parallel_executor.cc 22.7 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
Q
qingqing01 已提交
17
#include <memory>
C
chengduoZH 已提交
18
#include <string>
19
#include <tuple>
Q
Qiao Longfei 已提交
20
#include <utility>
Q
qiaolongfei 已提交
21
#include <vector>
C
chengduo 已提交
22
#include "paddle/fluid/framework/ir/graph_helper.h"
Y
Yu Yang 已提交
23

X
clean  
Xin Pan 已提交
24
#include "paddle/fluid/framework/ir/graph.h"
X
Xin Pan 已提交
25

Y
Yancey1989 已提交
26
#include "paddle/fluid/framework/details/all_reduce_deps_pass.h"
Q
Qiao Longfei 已提交
27
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
Y
yuyang18 已提交
28
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
29
#include "paddle/fluid/framework/details/multi_devices_helper.h"
Y
Yancey1989 已提交
30
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
S
sneaxiy 已提交
31
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
Y
yuyang18 已提交
32
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
33
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
34
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
35

Y
Yu Yang 已提交
36
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
37
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
38
#endif
Y
Yu Yang 已提交
39
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
40 41
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
42
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
43
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
44

Y
Yang Yang 已提交
45
namespace paddle {
Y
Yu Yang 已提交
46 47
namespace framework {

Y
Yu Yang 已提交
48
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
49
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
50
static bool gProfileStarted = false;
Y
Yu Yang 已提交
51
#endif
Y
Yu Yang 已提交
52 53 54
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
55
      : places_(places) {
Y
Yu Yang 已提交
56
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
57 58
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
59
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
60 61 62
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
Y
Yu Yang 已提交
63
                        "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
64 65 66 67
#endif
      });
    }
  }
Y
Yu Yang 已提交
68

69 70 71 72 73 74 75 76 77 78 79
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
80

S
sneaxiy 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94
  std::unique_ptr<ir::Graph> PrepareGCAndRefCnts(
      std::unique_ptr<ir::Graph> graph, size_t max_memory_size);

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

  void ResetRuntimeReferenceCount(const std::vector<std::string> &fetch_tensors,
                                  const std::string &fetched_var_name) {
    for (size_t i = 0; i < runtime_ref_cnts_.size(); ++i) {
      for (auto &pair : global_ref_cnts_[i]) {
        runtime_ref_cnts_[i][pair.first] = pair.second;
      }

      for (auto &fetch_name : fetch_tensors) {
        runtime_ref_cnts_[i].erase(fetch_name);
S
sneaxiy 已提交
95
      }
S
sneaxiy 已提交
96
      runtime_ref_cnts_[i].erase(fetched_var_name);
S
sneaxiy 已提交
97 98 99
    }
  }

D
dzhwinter 已提交
100
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
101 102
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
103
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
104
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
105

P
peizhilin 已提交
106
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
107
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
108
#endif
C
chengduoZH 已提交
109 110
  bool own_local_scope_;
  bool use_cuda_;
111
  bool use_all_reduce_;
112
  size_t nranks_;
S
sneaxiy 已提交
113

S
sneaxiy 已提交
114 115 116 117 118 119
  // global_ref_cnts_ is only initialized when ParallelExecutor constructs, and
  // then keeps unchanged
  // Before each iteration, runtime_ref_cnts_ is reset to global_ref_cnts_
  std::vector<details::ReferenceCountMap> global_ref_cnts_;
  std::vector<details::AtomicReferenceCountMap> runtime_ref_cnts_;
  details::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
120 121
};

S
sneaxiy 已提交
122 123 124 125 126 127 128
std::unique_ptr<ir::Graph> ParallelExecutorPrivate::PrepareGCAndRefCnts(
    std::unique_ptr<ir::Graph> graph, size_t max_memory_size) {
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
129
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
130
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
131 132
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
133 134
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
135
      } else {
S
sneaxiy 已提交
136 137
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
138 139
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
140
    } else {
S
sneaxiy 已提交
141
#endif
S
sneaxiy 已提交
142 143 144 145 146 147 148
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
149 150 151 152
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
153
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
154 155
  }

S
sneaxiy 已提交
156
  if (!gcs_.empty()) {
S
sneaxiy 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    std::vector<details::LastLiveOpsOfVars> last_live_ops_of_vars;

    auto ref_cnt_pass =
        ir::PassRegistry::Instance().Get("reference_count_pass");
    ref_cnt_pass->SetNotOwned(details::kGlobalReferenceCount,
                              &global_ref_cnts_);
    ref_cnt_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                              &last_live_ops_of_vars);
    graph = ref_cnt_pass->Apply(std::move(graph));
    VLOG(10) << "ReferenceCountPass Applied";

    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
    eager_deletion_pass->SetNotOwned(details::kRuntimeReferenceCount,
                                     &runtime_ref_cnts_);
    eager_deletion_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                                     &last_live_ops_of_vars);
    eager_deletion_pass->SetNotOwned(details::kAllPlaces, &places_);
    graph = eager_deletion_pass->Apply(std::move(graph));
    VLOG(10) << "EagerDeletionPass Applied";
  }

  return graph;
}

183 184 185 186
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yan Xu 已提交
187 188 189 190 191 192 193 194
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
Y
Yu Yang 已提交
195
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
196
  member_->global_scope_ = scope;
197
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
198
  member_->build_strategy_ = build_strategy;
199 200
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
201
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
202 203 204 205
  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
Y
Yancey1989 已提交
206 207
  }

208
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
209
  // Create local scopes
210
  if (local_scopes.empty()) {
C
chengduoZH 已提交
211
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
212 213
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
214
      member_->local_scopes_.emplace_back(&scope->NewScope());
215 216
    }
  } else {
C
chengduoZH 已提交
217
    member_->own_local_scope_ = false;
218 219
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
220
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
221
    }
Y
Yu Yang 已提交
222 223
  }

Q
Qiao Longfei 已提交
224
  std::vector<ir::Graph *> graphs;
Q
Qiao Longfei 已提交
225 226 227
  if (build_strategy.async_mode_) {
    PADDLE_ENFORCE(!member_->use_cuda_,
                   "gpu mode does not support async_mode_ now!");
Q
Qiao Longfei 已提交
228 229 230 231 232 233
    graphs.push_back(graph);
    for (int i = 1; i < places.size(); ++i) {
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
Q
Qiao Longfei 已提交
234
  }
Q
Qiao Longfei 已提交
235

X
Xin Pan 已提交
236
  std::unique_ptr<ir::Graph> temp_owned_graph(graph);
Q
Qiao Longfei 已提交
237

Y
Yancey1989 已提交
238 239 240
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
X
Xin Pan 已提交
241 242
  build_strategy.enable_parallel_graph_ = EnableParallelGraphExecution(
      *temp_owned_graph, exec_strategy, build_strategy);
Y
Yancey1989 已提交
243 244 245 246
  if (build_strategy.enable_parallel_graph_)
    VLOG(0) << "The Executor would execute the graph by ParallelGraph "
               "Execution which can get better performance,"
            << "you can force it off by env FLAGS_enable_parallel_graph=0";
Y
Yancey1989 已提交
247

C
chengduoZH 已提交
248
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
249
// Bcast Parameters to all GPUs
P
peizhilin 已提交
250
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
251 252 253
    ncclUniqueId *nccl_id = nullptr;
    // gen_nccl_id operator can broadcast the ncclUniqueId for nccl2 collective
    // distributed training
C
chengduoZH 已提交
254
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
Y
Yancey1989 已提交
255
    if (nccl_id_var != nullptr) {
Y
Yancey1989 已提交
256
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
Y
Yancey1989 已提交
257
    }
258
    if (build_strategy.enable_parallel_graph_ && member_->nranks_ > 1UL) {
Y
Yancey1989 已提交
259 260 261 262
      if (nccl_id == nullptr) {
        local_nccl_id_.reset(new ncclUniqueId());
        platform::dynload::ncclGetUniqueId(local_nccl_id_.get());
        nccl_id = local_nccl_id_.get();
Y
Yancey1989 已提交
263
      }
C
chengduoZH 已提交
264
    }
Y
Yancey1989 已提交
265

C
chengduoZH 已提交
266
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
267 268
        member_->places_, nccl_id, build_strategy.num_trainers_,
        build_strategy.trainer_id_));
Q
qingqing01 已提交
269

W
Wu Yi 已提交
270 271 272
    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
Q
qingqing01 已提交
273
    // be rewrite and there will be some problem.
W
Wu Yi 已提交
274 275 276 277 278 279 280
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
    std::unique_ptr<platform::NCCLContextMap> dev_nccl_ctxs;
    if (nccl_id == nullptr) {
      dev_nccl_ctxs.reset(new platform::NCCLContextMap(member_->places_));
    }
Q
qingqing01 已提交
281 282 283 284 285
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
W
Wu Yi 已提交
286 287 288 289 290 291 292
      if (nccl_id != nullptr) {
        auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[dev_id]);
        dev_ctx->set_nccl_comm(nccl_ctx.comm());
      } else {
        auto &nccl_ctx = dev_nccl_ctxs->at(member_->places_[dev_id]);
        dev_ctx->set_nccl_comm(nccl_ctx.comm());
      }
Q
qingqing01 已提交
293
    }
C
chengduoZH 已提交
294 295
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
296
#endif
C
chengduoZH 已提交
297
  }
Y
Yan Xu 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
    if (build_strategy.num_trainers_ > 1) {
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };

  if (need_broadcast()) {
    BCastParamsToDevices(bcast_vars, build_strategy.trainer_id_);
Y
Yu Yang 已提交
313
  }
Q
Qiao Longfei 已提交
314
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
315

Q
Qiao Longfei 已提交
316 317 318
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<ir::Graph *> async_graphs(places.size());
P
peizhilin 已提交
319
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Q
Qiao Longfei 已提交
320
  if (build_strategy.async_mode_) {
Q
Qiao Longfei 已提交
321
    VLOG(3) << "use local async mode";
Q
Qiao Longfei 已提交
322 323 324 325 326 327 328 329 330 331 332 333
    temp_owned_graph =
        build_strategy.Apply(std::move(temp_owned_graph), {member_->places_[0]},
                             loss_var_name, {member_->local_scopes_[0]}, 1,
                             member_->use_cuda_, member_->nccl_ctxs_.get());
    for (int i = 1; i < member_->places_.size(); ++i) {
      std::unique_ptr<ir::Graph> temp_graph(graphs[i]);
      temp_graph =
          build_strategy.Apply(std::move(temp_graph), {member_->places_[i]},
                               loss_var_name, {member_->local_scopes_[i]}, 1,
                               member_->use_cuda_, member_->nccl_ctxs_.get());
      async_graphs[i] = temp_graph.release();
    }
Q
Qiao Longfei 已提交
334
  } else {
Q
Qiao Longfei 已提交
335 336 337 338
    temp_owned_graph = build_strategy.Apply(
        std::move(temp_owned_graph), member_->places_, loss_var_name,
        member_->local_scopes_, member_->nranks_, member_->use_cuda_,
        member_->nccl_ctxs_.get());
Q
Qiao Longfei 已提交
339
  }
C
chengduoZH 已提交
340
#else
Q
Qiao Longfei 已提交
341
  if (build_strategy.async_mode_) {
Q
Qiao Longfei 已提交
342
    VLOG(3) << "use local async mode";
Q
Qiao Longfei 已提交
343 344
    temp_owned_graph = build_strategy.Apply(
        std::move(temp_owned_graph), {member_->places_[0]}, loss_var_name,
Q
Qiao Longfei 已提交
345 346 347 348 349 350 351 352
        {member_->local_scopes_[0]}, 1, member_->use_cuda_);
    for (int i = 1; i < member_->places_.size(); ++i) {
      std::unique_ptr<ir::Graph> temp_graph(graphs[i]);
      temp_graph = build_strategy.Apply(
          std::move(temp_graph), {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, 1, member_->use_cuda_);
      async_graphs[i] = temp_graph.release();
    }
Q
can run  
Qiao Longfei 已提交
353
  } else {
Q
Qiao Longfei 已提交
354 355 356
    temp_owned_graph = build_strategy.Apply(
        std::move(temp_owned_graph), member_->places_, loss_var_name,
        member_->local_scopes_, member_->nranks_, member_->use_cuda_);
Q
can run  
Qiao Longfei 已提交
357
  }
X
Xin Pan 已提交
358

Y
Yu Yang 已提交
359
#endif
Y
Yancey1989 已提交
360
  auto max_memory_size = GetEagerDeletionThreshold();
D
dzhwinter 已提交
361 362
  VLOG(10) << "Eager Deletion Threshold "
           << static_cast<float>(max_memory_size) / (1 << 30);
Y
Yancey1989 已提交
363
  if (max_memory_size >= 0) {
X
Xin Pan 已提交
364 365 366 367 368 369
    graph = member_
                ->PrepareGCAndRefCnts(std::move(temp_owned_graph),
                                      static_cast<size_t>(max_memory_size))
                .release();
  } else {
    graph = temp_owned_graph.release();
Y
Yancey1989 已提交
370 371
  }

Q
Qiao Longfei 已提交
372 373
  async_graphs[0] = graph;

374 375
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
376
  std::vector<details::VariableInfo> var_infos;
Q
Qiao Longfei 已提交
377 378 379 380 381 382
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
Y
Yancey1989 已提交
383 384
    }
  }
Y
Yancey1989 已提交
385

W
Wu Yi 已提交
386 387
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
Q
Qiao Longfei 已提交
388
    size_t graph_num = ir::GraphNum(*graph);
C
chengduo 已提交
389 390 391 392
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
Q
Qiao Longfei 已提交
393
          << ir::GraphNum(*graph)
C
chengduo 已提交
394 395 396 397 398
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
399 400
  }

Q
Qiao Longfei 已提交
401
  if (build_strategy.async_mode_) {
Q
can run  
Qiao Longfei 已提交
402 403
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
Q
Qiao Longfei 已提交
404
        exec_strategy, member_->local_scopes_, member_->places_, async_graphs));
Q
can run  
Qiao Longfei 已提交
405 406
  } else if (build_strategy.enable_parallel_graph_) {
    VLOG(3) << "use ParallelSSAGraphExecutor";
Y
Yancey1989 已提交
407
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
408 409
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
Y
Yancey1989 已提交
410
    member_->executor_.reset(new details::ParallelSSAGraphExecutor(
X
Xin Pan 已提交
411
        exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
412 413 414 415
#else
    PADDLE_THROW(
        "Paddle should be compiled with CUDA for ParallelGraph Execution.");
#endif
Y
yuyang18 已提交
416
  } else {
Y
Yancey1989 已提交
417
    if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
Q
can run  
Qiao Longfei 已提交
418
      VLOG(3) << "use ThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
419
      member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
X
Xin Pan 已提交
420
          exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
421
    } else {
Q
can run  
Qiao Longfei 已提交
422
      VLOG(3) << "use FastThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
423
      member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
X
Xin Pan 已提交
424
          exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
425
    }
C
chengduoZH 已提交
426
  }
Y
yuyang18 已提交
427

Q
can run  
Qiao Longfei 已提交
428
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
Q
Qiao Longfei 已提交
429 430 431 432 433
  if (!build_strategy.async_mode_) {
    member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, std::move(var_infos),
        member_->places_, std::move(member_->executor_)));
  }
Y
Yu Yang 已提交
434 435
}

Y
Yancey1989 已提交
436
void ParallelExecutor::BCastParamsToDevices(
Y
Yan Xu 已提交
437
    const std::vector<std::string> &vars, int trainer_id) const {
Q
Qiao Longfei 已提交
438
  VLOG(3) << "BCastParamsToDevices";
X
Xin Pan 已提交
439
  // the initializing bcast, all vars would be bcast from device(0).
440
  for (auto &var : vars) {
X
Xin Pan 已提交
441
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
442
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
443 444 445 446
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
447
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
448
      VLOG(3) << "one in var not inited, return!";
449 450
      continue;
    }
451 452
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
453
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
454
      std::vector<void *> buffers;
C
chengduo 已提交
455
      buffers.reserve(member_->places_.size());
456 457 458 459 460
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
461

Y
Yan Xu 已提交
462
        if (i == 0 && trainer_id == 0) {
463 464
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
465
          auto local_scope = member_->local_scopes_[i];
466
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
467
          t->Resize(dims);
468
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
469
        }
470
        buffers.push_back(buffer);
471
      }
472

473 474 475 476 477 478
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
X
Xin Pan 已提交
479 480
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
481
        }
482
        member_->nccl_ctxs_->WaitAll();
483
      }
C
chengduoZH 已提交
484 485 486
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
487 488
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
489
      for (size_t i = 1; i < member_->places_.size(); ++i) {
490 491
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
492

Q
Qiao Longfei 已提交
493
        auto copy_memory = [&] {
494 495 496
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
497 498
        };

Q
Qiao Longfei 已提交
499
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
500 501 502 503 504 505 506

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
        } else if (member_->use_all_reduce_ || member_->use_cuda_ ||
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
507
        } else {
Q
can run  
Qiao Longfei 已提交
508
          share_memory();
509
        }
Y
Yu Yang 已提交
510
      }
Y
Stash  
Yu Yang 已提交
511 512
    }
  }
Y
Yu Yang 已提交
513
}
Y
Yu Yang 已提交
514

Y
Yu Yang 已提交
515 516
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
Y
Yu Yang 已提交
517 518 519
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
520 521
  }
#endif
Y
Yu Yang 已提交
522

X
Xin Pan 已提交
523
  platform::RecordBlock b(0);
S
sneaxiy 已提交
524 525
  if (member_->HasGarbageCollectors()) {
    member_->ResetRuntimeReferenceCount(fetch_tensors, fetched_var_name);
S
sneaxiy 已提交
526
  }
S
sneaxiy 已提交
527 528 529
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
530
}
Y
Yu Yang 已提交
531

Y
Yu Yang 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
551 552 553 554 555
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
556 557
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
558
      auto t =
Y
Yu Yang 已提交
559
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
560 561
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
562 563 564 565
    }
  }
}

X
Xin Pan 已提交
566 567 568 569 570 571 572
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

573
bool ParallelExecutor::EnableParallelGraphExecution(
X
Xin Pan 已提交
574
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
575
    const BuildStrategy &build_strategy) const {
Y
Yancey1989 已提交
576
  if (!FLAGS_enable_parallel_graph) return false;
577

Y
Yancey1989 已提交
578
  bool enable_parallel_graph = true;
579

X
Xin Pan 已提交
580 581 582 583 584 585 586 587 588 589 590 591 592
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
593 594 595 596 597
    }
  }

  if (!member_->use_all_reduce_ || !member_->use_cuda_)

Y
Yancey1989 已提交
598 599 600
    if (build_strategy.enable_sequential_execution_ ||
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental)
      enable_parallel_graph = false;
Y
Yancey1989 已提交
601
  return enable_parallel_graph;
602 603
}

Y
Yu Yang 已提交
604
}  // namespace framework
Y
Yang Yang 已提交
605
}  // namespace paddle
S
sneaxiy 已提交
606

S
sneaxiy 已提交
607
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
608
USE_PASS(eager_deletion_pass);