parallel_executor.cc 40.0 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
Q
qingqing01 已提交
17
#include <memory>
C
chengduoZH 已提交
18
#include <string>
19
#include <tuple>
Q
Qiao Longfei 已提交
20
#include <utility>
Q
qiaolongfei 已提交
21
#include <vector>
Q
Qiao Longfei 已提交
22
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
Y
yuyang18 已提交
23
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
24
#include "paddle/fluid/framework/details/multi_devices_helper.h"
25
#include "paddle/fluid/framework/details/op_handle_base.h"
Y
Yancey1989 已提交
26
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
28
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
29 30
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
31
#include "paddle/fluid/framework/ir/memory_optimize_pass/memory_optimization_var_info.h"
32
#include "paddle/fluid/framework/ir/memory_optimize_pass/reference_count_pass_helper.h"
33
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
34

35 36
DECLARE_bool(use_ngraph);

37 38
DECLARE_double(eager_delete_tensor_gb);

Y
Yu Yang 已提交
39
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
40
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
41
#endif
Y
Yu Yang 已提交
42
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
43 44
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
45
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
46
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
47

Y
Yang Yang 已提交
48
namespace paddle {
Y
Yu Yang 已提交
49 50
namespace framework {

Y
Yu Yang 已提交
51
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
52
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
53
static bool gProfileStarted = false;
Y
Yu Yang 已提交
54
#endif
55

Y
Yu Yang 已提交
56 57
class ParallelExecutorPrivate {
 public:
58 59 60
  ParallelExecutorPrivate(const std::vector<platform::Place> &places,
                          Scope *global_scope)
      : places_(places), global_scope_(global_scope) {
Y
Yu Yang 已提交
61
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
62 63
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
64
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
65 66 67
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
68
          "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
69 70 71 72
#endif
      });
    }
  }
Y
Yu Yang 已提交
73

74 75 76 77 78 79 80 81 82 83 84
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
85

86 87 88 89 90 91 92 93 94 95 96 97 98
  void InitReaderDeviceCount(ir::Graph *graph) const {
    auto pass =
        ir::PassRegistry::Instance().Get("init_reader_device_count_pass");
    pass->SetNotOwned<const Scope>(details::kGlobalScope, global_scope_);
    pass->SetNotOwned<const std::vector<platform::Place>>(details::kPlaces,
                                                          &places_);
    pass->Apply(graph);
  }

  void SetHasFeed(size_t dev_idx, bool has_feed = true);

  bool AllowPartialFeed() const;

99
  ir::Graph *ApplyMemoryOptimizePass(ir::Graph *graph);
S
sneaxiy 已提交
100 101 102

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

103
  /**
T
tianshuo78520a 已提交
104 105
   * NOTE(zengjinle): the fed variables of users should not be reused,
   * because users may feed them into another network. Changing the fed
106 107 108 109 110 111
   * variables that users can visit may cause calculation wrong, which is
   * a very subtle bug when traning networks. However, these variables
   * can be garbage collected.
   *
   * ParallelExecutor provides 2 methods to feed variables:
   *
T
tianshuo78520a 已提交
112
   *  - FeedTensorsIntoLocalScopes: this method would share memory of fed
113 114
   *                                variables, so we have to skip these.
   *
T
tianshuo78520a 已提交
115
   *  - FeedAndSplitTensorIntoLocalScopes: this method would copy data of fed
116 117 118 119 120 121 122 123 124 125
   *                                       variables, so we do not need to skip
   *                                       them.
   */
  inline void SetSkipMemoryReuse(size_t scope_idx, const std::string &name) {
    auto iter = mem_opt_var_infos_[scope_idx].find(name);
    if (iter != mem_opt_var_infos_[scope_idx].end()) {
      iter->second->SetSkipMemoryReuse(true);
    }
  }

126
#if defined(PADDLE_WITH_NCCL)
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
  void InitNCCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "nccl comm num:" << bst.nccl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    if (bst.use_hierarchical_allreduce_) {
      VLOG(1) << ", use_hierarchical_allreduce:"
              << bst.use_hierarchical_allreduce_ << ", inter_trainers_num:"
              << bst.hierarchical_allreduce_inter_nranks_
              << ", exter_trainers_num:"
              << bst.hierarchical_allreduce_exter_nranks_;
    }

    std::vector<ncclUniqueId *> flat_nccl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create ncclid when nranks==1
143 144
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
145 146 147 148 149 150 151 152 153 154 155 156
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one ncclid in pg model";

      ncclUniqueId *nccl_id = nullptr;

      std::string var_name = platform::GetFlatNCCLVarName(0);
      auto nccl_id_var = scope->FindVar(var_name);
      if (nccl_id_var) {
        nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
157
        VLOG(10) << "find nccl_id_var:" << var_name << ", nccl_id:" << nccl_id;
158 159 160
      } else {
        nccl_id = new ncclUniqueId();
        PADDLE_ENFORCE(platform::dynload::ncclGetUniqueId(nccl_id));
161 162
        VLOG(10) << "can't find nccl_id_var:" << var_name
                 << ", nccl_id:" << nccl_id;
163 164 165 166
      }

      flat_nccl_ids.push_back(nccl_id);

167 168
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
169 170 171 172 173 174
      VLOG(1) << "init bst nccl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
175 176
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
177 178 179 180 181 182 183 184 185 186 187
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
      std::string var_name = platform::GetFlatNCCLVarName(i);
      auto nccl_id_var = scope->FindVar(var_name);
      PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
      auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      flat_nccl_ids.push_back(nccl_id);
    }

188 189
    nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                             bst.trainer_id_);
190 191

    if (bst.use_hierarchical_allreduce_) {
G
gongweibao 已提交
192 193 194 195 196 197 198 199
      std::vector<ncclUniqueId *> inter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalInterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
        PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
        auto inter_nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        inter_nccl_ids.push_back(inter_nccl_id);
      }
200 201 202 203 204 205 206 207 208

      std::vector<ncclUniqueId *> exter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalExterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
        PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
        auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        exter_nccl_ids.push_back(nccl_id);
      }
G
gongweibao 已提交
209

210 211 212 213
      nccl_ctxs_->InitHierarchicalCtxs(
          places_, inter_nccl_ids, exter_nccl_ids, bst.num_trainers_,
          bst.trainer_id_, bst.hierarchical_allreduce_inter_nranks_,
          bst.hierarchical_allreduce_exter_nranks_);
214 215
    }
  }
216

217
  void InitOrGetNCCLCommunicator(framework::Scope *scope, BuildStrategy *bst) {
218 219 220 221 222 223 224 225 226 227 228
    const std::string var_name = "NCCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
      PADDLE_ENFORCE(var->IsInitialized(),
                     "if %s exists, it must be initialized", var_name);
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      nccl_ctxs_ = var->GetMutable<platform::NCCLCommunicator>();
      return;
    }

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
    if (bst->use_hierarchical_allreduce_) {
      PADDLE_ENFORCE(bst->num_trainers_ > 1, "num_trainers:%llu < 1",
                     bst->num_trainers_);
      PADDLE_ENFORCE(bst->hierarchical_allreduce_inter_nranks_ > 1,
                     "inter_nranks:%d < 1",
                     bst->hierarchical_allreduce_inter_nranks_);
      PADDLE_ENFORCE(
          (bst->num_trainers_ % bst->hierarchical_allreduce_inter_nranks_ == 0),
          "num_trainers:%llu mod inter_nranks:%d != 0", bst->num_trainers_,
          bst->hierarchical_allreduce_inter_nranks_);

      bst->hierarchical_allreduce_exter_nranks_ =
          bst->num_trainers_ / bst->hierarchical_allreduce_inter_nranks_;
    }

244 245
    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    nccl_ctxs_ = scope->Var(var_name)->GetMutable<platform::NCCLCommunicator>();
246
    InitNCCLCtxs(scope, *bst);
247
  }
248 249
#endif

250 251 252 253 254
  inline bool IsPersistable(const std::string &name) const {
    auto iter = is_persistable_.find(name);
    return iter != is_persistable_.end() && iter->second;
  }

D
dzhwinter 已提交
255
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
256 257
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
258
  std::vector<Scope *> local_exec_scopes_;
259
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
260
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
261

262 263
  std::unordered_map<std::string, bool> is_persistable_;

264
#if defined(PADDLE_WITH_NCCL)
265
  platform::NCCLCommunicator *nccl_ctxs_{nullptr};
Y
Yu Yang 已提交
266
#endif
C
chengduoZH 已提交
267 268
  bool own_local_scope_;
  bool use_cuda_;
269
  bool use_all_reduce_;
270
  size_t nranks_;
S
sneaxiy 已提交
271

272
  ir::MemOptVarInfoMapList mem_opt_var_infos_;
273
  ir::GarbageCollectorMap gcs_;
274 275

  details::ParallelSSAGraphExecutor *inference_executor_{nullptr};
Y
Yu Yang 已提交
276 277
};

278 279 280 281 282 283 284 285 286 287
void ParallelExecutorPrivate::SetHasFeed(size_t dev_idx, bool has_feed) {
  if (inference_executor_) {
    inference_executor_->SetHasFeed(dev_idx, has_feed);
  }
}

bool ParallelExecutorPrivate::AllowPartialFeed() const {
  return inference_executor_ && inference_executor_->SupportPartialFeed();
}

288
ir::Graph *ParallelExecutorPrivate::ApplyMemoryOptimizePass(ir::Graph *graph) {
289 290 291 292 293 294 295
  if (FLAGS_use_ngraph) {
    LOG_FIRST_N(WARNING, 1)
        << "FLAGS_use_ngraph=True, memory optimization strategy is "
           "disabled in ParallelExecutor";
    return graph;
  }

Z
Zeng Jinle 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
  /**
   * NOTE(zengjinle): If BuildStrategy.memory_optimize = None in Python,
   * set BuildStrategy.memory_optimize according to whether gc is enabled.
   * If gc is enabled, BuildStrategy.memory_optimize = False.
   * If gc is disabled, BuildStrategy.memory_optimize = True.
   * This is because gc+memory_optimize is worse than gc only.
   *
   * As an option, users can enable BuildStrategy.memory_optimize forcely
   * by setting True, and disable it forcely by setting False.
   */
  bool is_gc_enabled = (GetEagerDeletionThreshold() >= 0);
  if (!build_strategy_.memory_optimize_) {
    build_strategy_.memory_optimize_ = !is_gc_enabled;
  }

  bool need_mem_opt = build_strategy_.enable_inplace_ ||
                      build_strategy_.memory_optimize_.get() || is_gc_enabled;

  if (!need_mem_opt) return graph;

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
  std::vector<ir::LastLiveOpsOfVars> last_live_ops_of_vars;

  auto ref_cnt_pass = ir::PassRegistry::Instance().Get("reference_count_pass");
  ref_cnt_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
  ref_cnt_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
  graph = ref_cnt_pass->Apply(graph);
  VLOG(10) << "ReferenceCountPass Applied";

  if (build_strategy_.enable_inplace_) {
    auto inplace_pass =
        ir::PassRegistry::Instance().Get("buffer_shared_inplace_pass");
    inplace_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    inplace_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
    inplace_pass->SetNotOwned(ir::kUseCuda, &use_cuda_);
    VLOG(10) << "Start to apply buffer_shared_inplace_pass";
    graph = inplace_pass->Apply(graph);
    VLOG(10) << "buffer_shared_inplace_pass Applied";
333 334
    LOG_FIRST_N(INFO, 1) << "Inplace strategy is enabled, when "
                            "build_strategy.enable_inplace = True";
335 336
  }

337
  if (build_strategy_.memory_optimize_.get()) {
338 339 340 341 342 343 344 345 346 347
    auto cross_op_memory_reuse_pass = ir::PassRegistry::Instance().Get(
        "buffer_shared_cross_op_memory_reuse_pass");
    cross_op_memory_reuse_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                            &mem_opt_var_infos_);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
                                            &last_live_ops_of_vars);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kUseCuda, &use_cuda_);
    VLOG(10) << "Start to apply buffer_shared_cross_op_memory_reuse_pass";
    graph = cross_op_memory_reuse_pass->Apply(graph);
    VLOG(10) << "buffer_shared_cross_op_memory_reuse_pass Applied";
Z
Zeng Jinle 已提交
348 349 350
    LOG(INFO) << "Cross op memory reuse strategy is enabled, when "
                 "build_strategy.memory_optimize = True or garbage collection "
                 "strategy is disabled, which is not recommended";
351
  }
352

353
  if (!is_gc_enabled) {
354 355 356 357
    return graph;
  }
  size_t max_memory_size = static_cast<size_t>(GetEagerDeletionThreshold());

S
sneaxiy 已提交
358 359 360 361 362
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
363
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
364
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
365 366
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
367 368
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
369
      } else {
S
sneaxiy 已提交
370 371
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
372 373
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
374
    } else {
S
sneaxiy 已提交
375
#endif
S
sneaxiy 已提交
376 377 378 379 380 381 382
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
383 384 385 386
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
387
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
388 389
  }

S
sneaxiy 已提交
390
  if (!gcs_.empty()) {
S
sneaxiy 已提交
391 392
    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
393 394
    eager_deletion_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                     &mem_opt_var_infos_);
395 396
    eager_deletion_pass->SetNotOwned(ir::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
S
sneaxiy 已提交
397
                                     &last_live_ops_of_vars);
398
    eager_deletion_pass->SetNotOwned(ir::kAllPlaces, &places_);
399
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
400
    VLOG(10) << "EagerDeletionPass Applied";
401 402 403
    LOG_FIRST_N(INFO, 1) << "Garbage collection strategy is enabled, when "
                         << "FLAGS_eager_delete_tensor_gb = "
                         << FLAGS_eager_delete_tensor_gb;
S
sneaxiy 已提交
404 405 406 407
  }
  return graph;
}

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
class ResetHasFeedGuard {
 public:
  explicit ResetHasFeedGuard(ParallelExecutorPrivate *pe_member)
      : pe_member_(pe_member) {}

  ~ResetHasFeedGuard() {
    for (size_t i = 0; i < pe_member_->places_.size(); ++i) {
      pe_member_->SetHasFeed(i, false);
    }
  }

 private:
  ParallelExecutorPrivate *pe_member_;
};

423 424
size_t ParallelExecutor::DeviceCount() const { return member_->places_.size(); }

425 426 427 428
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

429 430 431 432 433 434 435 436 437 438 439 440 441 442
void ParallelExecutor::DropLocalExeScopes() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  if (executor) {
    executor->DropLocalExeScopes();
  }
}

bool ParallelExecutor::NeedCreateLocalExeScope() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  return executor && executor->NeedCreateLocalExeScope();
}

Y
Yan Xu 已提交
443 444 445 446 447 448 449 450
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
451 452
    : member_(new ParallelExecutorPrivate(places, scope)) {
  member_->InitReaderDeviceCount(graph);
453
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
454
  member_->build_strategy_ = build_strategy;
C
chengduo 已提交
455 456
  member_->use_all_reduce_ = member_->build_strategy_.reduce_ ==
                             BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
457
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
C
chengduo 已提交
458 459 460 461 462 463 464
  if (!member_->use_all_reduce_ && member_->nranks_ == 1) {
    LOG(INFO) << "If you set build_strategy.reduce with 'Reduce',"
                 "the number of places should be greater than 1.";
    member_->build_strategy_.reduce_ =
        BuildStrategy::ReduceStrategy::kAllReduce;
    member_->use_all_reduce_ = true;
  }
465 466 467 468 469
#if defined(PADDLE_WITH_CUDA) && defined(_WIN32)
  if (member_->use_cuda_) {
    PADDLE_ENFORCE(places.size() == 1, "Windows can support Single GPU only.");
  }
#endif
Y
Yancey1989 已提交
470

471 472 473 474 475 476 477 478 479 480
#if defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_NCCL)
  PADDLE_ENFORCE_EQ(
      places.size(), 1,
      platform::errors::PermissionDenied(
          "Your machine has multiple cards, "
          "but the WITH_NCCL option is not turned on during compilation, "
          "and you cannot use multi-card training or prediction. "
          "Please recompile and turn on the WITH_NCCL option."));
#endif

481
  LOG(INFO) << string::Sprintf(
482 483 484
      "The Program will be executed on %s using ParallelExecutor, %lu "
      "cards are used, so %lu programs are executed in parallel.",
      (member_->use_cuda_ ? "CUDA" : "CPU"), places.size(), places.size());
C
chengduo 已提交
485

486
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
487
  // Create local scopes
488
  if (local_scopes.empty()) {
C
chengduoZH 已提交
489
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
490 491
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
492
      member_->local_scopes_.emplace_back(&scope->NewScope());
493 494
    }
  } else {
C
chengduoZH 已提交
495
    member_->own_local_scope_ = false;
496 497
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
498
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
499
    }
Y
Yu Yang 已提交
500 501
  }

Q
Qiao Longfei 已提交
502
  std::vector<ir::Graph *> graphs;
C
chengduo 已提交
503
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
504 505
    PADDLE_ENFORCE(!member_->use_cuda_,
                   "gpu mode does not support async_mode_ now!");
Q
Qiao Longfei 已提交
506
    graphs.push_back(graph);
D
dongdaxiang 已提交
507
    for (size_t i = 1; i < places.size(); ++i) {
Q
Qiao Longfei 已提交
508 509 510 511
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
Q
Qiao Longfei 已提交
512
  }
Q
Qiao Longfei 已提交
513

Y
Yancey1989 已提交
514 515 516
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
C
chengduo 已提交
517 518 519 520
  member_->build_strategy_.enable_parallel_graph_ =
      EnableParallelGraphExecution(*graph, exec_strategy,
                                   member_->build_strategy_);
  if (member_->build_strategy_.enable_parallel_graph_) {
521 522 523 524
    LOG(INFO) << "The Executor would execute the graph by ParallelGraph "
                 "Execution which can get better performance,"
              << "you can force it off by env FLAGS_enable_parallel_graph=0";
  }
Y
Yancey1989 已提交
525

526
  if (member_->use_cuda_ && member_->nranks_ > 1) {
527
#if defined(PADDLE_WITH_NCCL)
528
    member_->InitOrGetNCCLCommunicator(scope, &member_->build_strategy_);
Q
qingqing01 已提交
529

W
Wu Yi 已提交
530 531 532
    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
Q
qingqing01 已提交
533
    // be rewrite and there will be some problem.
W
Wu Yi 已提交
534 535 536
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
537 538
    auto *nccl_ctxs =
        member_->nccl_ctxs_->GetSyncBatchNormCtx(scope, member_->places_);
539
    auto &pool = platform::DeviceContextPool::Instance();
Q
qingqing01 已提交
540 541 542
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
543
      auto &nccl_ctx = nccl_ctxs->at(member_->places_[dev_id]);
544
      dev_ctx->set_nccl_comm(nccl_ctx.comm());
Q
qingqing01 已提交
545
    }
Y
Yu Yang 已提交
546
#endif
C
chengduoZH 已提交
547
  }
Y
Yan Xu 已提交
548 549
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
C
chengduo 已提交
550
    if (member_->build_strategy_.num_trainers_ > 1) {
Y
Yan Xu 已提交
551 552 553 554 555 556 557 558 559
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };
560
  // Bcast Parameters to all GPUs
Y
Yan Xu 已提交
561
  if (need_broadcast()) {
C
chengduo 已提交
562
    BCastParamsToDevices(bcast_vars, member_->build_strategy_.trainer_id_);
Y
Yu Yang 已提交
563
  }
564

Q
Qiao Longfei 已提交
565
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
566

Q
Qiao Longfei 已提交
567 568 569
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<ir::Graph *> async_graphs(places.size());
570
#if defined(PADDLE_WITH_NCCL)
C
chengduo 已提交
571
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
572
    VLOG(3) << "use local async mode";
C
chengduo 已提交
573 574 575 576
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_cuda_,
        member_->nccl_ctxs_);
D
dongdaxiang 已提交
577
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
578 579 580 581
      graphs[i] = member_->build_strategy_.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, 1, member_->use_cuda_,
          member_->nccl_ctxs_);
582
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
583
    }
Q
Qiao Longfei 已提交
584
  } else {
C
chengduo 已提交
585 586 587
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_, member_->nccl_ctxs_);
Q
Qiao Longfei 已提交
588
  }
C
chengduoZH 已提交
589
#else
C
chengduo 已提交
590
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
591
    VLOG(3) << "use local async mode";
C
chengduo 已提交
592 593 594
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_cuda_);
595
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
596
      graphs[i] = member_->build_strategy_.Apply(
597
          graphs[i], {member_->places_[i]}, loss_var_name,
Q
Qiao Longfei 已提交
598
          {member_->local_scopes_[i]}, 1, member_->use_cuda_);
599
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
600
    }
Q
can run  
Qiao Longfei 已提交
601
  } else {
C
chengduo 已提交
602 603 604
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_);
Q
can run  
Qiao Longfei 已提交
605
  }
Y
Yu Yang 已提交
606
#endif
607

608
  graph = member_->ApplyMemoryOptimizePass(graph);
Y
Yancey1989 已提交
609

Q
Qiao Longfei 已提交
610 611
  async_graphs[0] = graph;

612 613
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
614
  std::vector<details::VariableInfo> var_infos;
Q
Qiao Longfei 已提交
615 616 617 618 619 620
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
621 622 623

      member_->is_persistable_.emplace(node->Var()->Name(),
                                       node->Var()->Persistable());
Y
Yancey1989 已提交
624 625
    }
  }
Y
Yancey1989 已提交
626

627 628 629 630 631 632 633 634 635 636 637 638
  std::unordered_map<Scope *, Scope *> scope_map;
  for (auto *scope : member_->local_scopes_) {
    auto &local_exec_scope = scope->NewScope();
    member_->local_exec_scopes_.emplace_back(&local_exec_scope);
    scope_map.emplace(scope, &local_exec_scope);
  }

  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(),
                    member_->local_exec_scopes_.size());

  std::vector<ir::Graph *> final_graphs;

C
chengduo 已提交
639
  if (member_->build_strategy_.async_mode_) {
Q
can run  
Qiao Longfei 已提交
640 641
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
642 643 644
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, async_graphs));
    final_graphs = async_graphs;
C
chengduo 已提交
645
  } else if (member_->build_strategy_.enable_parallel_graph_) {
Q
can run  
Qiao Longfei 已提交
646
    VLOG(3) << "use ParallelSSAGraphExecutor";
Y
Yancey1989 已提交
647
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
648 649
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
650 651 652
    bool is_inference = details::IsDataParallelInferenceGraph(*graph);
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);

653 654 655 656 657
    auto *pg_exe = new details::ParallelSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, graph);
    final_graphs = pg_exe->Graphs();
    member_->executor_.reset(pg_exe);
658 659 660 661 662 663 664 665

    if (is_inference && member_->places_.size() > 1) {
      member_->inference_executor_ = pg_exe;
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
    }
Y
Yancey1989 已提交
666 667 668 669
#else
    PADDLE_THROW(
        "Paddle should be compiled with CUDA for ParallelGraph Execution.");
#endif
Y
yuyang18 已提交
670
  } else {
671 672 673 674 675 676
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);
    auto possible_inference_graphs =
        details::TrySeparateToMultipleSingleDeviceGraphs(graph);
    if (!possible_inference_graphs.empty()) {
      VLOG(5) << "Use ParallelSSAGraphExecutor in inference phase";
      auto *pg_exe = new details::ParallelSSAGraphExecutor(
677
          exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
678 679 680 681 682 683 684 685
          member_->places_, std::move(possible_inference_graphs));
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
      final_graphs = pg_exe->Graphs();
      member_->executor_.reset(pg_exe);
      member_->inference_executor_ = pg_exe;
Y
Yancey1989 已提交
686
    } else {
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
      LOG_IF(WARNING, details::HasKeepLastReadOp(*graph))
          << "drop_last=False for DataLoader is not supported in training "
             "network. It is automatically turned to drop_last=True.";
      if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
        VLOG(3) << "use ThreadedSSAGraphExecutor";
        member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
            exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
            member_->places_, graph));
      } else {
        VLOG(3) << "use FastThreadedSSAGraphExecutor";
        member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
            exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
            member_->places_, graph));
      }
      final_graphs.emplace_back(graph);
Y
Yancey1989 已提交
702
    }
C
chengduoZH 已提交
703
  }
Y
yuyang18 已提交
704

Q
can run  
Qiao Longfei 已提交
705
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
C
chengduo 已提交
706
  if (!member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
707
    member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
708 709 710 711 712 713 714 715 716
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        std::move(var_infos), member_->places_, std::move(member_->executor_)));
  }

  for (auto *g : final_graphs) {
    auto ops = ir::FilterByNodeWrapper<details::OpHandleBase>(*g);
    for (auto *op : ops) {
      op->SetLocalExecScopes(scope_map);
    }
Q
Qiao Longfei 已提交
717
  }
Y
Yu Yang 已提交
718 719
}

Y
Yancey1989 已提交
720
void ParallelExecutor::BCastParamsToDevices(
Y
Yan Xu 已提交
721
    const std::vector<std::string> &vars, int trainer_id) const {
Q
Qiao Longfei 已提交
722
  VLOG(3) << "BCastParamsToDevices";
X
Xin Pan 已提交
723
  // the initializing bcast, all vars would be bcast from device(0).
724
  for (auto &var : vars) {
X
Xin Pan 已提交
725
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
726
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
727 728 729 730
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
731
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
732
      VLOG(3) << "one in var not inited, return!";
733 734
      continue;
    }
735 736
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
737
#if defined(PADDLE_WITH_NCCL)
738
      std::vector<void *> buffers;
C
chengduo 已提交
739
      buffers.reserve(member_->places_.size());
740 741 742 743 744
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
745

Y
Yan Xu 已提交
746
        if (i == 0 && trainer_id == 0) {
747 748
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
749
          auto local_scope = member_->local_scopes_[i];
750
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
751
          t->Resize(dims);
752
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
753
        }
754
        buffers.push_back(buffer);
755
      }
756

757 758 759
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
760
        auto *nccl_ctxs = member_->nccl_ctxs_->DefaultFlatCtx();
761 762
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
763
          auto &nccl_ctx = nccl_ctxs->at(member_->places_[i]);
X
Xin Pan 已提交
764 765
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
766
        }
767
        nccl_ctxs->WaitAll();
768
      }
C
chengduoZH 已提交
769
#endif
770 771
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
772
      for (size_t i = 1; i < member_->places_.size(); ++i) {
773 774
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
775

Q
Qiao Longfei 已提交
776
        auto copy_memory = [&] {
777 778 779
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
780 781
        };

Q
Qiao Longfei 已提交
782
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
783 784 785 786 787 788 789

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
        } else if (member_->use_all_reduce_ || member_->use_cuda_ ||
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
790
        } else {
Q
can run  
Qiao Longfei 已提交
791
          share_memory();
792
        }
Y
Yu Yang 已提交
793
      }
Y
Stash  
Yu Yang 已提交
794 795
    }
  }
Y
Yu Yang 已提交
796
}
Y
Yu Yang 已提交
797

Z
Zhen Wang 已提交
798 799
FetchResultType ParallelExecutor::Run(
    const std::vector<std::string> &fetch_tensors, bool return_merged) {
800
  VLOG(3) << "enter ParallelExecutor Run";
801
  platform::RecordEvent parallel_executor_event("ParallelExecutor::Run");
Y
Yu Yang 已提交
802 803 804
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
805 806
  }
#endif
Y
Yu Yang 已提交
807

X
Xin Pan 已提交
808
  platform::RecordBlock b(0);
809

810 811
  ResetHasFeedGuard reset_has_feed_guard(member_);

812 813
  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_), fetch_tensors,
                                member_->HasGarbageCollectors());
814 815

  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
Z
Zhen Wang 已提交
816
  auto fetch_data = member_->executor_->Run(fetch_tensors, return_merged);
817
  return fetch_data;
Y
Yu Yang 已提交
818
}
Y
Yu Yang 已提交
819

Y
Yu Yang 已提交
820 821
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
  if (!member_->AllowPartialFeed()) {
    PADDLE_ENFORCE_EQ(tensors.size(), member_->local_scopes_.size(),
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
                          tensors.size(), member_->local_scopes_.size()));
  } else {
    PADDLE_ENFORCE_GE(member_->local_scopes_.size(), tensors.size(),
                      platform::errors::InvalidArgument(
                          "The feed tensor number exceeds the device number"));
  }
Y
Yu Yang 已提交
837

838
  size_t feed_num = 0;
Y
Yu Yang 已提交
839 840
  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
841 842 843 844 845 846
    if (map.empty()) {
      continue;
    }

    member_->SetHasFeed(i);
    ++feed_num;
Y
Yu Yang 已提交
847
    for (auto &pair : map) {
848
      bool is_persistable = member_->IsPersistable(pair.first);
849 850 851
      if (!is_persistable) {
        member_->SetSkipMemoryReuse(i, pair.first);
      }
852 853 854 855 856
      auto *feed_scope = is_persistable ? member_->local_scopes_[i]
                                        : member_->local_exec_scopes_[i];
      auto *feed_var = feed_scope->Var(pair.first);

      auto *trg = feed_var->GetMutable<LoDTensor>();
Y
Yu Yang 已提交
857 858 859 860
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
861 862 863 864 865 866 867 868 869 870 871 872

  if (!member_->AllowPartialFeed()) {
    PADDLE_ENFORCE_EQ(feed_num, member_->local_scopes_.size(),
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
                          feed_num, member_->local_scopes_.size()));
  }
Y
Yu Yang 已提交
873 874 875 876
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
877
  size_t num_places = member_->places_.size();
878 879 880 881 882
  bool allow_partial_feed = member_->AllowPartialFeed();

  size_t persistable_feed_len = -1UL;
  size_t non_persistable_feed_len = -1UL;

883
  for (auto &pair : tensors) {
884 885 886 887
    bool is_persistable = member_->IsPersistable(pair.first);
    VLOG(3) << "Split " << (is_persistable ? "persistable" : "no persistable")
            << " data (" << pair.first << "), dim:" << pair.second.dims()
            << ", place: " << pair.second.place();
Y
Yu Yang 已提交
888
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
889
    bool is_cpu_place = platform::is_cpu_place(member_->places_.front());
890 891
    if (!is_persistable && num_places != lod_tensors.size() &&
        !allow_partial_feed) {
C
chengduo 已提交
892
      auto error_info = string::Sprintf(
893 894 895
          "The number(%d) of samples[%s] of current batch is less than the "
          "count(%d) of devices(%s), currently, it is not allowed. ",
          lod_tensors.size(), pair.first, num_places,
C
chengduo 已提交
896 897 898 899 900 901 902
          (is_cpu_place ? "CPU" : "GPU"));
      if (is_cpu_place) {
        error_info +=
            "You should set the environment variable CPU_NUM in the system "
            "to determine the number of devices you need.";
      }
      PADDLE_THROW(error_info);
903 904 905 906 907 908 909 910 911 912 913 914 915 916
    } else if (is_persistable) {
      if (lod_tensors.size() == 1) {
        lod_tensors.reserve(num_places);
        auto &tensor = lod_tensors.front();
        PADDLE_ENFORCE_EQ(tensor.dims(), pair.second.dims(),
                          "The dim doesn't match.");
        PADDLE_ENFORCE_EQ(tensor.place(), member_->places_.at(0),
                          "The place doesn't match.");
        for (size_t i = 1; i < num_places; ++i) {
          lod_tensors.emplace_back();
          auto &tmp = lod_tensors.back();
          framework::TensorCopy(pair.second, member_->places_.at(i), &tmp);
        }
      }
917
      if (lod_tensors.size() != num_places && !allow_partial_feed) {
918 919 920 921 922 923 924 925 926 927 928
        auto error_info = string::Sprintf(
            "The number(%d) of samples[%s] of the current batch does not match "
            "the count(%d) of devices(%s). Because that %s is a persistable "
            "variable, you can feed just one sample, in that case, the input "
            "sample will be copied in %d copies and be sent to different "
            "places separately. If you need that different place has different "
            "value, you should feed %d samples.",
            lod_tensors.size(), pair.first, num_places,
            (is_cpu_place ? "CPU" : "GPU"), pair.first, num_places, num_places);
        PADDLE_THROW(error_info);
      }
C
chengduo 已提交
929
    }
930

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
    if (allow_partial_feed) {
      if (is_persistable) {
        if (persistable_feed_len == -1UL) {
          persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
              persistable_feed_len, lod_tensors.size(),
              platform::errors::InvalidArgument(
                  "The feeded number of different persistable variables "
                  "should be the same"));
        }
      } else {
        if (non_persistable_feed_len == -1UL) {
          non_persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
              non_persistable_feed_len, lod_tensors.size(),
              platform::errors::InvalidArgument(
                  "The feeded number of different non-persistable variables "
                  "should be the same"));
        }
      }
    }

    for (size_t j = 0; j < lod_tensors.size(); ++j) {
956 957 958 959 960
      auto *feed_scope = is_persistable ? member_->local_scopes_[j]
                                        : member_->local_exec_scopes_[j];
      auto *feed_var = feed_scope->Var(pair.first);

      auto t = feed_var->GetMutable<LoDTensor>();
961 962
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
963 964
    }
  }
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980

  if (allow_partial_feed && persistable_feed_len != -1UL &&
      non_persistable_feed_len != -1UL) {
    VLOG(10) << "Persistable len " << persistable_feed_len;
    VLOG(10) << "Non persistable len " << non_persistable_feed_len;
    PADDLE_ENFORCE_GE(persistable_feed_len, non_persistable_feed_len,
                      platform::errors::InvalidArgument(
                          "The feeded number of persistable variables should "
                          "not be less than non-persistable variables"));
  }

  if (non_persistable_feed_len != -1UL) {
    for (size_t i = 0; i < non_persistable_feed_len; ++i) {
      member_->SetHasFeed(i);
    }
  }
X
Xin Pan 已提交
981 982
}

X
Xin Pan 已提交
983 984 985 986 987 988 989
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

990
bool ParallelExecutor::EnableParallelGraphExecution(
X
Xin Pan 已提交
991
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
992
    const BuildStrategy &build_strategy) const {
993 994 995
  if (!FLAGS_enable_parallel_graph) {
    return false;
  }
996

Y
Yancey1989 已提交
997
  bool enable_parallel_graph = true;
998

X
Xin Pan 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
1012 1013 1014
    }
  }

1015
  if (!member_->use_all_reduce_ || !member_->use_cuda_) {
Y
Yancey1989 已提交
1016
    if (build_strategy.enable_sequential_execution_ ||
1017
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental) {
Y
Yancey1989 已提交
1018
      enable_parallel_graph = false;
1019 1020 1021 1022 1023 1024 1025 1026 1027
    }
  }

#ifdef WIN32
  VLOG(1) << "Windows has no support to parallel graph, enable_parallel_graph "
             "would be forced to false.";
  enable_parallel_graph = false;
#endif

Y
Yancey1989 已提交
1028
  return enable_parallel_graph;
1029 1030
}

1031 1032 1033 1034
const ir::Graph &ParallelExecutor::Graph() const {
  return member_->executor_->Graph();
}

Y
Yu Yang 已提交
1035
}  // namespace framework
Y
Yang Yang 已提交
1036
}  // namespace paddle
S
sneaxiy 已提交
1037

S
sneaxiy 已提交
1038
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
1039
USE_PASS(eager_deletion_pass);
1040
USE_PASS(buffer_shared_inplace_pass);
1041
USE_PASS(buffer_shared_cross_op_memory_reuse_pass);
1042
USE_PASS(init_reader_device_count_pass);