parallel_executor.cc 22.3 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
Q
qingqing01 已提交
17
#include <memory>
C
chengduoZH 已提交
18
#include <string>
19
#include <tuple>
Q
Qiao Longfei 已提交
20
#include <utility>
Q
qiaolongfei 已提交
21
#include <vector>
C
chengduo 已提交
22
#include "paddle/fluid/framework/ir/graph_helper.h"
Y
Yu Yang 已提交
23

X
clean  
Xin Pan 已提交
24
#include "paddle/fluid/framework/ir/graph.h"
X
Xin Pan 已提交
25

Y
Yancey1989 已提交
26
#include "paddle/fluid/framework/details/all_reduce_deps_pass.h"
Q
Qiao Longfei 已提交
27
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
Y
yuyang18 已提交
28
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
29
#include "paddle/fluid/framework/details/multi_devices_helper.h"
Y
Yancey1989 已提交
30
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
S
sneaxiy 已提交
31
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
Y
yuyang18 已提交
32
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
33
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
34
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
35

Y
Yu Yang 已提交
36
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
37
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
38
#endif
Y
Yu Yang 已提交
39
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
40 41
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
42
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
43
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
44

Y
Yang Yang 已提交
45
namespace paddle {
Y
Yu Yang 已提交
46 47
namespace framework {

Y
Yu Yang 已提交
48
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
49
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
50
static bool gProfileStarted = false;
Y
Yu Yang 已提交
51
#endif
Y
Yu Yang 已提交
52 53 54
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
55
      : places_(places) {
Y
Yu Yang 已提交
56
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
57 58
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
59
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
60 61 62
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
Y
Yu Yang 已提交
63
                        "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
64 65 66 67
#endif
      });
    }
  }
Y
Yu Yang 已提交
68

69 70 71 72 73 74 75 76 77 78 79
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
80

81
  ir::Graph *PrepareGCAndRefCnts(ir::Graph *graph, size_t max_memory_size);
S
sneaxiy 已提交
82 83 84 85 86 87 88 89 90 91 92 93

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

  void ResetRuntimeReferenceCount(const std::vector<std::string> &fetch_tensors,
                                  const std::string &fetched_var_name) {
    for (size_t i = 0; i < runtime_ref_cnts_.size(); ++i) {
      for (auto &pair : global_ref_cnts_[i]) {
        runtime_ref_cnts_[i][pair.first] = pair.second;
      }

      for (auto &fetch_name : fetch_tensors) {
        runtime_ref_cnts_[i].erase(fetch_name);
S
sneaxiy 已提交
94
      }
S
sneaxiy 已提交
95
      runtime_ref_cnts_[i].erase(fetched_var_name);
S
sneaxiy 已提交
96 97 98
    }
  }

D
dzhwinter 已提交
99
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
100 101
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
102
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
103
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
104

P
peizhilin 已提交
105
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
106
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
107
#endif
C
chengduoZH 已提交
108 109
  bool own_local_scope_;
  bool use_cuda_;
110
  bool use_all_reduce_;
111
  size_t nranks_;
S
sneaxiy 已提交
112

S
sneaxiy 已提交
113 114 115 116 117 118
  // global_ref_cnts_ is only initialized when ParallelExecutor constructs, and
  // then keeps unchanged
  // Before each iteration, runtime_ref_cnts_ is reset to global_ref_cnts_
  std::vector<details::ReferenceCountMap> global_ref_cnts_;
  std::vector<details::AtomicReferenceCountMap> runtime_ref_cnts_;
  details::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
119 120
};

121 122
ir::Graph *ParallelExecutorPrivate::PrepareGCAndRefCnts(
    ir::Graph *graph, size_t max_memory_size) {
S
sneaxiy 已提交
123 124 125 126 127
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
128
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
129
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
130 131
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
132 133
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
134
      } else {
S
sneaxiy 已提交
135 136
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
137 138
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
139
    } else {
S
sneaxiy 已提交
140
#endif
S
sneaxiy 已提交
141 142 143 144 145 146 147
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
148 149 150 151
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
152
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
153 154
  }

S
sneaxiy 已提交
155
  if (!gcs_.empty()) {
S
sneaxiy 已提交
156 157 158 159 160 161 162 163
    std::vector<details::LastLiveOpsOfVars> last_live_ops_of_vars;

    auto ref_cnt_pass =
        ir::PassRegistry::Instance().Get("reference_count_pass");
    ref_cnt_pass->SetNotOwned(details::kGlobalReferenceCount,
                              &global_ref_cnts_);
    ref_cnt_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                              &last_live_ops_of_vars);
164
    graph = ref_cnt_pass->Apply(graph);
S
sneaxiy 已提交
165 166 167 168 169 170 171 172 173 174
    VLOG(10) << "ReferenceCountPass Applied";

    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
    eager_deletion_pass->SetNotOwned(details::kRuntimeReferenceCount,
                                     &runtime_ref_cnts_);
    eager_deletion_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                                     &last_live_ops_of_vars);
    eager_deletion_pass->SetNotOwned(details::kAllPlaces, &places_);
175
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
176 177 178 179 180
    VLOG(10) << "EagerDeletionPass Applied";
  }
  return graph;
}

181 182 183 184
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yan Xu 已提交
185 186 187 188 189 190 191 192
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
Y
Yu Yang 已提交
193
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
194
  member_->global_scope_ = scope;
195
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
196
  member_->build_strategy_ = build_strategy;
197 198
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
199
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
200 201 202 203
  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
Y
Yancey1989 已提交
204 205
  }

206
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
207
  // Create local scopes
208
  if (local_scopes.empty()) {
C
chengduoZH 已提交
209
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
210 211
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
212
      member_->local_scopes_.emplace_back(&scope->NewScope());
213 214
    }
  } else {
C
chengduoZH 已提交
215
    member_->own_local_scope_ = false;
216 217
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
218
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
219
    }
Y
Yu Yang 已提交
220 221
  }

Q
Qiao Longfei 已提交
222
  std::vector<ir::Graph *> graphs;
Q
Qiao Longfei 已提交
223 224 225
  if (build_strategy.async_mode_) {
    PADDLE_ENFORCE(!member_->use_cuda_,
                   "gpu mode does not support async_mode_ now!");
Q
Qiao Longfei 已提交
226 227 228 229 230 231
    graphs.push_back(graph);
    for (int i = 1; i < places.size(); ++i) {
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
Q
Qiao Longfei 已提交
232
  }
Q
Qiao Longfei 已提交
233

Y
Yancey1989 已提交
234 235 236
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
237 238
  build_strategy.enable_parallel_graph_ =
      EnableParallelGraphExecution(*graph, exec_strategy, build_strategy);
Y
Yancey1989 已提交
239 240 241 242
  if (build_strategy.enable_parallel_graph_)
    VLOG(0) << "The Executor would execute the graph by ParallelGraph "
               "Execution which can get better performance,"
            << "you can force it off by env FLAGS_enable_parallel_graph=0";
Y
Yancey1989 已提交
243

C
chengduoZH 已提交
244
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
245
// Bcast Parameters to all GPUs
P
peizhilin 已提交
246
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
247 248 249
    ncclUniqueId *nccl_id = nullptr;
    // gen_nccl_id operator can broadcast the ncclUniqueId for nccl2 collective
    // distributed training
C
chengduoZH 已提交
250
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
Y
Yancey1989 已提交
251
    if (nccl_id_var != nullptr) {
Y
Yancey1989 已提交
252
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
Y
Yancey1989 已提交
253
    }
254
    if (build_strategy.enable_parallel_graph_ && member_->nranks_ > 1UL) {
Y
Yancey1989 已提交
255 256 257 258
      if (nccl_id == nullptr) {
        local_nccl_id_.reset(new ncclUniqueId());
        platform::dynload::ncclGetUniqueId(local_nccl_id_.get());
        nccl_id = local_nccl_id_.get();
Y
Yancey1989 已提交
259
      }
C
chengduoZH 已提交
260
    }
Y
Yancey1989 已提交
261

C
chengduoZH 已提交
262
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
263 264
        member_->places_, nccl_id, build_strategy.num_trainers_,
        build_strategy.trainer_id_));
Q
qingqing01 已提交
265

W
Wu Yi 已提交
266 267 268
    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
Q
qingqing01 已提交
269
    // be rewrite and there will be some problem.
W
Wu Yi 已提交
270 271 272 273 274 275 276
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
    std::unique_ptr<platform::NCCLContextMap> dev_nccl_ctxs;
    if (nccl_id == nullptr) {
      dev_nccl_ctxs.reset(new platform::NCCLContextMap(member_->places_));
    }
Q
qingqing01 已提交
277 278 279 280 281
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
W
Wu Yi 已提交
282 283 284 285 286 287 288
      if (nccl_id != nullptr) {
        auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[dev_id]);
        dev_ctx->set_nccl_comm(nccl_ctx.comm());
      } else {
        auto &nccl_ctx = dev_nccl_ctxs->at(member_->places_[dev_id]);
        dev_ctx->set_nccl_comm(nccl_ctx.comm());
      }
Q
qingqing01 已提交
289
    }
C
chengduoZH 已提交
290 291
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
292
#endif
C
chengduoZH 已提交
293
  }
Y
Yan Xu 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
    if (build_strategy.num_trainers_ > 1) {
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };

  if (need_broadcast()) {
    BCastParamsToDevices(bcast_vars, build_strategy.trainer_id_);
Y
Yu Yang 已提交
309
  }
Q
Qiao Longfei 已提交
310
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
311

Q
Qiao Longfei 已提交
312 313 314
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<ir::Graph *> async_graphs(places.size());
P
peizhilin 已提交
315
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Q
Qiao Longfei 已提交
316
  if (build_strategy.async_mode_) {
Q
Qiao Longfei 已提交
317
    VLOG(3) << "use local async mode";
318 319 320
    graph = build_strategy.Apply(graph, {member_->places_[0]}, loss_var_name,
                                 {member_->local_scopes_[0]}, 1,
                                 member_->use_cuda_, member_->nccl_ctxs_.get());
Q
Qiao Longfei 已提交
321
    for (int i = 1; i < member_->places_.size(); ++i) {
322 323 324
      graphs[i] =
          build_strategy.Apply(graphs[i], {member_->places_[i]}, loss_var_name,
                               {member_->local_scopes_[i]}, 1,
Q
Qiao Longfei 已提交
325
                               member_->use_cuda_, member_->nccl_ctxs_.get());
326
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
327
    }
Q
Qiao Longfei 已提交
328
  } else {
329 330 331
    graph = build_strategy.Apply(graph, member_->places_, loss_var_name,
                                 member_->local_scopes_, member_->nranks_,
                                 member_->use_cuda_, member_->nccl_ctxs_.get());
Q
Qiao Longfei 已提交
332
  }
C
chengduoZH 已提交
333
#else
Q
Qiao Longfei 已提交
334
  if (build_strategy.async_mode_) {
Q
Qiao Longfei 已提交
335
    VLOG(3) << "use local async mode";
336 337 338
    graph = build_strategy.Apply(graph, {member_->places_[0]}, loss_var_name,
                                 {member_->local_scopes_[0]}, 1,
                                 member_->use_cuda_);
Q
Qiao Longfei 已提交
339
    for (int i = 1; i < member_->places_.size(); ++i) {
340 341
      graphs[i] = build_strategy.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
Q
Qiao Longfei 已提交
342
          {member_->local_scopes_[i]}, 1, member_->use_cuda_);
343
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
344
    }
Q
can run  
Qiao Longfei 已提交
345
  } else {
346 347 348
    graph = build_strategy.Apply(graph, member_->places_, loss_var_name,
                                 member_->local_scopes_, member_->nranks_,
                                 member_->use_cuda_);
Q
can run  
Qiao Longfei 已提交
349
  }
X
Xin Pan 已提交
350

Y
Yu Yang 已提交
351
#endif
Y
Yancey1989 已提交
352
  auto max_memory_size = GetEagerDeletionThreshold();
D
dzhwinter 已提交
353 354
  VLOG(10) << "Eager Deletion Threshold "
           << static_cast<float>(max_memory_size) / (1 << 30);
Y
Yancey1989 已提交
355
  if (max_memory_size >= 0) {
356 357
    graph = member_->PrepareGCAndRefCnts(graph,
                                         static_cast<size_t>(max_memory_size));
Y
Yancey1989 已提交
358 359
  }

Q
Qiao Longfei 已提交
360 361
  async_graphs[0] = graph;

362 363
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
364
  std::vector<details::VariableInfo> var_infos;
Q
Qiao Longfei 已提交
365 366 367 368 369 370
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
Y
Yancey1989 已提交
371 372
    }
  }
Y
Yancey1989 已提交
373

W
Wu Yi 已提交
374 375
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
Q
Qiao Longfei 已提交
376
    size_t graph_num = ir::GraphNum(*graph);
C
chengduo 已提交
377 378 379 380
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
Q
Qiao Longfei 已提交
381
          << ir::GraphNum(*graph)
C
chengduo 已提交
382 383 384 385 386
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
387 388
  }

Q
Qiao Longfei 已提交
389
  if (build_strategy.async_mode_) {
Q
can run  
Qiao Longfei 已提交
390 391
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
Q
Qiao Longfei 已提交
392
        exec_strategy, member_->local_scopes_, member_->places_, async_graphs));
Q
can run  
Qiao Longfei 已提交
393 394
  } else if (build_strategy.enable_parallel_graph_) {
    VLOG(3) << "use ParallelSSAGraphExecutor";
Y
Yancey1989 已提交
395
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
396 397
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
Y
Yancey1989 已提交
398
    member_->executor_.reset(new details::ParallelSSAGraphExecutor(
X
Xin Pan 已提交
399
        exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
400 401 402 403
#else
    PADDLE_THROW(
        "Paddle should be compiled with CUDA for ParallelGraph Execution.");
#endif
Y
yuyang18 已提交
404
  } else {
Y
Yancey1989 已提交
405
    if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
Q
can run  
Qiao Longfei 已提交
406
      VLOG(3) << "use ThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
407
      member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
X
Xin Pan 已提交
408
          exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
409
    } else {
Q
can run  
Qiao Longfei 已提交
410
      VLOG(3) << "use FastThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
411
      member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
X
Xin Pan 已提交
412
          exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
413
    }
C
chengduoZH 已提交
414
  }
Y
yuyang18 已提交
415

Q
can run  
Qiao Longfei 已提交
416
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
Q
Qiao Longfei 已提交
417 418 419 420 421
  if (!build_strategy.async_mode_) {
    member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, std::move(var_infos),
        member_->places_, std::move(member_->executor_)));
  }
Y
Yu Yang 已提交
422 423
}

Y
Yancey1989 已提交
424
void ParallelExecutor::BCastParamsToDevices(
Y
Yan Xu 已提交
425
    const std::vector<std::string> &vars, int trainer_id) const {
Q
Qiao Longfei 已提交
426
  VLOG(3) << "BCastParamsToDevices";
X
Xin Pan 已提交
427
  // the initializing bcast, all vars would be bcast from device(0).
428
  for (auto &var : vars) {
X
Xin Pan 已提交
429
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
430
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
431 432 433 434
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
435
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
436
      VLOG(3) << "one in var not inited, return!";
437 438
      continue;
    }
439 440
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
441
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
442
      std::vector<void *> buffers;
C
chengduo 已提交
443
      buffers.reserve(member_->places_.size());
444 445 446 447 448
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
449

Y
Yan Xu 已提交
450
        if (i == 0 && trainer_id == 0) {
451 452
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
453
          auto local_scope = member_->local_scopes_[i];
454
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
455
          t->Resize(dims);
456
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
457
        }
458
        buffers.push_back(buffer);
459
      }
460

461 462 463 464 465 466
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
X
Xin Pan 已提交
467 468
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
469
        }
470
        member_->nccl_ctxs_->WaitAll();
471
      }
C
chengduoZH 已提交
472 473 474
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
475 476
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
477
      for (size_t i = 1; i < member_->places_.size(); ++i) {
478 479
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
480

Q
Qiao Longfei 已提交
481
        auto copy_memory = [&] {
482 483 484
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
485 486
        };

Q
Qiao Longfei 已提交
487
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
488 489 490 491 492 493 494

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
        } else if (member_->use_all_reduce_ || member_->use_cuda_ ||
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
495
        } else {
Q
can run  
Qiao Longfei 已提交
496
          share_memory();
497
        }
Y
Yu Yang 已提交
498
      }
Y
Stash  
Yu Yang 已提交
499 500
    }
  }
Y
Yu Yang 已提交
501
}
Y
Yu Yang 已提交
502

Y
Yu Yang 已提交
503 504
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
Y
Yu Yang 已提交
505 506 507
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
508 509
  }
#endif
Y
Yu Yang 已提交
510

X
Xin Pan 已提交
511
  platform::RecordBlock b(0);
S
sneaxiy 已提交
512 513
  if (member_->HasGarbageCollectors()) {
    member_->ResetRuntimeReferenceCount(fetch_tensors, fetched_var_name);
S
sneaxiy 已提交
514
  }
S
sneaxiy 已提交
515 516 517
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
518
}
Y
Yu Yang 已提交
519

Y
Yu Yang 已提交
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
539 540 541 542 543
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
544 545
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
546
      auto t =
Y
Yu Yang 已提交
547
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
548 549
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
550 551 552 553
    }
  }
}

X
Xin Pan 已提交
554 555 556 557 558 559 560
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

561
bool ParallelExecutor::EnableParallelGraphExecution(
X
Xin Pan 已提交
562
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
563
    const BuildStrategy &build_strategy) const {
Y
Yancey1989 已提交
564
  if (!FLAGS_enable_parallel_graph) return false;
565

Y
Yancey1989 已提交
566
  bool enable_parallel_graph = true;
567

X
Xin Pan 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
581 582 583 584 585
    }
  }

  if (!member_->use_all_reduce_ || !member_->use_cuda_)

Y
Yancey1989 已提交
586 587 588
    if (build_strategy.enable_sequential_execution_ ||
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental)
      enable_parallel_graph = false;
Y
Yancey1989 已提交
589
  return enable_parallel_graph;
590 591
}

Y
Yu Yang 已提交
592
}  // namespace framework
Y
Yang Yang 已提交
593
}  // namespace paddle
S
sneaxiy 已提交
594

S
sneaxiy 已提交
595
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
596
USE_PASS(eager_deletion_pass);