parallel_executor.cc 19.4 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
C
chengduoZH 已提交
17
#include <string>
18
#include <tuple>
Q
qiaolongfei 已提交
19
#include <vector>
C
chengduo 已提交
20
#include "paddle/fluid/framework/ir/graph_helper.h"
Y
Yu Yang 已提交
21

X
clean  
Xin Pan 已提交
22
#include "paddle/fluid/framework/ir/graph.h"
X
Xin Pan 已提交
23

Y
Yancey1989 已提交
24
#include "paddle/fluid/framework/details/all_reduce_deps_pass.h"
Q
Qiao Longfei 已提交
25
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
Y
yuyang18 已提交
26
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
27
#include "paddle/fluid/framework/details/multi_devices_helper.h"
Y
Yancey1989 已提交
28
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
S
sneaxiy 已提交
29
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
Y
yuyang18 已提交
30
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
31
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
32
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
33

Y
Yu Yang 已提交
34
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
35
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
36
#endif
Y
Yu Yang 已提交
37
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
38 39
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
40
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
41
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
42

Y
Yang Yang 已提交
43
namespace paddle {
Y
Yu Yang 已提交
44 45
namespace framework {

Y
Yu Yang 已提交
46
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
47
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
48
static bool gProfileStarted = false;
Y
Yu Yang 已提交
49
#endif
Y
Yu Yang 已提交
50 51 52
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
53
      : places_(places) {
Y
Yu Yang 已提交
54
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
55 56
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
57
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
58 59 60
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
Y
Yu Yang 已提交
61
                        "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
62 63 64 65
#endif
      });
    }
  }
Y
Yu Yang 已提交
66

67 68 69 70 71 72 73 74 75 76 77
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
78

S
sneaxiy 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92
  std::unique_ptr<ir::Graph> PrepareGCAndRefCnts(
      std::unique_ptr<ir::Graph> graph, size_t max_memory_size);

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

  void ResetRuntimeReferenceCount(const std::vector<std::string> &fetch_tensors,
                                  const std::string &fetched_var_name) {
    for (size_t i = 0; i < runtime_ref_cnts_.size(); ++i) {
      for (auto &pair : global_ref_cnts_[i]) {
        runtime_ref_cnts_[i][pair.first] = pair.second;
      }

      for (auto &fetch_name : fetch_tensors) {
        runtime_ref_cnts_[i].erase(fetch_name);
S
sneaxiy 已提交
93
      }
S
sneaxiy 已提交
94
      runtime_ref_cnts_[i].erase(fetched_var_name);
S
sneaxiy 已提交
95 96 97
    }
  }

D
dzhwinter 已提交
98
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
99 100
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
101
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
102
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
103

P
peizhilin 已提交
104
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
105
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
106
#endif
C
chengduoZH 已提交
107 108
  bool own_local_scope_;
  bool use_cuda_;
109
  bool use_all_reduce_;
110
  size_t nranks_;
S
sneaxiy 已提交
111

S
sneaxiy 已提交
112 113 114 115 116 117
  // global_ref_cnts_ is only initialized when ParallelExecutor constructs, and
  // then keeps unchanged
  // Before each iteration, runtime_ref_cnts_ is reset to global_ref_cnts_
  std::vector<details::ReferenceCountMap> global_ref_cnts_;
  std::vector<details::AtomicReferenceCountMap> runtime_ref_cnts_;
  details::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
118 119
};

S
sneaxiy 已提交
120 121 122 123 124 125 126
std::unique_ptr<ir::Graph> ParallelExecutorPrivate::PrepareGCAndRefCnts(
    std::unique_ptr<ir::Graph> graph, size_t max_memory_size) {
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
127
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
128
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
129 130
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
131 132
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
133
      } else {
S
sneaxiy 已提交
134 135
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
136 137
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
138
    } else {
S
sneaxiy 已提交
139
#endif
S
sneaxiy 已提交
140 141 142 143 144 145 146
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
147 148 149 150
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
151
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
152 153
  }

S
sneaxiy 已提交
154
  if (!gcs_.empty()) {
S
sneaxiy 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    std::vector<details::LastLiveOpsOfVars> last_live_ops_of_vars;

    auto ref_cnt_pass =
        ir::PassRegistry::Instance().Get("reference_count_pass");
    ref_cnt_pass->SetNotOwned(details::kGlobalReferenceCount,
                              &global_ref_cnts_);
    ref_cnt_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                              &last_live_ops_of_vars);
    graph = ref_cnt_pass->Apply(std::move(graph));
    VLOG(10) << "ReferenceCountPass Applied";

    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
    eager_deletion_pass->SetNotOwned(details::kRuntimeReferenceCount,
                                     &runtime_ref_cnts_);
    eager_deletion_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                                     &last_live_ops_of_vars);
    eager_deletion_pass->SetNotOwned(details::kAllPlaces, &places_);
    graph = eager_deletion_pass->Apply(std::move(graph));
    VLOG(10) << "EagerDeletionPass Applied";
  }

  return graph;
}

181 182 183 184
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
185
ParallelExecutor::ParallelExecutor(
186
    const std::vector<platform::Place> &places,
187 188
    const std::unordered_set<std::string> &bcast_vars,
    const ProgramDesc &main_program, const std::string &loss_var_name,
Y
yuyang18 已提交
189
    Scope *scope, const std::vector<Scope *> &local_scopes,
190
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy)
Y
Yu Yang 已提交
191
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
192
  member_->global_scope_ = scope;
193
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
194
  member_->build_strategy_ = build_strategy;
195 196
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
197
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
198 199 200 201
  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
Y
Yancey1989 已提交
202 203
  }

204
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
205
  // Create local scopes
206
  if (local_scopes.empty()) {
C
chengduoZH 已提交
207
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
208 209
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
210
      member_->local_scopes_.emplace_back(&scope->NewScope());
211 212
    }
  } else {
C
chengduoZH 已提交
213
    member_->own_local_scope_ = false;
214 215
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
216
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
217
    }
Y
Yu Yang 已提交
218 219
  }

Y
Yancey1989 已提交
220 221 222 223 224
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
  build_strategy.enable_parallel_graph_ =
      EnableParallelGraphExecution(main_program, exec_strategy, build_strategy);
Y
Yancey1989 已提交
225 226 227 228
  if (build_strategy.enable_parallel_graph_)
    VLOG(0) << "The Executor would execute the graph by ParallelGraph "
               "Execution which can get better performance,"
            << "you can force it off by env FLAGS_enable_parallel_graph=0";
Y
Yancey1989 已提交
229

C
chengduoZH 已提交
230
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
231
// Bcast Parameters to all GPUs
P
peizhilin 已提交
232
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
233 234 235
    ncclUniqueId *nccl_id = nullptr;
    // gen_nccl_id operator can broadcast the ncclUniqueId for nccl2 collective
    // distributed training
C
chengduoZH 已提交
236
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
Y
Yancey1989 已提交
237
    if (nccl_id_var != nullptr) {
Y
Yancey1989 已提交
238
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
Y
Yancey1989 已提交
239
    }
240
    if (build_strategy.enable_parallel_graph_ && member_->nranks_ > 1UL) {
Y
Yancey1989 已提交
241 242 243 244
      if (nccl_id == nullptr) {
        local_nccl_id_.reset(new ncclUniqueId());
        platform::dynload::ncclGetUniqueId(local_nccl_id_.get());
        nccl_id = local_nccl_id_.get();
Y
Yancey1989 已提交
245
      }
C
chengduoZH 已提交
246
    }
Y
Yancey1989 已提交
247

C
chengduoZH 已提交
248
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
249 250
        member_->places_, nccl_id, build_strategy.num_trainers_,
        build_strategy.trainer_id_));
C
chengduoZH 已提交
251 252
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
253
#endif
C
chengduoZH 已提交
254 255
  }
  if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
Y
Yancey1989 已提交
256
    BCastParamsToDevices(bcast_vars);
Y
Yu Yang 已提交
257
  }
Y
Yancey1989 已提交
258
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
259

Y
Yancey1989 已提交
260 261
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
Y
Yancey1989 已提交
262
  std::unique_ptr<ir::Graph> graph;
Q
Qiao Longfei 已提交
263
  std::vector<std::unique_ptr<ir::Graph>> graphs;
P
peizhilin 已提交
264
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
265 266 267
  graph = build_strategy.Apply(main_program, member_->places_, loss_var_name,
                               member_->local_scopes_, member_->nranks_,
                               member_->use_cuda_, member_->nccl_ctxs_.get());
C
chengduoZH 已提交
268
#else
Q
Qiao Longfei 已提交
269
  if (build_strategy.async_mode_ && !build_strategy.is_distribution_) {
Q
can run  
Qiao Longfei 已提交
270 271 272 273 274 275 276
    for (size_t i = 0; i < member_->places_.size(); ++i) {
      std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
          main_program, {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, member_->nranks_, member_->use_cuda_);
      graphs.push_back(std::move(graph));
    }
  } else {
Q
Qiao Longfei 已提交
277 278 279
    graph = build_strategy.Apply(main_program, member_->places_, loss_var_name,
                                 member_->local_scopes_, member_->nranks_,
                                 member_->use_cuda_);
Q
can run  
Qiao Longfei 已提交
280
  }
Y
Yu Yang 已提交
281
#endif
Y
Yancey1989 已提交
282
  auto max_memory_size = GetEagerDeletionThreshold();
D
dzhwinter 已提交
283 284
  VLOG(10) << "Eager Deletion Threshold "
           << static_cast<float>(max_memory_size) / (1 << 30);
Y
Yancey1989 已提交
285
  if (max_memory_size >= 0) {
Y
Yancey1989 已提交
286 287
    graph = member_->PrepareGCAndRefCnts(std::move(graph),
                                         static_cast<size_t>(max_memory_size));
Y
Yancey1989 已提交
288 289
  }

290 291
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
292
  std::vector<details::VariableInfo> var_infos;
Y
Yancey1989 已提交
293 294 295 296 297 298
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
Y
Yancey1989 已提交
299 300
    }
  }
Y
Yancey1989 已提交
301

W
Wu Yi 已提交
302 303
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
Y
Yancey1989 已提交
304
    size_t graph_num = ir::GraphNum(*graph);
C
chengduo 已提交
305 306 307 308
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
Y
Yancey1989 已提交
309
          << ir::GraphNum(*graph)
C
chengduo 已提交
310 311 312 313 314
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
315 316
  }

317
  if (build_strategy.async_mode_ && !build_strategy.is_distribution_) {
Q
can run  
Qiao Longfei 已提交
318 319 320 321 322 323
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, member_->places_,
        std::move(graphs)));
  } else if (build_strategy.enable_parallel_graph_) {
    VLOG(3) << "use ParallelSSAGraphExecutor";
Y
Yancey1989 已提交
324
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
325 326
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
Y
Yancey1989 已提交
327
    member_->executor_.reset(new details::ParallelSSAGraphExecutor(
Y
Yancey1989 已提交
328 329
        exec_strategy, member_->local_scopes_, member_->places_, main_program,
        std::move(graph)));
Y
Yancey1989 已提交
330 331 332 333
#else
    PADDLE_THROW(
        "Paddle should be compiled with CUDA for ParallelGraph Execution.");
#endif
Y
yuyang18 已提交
334
  } else {
Y
Yancey1989 已提交
335
    if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
Q
can run  
Qiao Longfei 已提交
336
      VLOG(3) << "use ThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
337 338
      member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->places_,
Y
Yancey1989 已提交
339
          std::move(graph)));
Y
Yancey1989 已提交
340
    } else {
Q
can run  
Qiao Longfei 已提交
341
      VLOG(3) << "use FastThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
342 343
      member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->places_,
Y
Yancey1989 已提交
344
          std::move(graph)));
Y
Yancey1989 已提交
345
    }
C
chengduoZH 已提交
346
  }
Y
yuyang18 已提交
347

Q
can run  
Qiao Longfei 已提交
348
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
Y
yuyang18 已提交
349
  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
Y
Yancey1989 已提交
350
      exec_strategy, member_->local_scopes_, std::move(var_infos),
Y
yuyang18 已提交
351
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
352 353
}

Y
Yancey1989 已提交
354
void ParallelExecutor::BCastParamsToDevices(
355
    const std::unordered_set<std::string> &vars) const {
Q
Qiao Longfei 已提交
356
  VLOG(3) << "BCastParamsToDevices";
X
Xin Pan 已提交
357
  // the initializing bcast, all vars would be bcast from device(0).
358
  for (auto &var : vars) {
X
Xin Pan 已提交
359
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
360
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
361 362 363 364
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
365
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
366
      VLOG(3) << "one in var not inited, return!";
367 368
      continue;
    }
369 370
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
371
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
372
      std::vector<void *> buffers;
C
chengduo 已提交
373
      buffers.reserve(member_->places_.size());
374 375 376 377 378
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
379

X
Xin Pan 已提交
380
        if (i == 0) {
381 382
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
383
          auto local_scope = member_->local_scopes_[i];
384
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
385
          t->Resize(dims);
386
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
387
        }
388
        buffers.push_back(buffer);
389
      }
390

391 392 393 394 395 396
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
X
Xin Pan 已提交
397 398
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
399
        }
400
        member_->nccl_ctxs_->WaitAll();
401
      }
C
chengduoZH 已提交
402 403 404
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
405 406
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
407
      for (size_t i = 1; i < member_->places_.size(); ++i) {
408 409
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
410

Q
Qiao Longfei 已提交
411
        auto copy_memory = [&] {
412 413 414
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
415 416
        };

Q
Qiao Longfei 已提交
417
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
418 419 420 421 422 423 424

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
        } else if (member_->use_all_reduce_ || member_->use_cuda_ ||
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
425
        } else {
Q
can run  
Qiao Longfei 已提交
426
          share_memory();
427
        }
Y
Yu Yang 已提交
428
      }
Y
Stash  
Yu Yang 已提交
429 430
    }
  }
Y
Yu Yang 已提交
431
}
Y
Yu Yang 已提交
432

Y
Yu Yang 已提交
433 434
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
Y
Yu Yang 已提交
435 436 437
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
438 439
  }
#endif
Y
Yu Yang 已提交
440

X
Xin Pan 已提交
441
  platform::RecordBlock b(0);
S
sneaxiy 已提交
442 443
  if (member_->HasGarbageCollectors()) {
    member_->ResetRuntimeReferenceCount(fetch_tensors, fetched_var_name);
S
sneaxiy 已提交
444
  }
S
sneaxiy 已提交
445 446 447
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
448
}
Y
Yu Yang 已提交
449

Y
Yu Yang 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
469 470 471 472 473
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
474 475
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
476
      auto t =
Y
Yu Yang 已提交
477
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
478 479
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
480 481 482 483
    }
  }
}

484 485 486
bool ParallelExecutor::EnableParallelGraphExecution(
    const ProgramDesc &main_program, const ExecutionStrategy &exec_strategy,
    const BuildStrategy &build_strategy) const {
Y
Yancey1989 已提交
487
  if (!FLAGS_enable_parallel_graph) return false;
488

Y
Yancey1989 已提交
489
  bool enable_parallel_graph = true;
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
  // TODO(Yancey1989): support sparse update in ParallelGraph mode.
  for (auto &var_desc : main_program.Block(0).AllVars()) {
    if (var_desc->GetType() == proto::VarType::SELECTED_ROWS) {
      enable_parallel_graph = false;
    }
  }

  // TODO(Yancey1989): support pserver mode
  for (auto &op_desc : main_program.Block(0).AllOps()) {
    if (op_desc->Type() == "send" || op_desc->Type() == "recv") {
      enable_parallel_graph = false;
      break;
    }
  }

  if (!member_->use_all_reduce_ || !member_->use_cuda_)

Y
Yancey1989 已提交
507 508 509
    if (build_strategy.enable_sequential_execution_ ||
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental)
      enable_parallel_graph = false;
Y
Yancey1989 已提交
510
  return enable_parallel_graph;
511 512
}

513
ParallelExecutor::~ParallelExecutor() {
514 515
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
C
chengduozh 已提交
516
  }
S
sneaxiy 已提交
517
  delete member_;
518 519
}

Y
Yu Yang 已提交
520
}  // namespace framework
Y
Yang Yang 已提交
521
}  // namespace paddle
S
sneaxiy 已提交
522

S
sneaxiy 已提交
523
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
524
USE_PASS(eager_deletion_pass);