parallel_executor.cc 26.6 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
Q
qingqing01 已提交
17
#include <memory>
C
chengduoZH 已提交
18
#include <string>
19
#include <tuple>
Q
Qiao Longfei 已提交
20
#include <utility>
Q
qiaolongfei 已提交
21
#include <vector>
Q
Qiao Longfei 已提交
22
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
Y
yuyang18 已提交
23
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
24
#include "paddle/fluid/framework/details/multi_devices_helper.h"
Y
Yancey1989 已提交
25
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
Y
yuyang18 已提交
26
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
27
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
28 29
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
30
#include "paddle/fluid/framework/ir/memory_optimize_pass/reference_count_pass_helper.h"
31
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
32

Y
Yu Yang 已提交
33
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
34
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
35
#endif
Y
Yu Yang 已提交
36
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
37 38
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
39
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
40
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
41

Y
Yang Yang 已提交
42
namespace paddle {
Y
Yu Yang 已提交
43 44
namespace framework {

Y
Yu Yang 已提交
45
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
46
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
47
static bool gProfileStarted = false;
Y
Yu Yang 已提交
48
#endif
49

Y
Yu Yang 已提交
50 51 52
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
53
      : places_(places) {
Y
Yu Yang 已提交
54
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
55 56
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
57
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
58 59 60
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
61
          "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
62 63 64 65
#endif
      });
    }
  }
Y
Yu Yang 已提交
66

67 68 69 70 71 72 73 74 75 76 77
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
78

79
  ir::Graph *PrepareGCAndRefCnts(ir::Graph *graph, size_t max_memory_size);
S
sneaxiy 已提交
80 81 82 83 84 85 86 87 88 89 90 91

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

  void ResetRuntimeReferenceCount(const std::vector<std::string> &fetch_tensors,
                                  const std::string &fetched_var_name) {
    for (size_t i = 0; i < runtime_ref_cnts_.size(); ++i) {
      for (auto &pair : global_ref_cnts_[i]) {
        runtime_ref_cnts_[i][pair.first] = pair.second;
      }

      for (auto &fetch_name : fetch_tensors) {
        runtime_ref_cnts_[i].erase(fetch_name);
S
sneaxiy 已提交
92
      }
S
sneaxiy 已提交
93
      runtime_ref_cnts_[i].erase(fetched_var_name);
S
sneaxiy 已提交
94 95 96
    }
  }

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
  void InitNCCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "nccl comm num:" << bst.nccl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    if (bst.use_hierarchical_allreduce_) {
      VLOG(1) << ", use_hierarchical_allreduce:"
              << bst.use_hierarchical_allreduce_ << ", inter_trainers_num:"
              << bst.hierarchical_allreduce_inter_nranks_
              << ", exter_trainers_num:"
              << bst.hierarchical_allreduce_exter_nranks_;
    }

    std::vector<ncclUniqueId *> flat_nccl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create ncclid when nranks==1
      nccl_ctxs_.InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                              bst.trainer_id_);
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one ncclid in pg model";

      ncclUniqueId *nccl_id = nullptr;

      std::string var_name = platform::GetFlatNCCLVarName(0);
      auto nccl_id_var = scope->FindVar(var_name);
      if (nccl_id_var) {
        nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      } else {
        nccl_id = new ncclUniqueId();
        PADDLE_ENFORCE(platform::dynload::ncclGetUniqueId(nccl_id));
      }

      flat_nccl_ids.push_back(nccl_id);

      nccl_ctxs_.InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                              bst.trainer_id_);
      VLOG(1) << "init bst nccl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
      nccl_ctxs_.InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                              bst.trainer_id_);
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
      std::string var_name = platform::GetFlatNCCLVarName(i);
      auto nccl_id_var = scope->FindVar(var_name);
      PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
      auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      flat_nccl_ids.push_back(nccl_id);
    }

    nccl_ctxs_.InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                            bst.trainer_id_);

    if (bst.use_hierarchical_allreduce_) {
G
gongweibao 已提交
160 161 162 163 164 165 166 167
      std::vector<ncclUniqueId *> inter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalInterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
        PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
        auto inter_nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        inter_nccl_ids.push_back(inter_nccl_id);
      }
168 169 170 171 172 173 174 175 176

      std::vector<ncclUniqueId *> exter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalExterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
        PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
        auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        exter_nccl_ids.push_back(nccl_id);
      }
G
gongweibao 已提交
177 178

      nccl_ctxs_.InitHierarchicalCtxs(places_, inter_nccl_ids, exter_nccl_ids,
179 180 181 182 183 184 185
                                      bst.num_trainers_, bst.trainer_id_,
                                      bst.hierarchical_allreduce_inter_nranks_,
                                      bst.hierarchical_allreduce_exter_nranks_);
    }
  }
#endif

D
dzhwinter 已提交
186
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
187 188
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
189
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
190
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
191

P
peizhilin 已提交
192
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
193
  platform::MultiNCCLContextMap nccl_ctxs_;
Y
Yu Yang 已提交
194
#endif
C
chengduoZH 已提交
195 196
  bool own_local_scope_;
  bool use_cuda_;
197
  bool use_all_reduce_;
198
  size_t nranks_;
S
sneaxiy 已提交
199

S
sneaxiy 已提交
200 201 202
  // global_ref_cnts_ is only initialized when ParallelExecutor constructs, and
  // then keeps unchanged
  // Before each iteration, runtime_ref_cnts_ is reset to global_ref_cnts_
203 204 205
  std::vector<ir::ReferenceCountMap> global_ref_cnts_;
  std::vector<ir::AtomicReferenceCountMap> runtime_ref_cnts_;
  ir::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
206 207
};

208 209
ir::Graph *ParallelExecutorPrivate::PrepareGCAndRefCnts(
    ir::Graph *graph, size_t max_memory_size) {
S
sneaxiy 已提交
210 211 212 213 214
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
215
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
216
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
217 218
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
219 220
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
221
      } else {
S
sneaxiy 已提交
222 223
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
224 225
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
226
    } else {
S
sneaxiy 已提交
227
#endif
S
sneaxiy 已提交
228 229 230 231 232 233 234
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
235 236 237 238
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
239
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
240 241
  }

S
sneaxiy 已提交
242
  if (!gcs_.empty()) {
243
    std::vector<ir::LastLiveOpsOfVars> last_live_ops_of_vars;
S
sneaxiy 已提交
244 245 246

    auto ref_cnt_pass =
        ir::PassRegistry::Instance().Get("reference_count_pass");
247 248
    ref_cnt_pass->SetNotOwned(ir::kGlobalReferenceCount, &global_ref_cnts_);
    ref_cnt_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
249
    graph = ref_cnt_pass->Apply(graph);
S
sneaxiy 已提交
250 251 252 253
    VLOG(10) << "ReferenceCountPass Applied";

    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
254
    eager_deletion_pass->SetNotOwned(ir::kRuntimeReferenceCount,
S
sneaxiy 已提交
255
                                     &runtime_ref_cnts_);
256 257
    eager_deletion_pass->SetNotOwned(ir::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
S
sneaxiy 已提交
258
                                     &last_live_ops_of_vars);
259
    eager_deletion_pass->SetNotOwned(ir::kAllPlaces, &places_);
260
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
261 262 263 264 265
    VLOG(10) << "EagerDeletionPass Applied";
  }
  return graph;
}

266 267 268 269
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

270 271 272 273 274 275 276 277 278 279 280 281 282 283
void ParallelExecutor::DropLocalExeScopes() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  if (executor) {
    executor->DropLocalExeScopes();
  }
}

bool ParallelExecutor::NeedCreateLocalExeScope() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  return executor && executor->NeedCreateLocalExeScope();
}

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
/*
 * When nccl inits nccl comm using ncclCommInitAll, it meets error when
 * allreduce ophandle and sync_batch_norm_op use ncclallreduce parallelly. So
 * create a new nccl comm for sync_batch_norm_op. And these codes should be
 * polished with a unified nccl management.
 */
platform::NCCLContextMap *ParallelExecutor::GetNCCLContextForSyncbatchNomrOp(
    framework::Scope *scope) {
  auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
  if (nccl_id_var != nullptr) {
    return member_->nccl_ctxs_.DefaultFlatCtx();
  }

  if (dev_nccl_ctxs_.get() == nullptr) {
    dev_nccl_ctxs_.reset(new platform::NCCLContextMap(member_->places_));
  }
  return dev_nccl_ctxs_.get();
}
#endif

Y
Yan Xu 已提交
305 306 307 308 309 310 311 312
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
Y
Yu Yang 已提交
313
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
314
  member_->global_scope_ = scope;
315
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
316
  member_->build_strategy_ = build_strategy;
317 318
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
319
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
320 321 322 323 324
#if defined(PADDLE_WITH_CUDA) && defined(_WIN32)
  if (member_->use_cuda_) {
    PADDLE_ENFORCE(places.size() == 1, "Windows can support Single GPU only.");
  }
#endif
325 326 327 328
  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
Y
Yancey1989 已提交
329 330
  }

331
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
332
  // Create local scopes
333
  if (local_scopes.empty()) {
C
chengduoZH 已提交
334
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
335 336
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
337
      member_->local_scopes_.emplace_back(&scope->NewScope());
338 339
    }
  } else {
C
chengduoZH 已提交
340
    member_->own_local_scope_ = false;
341 342
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
343
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
344
    }
Y
Yu Yang 已提交
345 346
  }

Q
Qiao Longfei 已提交
347
  std::vector<ir::Graph *> graphs;
Q
Qiao Longfei 已提交
348 349 350
  if (build_strategy.async_mode_) {
    PADDLE_ENFORCE(!member_->use_cuda_,
                   "gpu mode does not support async_mode_ now!");
Q
Qiao Longfei 已提交
351
    graphs.push_back(graph);
D
dongdaxiang 已提交
352
    for (size_t i = 1; i < places.size(); ++i) {
Q
Qiao Longfei 已提交
353 354 355 356
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
Q
Qiao Longfei 已提交
357
  }
Q
Qiao Longfei 已提交
358

Y
Yancey1989 已提交
359 360 361
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
362 363
  build_strategy.enable_parallel_graph_ =
      EnableParallelGraphExecution(*graph, exec_strategy, build_strategy);
Y
Yancey1989 已提交
364 365 366 367
  if (build_strategy.enable_parallel_graph_)
    VLOG(0) << "The Executor would execute the graph by ParallelGraph "
               "Execution which can get better performance,"
            << "you can force it off by env FLAGS_enable_parallel_graph=0";
Y
Yancey1989 已提交
368

C
chengduoZH 已提交
369
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
370
// Bcast Parameters to all GPUs
P
peizhilin 已提交
371
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
372
    member_->InitNCCLCtxs(scope, build_strategy);
Q
qingqing01 已提交
373

W
Wu Yi 已提交
374 375 376
    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
Q
qingqing01 已提交
377
    // be rewrite and there will be some problem.
W
Wu Yi 已提交
378 379 380
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
381
    auto *nccl_ctxs = GetNCCLContextForSyncbatchNomrOp(scope);
Q
qingqing01 已提交
382 383 384 385 386
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
387
      auto &nccl_ctx = nccl_ctxs->at(member_->places_[dev_id]);
388
      dev_ctx->set_nccl_comm(nccl_ctx.comm());
Q
qingqing01 已提交
389
    }
Y
Yu Yang 已提交
390
#endif
C
chengduoZH 已提交
391
  }
Y
Yan Xu 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
    if (build_strategy.num_trainers_ > 1) {
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };

  if (need_broadcast()) {
    BCastParamsToDevices(bcast_vars, build_strategy.trainer_id_);
Y
Yu Yang 已提交
407
  }
Q
Qiao Longfei 已提交
408
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
409

Q
Qiao Longfei 已提交
410 411 412
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<ir::Graph *> async_graphs(places.size());
P
peizhilin 已提交
413
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Q
Qiao Longfei 已提交
414
  if (build_strategy.async_mode_) {
Q
Qiao Longfei 已提交
415
    VLOG(3) << "use local async mode";
416 417
    graph = build_strategy.Apply(graph, {member_->places_[0]}, loss_var_name,
                                 {member_->local_scopes_[0]}, 1,
418
                                 member_->use_cuda_, &member_->nccl_ctxs_);
D
dongdaxiang 已提交
419
    for (size_t i = 1; i < member_->places_.size(); ++i) {
420 421 422
      graphs[i] =
          build_strategy.Apply(graphs[i], {member_->places_[i]}, loss_var_name,
                               {member_->local_scopes_[i]}, 1,
423
                               member_->use_cuda_, &member_->nccl_ctxs_);
424
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
425
    }
Q
Qiao Longfei 已提交
426
  } else {
427 428
    graph = build_strategy.Apply(graph, member_->places_, loss_var_name,
                                 member_->local_scopes_, member_->nranks_,
429
                                 member_->use_cuda_, &member_->nccl_ctxs_);
Q
Qiao Longfei 已提交
430
  }
C
chengduoZH 已提交
431
#else
Q
Qiao Longfei 已提交
432
  if (build_strategy.async_mode_) {
Q
Qiao Longfei 已提交
433
    VLOG(3) << "use local async mode";
434 435 436
    graph = build_strategy.Apply(graph, {member_->places_[0]}, loss_var_name,
                                 {member_->local_scopes_[0]}, 1,
                                 member_->use_cuda_);
437
    for (size_t i = 1; i < member_->places_.size(); ++i) {
438 439
      graphs[i] = build_strategy.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
Q
Qiao Longfei 已提交
440
          {member_->local_scopes_[i]}, 1, member_->use_cuda_);
441
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
442
    }
Q
can run  
Qiao Longfei 已提交
443
  } else {
444 445 446
    graph = build_strategy.Apply(graph, member_->places_, loss_var_name,
                                 member_->local_scopes_, member_->nranks_,
                                 member_->use_cuda_);
Q
can run  
Qiao Longfei 已提交
447
  }
Y
Yu Yang 已提交
448
#endif
449

Y
Yancey1989 已提交
450
  auto max_memory_size = GetEagerDeletionThreshold();
D
dzhwinter 已提交
451 452
  VLOG(10) << "Eager Deletion Threshold "
           << static_cast<float>(max_memory_size) / (1 << 30);
Y
Yancey1989 已提交
453
  if (max_memory_size >= 0) {
454 455
    graph = member_->PrepareGCAndRefCnts(graph,
                                         static_cast<size_t>(max_memory_size));
Y
Yancey1989 已提交
456 457
  }

Q
Qiao Longfei 已提交
458 459
  async_graphs[0] = graph;

460 461
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
462
  std::vector<details::VariableInfo> var_infos;
Q
Qiao Longfei 已提交
463 464 465 466 467 468
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
Y
Yancey1989 已提交
469 470
    }
  }
Y
Yancey1989 已提交
471

W
Wu Yi 已提交
472 473
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
Q
Qiao Longfei 已提交
474
    size_t graph_num = ir::GraphNum(*graph);
C
chengduo 已提交
475 476 477 478
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
Q
Qiao Longfei 已提交
479
          << ir::GraphNum(*graph)
C
chengduo 已提交
480 481 482 483 484
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
485 486
  }

Q
Qiao Longfei 已提交
487
  if (build_strategy.async_mode_) {
Q
can run  
Qiao Longfei 已提交
488 489
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
Q
Qiao Longfei 已提交
490
        exec_strategy, member_->local_scopes_, member_->places_, async_graphs));
Q
can run  
Qiao Longfei 已提交
491 492
  } else if (build_strategy.enable_parallel_graph_) {
    VLOG(3) << "use ParallelSSAGraphExecutor";
Y
Yancey1989 已提交
493
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
494 495
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
Y
Yancey1989 已提交
496
    member_->executor_.reset(new details::ParallelSSAGraphExecutor(
X
Xin Pan 已提交
497
        exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
498 499 500 501
#else
    PADDLE_THROW(
        "Paddle should be compiled with CUDA for ParallelGraph Execution.");
#endif
Y
yuyang18 已提交
502
  } else {
Y
Yancey1989 已提交
503
    if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
Q
can run  
Qiao Longfei 已提交
504
      VLOG(3) << "use ThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
505
      member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
X
Xin Pan 已提交
506
          exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
507
    } else {
Q
can run  
Qiao Longfei 已提交
508
      VLOG(3) << "use FastThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
509
      member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
X
Xin Pan 已提交
510
          exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
511
    }
C
chengduoZH 已提交
512
  }
Y
yuyang18 已提交
513

Q
can run  
Qiao Longfei 已提交
514
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
Q
Qiao Longfei 已提交
515 516 517 518 519
  if (!build_strategy.async_mode_) {
    member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, std::move(var_infos),
        member_->places_, std::move(member_->executor_)));
  }
Y
Yu Yang 已提交
520 521
}

Y
Yancey1989 已提交
522
void ParallelExecutor::BCastParamsToDevices(
Y
Yan Xu 已提交
523
    const std::vector<std::string> &vars, int trainer_id) const {
Q
Qiao Longfei 已提交
524
  VLOG(3) << "BCastParamsToDevices";
X
Xin Pan 已提交
525
  // the initializing bcast, all vars would be bcast from device(0).
526
  for (auto &var : vars) {
X
Xin Pan 已提交
527
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
528
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
529 530 531 532
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
533
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
534
      VLOG(3) << "one in var not inited, return!";
535 536
      continue;
    }
537 538
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
539
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
540
      std::vector<void *> buffers;
C
chengduo 已提交
541
      buffers.reserve(member_->places_.size());
542 543 544 545 546
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
547

Y
Yan Xu 已提交
548
        if (i == 0 && trainer_id == 0) {
549 550
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
551
          auto local_scope = member_->local_scopes_[i];
552
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
553
          t->Resize(dims);
554
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
555
        }
556
        buffers.push_back(buffer);
557
      }
558

559 560 561
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
562
        auto *nccl_ctxs = member_->nccl_ctxs_.DefaultFlatCtx();
563 564
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
565
          auto &nccl_ctx = nccl_ctxs->at(member_->places_[i]);
X
Xin Pan 已提交
566 567
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
568
        }
569
        nccl_ctxs->WaitAll();
570
      }
C
chengduoZH 已提交
571
#endif
572 573
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
574
      for (size_t i = 1; i < member_->places_.size(); ++i) {
575 576
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
577

Q
Qiao Longfei 已提交
578
        auto copy_memory = [&] {
579 580 581
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
582 583
        };

Q
Qiao Longfei 已提交
584
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
585 586 587 588 589 590 591

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
        } else if (member_->use_all_reduce_ || member_->use_cuda_ ||
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
592
        } else {
Q
can run  
Qiao Longfei 已提交
593
          share_memory();
594
        }
Y
Yu Yang 已提交
595
      }
Y
Stash  
Yu Yang 已提交
596 597
    }
  }
Y
Yu Yang 已提交
598
}
Y
Yu Yang 已提交
599

Y
Yu Yang 已提交
600 601
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
602
  VLOG(3) << "enter ParallelExecutor Run";
Y
Yu Yang 已提交
603 604 605
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
606 607
  }
#endif
Y
Yu Yang 已提交
608

X
Xin Pan 已提交
609
  platform::RecordBlock b(0);
S
sneaxiy 已提交
610
  if (member_->HasGarbageCollectors()) {
611
    platform::RecordEvent event("PrepareGarbageCollectors");
S
sneaxiy 已提交
612
    member_->ResetRuntimeReferenceCount(fetch_tensors, fetched_var_name);
S
sneaxiy 已提交
613
  }
614 615

  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
S
sneaxiy 已提交
616 617 618
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
619
}
Y
Yu Yang 已提交
620

Y
Yu Yang 已提交
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
C
chengduo 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
    if (member_->places_.size() != lod_tensors.size()) {
      bool is_cpu_place = platform::is_cpu_place(member_->places_.front());
      auto error_info = string::Sprintf(
          "The number(%d) of samples of "
          "current batch is less than the count(%d) of "
          "devices(%s), currently, it is not allowed. ",
          member_->places_.size(), lod_tensors.size(),
          (is_cpu_place ? "CPU" : "GPU"));
      if (is_cpu_place) {
        error_info +=
            "You should set the environment variable CPU_NUM in the system "
            "to determine the number of devices you need.";
      }
      PADDLE_THROW(error_info);
    }
X
Xin Pan 已提交
655 656
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
657
      auto t =
Y
Yu Yang 已提交
658
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
659 660
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
661 662 663 664
    }
  }
}

X
Xin Pan 已提交
665 666 667 668 669 670 671
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

672
bool ParallelExecutor::EnableParallelGraphExecution(
X
Xin Pan 已提交
673
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
674
    const BuildStrategy &build_strategy) const {
675 676 677
  if (!FLAGS_enable_parallel_graph) {
    return false;
  }
678

Y
Yancey1989 已提交
679
  bool enable_parallel_graph = true;
680

X
Xin Pan 已提交
681 682 683 684 685 686 687 688 689 690 691 692 693
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
694 695 696
    }
  }

697
  if (!member_->use_all_reduce_ || !member_->use_cuda_) {
Y
Yancey1989 已提交
698
    if (build_strategy.enable_sequential_execution_ ||
699
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental) {
Y
Yancey1989 已提交
700
      enable_parallel_graph = false;
701 702 703 704 705 706 707 708 709
    }
  }

#ifdef WIN32
  VLOG(1) << "Windows has no support to parallel graph, enable_parallel_graph "
             "would be forced to false.";
  enable_parallel_graph = false;
#endif

Y
Yancey1989 已提交
710
  return enable_parallel_graph;
711 712
}

Y
Yu Yang 已提交
713
}  // namespace framework
Y
Yang Yang 已提交
714
}  // namespace paddle
S
sneaxiy 已提交
715

S
sneaxiy 已提交
716
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
717
USE_PASS(eager_deletion_pass);