parallel_executor.cc 28.4 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
Q
qingqing01 已提交
17
#include <memory>
C
chengduoZH 已提交
18
#include <string>
19
#include <tuple>
Q
Qiao Longfei 已提交
20
#include <utility>
Q
qiaolongfei 已提交
21
#include <vector>
Q
Qiao Longfei 已提交
22
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
Y
yuyang18 已提交
23
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
24
#include "paddle/fluid/framework/details/multi_devices_helper.h"
25
#include "paddle/fluid/framework/details/op_handle_base.h"
Y
Yancey1989 已提交
26
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
28
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
29 30
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
31
#include "paddle/fluid/framework/ir/memory_optimize_pass/memory_optimization_var_info.h"
32
#include "paddle/fluid/framework/ir/memory_optimize_pass/reference_count_pass_helper.h"
33
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
34

Y
Yu Yang 已提交
35
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
36
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
37
#endif
Y
Yu Yang 已提交
38
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
39 40
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
41
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
42
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
43

Y
Yang Yang 已提交
44
namespace paddle {
Y
Yu Yang 已提交
45 46
namespace framework {

Y
Yu Yang 已提交
47
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
48
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
49
static bool gProfileStarted = false;
Y
Yu Yang 已提交
50
#endif
51

Y
Yu Yang 已提交
52 53 54
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
55
      : places_(places) {
Y
Yu Yang 已提交
56
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
57 58
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
59
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
60 61 62
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
63
          "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
64 65 66 67
#endif
      });
    }
  }
Y
Yu Yang 已提交
68

69 70 71 72 73 74 75 76 77 78 79
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
80

81
  ir::Graph *ApplyMemoryOptimizePass(ir::Graph *graph);
S
sneaxiy 已提交
82 83 84

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
  void InitNCCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "nccl comm num:" << bst.nccl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    if (bst.use_hierarchical_allreduce_) {
      VLOG(1) << ", use_hierarchical_allreduce:"
              << bst.use_hierarchical_allreduce_ << ", inter_trainers_num:"
              << bst.hierarchical_allreduce_inter_nranks_
              << ", exter_trainers_num:"
              << bst.hierarchical_allreduce_exter_nranks_;
    }

    std::vector<ncclUniqueId *> flat_nccl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create ncclid when nranks==1
102 103
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one ncclid in pg model";

      ncclUniqueId *nccl_id = nullptr;

      std::string var_name = platform::GetFlatNCCLVarName(0);
      auto nccl_id_var = scope->FindVar(var_name);
      if (nccl_id_var) {
        nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      } else {
        nccl_id = new ncclUniqueId();
        PADDLE_ENFORCE(platform::dynload::ncclGetUniqueId(nccl_id));
      }

      flat_nccl_ids.push_back(nccl_id);

123 124
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
125 126 127 128 129 130
      VLOG(1) << "init bst nccl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
131 132
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
133 134 135 136 137 138 139 140 141 142 143
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
      std::string var_name = platform::GetFlatNCCLVarName(i);
      auto nccl_id_var = scope->FindVar(var_name);
      PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
      auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      flat_nccl_ids.push_back(nccl_id);
    }

144 145
    nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                             bst.trainer_id_);
146 147

    if (bst.use_hierarchical_allreduce_) {
G
gongweibao 已提交
148 149 150 151 152 153 154 155
      std::vector<ncclUniqueId *> inter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalInterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
        PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
        auto inter_nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        inter_nccl_ids.push_back(inter_nccl_id);
      }
156 157 158 159 160 161 162 163 164

      std::vector<ncclUniqueId *> exter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalExterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
        PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
        auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        exter_nccl_ids.push_back(nccl_id);
      }
G
gongweibao 已提交
165

166 167 168 169
      nccl_ctxs_->InitHierarchicalCtxs(
          places_, inter_nccl_ids, exter_nccl_ids, bst.num_trainers_,
          bst.trainer_id_, bst.hierarchical_allreduce_inter_nranks_,
          bst.hierarchical_allreduce_exter_nranks_);
170 171
    }
  }
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

  void InitOrGetNCCLCommunicator(framework::Scope *scope,
                                 const BuildStrategy &bst) {
    const std::string var_name = "NCCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
      PADDLE_ENFORCE(var->IsInitialized(),
                     "if %s exists, it must be initialized", var_name);
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      nccl_ctxs_ = var->GetMutable<platform::NCCLCommunicator>();
      return;
    }

    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    nccl_ctxs_ = scope->Var(var_name)->GetMutable<platform::NCCLCommunicator>();
    InitNCCLCtxs(scope, bst);
  }
190 191
#endif

192 193 194 195 196
  inline bool IsPersistable(const std::string &name) const {
    auto iter = is_persistable_.find(name);
    return iter != is_persistable_.end() && iter->second;
  }

D
dzhwinter 已提交
197
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
198 199
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
200
  std::vector<Scope *> local_exec_scopes_;
201
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
202
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
203

204 205
  std::unordered_map<std::string, bool> is_persistable_;

P
peizhilin 已提交
206
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
207
  platform::NCCLCommunicator *nccl_ctxs_{nullptr};
Y
Yu Yang 已提交
208
#endif
C
chengduoZH 已提交
209 210
  bool own_local_scope_;
  bool use_cuda_;
211
  bool use_all_reduce_;
212
  size_t nranks_;
S
sneaxiy 已提交
213

214
  ir::MemOptVarInfoMapList mem_opt_var_infos_;
215
  ir::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
216 217
};

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
ir::Graph *ParallelExecutorPrivate::ApplyMemoryOptimizePass(ir::Graph *graph) {
  std::vector<ir::LastLiveOpsOfVars> last_live_ops_of_vars;

  auto ref_cnt_pass = ir::PassRegistry::Instance().Get("reference_count_pass");
  ref_cnt_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
  ref_cnt_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
  graph = ref_cnt_pass->Apply(graph);
  VLOG(10) << "ReferenceCountPass Applied";

  if (build_strategy_.enable_inplace_) {
    auto inplace_pass =
        ir::PassRegistry::Instance().Get("buffer_shared_inplace_pass");
    inplace_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    inplace_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
    inplace_pass->SetNotOwned(ir::kUseCuda, &use_cuda_);
    VLOG(10) << "Start to apply buffer_shared_inplace_pass";
    graph = inplace_pass->Apply(graph);
    VLOG(10) << "buffer_shared_inplace_pass Applied";
  }

  // TODO(zjl): refactor MemoryOptimizePass as well!!!

  if (GetEagerDeletionThreshold() < 0) {
    return graph;
  }
  size_t max_memory_size = static_cast<size_t>(GetEagerDeletionThreshold());

S
sneaxiy 已提交
245 246 247 248 249
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
250
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
251
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
252 253
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
254 255
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
256
      } else {
S
sneaxiy 已提交
257 258
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
259 260
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
261
    } else {
S
sneaxiy 已提交
262
#endif
S
sneaxiy 已提交
263 264 265 266 267 268 269
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
270 271 272 273
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
274
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
275 276
  }

S
sneaxiy 已提交
277
  if (!gcs_.empty()) {
S
sneaxiy 已提交
278 279
    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
280 281
    eager_deletion_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                     &mem_opt_var_infos_);
282 283
    eager_deletion_pass->SetNotOwned(ir::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
S
sneaxiy 已提交
284
                                     &last_live_ops_of_vars);
285
    eager_deletion_pass->SetNotOwned(ir::kAllPlaces, &places_);
286
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
287 288 289 290 291
    VLOG(10) << "EagerDeletionPass Applied";
  }
  return graph;
}

292 293 294 295
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309
void ParallelExecutor::DropLocalExeScopes() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  if (executor) {
    executor->DropLocalExeScopes();
  }
}

bool ParallelExecutor::NeedCreateLocalExeScope() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  return executor && executor->NeedCreateLocalExeScope();
}

Y
Yan Xu 已提交
310 311 312 313 314 315 316 317
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
Y
Yu Yang 已提交
318
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
319
  member_->global_scope_ = scope;
320
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
321
  member_->build_strategy_ = build_strategy;
C
chengduo 已提交
322 323
  member_->use_all_reduce_ = member_->build_strategy_.reduce_ ==
                             BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
324
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
C
chengduo 已提交
325 326 327 328 329 330 331
  if (!member_->use_all_reduce_ && member_->nranks_ == 1) {
    LOG(INFO) << "If you set build_strategy.reduce with 'Reduce',"
                 "the number of places should be greater than 1.";
    member_->build_strategy_.reduce_ =
        BuildStrategy::ReduceStrategy::kAllReduce;
    member_->use_all_reduce_ = true;
  }
332 333 334 335 336
#if defined(PADDLE_WITH_CUDA) && defined(_WIN32)
  if (member_->use_cuda_) {
    PADDLE_ENFORCE(places.size() == 1, "Windows can support Single GPU only.");
  }
#endif
Y
Yancey1989 已提交
337

338
  LOG(INFO) << string::Sprintf(
C
chengduo 已提交
339 340 341 342 343
      "The number of %s, which is used in ParallelExecutor, is %lu. And "
      "the Program will be copied %lu copies",
      (member_->use_cuda_ ? "CUDAPlace" : "CPUPlace"), places.size(),
      places.size());

344
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
345
  // Create local scopes
346
  if (local_scopes.empty()) {
C
chengduoZH 已提交
347
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
348 349
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
350
      member_->local_scopes_.emplace_back(&scope->NewScope());
351 352
    }
  } else {
C
chengduoZH 已提交
353
    member_->own_local_scope_ = false;
354 355
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
356
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
357
    }
Y
Yu Yang 已提交
358 359
  }

Q
Qiao Longfei 已提交
360
  std::vector<ir::Graph *> graphs;
C
chengduo 已提交
361
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
362 363
    PADDLE_ENFORCE(!member_->use_cuda_,
                   "gpu mode does not support async_mode_ now!");
Q
Qiao Longfei 已提交
364
    graphs.push_back(graph);
D
dongdaxiang 已提交
365
    for (size_t i = 1; i < places.size(); ++i) {
Q
Qiao Longfei 已提交
366 367 368 369
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
Q
Qiao Longfei 已提交
370
  }
Q
Qiao Longfei 已提交
371

Y
Yancey1989 已提交
372 373 374
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
C
chengduo 已提交
375 376 377 378
  member_->build_strategy_.enable_parallel_graph_ =
      EnableParallelGraphExecution(*graph, exec_strategy,
                                   member_->build_strategy_);
  if (member_->build_strategy_.enable_parallel_graph_) {
379 380 381 382
    LOG(INFO) << "The Executor would execute the graph by ParallelGraph "
                 "Execution which can get better performance,"
              << "you can force it off by env FLAGS_enable_parallel_graph=0";
  }
Y
Yancey1989 已提交
383

384
  if (member_->use_cuda_ && member_->nranks_ > 1) {
P
peizhilin 已提交
385
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
C
chengduo 已提交
386
    member_->InitOrGetNCCLCommunicator(scope, member_->build_strategy_);
Q
qingqing01 已提交
387

W
Wu Yi 已提交
388 389 390
    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
Q
qingqing01 已提交
391
    // be rewrite and there will be some problem.
W
Wu Yi 已提交
392 393 394
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
395 396
    auto *nccl_ctxs =
        member_->nccl_ctxs_->GetSyncBatchNormCtx(scope, member_->places_);
397
    auto &pool = platform::DeviceContextPool::Instance();
Q
qingqing01 已提交
398 399 400
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
401
      auto &nccl_ctx = nccl_ctxs->at(member_->places_[dev_id]);
402
      dev_ctx->set_nccl_comm(nccl_ctx.comm());
Q
qingqing01 已提交
403
    }
Y
Yu Yang 已提交
404
#endif
C
chengduoZH 已提交
405
  }
Y
Yan Xu 已提交
406 407
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
C
chengduo 已提交
408
    if (member_->build_strategy_.num_trainers_ > 1) {
Y
Yan Xu 已提交
409 410 411 412 413 414 415 416 417
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };
418
  // Bcast Parameters to all GPUs
Y
Yan Xu 已提交
419
  if (need_broadcast()) {
C
chengduo 已提交
420
    BCastParamsToDevices(bcast_vars, member_->build_strategy_.trainer_id_);
Y
Yu Yang 已提交
421
  }
422

Q
Qiao Longfei 已提交
423
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
424

Q
Qiao Longfei 已提交
425 426 427
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<ir::Graph *> async_graphs(places.size());
P
peizhilin 已提交
428
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
C
chengduo 已提交
429
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
430
    VLOG(3) << "use local async mode";
C
chengduo 已提交
431 432 433 434
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_cuda_,
        member_->nccl_ctxs_);
D
dongdaxiang 已提交
435
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
436 437 438 439
      graphs[i] = member_->build_strategy_.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, 1, member_->use_cuda_,
          member_->nccl_ctxs_);
440
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
441
    }
Q
Qiao Longfei 已提交
442
  } else {
C
chengduo 已提交
443 444 445
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_, member_->nccl_ctxs_);
Q
Qiao Longfei 已提交
446
  }
C
chengduoZH 已提交
447
#else
C
chengduo 已提交
448
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
449
    VLOG(3) << "use local async mode";
C
chengduo 已提交
450 451 452
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_cuda_);
453
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
454
      graphs[i] = member_->build_strategy_.Apply(
455
          graphs[i], {member_->places_[i]}, loss_var_name,
Q
Qiao Longfei 已提交
456
          {member_->local_scopes_[i]}, 1, member_->use_cuda_);
457
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
458
    }
Q
can run  
Qiao Longfei 已提交
459
  } else {
C
chengduo 已提交
460 461 462
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_);
Q
can run  
Qiao Longfei 已提交
463
  }
Y
Yu Yang 已提交
464
#endif
465

466
  graph = member_->ApplyMemoryOptimizePass(graph);
Y
Yancey1989 已提交
467

Q
Qiao Longfei 已提交
468 469
  async_graphs[0] = graph;

470 471
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
472
  std::vector<details::VariableInfo> var_infos;
Q
Qiao Longfei 已提交
473 474 475 476 477 478
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
479 480 481

      member_->is_persistable_.emplace(node->Var()->Name(),
                                       node->Var()->Persistable());
Y
Yancey1989 已提交
482 483
    }
  }
Y
Yancey1989 已提交
484

W
Wu Yi 已提交
485 486
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
Q
Qiao Longfei 已提交
487
    size_t graph_num = ir::GraphNum(*graph);
C
chengduo 已提交
488 489 490 491
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
Q
Qiao Longfei 已提交
492
          << ir::GraphNum(*graph)
C
chengduo 已提交
493 494 495 496 497
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
498 499
  }

500 501 502 503 504 505 506 507 508 509 510 511
  std::unordered_map<Scope *, Scope *> scope_map;
  for (auto *scope : member_->local_scopes_) {
    auto &local_exec_scope = scope->NewScope();
    member_->local_exec_scopes_.emplace_back(&local_exec_scope);
    scope_map.emplace(scope, &local_exec_scope);
  }

  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(),
                    member_->local_exec_scopes_.size());

  std::vector<ir::Graph *> final_graphs;

C
chengduo 已提交
512
  if (member_->build_strategy_.async_mode_) {
Q
can run  
Qiao Longfei 已提交
513 514
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
515 516 517
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, async_graphs));
    final_graphs = async_graphs;
C
chengduo 已提交
518
  } else if (member_->build_strategy_.enable_parallel_graph_) {
Q
can run  
Qiao Longfei 已提交
519
    VLOG(3) << "use ParallelSSAGraphExecutor";
Y
Yancey1989 已提交
520
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
521 522
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
523 524 525 526 527
    auto *pg_exe = new details::ParallelSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, graph);
    final_graphs = pg_exe->Graphs();
    member_->executor_.reset(pg_exe);
Y
Yancey1989 已提交
528 529 530 531
#else
    PADDLE_THROW(
        "Paddle should be compiled with CUDA for ParallelGraph Execution.");
#endif
Y
yuyang18 已提交
532
  } else {
Y
Yancey1989 已提交
533
    if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
Q
can run  
Qiao Longfei 已提交
534
      VLOG(3) << "use ThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
535
      member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
536 537
          exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
          member_->places_, graph));
Y
Yancey1989 已提交
538
    } else {
Q
can run  
Qiao Longfei 已提交
539
      VLOG(3) << "use FastThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
540
      member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
541 542
          exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
          member_->places_, graph));
Y
Yancey1989 已提交
543
    }
544
    final_graphs.emplace_back(graph);
C
chengduoZH 已提交
545
  }
Y
yuyang18 已提交
546

Q
can run  
Qiao Longfei 已提交
547
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
C
chengduo 已提交
548
  if (!member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
549
    member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
550 551 552 553 554 555 556 557 558
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        std::move(var_infos), member_->places_, std::move(member_->executor_)));
  }

  for (auto *g : final_graphs) {
    auto ops = ir::FilterByNodeWrapper<details::OpHandleBase>(*g);
    for (auto *op : ops) {
      op->SetLocalExecScopes(scope_map);
    }
Q
Qiao Longfei 已提交
559
  }
Y
Yu Yang 已提交
560 561
}

Y
Yancey1989 已提交
562
void ParallelExecutor::BCastParamsToDevices(
Y
Yan Xu 已提交
563
    const std::vector<std::string> &vars, int trainer_id) const {
Q
Qiao Longfei 已提交
564
  VLOG(3) << "BCastParamsToDevices";
X
Xin Pan 已提交
565
  // the initializing bcast, all vars would be bcast from device(0).
566
  for (auto &var : vars) {
X
Xin Pan 已提交
567
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
568
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
569 570 571 572
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
573
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
574
      VLOG(3) << "one in var not inited, return!";
575 576
      continue;
    }
577 578
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
579
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
580
      std::vector<void *> buffers;
C
chengduo 已提交
581
      buffers.reserve(member_->places_.size());
582 583 584 585 586
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
587

Y
Yan Xu 已提交
588
        if (i == 0 && trainer_id == 0) {
589 590
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
591
          auto local_scope = member_->local_scopes_[i];
592
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
593
          t->Resize(dims);
594
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
595
        }
596
        buffers.push_back(buffer);
597
      }
598

599 600 601
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
602
        auto *nccl_ctxs = member_->nccl_ctxs_->DefaultFlatCtx();
603 604
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
605
          auto &nccl_ctx = nccl_ctxs->at(member_->places_[i]);
X
Xin Pan 已提交
606 607
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
608
        }
609
        nccl_ctxs->WaitAll();
610
      }
C
chengduoZH 已提交
611
#endif
612 613
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
614
      for (size_t i = 1; i < member_->places_.size(); ++i) {
615 616
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
617

Q
Qiao Longfei 已提交
618
        auto copy_memory = [&] {
619 620 621
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
622 623
        };

Q
Qiao Longfei 已提交
624
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
625 626 627 628 629 630 631

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
        } else if (member_->use_all_reduce_ || member_->use_cuda_ ||
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
632
        } else {
Q
can run  
Qiao Longfei 已提交
633
          share_memory();
634
        }
Y
Yu Yang 已提交
635
      }
Y
Stash  
Yu Yang 已提交
636 637
    }
  }
Y
Yu Yang 已提交
638
}
Y
Yu Yang 已提交
639

Y
Yu Yang 已提交
640 641
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
642
  VLOG(3) << "enter ParallelExecutor Run";
Y
Yu Yang 已提交
643 644 645
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
646 647
  }
#endif
Y
Yu Yang 已提交
648

X
Xin Pan 已提交
649
  platform::RecordBlock b(0);
650 651 652

  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_), fetch_tensors,
                                member_->HasGarbageCollectors());
653 654

  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
S
sneaxiy 已提交
655 656 657
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
658
}
Y
Yu Yang 已提交
659

Y
Yu Yang 已提交
660 661 662 663 664 665 666
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    for (auto &pair : map) {
667 668 669 670 671 672
      bool is_persistable = member_->IsPersistable(pair.first);
      auto *feed_scope = is_persistable ? member_->local_scopes_[i]
                                        : member_->local_exec_scopes_[i];
      auto *feed_var = feed_scope->Var(pair.first);

      auto *trg = feed_var->GetMutable<LoDTensor>();
Y
Yu Yang 已提交
673 674 675 676 677 678 679 680
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
681
  for (auto &pair : tensors) {
Y
Yu Yang 已提交
682
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
C
chengduo 已提交
683 684 685 686 687 688
    if (member_->places_.size() != lod_tensors.size()) {
      bool is_cpu_place = platform::is_cpu_place(member_->places_.front());
      auto error_info = string::Sprintf(
          "The number(%d) of samples of "
          "current batch is less than the count(%d) of "
          "devices(%s), currently, it is not allowed. ",
689
          lod_tensors.size(), member_->places_.size(),
C
chengduo 已提交
690 691 692 693 694 695 696 697
          (is_cpu_place ? "CPU" : "GPU"));
      if (is_cpu_place) {
        error_info +=
            "You should set the environment variable CPU_NUM in the system "
            "to determine the number of devices you need.";
      }
      PADDLE_THROW(error_info);
    }
698 699

    bool is_persistable = member_->IsPersistable(pair.first);
X
Xin Pan 已提交
700
    for (size_t j = 0; j < member_->places_.size(); ++j) {
701 702 703 704 705
      auto *feed_scope = is_persistable ? member_->local_scopes_[j]
                                        : member_->local_exec_scopes_[j];
      auto *feed_var = feed_scope->Var(pair.first);

      auto t = feed_var->GetMutable<LoDTensor>();
706 707
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
708 709 710 711
    }
  }
}

X
Xin Pan 已提交
712 713 714 715 716 717 718
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

719
bool ParallelExecutor::EnableParallelGraphExecution(
X
Xin Pan 已提交
720
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
721
    const BuildStrategy &build_strategy) const {
722 723 724
  if (!FLAGS_enable_parallel_graph) {
    return false;
  }
725

Y
Yancey1989 已提交
726
  bool enable_parallel_graph = true;
727

X
Xin Pan 已提交
728 729 730 731 732 733 734 735 736 737 738 739 740
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
741 742 743
    }
  }

744
  if (!member_->use_all_reduce_ || !member_->use_cuda_) {
Y
Yancey1989 已提交
745
    if (build_strategy.enable_sequential_execution_ ||
746
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental) {
Y
Yancey1989 已提交
747
      enable_parallel_graph = false;
748 749 750 751 752 753 754 755 756
    }
  }

#ifdef WIN32
  VLOG(1) << "Windows has no support to parallel graph, enable_parallel_graph "
             "would be forced to false.";
  enable_parallel_graph = false;
#endif

Y
Yancey1989 已提交
757
  return enable_parallel_graph;
758 759
}

Y
Yu Yang 已提交
760
}  // namespace framework
Y
Yang Yang 已提交
761
}  // namespace paddle
S
sneaxiy 已提交
762

S
sneaxiy 已提交
763
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
764
USE_PASS(eager_deletion_pass);
765
USE_PASS(buffer_shared_inplace_pass);