavailable("Windows can support Single GPU only."));
477 478
  }
#endif
Y
Yancey1989 已提交
479

480 481 482 483 484 485 486 487 488 489
#if defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_NCCL)
  PADDLE_ENFORCE_EQ(
      places.size(), 1,
      platform::errors::PermissionDenied(
          "Your machine has multiple cards, "
          "but the WITH_NCCL option is not turned on during compilation, "
          "and you cannot use multi-card training or prediction. "
          "Please recompile and turn on the WITH_NCCL option."));
#endif

490
  VLOG(1) << string::Sprintf(
491 492 493
      "The Program will be executed on %s using ParallelExecutor, %lu "
      "cards are used, so %lu programs are executed in parallel.",
      (member_->use_cuda_ ? "CUDA" : "CPU"), places.size(), places.size());
C
chengduo 已提交
494

495
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
496
  // Create local scopes
497
  if (local_scopes.empty()) {
C
chengduoZH 已提交
498
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
499 500
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
501
      member_->local_scopes_.emplace_back(&scope->NewScope());
502 503
    }
  } else {
C
chengduoZH 已提交
504
    member_->own_local_scope_ = false;
505 506 507 508 509
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size(),
                      platform::errors::PreconditionNotMet(
                          "member_->places_.size() = %d is not equal to "
                          "local_scopes.size() = %d",
                          member_->places_.size(), local_scopes.size()));
510
    for (size_t i = 0; i < member_->places_.size(); ++i) {
511
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
512
    }
Y
Yu Yang 已提交
513 514
  }

Q
Qiao Longfei 已提交
515
  std::vector<ir::Graph *> graphs;
C
chengduo 已提交
516
  if (member_->build_strategy_.async_mode_) {
517 518 519
    PADDLE_ENFORCE_EQ(member_->use_cuda_, false,
                      platform::errors::Unavailable(
                          "gpu mode does not support async_mode_ now!"));
Q
Qiao Longfei 已提交
520
    graphs.push_back(graph);
D
dongdaxiang 已提交
521
    for (size_t i = 1; i < places.size(); ++i) {
Q
Qiao Longfei 已提交
522 523 524 525
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
Q
Qiao Longfei 已提交
526
  }
Q
Qiao Longfei 已提交
527

Y
Yancey1989 已提交
528 529 530
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
C
chengduo 已提交
531 532 533 534
  member_->build_strategy_.enable_parallel_graph_ =
      EnableParallelGraphExecution(*graph, exec_strategy,
                                   member_->build_strategy_);
  if (member_->build_strategy_.enable_parallel_graph_) {
535 536 537 538
    LOG(INFO) << "The Executor would execute the graph by ParallelGraph "
                 "Execution which can get better performance,"
              << "you can force it off by env FLAGS_enable_parallel_graph=0";
  }
Y
Yancey1989 已提交
539

540
  if (member_->use_cuda_ && member_->nranks_ > 1) {
541
#if defined(PADDLE_WITH_NCCL)
542
    member_->InitOrGetNCCLCommunicator(scope, &member_->build_strategy_);
Q
qingqing01 已提交
543

W
Wu Yi 已提交
544 545 546
    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
Q
qingqing01 已提交
547
    // be rewrite and there will be some problem.
W
Wu Yi 已提交
548 549 550
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
551 552
    auto *nccl_ctxs =
        member_->nccl_ctxs_->GetSyncBatchNormCtx(scope, member_->places_);
553
    auto &pool = platform::DeviceContextPool::Instance();
Q
qingqing01 已提交
554 555 556
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
557
      auto &nccl_ctx = nccl_ctxs->at(member_->places_[dev_id]);
558
      dev_ctx->set_nccl_comm(nccl_ctx.comm());
Q
qingqing01 已提交
559
    }
Y
Yu Yang 已提交
560
#endif
C
chengduoZH 已提交
561
  }
Y
Yan Xu 已提交
562 563
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
C
chengduo 已提交
564
    if (member_->build_strategy_.num_trainers_ > 1) {
Y
Yan Xu 已提交
565 566 567 568 569 570 571 572 573
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };
574
  // Bcast Parameters to all GPUs
Y
Yan Xu 已提交
575
  if (need_broadcast()) {
C
chengduo 已提交
576
    BCastParamsToDevices(bcast_vars, member_->build_strategy_.trainer_id_);
Y
Yu Yang 已提交
577
  }
578

Q
Qiao Longfei 已提交
579
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
580

Q
Qiao Longfei 已提交
581 582 583
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<ir::Graph *> async_graphs(places.size());
584
#if defined(PADDLE_WITH_NCCL)
C
chengduo 已提交
585
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
586
    VLOG(3) << "use local async mode";
C
chengduo 已提交
587 588 589 590
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_cuda_,
        member_->nccl_ctxs_);
D
dongdaxiang 已提交
591
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
592 593 594 595
      graphs[i] = member_->build_strategy_.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, 1, member_->use_cuda_,
          member_->nccl_ctxs_);
596
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
597
    }
Q
Qiao Longfei 已提交
598
  } else {
C
chengduo 已提交
599 600 601
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_, member_->nccl_ctxs_);
Q
Qiao Longfei 已提交
602
  }
C
chengduoZH 已提交
603
#else
C
chengduo 已提交
604
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
605
    VLOG(3) << "use local async mode";
C
chengduo 已提交
606 607 608
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_cuda_);
609
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
610
      graphs[i] = member_->build_strategy_.Apply(
611
          graphs[i], {member_->places_[i]}, loss_var_name,
Q
Qiao Longfei 已提交
612
          {member_->local_scopes_[i]}, 1, member_->use_cuda_);
613
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
614
    }
Q
can run  
Qiao Longfei 已提交
615
  } else {
C
chengduo 已提交
616 617 618
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_);
Q
can run  
Qiao Longfei 已提交
619
  }
Y
Yu Yang 已提交
620
#endif
621

622
  graph = member_->ApplyMemoryOptimizePass(graph);
Y
Yancey1989 已提交
623

Q
Qiao Longfei 已提交
624 625
  async_graphs[0] = graph;

626 627
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
628
  std::vector<details::VariableInfo> var_infos;
Q
Qiao Longfei 已提交
629 630 631 632 633 634
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
635 636 637

      member_->is_persistable_.emplace(node->Var()->Name(),
                                       node->Var()->Persistable());
Y
Yancey1989 已提交
638 639
    }
  }
Y
Yancey1989 已提交
640

641 642 643 644 645 646 647
  std::unordered_map<Scope *, Scope *> scope_map;
  for (auto *scope : member_->local_scopes_) {
    auto &local_exec_scope = scope->NewScope();
    member_->local_exec_scopes_.emplace_back(&local_exec_scope);
    scope_map.emplace(scope, &local_exec_scope);
  }

648 649 650 651 652 653
  PADDLE_ENFORCE_EQ(
      member_->local_scopes_.size(), member_->local_exec_scopes_.size(),
      platform::errors::PreconditionNotMet(
          "member_->local_scopes_.size() = %d is not equal to "
          "member_->local_exec_scopes_.size() = %d",
          member_->local_scopes_.size(), member_->local_exec_scopes_.size()));
654 655 656

  std::vector<ir::Graph *> final_graphs;

C
chengduo 已提交
657
  if (member_->build_strategy_.async_mode_) {
Q
can run  
Qiao Longfei 已提交
658 659
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
660 661 662
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, async_graphs));
    final_graphs = async_graphs;
C
chengduo 已提交
663
  } else if (member_->build_strategy_.enable_parallel_graph_) {
Q
can run  
Qiao Longfei 已提交
664
    VLOG(3) << "use ParallelSSAGraphExecutor";
Y
Yancey1989 已提交
665
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
666 667
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
668 669 670
    bool is_inference = details::IsDataParallelInferenceGraph(*graph);
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);

671 672 673 674 675
    auto *pg_exe = new details::ParallelSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, graph);
    final_graphs = pg_exe->Graphs();
    member_->executor_.reset(pg_exe);
676 677 678 679 680 681 682 683

    if (is_inference && member_->places_.size() > 1) {
      member_->inference_executor_ = pg_exe;
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
    }
Y
Yancey1989 已提交
684
#else
685 686
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Paddle should be compiled with CUDA for ParallelGraph Execution."));
Y
Yancey1989 已提交
687
#endif
Y
yuyang18 已提交
688
  } else {
689 690 691 692 693 694
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);
    auto possible_inference_graphs =
        details::TrySeparateToMultipleSingleDeviceGraphs(graph);
    if (!possible_inference_graphs.empty()) {
      VLOG(5) << "Use ParallelSSAGraphExecutor in inference phase";
      auto *pg_exe = new details::ParallelSSAGraphExecutor(
695
          exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
696 697 698 699 700 701 702 703
          member_->places_, std::move(possible_inference_graphs));
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
      final_graphs = pg_exe->Graphs();
      member_->executor_.reset(pg_exe);
      member_->inference_executor_ = pg_exe;
Y
Yancey1989 已提交
704
    } else {
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
      LOG_IF(WARNING, details::HasKeepLastReadOp(*graph))
          << "drop_last=False for DataLoader is not supported in training "
             "network. It is automatically turned to drop_last=True.";
      if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
        VLOG(3) << "use ThreadedSSAGraphExecutor";
        member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
            exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
            member_->places_, graph));
      } else {
        VLOG(3) << "use FastThreadedSSAGraphExecutor";
        member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
            exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
            member_->places_, graph));
      }
      final_graphs.emplace_back(graph);
Y
Yancey1989 已提交
720
    }
C
chengduoZH 已提交
721
  }
Y
yuyang18 已提交
722

Q
can run  
Qiao Longfei 已提交
723
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
C
chengduo 已提交
724
  if (!member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
725
    member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
726 727 728 729 730 731 732 733 734
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        std::move(var_infos), member_->places_, std::move(member_->executor_)));
  }

  for (auto *g : final_graphs) {
    auto ops = ir::FilterByNodeWrapper<details::OpHandleBase>(*g);
    for (auto *op : ops) {
      op->SetLocalExecScopes(scope_map);
    }
Q
Qiao Longfei 已提交
735
  }
Y
Yu Yang 已提交
736 737
}

Y
Yancey1989 已提交
738
void ParallelExecutor::BCastParamsToDevices(
Y
Yan Xu 已提交
739
    const std::vector<std::string> &vars, int trainer_id) const {
Q
Qiao Longfei 已提交
740
  VLOG(3) << "BCastParamsToDevices";
X
Xin Pan 已提交
741
  // the initializing bcast, all vars would be bcast from device(0).
742
  for (auto &var : vars) {
X
Xin Pan 已提交
743
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
744
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
745 746 747 748
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
749
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
750
      VLOG(3) << "one in var not inited, return!";
751 752
      continue;
    }
753 754
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
755
#if defined(PADDLE_WITH_NCCL)
756
      std::vector<void *> buffers;
C
chengduo 已提交
757
      buffers.reserve(member_->places_.size());
758 759 760 761 762
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
763

Y
Yan Xu 已提交
764
        if (i == 0 && trainer_id == 0) {
765 766
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
767
          auto local_scope = member_->local_scopes_[i];
768
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
769
          t->Resize(dims);
770
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
771
        }
772
        buffers.push_back(buffer);
773
      }
774

775
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
776 777 778 779
                        platform::errors::PreconditionNotMet(
                            "variables' buffer size to bcast is %d, which is "
                            "NOT equal to places size %d",
                            buffers.size(), member_->places_.size()));
780
      {
781
        auto *nccl_ctxs = member_->nccl_ctxs_->DefaultFlatCtx();
782 783
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
784
          auto &nccl_ctx = nccl_ctxs->at(member_->places_[i]);
X
Xin Pan 已提交
785 786
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
787
        }
788
        nccl_ctxs->WaitAll();
789
      }
C
chengduoZH 已提交
790
#endif
791 792
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
793
      for (size_t i = 1; i < member_->places_.size(); ++i) {
794 795
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
796

Q
Qiao Longfei 已提交
797
        auto copy_memory = [&] {
798 799 800
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
801 802
        };

Q
Qiao Longfei 已提交
803
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
804 805 806 807 808 809 810

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
        } else if (member_->use_all_reduce_ || member_->use_cuda_ ||
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
811
        } else {
Q
can run  
Qiao Longfei 已提交
812
          share_memory();
813
        }
Y
Yu Yang 已提交
814
      }
Y
Stash  
Yu Yang 已提交
815 816
    }
  }
Y
Yu Yang 已提交
817
}
Y
Yu Yang 已提交
818

Z
Zhen Wang 已提交
819 820
FetchResultType ParallelExecutor::Run(
    const std::vector<std::string> &fetch_tensors, bool return_merged) {
821
  VLOG(3) << "enter ParallelExecutor Run";
Y
Yu Yang 已提交
822 823 824
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
825 826
  }
#endif
Y
Yu Yang 已提交
827

X
Xin Pan 已提交
828
  platform::RecordBlock b(0);
829

830 831
  ResetHasFeedGuard reset_has_feed_guard(member_);

832 833
  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_), fetch_tensors,
                                member_->HasGarbageCollectors());
834 835

  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
Z
Zhen Wang 已提交
836
  auto fetch_data = member_->executor_->Run(fetch_tensors, return_merged);
837
  return fetch_data;
Y
Yu Yang 已提交
838
}
Y
Yu Yang 已提交
839

Y
Yu Yang 已提交
840 841
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
  if (!member_->AllowPartialFeed()) {
    PADDLE_ENFORCE_EQ(tensors.size(), member_->local_scopes_.size(),
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
                          tensors.size(), member_->local_scopes_.size()));
  } else {
    PADDLE_ENFORCE_GE(member_->local_scopes_.size(), tensors.size(),
                      platform::errors::InvalidArgument(
                          "The feed tensor number exceeds the device number"));
  }
Y
Yu Yang 已提交
857

858
  size_t feed_num = 0;
Y
Yu Yang 已提交
859 860
  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
861 862 863 864 865 866
    if (map.empty()) {
      continue;
    }

    member_->SetHasFeed(i);
    ++feed_num;
Y
Yu Yang 已提交
867
    for (auto &pair : map) {
868
      bool is_persistable = member_->IsPersistable(pair.first);
869 870 871
      if (!is_persistable) {
        member_->SetSkipMemoryReuse(i, pair.first);
      }
872 873 874 875 876
      auto *feed_scope = is_persistable ? member_->local_scopes_[i]
                                        : member_->local_exec_scopes_[i];
      auto *feed_var = feed_scope->Var(pair.first);

      auto *trg = feed_var->GetMutable<LoDTensor>();
Y
Yu Yang 已提交
877 878 879 880
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
881 882 883 884 885 886 887 888 889 890 891 892

  if (!member_->AllowPartialFeed()) {
    PADDLE_ENFORCE_EQ(feed_num, member_->local_scopes_.size(),
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
                          feed_num, member_->local_scopes_.size()));
  }
Y
Yu Yang 已提交
893 894 895 896
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
897
  size_t num_places = member_->places_.size();
898 899 900 901 902
  bool allow_partial_feed = member_->AllowPartialFeed();

  size_t persistable_feed_len = -1UL;
  size_t non_persistable_feed_len = -1UL;

903
  for (auto &pair : tensors) {
904 905 906 907
    bool is_persistable = member_->IsPersistable(pair.first);
    VLOG(3) << "Split " << (is_persistable ? "persistable" : "no persistable")
            << " data (" << pair.first << "), dim:" << pair.second.dims()
            << ", place: " << pair.second.place();
Y
Yu Yang 已提交
908
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
909
    bool is_cpu_place = platform::is_cpu_place(member_->places_.front());
910 911
    if (!is_persistable && num_places != lod_tensors.size() &&
        !allow_partial_feed) {
C
chengduo 已提交
912
      auto error_info = string::Sprintf(
913 914 915
          "The number(%d) of samples[%s] of current batch is less than the "
          "count(%d) of devices(%s), currently, it is not allowed. ",
          lod_tensors.size(), pair.first, num_places,
C
chengduo 已提交
916 917 918 919 920 921
          (is_cpu_place ? "CPU" : "GPU"));
      if (is_cpu_place) {
        error_info +=
            "You should set the environment variable CPU_NUM in the system "
            "to determine the number of devices you need.";
      }
922
      PADDLE_THROW(platform::errors::PreconditionNotMet(error_info));
923 924 925 926
    } else if (is_persistable) {
      if (lod_tensors.size() == 1) {
        lod_tensors.reserve(num_places);
        auto &tensor = lod_tensors.front();
927 928 929 930 931 932
        PADDLE_ENFORCE_EQ(
            tensor.dims(), pair.second.dims(),
            platform::errors::PreconditionNotMet("The dim doesn't match."));
        PADDLE_ENFORCE_EQ(
            tensor.place(), member_->places_.at(0),
            platform::errors::PreconditionNotMet("The place doesn't match."));
933 934 935 936 937 938
        for (size_t i = 1; i < num_places; ++i) {
          lod_tensors.emplace_back();
          auto &tmp = lod_tensors.back();
          framework::TensorCopy(pair.second, member_->places_.at(i), &tmp);
        }
      }
939
      if (lod_tensors.size() != num_places && !allow_partial_feed) {
940 941 942 943 944 945 946 947 948
        auto error_info = string::Sprintf(
            "The number(%d) of samples[%s] of the current batch does not match "
            "the count(%d) of devices(%s). Because that %s is a persistable "
            "variable, you can feed just one sample, in that case, the input "
            "sample will be copied in %d copies and be sent to different "
            "places separately. If you need that different place has different "
            "value, you should feed %d samples.",
            lod_tensors.size(), pair.first, num_places,
            (is_cpu_place ? "CPU" : "GPU"), pair.first, num_places, num_places);
949
        PADDLE_THROW(platform::errors::PreconditionNotMet(error_info));
950
      }
C
chengduo 已提交
951
    }
952

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
    if (allow_partial_feed) {
      if (is_persistable) {
        if (persistable_feed_len == -1UL) {
          persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
              persistable_feed_len, lod_tensors.size(),
              platform::errors::InvalidArgument(
                  "The feeded number of different persistable variables "
                  "should be the same"));
        }
      } else {
        if (non_persistable_feed_len == -1UL) {
          non_persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
              non_persistable_feed_len, lod_tensors.size(),
              platform::errors::InvalidArgument(
                  "The feeded number of different non-persistable variables "
                  "should be the same"));
        }
      }
    }

    for (size_t j = 0; j < lod_tensors.size(); ++j) {
978 979 980 981 982
      auto *feed_scope = is_persistable ? member_->local_scopes_[j]
                                        : member_->local_exec_scopes_[j];
      auto *feed_var = feed_scope->Var(pair.first);

      auto t = feed_var->GetMutable<LoDTensor>();
983 984
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
985 986
    }
  }
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002

  if (allow_partial_feed && persistable_feed_len != -1UL &&
      non_persistable_feed_len != -1UL) {
    VLOG(10) << "Persistable len " << persistable_feed_len;
    VLOG(10) << "Non persistable len " << non_persistable_feed_len;
    PADDLE_ENFORCE_GE(persistable_feed_len, non_persistable_feed_len,
                      platform::errors::InvalidArgument(
                          "The feeded number of persistable variables should "
                          "not be less than non-persistable variables"));
  }

  if (non_persistable_feed_len != -1UL) {
    for (size_t i = 0; i < non_persistable_feed_len; ++i) {
      member_->SetHasFeed(i);
    }
  }
X
Xin Pan 已提交
1003 1004
}

X
Xin Pan 已提交
1005 1006 1007 1008 1009 1010 1011
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

1012
bool ParallelExecutor::EnableParallelGraphExecution(
X
Xin Pan 已提交
1013
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
1014
    const BuildStrategy &build_strategy) const {
1015 1016 1017
  if (!FLAGS_enable_parallel_graph) {
    return false;
  }
1018

Y
Yancey1989 已提交
1019
  bool enable_parallel_graph = true;
1020

X
Xin Pan 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
1034 1035 1036
    }
  }

1037
  if (!member_->use_all_reduce_ || !member_->use_cuda_) {
Y
Yancey1989 已提交
1038
    if (build_strategy.enable_sequential_execution_ ||
1039
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental) {
Y
Yancey1989 已提交
1040
      enable_parallel_graph = false;
1041 1042 1043 1044 1045 1046 1047 1048 1049
    }
  }

#ifdef WIN32
  VLOG(1) << "Windows has no support to parallel graph, enable_parallel_graph "
             "would be forced to false.";
  enable_parallel_graph = false;
#endif

Y
Yancey1989 已提交
1050
  return enable_parallel_graph;
1051 1052
}

1053 1054 1055 1056
const ir::Graph &ParallelExecutor::Graph() const {
  return member_->executor_->Graph();
}

Y
Yu Yang 已提交
1057
}  // namespace framework
Y
Yang Yang 已提交
1058
}  // namespace paddle
S
sneaxiy 已提交
1059

S
sneaxiy 已提交
1060
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
1061
USE_PASS(eager_deletion_pass);
1062
USE_PASS(buffer_shared_inplace_pass);
1063
USE_PASS(buffer_shared_cross_op_memory_reuse_pass);
1064
USE_PASS(init_reader_device_count_pass);