Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6f0dfd89
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6f0dfd89
编写于
3月 16, 2018
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Single GPU ParallelExecutor complete
上级
d84ddcf1
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
173 addition
and
34 deletion
+173
-34
CMakeLists.txt
CMakeLists.txt
+1
-0
cmake/external/threadpool.cmake
cmake/external/threadpool.cmake
+30
-0
paddle/fluid/framework/CMakeLists.txt
paddle/fluid/framework/CMakeLists.txt
+1
-1
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+133
-32
paddle/fluid/framework/parallel_executor.h
paddle/fluid/framework/parallel_executor.h
+4
-0
paddle/fluid/operators/read_op.cc
paddle/fluid/operators/read_op.cc
+4
-1
未找到文件。
CMakeLists.txt
浏览文件 @
6f0dfd89
...
...
@@ -146,6 +146,7 @@ include(external/cares)
include
(
external/grpc
)
include
(
external/snappy
)
# download snappy
include
(
external/snappystream
)
include
(
external/threadpool
)
include
(
cudnn
)
# set cudnn libraries, must before configure
include
(
cupti
)
...
...
cmake/external/threadpool.cmake
0 → 100644
浏览文件 @
6f0dfd89
INCLUDE
(
ExternalProject
)
SET
(
THREADPOOL_SOURCE_DIR
${
THIRD_PARTY_PATH
}
/threadpool
)
SET
(
THREADPOOL_INCLUDE_DIR
${
THREADPOOL_SOURCE_DIR
}
/src/extern_threadpool
)
INCLUDE_DIRECTORIES
(
${
THREADPOOL_INCLUDE_DIR
}
)
ExternalProject_Add
(
extern_threadpool
${
EXTERNAL_PROJECT_LOG_ARGS
}
GIT_REPOSITORY
"https://github.com/progschj/ThreadPool.git"
GIT_TAG 9a42ec1329f259a5f4881a291db1dcb8f2ad9040
PREFIX
${
THREADPOOL_SOURCE_DIR
}
UPDATE_COMMAND
""
CONFIGURE_COMMAND
""
BUILD_COMMAND
""
INSTALL_COMMAND
""
TEST_COMMAND
""
)
if
(
${
CMAKE_VERSION
}
VERSION_LESS
"3.3.0"
)
set
(
dummyfile
${
CMAKE_CURRENT_BINARY_DIR
}
/threadpool_dummy.c
)
file
(
WRITE
${
dummyfile
}
"const char *dummy_threadpool =
\"
${
dummyfile
}
\"
;"
)
add_library
(
simple_threadpool STATIC
${
dummyfile
}
)
else
()
add_library
(
simple_threadpool INTERFACE
)
endif
()
add_dependencies
(
simple_threadpool extern_threadpool
)
LIST
(
APPEND external_project_dependencies simple_threadpool
)
paddle/fluid/framework/CMakeLists.txt
浏览文件 @
6f0dfd89
...
...
@@ -87,7 +87,7 @@ cc_library(feed_fetch_method SRCS feed_fetch_method.cc DEPS lod_tensor scope glo
cc_library
(
executor SRCS executor.cc DEPS op_registry device_context scope
framework_proto backward glog lod_rank_table feed_fetch_method
)
cc_library
(
parallel_executor SRCS parallel_executor.cc DEPS op_registry device_context scope
framework_proto backward glog lod_rank_table feed_fetch_method executor
)
framework_proto backward glog lod_rank_table feed_fetch_method executor
simple_threadpool
)
cc_library
(
prune SRCS prune.cc DEPS framework_proto
)
cc_test
(
prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_context
)
...
...
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
6f0dfd89
...
...
@@ -13,9 +13,10 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/parallel_executor.h"
#include "ThreadPool.h"
#include "executor.h"
#include "lod_tensor.h"
#include "op_registry.h"
#include "threadpool.h"
namespace
paddle
{
namespace
framework
{
...
...
@@ -49,7 +50,7 @@ struct VarHandle : public VarHandleBase {
};
struct
DependencyVarHandle
:
public
VarHandleBase
{
std
::
string
DebugString
()
const
override
{
return
"Dep
s var
"
;
}
std
::
string
DebugString
()
const
override
{
return
"Dep
endency Variable
"
;
}
};
struct
OpHandle
{
...
...
@@ -75,7 +76,7 @@ struct OpHandle {
virtual
~
OpHandle
()
{}
virtual
void
Run
()
{}
virtual
void
Run
()
{
PADDLE_THROW
(
"Not implemented"
);
}
virtual
void
Wait
()
{}
};
...
...
@@ -84,14 +85,15 @@ struct ComputationOpHandle : public OpHandle {
Scope
*
scope_
;
platform
::
Place
place_
;
explicit
ComputationOpHandle
(
const
OpDesc
&
op_desc
,
platform
::
Place
place
)
explicit
ComputationOpHandle
(
const
OpDesc
&
op_desc
,
Scope
*
scope
,
platform
::
Place
place
)
:
op_
(
framework
::
OpRegistry
::
CreateOp
(
op_desc
)),
scope_
(
nullptr
),
scope_
(
scope
),
place_
(
place
)
{}
void
Run
()
override
{
// Wait other op if necessary
LOG
(
INFO
)
<<
DebugString
();
LOG
(
INFO
)
<<
"Run "
<<
this
<<
" "
<<
DebugString
();
auto
*
cur_ctx
=
dev_ctx_
[
place_
];
for
(
auto
*
in
:
inputs_
)
{
if
(
in
->
generated_op_
&&
in
->
generated_op_
->
dev_ctx_
[
place_
]
!=
cur_ctx
)
{
...
...
@@ -100,12 +102,49 @@ struct ComputationOpHandle : public OpHandle {
}
op_
->
Run
(
*
scope_
,
place_
);
LOG
(
INFO
)
<<
"Done "
<<
this
;
}
};
struct
ScaleLossGradOpHandle
:
public
OpHandle
{};
struct
ScaleLossGradOpHandle
:
public
OpHandle
{
float
coeff_
;
Scope
*
scope_
;
platform
::
Place
place_
;
explicit
ScaleLossGradOpHandle
(
size_t
num_dev
,
Scope
*
scope
,
platform
::
Place
place
)
:
coeff_
(
static_cast
<
float
>
(
1.0
/
num_dev
)),
scope_
(
scope
),
place_
(
place
)
{}
void
Run
()
override
{
LOG
(
INFO
)
<<
"Run Scale Loss Grad"
;
std
::
string
var_name
=
static_cast
<
VarHandle
*>
(
this
->
outputs_
[
0
])
->
name_
;
struct
NCCLAllReduceOpHandle
:
public
OpHandle
{};
float
*
tmp
=
scope_
->
FindVar
(
var_name
)
->
GetMutable
<
framework
::
LoDTensor
>
()
->
mutable_data
<
float
>
(
make_ddim
({
1
}),
place_
);
if
(
platform
::
is_cpu_place
(
place_
))
{
*
tmp
=
coeff_
;
}
else
{
memory
::
Copy
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place_
),
tmp
,
platform
::
CPUPlace
(),
&
coeff_
,
sizeof
(
float
),
static_cast
<
platform
::
CUDADeviceContext
*>
(
this
->
dev_ctx_
[
place_
])
->
stream
());
}
}
};
struct
NCCLAllReduceOpHandle
:
public
OpHandle
{
void
Run
()
override
{
if
(
this
->
inputs_
.
size
()
==
1
)
{
return
;
// No need to all reduce when GPU count = 1;
}
}
};
class
ParallelExecutorPrivate
{
public:
...
...
@@ -182,7 +221,10 @@ class ParallelExecutorPrivate {
std
::
vector
<
std
::
unique_ptr
<
OpHandle
>>
ops_
;
// Use a simpler thread pool, might be faster.
ThreadPool
pool_
;
std
::
unique_ptr
<
platform
::
EnforceNotMet
>
exception_
;
};
// TODO(yy): Move this function somewhere
...
...
@@ -217,6 +259,19 @@ ParallelExecutor::ParallelExecutor(
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
ConstructDependencyGraph
(
params
,
main_program
,
loss_var_name
);
// Step 3. Create vars in each scope;
for
(
auto
&
pair
:
member_
->
local_scopes_
)
{
auto
*
scope
=
pair
.
second
;
for
(
auto
*
var
:
main_program
.
Block
(
0
).
AllVars
())
{
if
(
scope
->
FindVar
(
var
->
Name
())
!=
nullptr
)
{
continue
;
}
InitializeVariable
(
scope
->
Var
(
var
->
Name
()),
var
->
GetType
());
}
}
}
void
ParallelExecutor
::
ConstructDependencyGraph
(
...
...
@@ -240,7 +295,8 @@ void ParallelExecutor::ConstructDependencyGraph(
}
for
(
auto
&
pair
:
member_
->
local_scopes_
)
{
member_
->
ops_
.
emplace_back
(
new
ComputationOpHandle
(
*
op
,
pair
.
first
));
member_
->
ops_
.
emplace_back
(
new
ComputationOpHandle
(
*
op
,
pair
.
second
,
pair
.
first
));
auto
*
op_handle
=
member_
->
ops_
.
back
().
get
();
op_handle
->
dev_ctx_
[
pair
.
first
]
=
const_cast
<
platform
::
DeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
pair
.
first
));
...
...
@@ -263,16 +319,20 @@ void ParallelExecutor::ConstructDependencyGraph(
if
(
is_forwarding
)
{
if
(
var_names
.
size
()
==
1
&&
var_names
[
0
]
==
loss_var_name
)
{
// Insert ScaleCost OpHandle
member_
->
ops_
.
emplace_back
(
new
ScaleLossGradOpHandle
());
member_
->
ops_
.
emplace_back
(
new
ScaleLossGradOpHandle
(
this
->
member_
->
local_scopes_
.
size
(),
pair
.
second
,
pair
.
first
));
op_handle
=
member_
->
ops_
.
back
().
get
();
op_handle
->
dev_ctx_
[
pair
.
first
]
=
member_
->
CommunicationDevCtx
(
pair
.
first
);
auto
&
place
=
pair
.
first
;
VarHandle
*
loss
=
GetVarHandle
(
loss_var_name
,
place
);
loss
->
pending_ops_
.
emplace_back
(
op_handle
);
op_handle
->
inputs_
.
emplace_back
(
loss
);
// FIXME: Currently ScaleLossGradOp only use device_count as scale
// factor. So it does not depend on any other operators.
// VarHandle *loss = GetVarHandle(loss_var_name, place);
// loss->pending_ops_.emplace_back(op_handle);
// op_handle->inputs_.emplace_back(loss);
GenerateVar
(
op_handle
,
loss_var_name
+
"@GRAD"
,
place
);
change_forward
=
true
;
LOG
(
INFO
)
<<
"Scale Loss "
<<
op_handle
->
DebugString
();
...
...
@@ -341,11 +401,25 @@ void ParallelExecutor::ConstructDependencyGraph(
for
(;
it_old
!=
name_pair
.
second
.
rend
();
it_new
=
it_old
,
++
it_old
)
{
auto
*
write_op
=
it_new
->
second
.
generated_op_
;
auto
&
read_ops
=
it_old
->
second
.
pending_ops_
;
auto
*
ex_write_op
=
it_old
->
second
.
generated_op_
;
if
(
ex_write_op
==
nullptr
)
{
// Nobody write this var.
continue
;
}
LOG
(
INFO
)
<<
"Link "
<<
it_new
->
second
.
DebugString
()
<<
" From "
<<
it_old
->
second
.
version_
<<
" To "
<<
it_new
->
second
.
version_
;
for
(
auto
*
read_op
:
read_ops
)
{
// Manually add a dependency var from read_op to write_op;
if
(
read_op
==
write_op
)
{
// Read Write is the same op.
continue
;
}
auto
*
dep_var
=
new
DependencyVarHandle
();
dep_var
->
generated_op_
=
read_op
;
read_op
->
outputs_
.
emplace_back
(
dep_var
);
...
...
@@ -448,7 +522,7 @@ void ParallelExecutor::BuildNCCLCommunicator() const {
std
::
vector
<
LoDTensor
>
ParallelExecutor
::
Run
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
)
{
// Version --> VarHandle
member_
->
exception_
.
reset
();
std
::
unordered_map
<
VarHandleBase
*
,
bool
>
pending_vars
;
std
::
unordered_map
<
OpHandle
*
,
size_t
>
pending_ops
;
...
...
@@ -465,8 +539,18 @@ std::vector<LoDTensor> ParallelExecutor::Run(
pending_vars
[
var
.
get
()]
=
var
->
generated_op_
==
nullptr
;
}
std
::
vector
<
OpHandle
*>
to_run
;
for
(
auto
&
op
:
member_
->
ops_
)
{
pending_ops
.
insert
({
op
.
get
(),
op
->
inputs_
.
size
()});
if
(
op
->
inputs_
.
empty
())
{
// Special case, Op has no input.
to_run
.
emplace_back
(
op
.
get
());
}
else
{
pending_ops
.
insert
({
op
.
get
(),
op
->
inputs_
.
size
()});
}
}
for
(
auto
*
op
:
to_run
)
{
RunOp
(
pending_vars
,
op
);
}
while
(
!
pending_ops
.
empty
())
{
...
...
@@ -478,13 +562,19 @@ std::vector<LoDTensor> ParallelExecutor::Run(
}
if
(
ready_var
==
nullptr
)
{
member_
->
pool_
.
Wait
();
// Wait thread pool;
// FIXME use conditional var instead of busy wait.
if
(
member_
->
exception_
)
{
throw
*
member_
->
exception_
;
}
std
::
this_thread
::
yield
();
continue
;
}
pending_vars
.
erase
(
ready_var
);
std
::
vector
<
OpHandle
*>
to_run
;
to_run
.
clear
()
;
for
(
auto
*
op
:
ready_var
->
pending_ops_
)
{
auto
&
deps
=
pending_ops
[
op
];
...
...
@@ -496,24 +586,35 @@ std::vector<LoDTensor> ParallelExecutor::Run(
for
(
auto
*
op
:
to_run
)
{
pending_ops
.
erase
(
op
);
std
::
vector
<
bool
*>
ready_buffer
;
for
(
auto
*
var
:
op
->
outputs_
)
{
ready_buffer
.
emplace_back
(
&
pending_vars
[
var
]);
}
auto
op_run
=
[
ready_buffer
,
op
]
{
// TODO(yy) Check Previous Op has same dev ctx.
op
->
Run
();
for
(
auto
*
ready
:
ready_buffer
)
{
*
ready
=
true
;
}
};
member_
->
pool_
.
Run
(
op_run
);
RunOp
(
pending_vars
,
op
);
}
}
return
std
::
vector
<
LoDTensor
>
();
}
void
ParallelExecutor
::
RunOp
(
std
::
unordered_map
<
VarHandleBase
*
,
bool
>
&
pending_vars
,
OpHandle
*
op
)
const
{
std
::
vector
<
bool
*>
ready_buffer
;
for
(
auto
*
var
:
op
->
outputs_
)
{
ready_buffer
.
emplace_back
(
&
pending_vars
[
var
]);
}
auto
op_run
=
[
ready_buffer
,
op
,
this
]
{
try
{
// TODO(yy) Check Previous Op has same dev ctx.
op
->
Run
();
for
(
auto
*
ready
:
ready_buffer
)
{
*
ready
=
true
;
}
}
catch
(
platform
::
EnforceNotMet
ex
)
{
member_
->
exception_
.
reset
(
new
platform
::
EnforceNotMet
(
ex
));
}
catch
(...)
{
LOG
(
FATAL
)
<<
"Unknown exception catched"
;
}
};
member_
->
pool_
.
enqueue
(
op_run
);
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/parallel_executor.h
浏览文件 @
6f0dfd89
...
...
@@ -31,6 +31,7 @@ namespace framework {
class
ParallelExecutorPrivate
;
class
VarHandle
;
class
OpHandle
;
class
VarHandleBase
;
class
ParallelExecutor
{
public:
explicit
ParallelExecutor
(
const
std
::
vector
<
platform
::
Place
>&
places
,
...
...
@@ -57,6 +58,9 @@ class ParallelExecutor {
const
std
::
string
&
loss_var_name
)
const
;
void
BuildNCCLCommunicator
()
const
;
void
RunOp
(
std
::
unordered_map
<
VarHandleBase
*
,
bool
>&
pending_vars
,
OpHandle
*
op
)
const
;
};
}
// namespace framework
...
...
paddle/fluid/operators/read_op.cc
浏览文件 @
6f0dfd89
...
...
@@ -14,6 +14,7 @@
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -59,7 +60,9 @@ class ReadOp : public framework::OperatorBase {
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
framework
::
ReaderHolder
*
reader
=
scope
.
FindVar
(
Input
(
"Reader"
))
->
GetMutable
<
framework
::
ReaderHolder
>
();
detail
::
Ref
(
scope
.
FindVar
(
Input
(
"Reader"
)),
"Cannot find reader variable %s"
,
Input
(
"Reader"
))
.
GetMutable
<
framework
::
ReaderHolder
>
();
std
::
vector
<
std
::
string
>
out_arg_names
=
Outputs
(
"Out"
);
std
::
vector
<
framework
::
LoDTensor
>
ins
;
reader
->
ReadNext
(
&
ins
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录