parallel_executor.cc 20.7 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
C
chengduoZH 已提交
17
#include <string>
18
#include <tuple>
Q
qiaolongfei 已提交
19
#include <vector>
C
chengduo 已提交
20
#include "paddle/fluid/framework/ir/graph_helper.h"
Y
Yu Yang 已提交
21

X
clean  
Xin Pan 已提交
22
#include "paddle/fluid/framework/ir/graph.h"
X
Xin Pan 已提交
23

Y
Yancey1989 已提交
24
#include "paddle/fluid/framework/details/all_reduce_deps_pass.h"
Q
Qiao Longfei 已提交
25
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
Y
yuyang18 已提交
26
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
27
#include "paddle/fluid/framework/details/multi_devices_helper.h"
Y
Yancey1989 已提交
28
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
S
sneaxiy 已提交
29
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
Y
yuyang18 已提交
30
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
31
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
32
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
33

Y
Yu Yang 已提交
34
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
35
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
36
#endif
Y
Yu Yang 已提交
37
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
38 39
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
40
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
41
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
42

Y
Yang Yang 已提交
43
namespace paddle {
Y
Yu Yang 已提交
44 45
namespace framework {

Y
Yu Yang 已提交
46
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
47
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
48
static bool gProfileStarted = false;
Y
Yu Yang 已提交
49
#endif
Y
Yu Yang 已提交
50 51 52
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
53
      : places_(places) {
Y
Yu Yang 已提交
54
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
55 56
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
57
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
58 59 60
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
Y
Yu Yang 已提交
61
                        "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
62 63 64 65
#endif
      });
    }
  }
Y
Yu Yang 已提交
66

67 68 69 70 71 72 73 74 75 76 77
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
78

S
sneaxiy 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92
  std::unique_ptr<ir::Graph> PrepareGCAndRefCnts(
      std::unique_ptr<ir::Graph> graph, size_t max_memory_size);

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

  void ResetRuntimeReferenceCount(const std::vector<std::string> &fetch_tensors,
                                  const std::string &fetched_var_name) {
    for (size_t i = 0; i < runtime_ref_cnts_.size(); ++i) {
      for (auto &pair : global_ref_cnts_[i]) {
        runtime_ref_cnts_[i][pair.first] = pair.second;
      }

      for (auto &fetch_name : fetch_tensors) {
        runtime_ref_cnts_[i].erase(fetch_name);
S
sneaxiy 已提交
93
      }
S
sneaxiy 已提交
94
      runtime_ref_cnts_[i].erase(fetched_var_name);
S
sneaxiy 已提交
95 96 97
    }
  }

D
dzhwinter 已提交
98
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
99 100
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
101
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
102
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
103

P
peizhilin 已提交
104
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
105
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
106
#endif
C
chengduoZH 已提交
107 108
  bool own_local_scope_;
  bool use_cuda_;
109
  bool use_all_reduce_;
110
  size_t nranks_;
S
sneaxiy 已提交
111

S
sneaxiy 已提交
112 113 114 115 116 117
  // global_ref_cnts_ is only initialized when ParallelExecutor constructs, and
  // then keeps unchanged
  // Before each iteration, runtime_ref_cnts_ is reset to global_ref_cnts_
  std::vector<details::ReferenceCountMap> global_ref_cnts_;
  std::vector<details::AtomicReferenceCountMap> runtime_ref_cnts_;
  details::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
118 119
};

S
sneaxiy 已提交
120 121 122 123 124 125 126
std::unique_ptr<ir::Graph> ParallelExecutorPrivate::PrepareGCAndRefCnts(
    std::unique_ptr<ir::Graph> graph, size_t max_memory_size) {
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
127
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
128
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
129 130
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
131 132
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
133
      } else {
S
sneaxiy 已提交
134 135
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
136 137
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
138
    } else {
S
sneaxiy 已提交
139
#endif
S
sneaxiy 已提交
140 141 142 143 144 145 146
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
147 148 149 150
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
151
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
152 153
  }

S
sneaxiy 已提交
154
  if (!gcs_.empty()) {
S
sneaxiy 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    std::vector<details::LastLiveOpsOfVars> last_live_ops_of_vars;

    auto ref_cnt_pass =
        ir::PassRegistry::Instance().Get("reference_count_pass");
    ref_cnt_pass->SetNotOwned(details::kGlobalReferenceCount,
                              &global_ref_cnts_);
    ref_cnt_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                              &last_live_ops_of_vars);
    graph = ref_cnt_pass->Apply(std::move(graph));
    VLOG(10) << "ReferenceCountPass Applied";

    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
    eager_deletion_pass->SetNotOwned(details::kRuntimeReferenceCount,
                                     &runtime_ref_cnts_);
    eager_deletion_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                                     &last_live_ops_of_vars);
    eager_deletion_pass->SetNotOwned(details::kAllPlaces, &places_);
    graph = eager_deletion_pass->Apply(std::move(graph));
    VLOG(10) << "EagerDeletionPass Applied";
  }

  return graph;
}

181 182 183 184
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
185
ParallelExecutor::ParallelExecutor(
186
    const std::vector<platform::Place> &places,
187
    const std::unordered_set<std::string> &bcast_vars,
X
Xin Pan 已提交
188 189 190
    const std::string &loss_var_name, Scope *scope,
    const std::vector<Scope *> &local_scopes,
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy,
Q
Qiao Longfei 已提交
191
    std::vector<ir::Graph *> graphs)
Y
Yu Yang 已提交
192
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
193
  member_->global_scope_ = scope;
194
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
195
  member_->build_strategy_ = build_strategy;
196 197
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
198
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
199 200 201 202
  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
Y
Yancey1989 已提交
203 204
  }

205
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
206
  // Create local scopes
207
  if (local_scopes.empty()) {
C
chengduoZH 已提交
208
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
209 210
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
211
      member_->local_scopes_.emplace_back(&scope->NewScope());
212 213
    }
  } else {
C
chengduoZH 已提交
214
    member_->own_local_scope_ = false;
215 216
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
217
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
218
    }
Y
Yu Yang 已提交
219 220
  }

Q
Qiao Longfei 已提交
221 222 223 224
  if (build_strategy.async_mode_) {
    PADDLE_ENFORCE(!member_->use_cuda_,
                   "gpu mode does not support async_mode_ now!");
  }
Q
Qiao Longfei 已提交
225 226

  ir::Graph *graph = graphs[0];
X
Xin Pan 已提交
227
  std::unique_ptr<ir::Graph> temp_owned_graph(graph);
Q
Qiao Longfei 已提交
228

Y
Yancey1989 已提交
229 230 231
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
X
Xin Pan 已提交
232 233
  build_strategy.enable_parallel_graph_ = EnableParallelGraphExecution(
      *temp_owned_graph, exec_strategy, build_strategy);
Y
Yancey1989 已提交
234 235 236 237
  if (build_strategy.enable_parallel_graph_)
    VLOG(0) << "The Executor would execute the graph by ParallelGraph "
               "Execution which can get better performance,"
            << "you can force it off by env FLAGS_enable_parallel_graph=0";
Y
Yancey1989 已提交
238

C
chengduoZH 已提交
239
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
240
// Bcast Parameters to all GPUs
P
peizhilin 已提交
241
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
242 243 244
    ncclUniqueId *nccl_id = nullptr;
    // gen_nccl_id operator can broadcast the ncclUniqueId for nccl2 collective
    // distributed training
C
chengduoZH 已提交
245
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
Y
Yancey1989 已提交
246
    if (nccl_id_var != nullptr) {
Y
Yancey1989 已提交
247
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
Y
Yancey1989 已提交
248
    }
249
    if (build_strategy.enable_parallel_graph_ && member_->nranks_ > 1UL) {
Y
Yancey1989 已提交
250 251 252 253
      if (nccl_id == nullptr) {
        local_nccl_id_.reset(new ncclUniqueId());
        platform::dynload::ncclGetUniqueId(local_nccl_id_.get());
        nccl_id = local_nccl_id_.get();
Y
Yancey1989 已提交
254
      }
C
chengduoZH 已提交
255
    }
Y
Yancey1989 已提交
256

C
chengduoZH 已提交
257
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
258 259
        member_->places_, nccl_id, build_strategy.num_trainers_,
        build_strategy.trainer_id_));
C
chengduoZH 已提交
260 261
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
262
#endif
C
chengduoZH 已提交
263 264
  }
  if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
Y
Yancey1989 已提交
265
    BCastParamsToDevices(bcast_vars);
Y
Yu Yang 已提交
266
  }
Q
Qiao Longfei 已提交
267
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
268

Q
Qiao Longfei 已提交
269 270 271
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<ir::Graph *> async_graphs(places.size());
P
peizhilin 已提交
272
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Q
Qiao Longfei 已提交
273 274
  if (build_strategy.async_mode_ && !build_strategy.is_distribution_) {
    VLOG(3) << "use local async mode";
Q
Qiao Longfei 已提交
275 276 277 278 279 280 281 282 283 284 285 286
    temp_owned_graph =
        build_strategy.Apply(std::move(temp_owned_graph), {member_->places_[0]},
                             loss_var_name, {member_->local_scopes_[0]}, 1,
                             member_->use_cuda_, member_->nccl_ctxs_.get());
    for (int i = 1; i < member_->places_.size(); ++i) {
      std::unique_ptr<ir::Graph> temp_graph(graphs[i]);
      temp_graph =
          build_strategy.Apply(std::move(temp_graph), {member_->places_[i]},
                               loss_var_name, {member_->local_scopes_[i]}, 1,
                               member_->use_cuda_, member_->nccl_ctxs_.get());
      async_graphs[i] = temp_graph.release();
    }
Q
Qiao Longfei 已提交
287
  } else {
Q
Qiao Longfei 已提交
288 289 290 291
    temp_owned_graph = build_strategy.Apply(
        std::move(temp_owned_graph), member_->places_, loss_var_name,
        member_->local_scopes_, member_->nranks_, member_->use_cuda_,
        member_->nccl_ctxs_.get());
Q
Qiao Longfei 已提交
292
  }
C
chengduoZH 已提交
293
#else
Q
Qiao Longfei 已提交
294
  if (build_strategy.async_mode_ && !build_strategy.is_distribution_) {
Q
Qiao Longfei 已提交
295
    VLOG(3) << "use local async mode";
Q
Qiao Longfei 已提交
296 297
    temp_owned_graph = build_strategy.Apply(
        std::move(temp_owned_graph), {member_->places_[0]}, loss_var_name,
Q
Qiao Longfei 已提交
298 299 300 301 302 303 304 305
        {member_->local_scopes_[0]}, 1, member_->use_cuda_);
    for (int i = 1; i < member_->places_.size(); ++i) {
      std::unique_ptr<ir::Graph> temp_graph(graphs[i]);
      temp_graph = build_strategy.Apply(
          std::move(temp_graph), {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, 1, member_->use_cuda_);
      async_graphs[i] = temp_graph.release();
    }
Q
can run  
Qiao Longfei 已提交
306
  } else {
Q
Qiao Longfei 已提交
307 308 309
    temp_owned_graph = build_strategy.Apply(
        std::move(temp_owned_graph), member_->places_, loss_var_name,
        member_->local_scopes_, member_->nranks_, member_->use_cuda_);
Q
can run  
Qiao Longfei 已提交
310
  }
X
Xin Pan 已提交
311

Y
Yu Yang 已提交
312
#endif
Y
Yancey1989 已提交
313
  auto max_memory_size = GetEagerDeletionThreshold();
D
dzhwinter 已提交
314 315
  VLOG(10) << "Eager Deletion Threshold "
           << static_cast<float>(max_memory_size) / (1 << 30);
Y
Yancey1989 已提交
316
  if (max_memory_size >= 0) {
X
Xin Pan 已提交
317 318 319 320 321 322
    graph = member_
                ->PrepareGCAndRefCnts(std::move(temp_owned_graph),
                                      static_cast<size_t>(max_memory_size))
                .release();
  } else {
    graph = temp_owned_graph.release();
Y
Yancey1989 已提交
323 324
  }

Q
Qiao Longfei 已提交
325 326
  async_graphs[0] = graph;

327 328
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
329
  std::vector<details::VariableInfo> var_infos;
Q
Qiao Longfei 已提交
330 331 332 333 334 335
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
Y
Yancey1989 已提交
336 337
    }
  }
Y
Yancey1989 已提交
338

W
Wu Yi 已提交
339 340
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
Q
Qiao Longfei 已提交
341
    size_t graph_num = ir::GraphNum(*graph);
C
chengduo 已提交
342 343 344 345
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
Q
Qiao Longfei 已提交
346
          << ir::GraphNum(*graph)
C
chengduo 已提交
347 348 349 350 351
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
352 353
  }

354
  if (build_strategy.async_mode_ && !build_strategy.is_distribution_) {
Q
can run  
Qiao Longfei 已提交
355 356
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
Q
Qiao Longfei 已提交
357
        exec_strategy, member_->local_scopes_, member_->places_, async_graphs));
Q
can run  
Qiao Longfei 已提交
358 359
  } else if (build_strategy.enable_parallel_graph_) {
    VLOG(3) << "use ParallelSSAGraphExecutor";
Y
Yancey1989 已提交
360
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
361 362
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
Y
Yancey1989 已提交
363
    member_->executor_.reset(new details::ParallelSSAGraphExecutor(
X
Xin Pan 已提交
364
        exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
365 366 367 368
#else
    PADDLE_THROW(
        "Paddle should be compiled with CUDA for ParallelGraph Execution.");
#endif
Y
yuyang18 已提交
369
  } else {
Y
Yancey1989 已提交
370
    if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
Q
can run  
Qiao Longfei 已提交
371
      VLOG(3) << "use ThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
372
      member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
X
Xin Pan 已提交
373
          exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
374
    } else {
Q
can run  
Qiao Longfei 已提交
375
      VLOG(3) << "use FastThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
376
      member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
X
Xin Pan 已提交
377
          exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
378
    }
C
chengduoZH 已提交
379
  }
Y
yuyang18 已提交
380

Q
can run  
Qiao Longfei 已提交
381
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
Y
yuyang18 已提交
382
  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
Y
Yancey1989 已提交
383
      exec_strategy, member_->local_scopes_, std::move(var_infos),
Y
yuyang18 已提交
384
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
385 386
}

Y
Yancey1989 已提交
387
void ParallelExecutor::BCastParamsToDevices(
388
    const std::unordered_set<std::string> &vars) const {
Q
Qiao Longfei 已提交
389
  VLOG(3) << "BCastParamsToDevices";
X
Xin Pan 已提交
390
  // the initializing bcast, all vars would be bcast from device(0).
391
  for (auto &var : vars) {
X
Xin Pan 已提交
392
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
393
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
394 395 396 397
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
398
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
399
      VLOG(3) << "one in var not inited, return!";
400 401
      continue;
    }
402 403
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
404
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
405
      std::vector<void *> buffers;
C
chengduo 已提交
406
      buffers.reserve(member_->places_.size());
407 408 409 410 411
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
412

X
Xin Pan 已提交
413
        if (i == 0) {
414 415
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
416
          auto local_scope = member_->local_scopes_[i];
417
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
418
          t->Resize(dims);
419
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
420
        }
421
        buffers.push_back(buffer);
422
      }
423

424 425 426 427 428 429
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
X
Xin Pan 已提交
430 431
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
432
        }
433
        member_->nccl_ctxs_->WaitAll();
434
      }
C
chengduoZH 已提交
435 436 437
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
438 439
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
440
      for (size_t i = 1; i < member_->places_.size(); ++i) {
441 442
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
443

Q
Qiao Longfei 已提交
444
        auto copy_memory = [&] {
445 446 447
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
448 449
        };

Q
Qiao Longfei 已提交
450
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
451 452 453 454 455 456 457

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
        } else if (member_->use_all_reduce_ || member_->use_cuda_ ||
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
458
        } else {
Q
can run  
Qiao Longfei 已提交
459
          share_memory();
460
        }
Y
Yu Yang 已提交
461
      }
Y
Stash  
Yu Yang 已提交
462 463
    }
  }
Y
Yu Yang 已提交
464
}
Y
Yu Yang 已提交
465

Y
Yu Yang 已提交
466 467
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
Y
Yu Yang 已提交
468 469 470
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
471 472
  }
#endif
Y
Yu Yang 已提交
473

X
Xin Pan 已提交
474
  platform::RecordBlock b(0);
S
sneaxiy 已提交
475 476
  if (member_->HasGarbageCollectors()) {
    member_->ResetRuntimeReferenceCount(fetch_tensors, fetched_var_name);
S
sneaxiy 已提交
477
  }
S
sneaxiy 已提交
478 479 480
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
481
}
Y
Yu Yang 已提交
482

Y
Yu Yang 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
502 503 504 505 506
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
507 508
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
509
      auto t =
Y
Yu Yang 已提交
510
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
511 512
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
513 514 515 516
    }
  }
}

X
Xin Pan 已提交
517 518 519 520 521 522 523
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

524
bool ParallelExecutor::EnableParallelGraphExecution(
X
Xin Pan 已提交
525
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
526
    const BuildStrategy &build_strategy) const {
Y
Yancey1989 已提交
527
  if (!FLAGS_enable_parallel_graph) return false;
528

Y
Yancey1989 已提交
529
  bool enable_parallel_graph = true;
530

X
Xin Pan 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
544 545 546 547 548
    }
  }

  if (!member_->use_all_reduce_ || !member_->use_cuda_)

Y
Yancey1989 已提交
549 550 551
    if (build_strategy.enable_sequential_execution_ ||
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental)
      enable_parallel_graph = false;
Y
Yancey1989 已提交
552
  return enable_parallel_graph;
553 554
}

Y
Yu Yang 已提交
555
}  // namespace framework
Y
Yang Yang 已提交
556
}  // namespace paddle
S
sneaxiy 已提交
557

S
sneaxiy 已提交
558
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
559
USE_PASS(eager_deletion_pass);