parallel_executor.cc 15.8 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
C
chengduoZH 已提交
17
#include <string>
18
#include <tuple>
Q
qiaolongfei 已提交
19
#include <vector>
C
chengduo 已提交
20
#include "paddle/fluid/framework/ir/graph_helper.h"
Y
Yu Yang 已提交
21

X
clean  
Xin Pan 已提交
22
#include "paddle/fluid/framework/ir/graph.h"
X
Xin Pan 已提交
23

P
peizhilin 已提交
24
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
25
#include "paddle/fluid/platform/nccl_helper.h"
Y
Yu Yang 已提交
26
#endif
Y
Yang Yang 已提交
27

Y
yuyang18 已提交
28
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
29
#include "paddle/fluid/framework/details/multi_devices_helper.h"
S
sneaxiy 已提交
30
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
Y
yuyang18 已提交
31
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
33
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
34

Y
Yu Yang 已提交
35
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
36
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
37
#endif
Y
Yu Yang 已提交
38
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
39 40 41
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");

Y
Yang Yang 已提交
42
namespace paddle {
Y
Yu Yang 已提交
43 44
namespace framework {

Y
Yu Yang 已提交
45
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
46
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
47
static bool gProfileStarted = false;
Y
Yu Yang 已提交
48
#endif
Y
Yu Yang 已提交
49 50 51
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
52
      : places_(places) {
Y
Yu Yang 已提交
53
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
54 55
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
56
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
57 58 59
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
Y
Yu Yang 已提交
60
                        "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
61 62 63 64
#endif
      });
    }
  }
Y
Yu Yang 已提交
65

66 67 68 69 70 71 72 73 74 75 76
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
77

S
sneaxiy 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91
  std::unique_ptr<ir::Graph> PrepareGCAndRefCnts(
      std::unique_ptr<ir::Graph> graph, size_t max_memory_size);

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

  void ResetRuntimeReferenceCount(const std::vector<std::string> &fetch_tensors,
                                  const std::string &fetched_var_name) {
    for (size_t i = 0; i < runtime_ref_cnts_.size(); ++i) {
      for (auto &pair : global_ref_cnts_[i]) {
        runtime_ref_cnts_[i][pair.first] = pair.second;
      }

      for (auto &fetch_name : fetch_tensors) {
        runtime_ref_cnts_[i].erase(fetch_name);
S
sneaxiy 已提交
92
      }
S
sneaxiy 已提交
93
      runtime_ref_cnts_[i].erase(fetched_var_name);
S
sneaxiy 已提交
94 95 96
    }
  }

D
dzhwinter 已提交
97
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
98 99
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
100
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
101
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
102

P
peizhilin 已提交
103
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
104
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
105
#endif
C
chengduoZH 已提交
106 107
  bool own_local_scope_;
  bool use_cuda_;
108
  bool use_all_reduce_;
S
sneaxiy 已提交
109

S
sneaxiy 已提交
110 111 112 113 114 115
  // global_ref_cnts_ is only initialized when ParallelExecutor constructs, and
  // then keeps unchanged
  // Before each iteration, runtime_ref_cnts_ is reset to global_ref_cnts_
  std::vector<details::ReferenceCountMap> global_ref_cnts_;
  std::vector<details::AtomicReferenceCountMap> runtime_ref_cnts_;
  details::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
116 117
};

S
sneaxiy 已提交
118 119 120 121 122 123 124
std::unique_ptr<ir::Graph> ParallelExecutorPrivate::PrepareGCAndRefCnts(
    std::unique_ptr<ir::Graph> graph, size_t max_memory_size) {
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
125
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
126
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
127 128
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
129 130
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
131
      } else {
S
sneaxiy 已提交
132 133
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
134 135
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
136
    } else {
S
sneaxiy 已提交
137
#endif
S
sneaxiy 已提交
138 139 140 141 142 143 144
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
145 146 147 148
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
149
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
150 151
  }

S
sneaxiy 已提交
152
  if (!gcs_.empty()) {
S
sneaxiy 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    std::vector<details::LastLiveOpsOfVars> last_live_ops_of_vars;

    auto ref_cnt_pass =
        ir::PassRegistry::Instance().Get("reference_count_pass");
    ref_cnt_pass->SetNotOwned(details::kGlobalReferenceCount,
                              &global_ref_cnts_);
    ref_cnt_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                              &last_live_ops_of_vars);
    graph = ref_cnt_pass->Apply(std::move(graph));
    VLOG(10) << "ReferenceCountPass Applied";

    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
    eager_deletion_pass->SetNotOwned(details::kRuntimeReferenceCount,
                                     &runtime_ref_cnts_);
    eager_deletion_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                                     &last_live_ops_of_vars);
    eager_deletion_pass->SetNotOwned(details::kAllPlaces, &places_);
    graph = eager_deletion_pass->Apply(std::move(graph));
    VLOG(10) << "EagerDeletionPass Applied";
D
dzhwinter 已提交
174 175 176 177 178 179 180 181

    if (build_strategy_.memory_early_delete_) {
      auto early_delete_pass =
          ir::PassRegistry::Instance().Get("memory_early_delete_pass");
      early_delete_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
      graph = early_delete_pass->Apply(std::move(graph));
    }
    VLOG(10) << "MemoryEarlyDeletePass Applied.";
S
sneaxiy 已提交
182 183 184 185 186
  }

  return graph;
}

187 188 189 190
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
191
ParallelExecutor::ParallelExecutor(
192
    const std::vector<platform::Place> &places,
Y
Yu Yang 已提交
193
    const std::unordered_set<std::string> &params,
194 195
    const std::unordered_set<std::string> &bcast_vars,
    const ProgramDesc &main_program, const std::string &loss_var_name,
Y
yuyang18 已提交
196
    Scope *scope, const std::vector<Scope *> &local_scopes,
197
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy,
198
    size_t num_trainers, size_t trainer_id)
Y
Yu Yang 已提交
199
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
200
  member_->global_scope_ = scope;
201
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
202
  member_->build_strategy_ = build_strategy;
203 204 205 206 207 208 209 210
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;

  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
  }
Y
Yu Yang 已提交
211

212
  // Step 1. Bcast the params to devs.
Y
Yu Yang 已提交
213
  // Create local scopes
214
  if (local_scopes.empty()) {
C
chengduoZH 已提交
215
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
216 217
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
218
      member_->local_scopes_.emplace_back(&scope->NewScope());
219 220
    }
  } else {
C
chengduoZH 已提交
221
    member_->own_local_scope_ = false;
222 223
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
224
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
225
    }
Y
Yu Yang 已提交
226 227
  }

C
chengduoZH 已提交
228
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
229
// Bcast Parameters to all GPUs
P
peizhilin 已提交
230
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
C
chengduoZH 已提交
231 232 233 234 235 236 237 238 239
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
    ncclUniqueId *nccl_id = nullptr;
    if (nccl_id_var != nullptr) {
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
    }
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
        member_->places_, nccl_id, num_trainers, trainer_id));
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
240
#endif
C
chengduoZH 已提交
241 242 243
  }

  if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
Y
Yancey1989 已提交
244
    BCastParamsToDevices(bcast_vars);
Y
Yu Yang 已提交
245
  }
246
// Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
247

248
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
X
Xin Pan 已提交
249
// ncclOp
P
peizhilin 已提交
250
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
251
  std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
X
Xin Pan 已提交
252
      main_program, member_->places_, loss_var_name, params,
253
      member_->local_scopes_, member_->use_cuda_, member_->nccl_ctxs_.get());
S
sneaxiy 已提交
254 255 256 257 258
#else
  std::unique_ptr<ir::Graph> graph =
      build_strategy.Apply(main_program, member_->places_, loss_var_name,
                           params, member_->local_scopes_, member_->use_cuda_);
#endif
S
sneaxiy 已提交
259 260
  auto max_memory_size = GetEagerDeletionThreshold();
  if (max_memory_size >= 0) {
S
sneaxiy 已提交
261 262
    graph = member_->PrepareGCAndRefCnts(std::move(graph),
                                         static_cast<size_t>(max_memory_size));
S
sneaxiy 已提交
263
  }
X
Xin Pan 已提交
264

265 266 267 268 269 270 271 272 273 274 275
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
  std::vector<details::VariableInfo> var_infos;
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
    }
  }
W
Wu Yi 已提交
276 277
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
C
chengduo 已提交
278 279 280 281 282 283 284 285 286 287 288
    size_t graph_num = ir::GraphNum(*graph);
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
          << ir::GraphNum(*graph)
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
289 290
  }

Y
yuyang18 已提交
291 292
  if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
    member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
D
dzhwinter 已提交
293 294
        exec_strategy, member_->local_scopes_, member_->places_,
        std::move(graph)));
Y
yuyang18 已提交
295 296
  } else {
    member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
D
dzhwinter 已提交
297 298
        exec_strategy, member_->local_scopes_, member_->places_,
        std::move(graph)));
C
chengduoZH 已提交
299
  }
Y
yuyang18 已提交
300 301 302 303

  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
      exec_strategy, member_->local_scopes_, std::move(var_infos),
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
304 305
}

Y
Yancey1989 已提交
306
void ParallelExecutor::BCastParamsToDevices(
307
    const std::unordered_set<std::string> &vars) const {
X
Xin Pan 已提交
308
  // the initializing bcast, all vars would be bcast from device(0).
309
  for (auto &var : vars) {
X
Xin Pan 已提交
310
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
311
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
312 313 314 315
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
316
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
317
      VLOG(3) << "one in var not inited, return!";
318 319
      continue;
    }
320 321
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
322
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
323
      std::vector<void *> buffers;
324 325 326 327 328
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
329

X
Xin Pan 已提交
330
        if (i == 0) {
331 332
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
333
          auto local_scope = member_->local_scopes_[i];
334
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
335
          t->Resize(dims);
336
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
337
        }
338
        buffers.push_back(buffer);
339
      }
340

341 342 343 344 345 346
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
X
Xin Pan 已提交
347 348
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
349
        }
350
        member_->nccl_ctxs_->WaitAll();
351
      }
C
chengduoZH 已提交
352 353 354
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
355 356
    } else {
      platform::CPUPlace cpu;
Y
Yancey1989 已提交
357
      for (size_t i = 0; i < member_->places_.size(); ++i) {
X
Xin Pan 已提交
358
        if (i == 0) continue;
Y
Yancey1989 已提交
359

360 361
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
362 363 364 365

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->use_all_reduce_ || member_->use_cuda_ ||
            var == "@LR_DECAY_COUNTER@") {
366 367 368 369 370 371
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
        } else {
          t->ShareDataWith(main_tensor);
        }
Y
Yu Yang 已提交
372
      }
Y
Stash  
Yu Yang 已提交
373 374
    }
  }
Y
Yu Yang 已提交
375
}
Y
Yu Yang 已提交
376

Y
Yu Yang 已提交
377 378
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
Y
Yu Yang 已提交
379 380 381 382 383 384
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
  }
#endif

X
Xin Pan 已提交
385
  platform::RecordBlock b(0);
S
sneaxiy 已提交
386 387
  if (member_->HasGarbageCollectors()) {
    member_->ResetRuntimeReferenceCount(fetch_tensors, fetched_var_name);
S
sneaxiy 已提交
388
  }
S
sneaxiy 已提交
389 390 391
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
392
}
Y
Yu Yang 已提交
393

Y
Yu Yang 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
413 414 415 416 417
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
418 419
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
420
      auto t =
Y
Yu Yang 已提交
421
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
422 423
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
424 425 426 427
    }
  }
}

428
ParallelExecutor::~ParallelExecutor() {
429 430
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
C
chengduozh 已提交
431
  }
S
sneaxiy 已提交
432
  delete member_;
433 434
}

Y
Yu Yang 已提交
435
}  // namespace framework
Y
Yang Yang 已提交
436
}  // namespace paddle
S
sneaxiy 已提交
437

D
dzhwinter 已提交
438
USE_PASS(memory_early_delete_pass);
S
sneaxiy 已提交
439
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
440
USE_PASS(eager_deletion_pass);