parallel_executor.cc 32.1 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
Q
qingqing01 已提交
17
#include <memory>
C
chengduoZH 已提交
18
#include <string>
19
#include <tuple>
Q
Qiao Longfei 已提交
20
#include <utility>
Q
qiaolongfei 已提交
21
#include <vector>
Q
Qiao Longfei 已提交
22
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
Y
yuyang18 已提交
23
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
24
#include "paddle/fluid/framework/details/multi_devices_helper.h"
25
#include "paddle/fluid/framework/details/op_handle_base.h"
Y
Yancey1989 已提交
26
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
28
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
29 30
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
31
#include "paddle/fluid/framework/ir/memory_optimize_pass/memory_optimization_var_info.h"
32
#include "paddle/fluid/framework/ir/memory_optimize_pass/reference_count_pass_helper.h"
33
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
34

Y
Yu Yang 已提交
35
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
36
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
37
#endif
Y
Yu Yang 已提交
38
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
39 40
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
41
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
42
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
43

Y
Yang Yang 已提交
44
namespace paddle {
Y
Yu Yang 已提交
45 46
namespace framework {

Y
Yu Yang 已提交
47
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
48
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
49
static bool gProfileStarted = false;
Y
Yu Yang 已提交
50
#endif
51

Y
Yu Yang 已提交
52 53 54
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
55
      : places_(places) {
Y
Yu Yang 已提交
56
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
57 58
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
59
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
60 61 62
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
63
          "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
64 65 66 67
#endif
      });
    }
  }
Y
Yu Yang 已提交
68

69 70 71 72 73 74 75 76 77 78 79
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
80

81
  ir::Graph *ApplyMemoryOptimizePass(ir::Graph *graph);
S
sneaxiy 已提交
82 83 84

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
  void InitNCCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "nccl comm num:" << bst.nccl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    if (bst.use_hierarchical_allreduce_) {
      VLOG(1) << ", use_hierarchical_allreduce:"
              << bst.use_hierarchical_allreduce_ << ", inter_trainers_num:"
              << bst.hierarchical_allreduce_inter_nranks_
              << ", exter_trainers_num:"
              << bst.hierarchical_allreduce_exter_nranks_;
    }

    std::vector<ncclUniqueId *> flat_nccl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create ncclid when nranks==1
102 103
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
104 105 106 107 108 109 110 111 112 113 114 115
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one ncclid in pg model";

      ncclUniqueId *nccl_id = nullptr;

      std::string var_name = platform::GetFlatNCCLVarName(0);
      auto nccl_id_var = scope->FindVar(var_name);
      if (nccl_id_var) {
        nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
116
        VLOG(10) << "find nccl_id_var:" << var_name << ", nccl_id:" << nccl_id;
117 118 119
      } else {
        nccl_id = new ncclUniqueId();
        PADDLE_ENFORCE(platform::dynload::ncclGetUniqueId(nccl_id));
120 121
        VLOG(10) << "can't find nccl_id_var:" << var_name
                 << ", nccl_id:" << nccl_id;
122 123 124 125
      }

      flat_nccl_ids.push_back(nccl_id);

126 127
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
128 129 130 131 132 133
      VLOG(1) << "init bst nccl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
134 135
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
136 137 138 139 140 141 142 143 144 145 146
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
      std::string var_name = platform::GetFlatNCCLVarName(i);
      auto nccl_id_var = scope->FindVar(var_name);
      PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
      auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      flat_nccl_ids.push_back(nccl_id);
    }

147 148
    nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                             bst.trainer_id_);
149 150

    if (bst.use_hierarchical_allreduce_) {
G
gongweibao 已提交
151 152 153 154 155 156 157 158
      std::vector<ncclUniqueId *> inter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalInterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
        PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
        auto inter_nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        inter_nccl_ids.push_back(inter_nccl_id);
      }
159 160 161 162 163 164 165 166 167

      std::vector<ncclUniqueId *> exter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalExterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
        PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
        auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        exter_nccl_ids.push_back(nccl_id);
      }
G
gongweibao 已提交
168

169 170 171 172
      nccl_ctxs_->InitHierarchicalCtxs(
          places_, inter_nccl_ids, exter_nccl_ids, bst.num_trainers_,
          bst.trainer_id_, bst.hierarchical_allreduce_inter_nranks_,
          bst.hierarchical_allreduce_exter_nranks_);
173 174
    }
  }
175

176
  void InitOrGetNCCLCommunicator(framework::Scope *scope, BuildStrategy *bst) {
177 178 179 180 181 182 183 184 185 186 187
    const std::string var_name = "NCCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
      PADDLE_ENFORCE(var->IsInitialized(),
                     "if %s exists, it must be initialized", var_name);
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      nccl_ctxs_ = var->GetMutable<platform::NCCLCommunicator>();
      return;
    }

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    if (bst->use_hierarchical_allreduce_) {
      PADDLE_ENFORCE(bst->num_trainers_ > 1, "num_trainers:%llu < 1",
                     bst->num_trainers_);
      PADDLE_ENFORCE(bst->hierarchical_allreduce_inter_nranks_ > 1,
                     "inter_nranks:%d < 1",
                     bst->hierarchical_allreduce_inter_nranks_);
      PADDLE_ENFORCE(
          (bst->num_trainers_ % bst->hierarchical_allreduce_inter_nranks_ == 0),
          "num_trainers:%llu mod inter_nranks:%d != 0", bst->num_trainers_,
          bst->hierarchical_allreduce_inter_nranks_);

      bst->hierarchical_allreduce_exter_nranks_ =
          bst->num_trainers_ / bst->hierarchical_allreduce_inter_nranks_;
    }

203 204
    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    nccl_ctxs_ = scope->Var(var_name)->GetMutable<platform::NCCLCommunicator>();
205
    InitNCCLCtxs(scope, *bst);
206
  }
207 208
#endif

209 210 211 212 213
  inline bool IsPersistable(const std::string &name) const {
    auto iter = is_persistable_.find(name);
    return iter != is_persistable_.end() && iter->second;
  }

D
dzhwinter 已提交
214
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
215 216
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
217
  std::vector<Scope *> local_exec_scopes_;
218
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
219
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
220

221 222
  std::unordered_map<std::string, bool> is_persistable_;

P
peizhilin 已提交
223
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
224
  platform::NCCLCommunicator *nccl_ctxs_{nullptr};
Y
Yu Yang 已提交
225
#endif
C
chengduoZH 已提交
226 227
  bool own_local_scope_;
  bool use_cuda_;
228
  bool use_all_reduce_;
229
  size_t nranks_;
S
sneaxiy 已提交
230

231
  ir::MemOptVarInfoMapList mem_opt_var_infos_;
232
  ir::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
233 234
};

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
ir::Graph *ParallelExecutorPrivate::ApplyMemoryOptimizePass(ir::Graph *graph) {
  std::vector<ir::LastLiveOpsOfVars> last_live_ops_of_vars;

  auto ref_cnt_pass = ir::PassRegistry::Instance().Get("reference_count_pass");
  ref_cnt_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
  ref_cnt_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
  graph = ref_cnt_pass->Apply(graph);
  VLOG(10) << "ReferenceCountPass Applied";

  if (build_strategy_.enable_inplace_) {
    auto inplace_pass =
        ir::PassRegistry::Instance().Get("buffer_shared_inplace_pass");
    inplace_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    inplace_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
    inplace_pass->SetNotOwned(ir::kUseCuda, &use_cuda_);
    VLOG(10) << "Start to apply buffer_shared_inplace_pass";
    graph = inplace_pass->Apply(graph);
    VLOG(10) << "buffer_shared_inplace_pass Applied";
  }

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
  /**
   * NOTE(zengjinle): If BuildStrategy.memory_optimize = None in Python,
   * set BuildStrategy.memory_optimize according to whether gc is enabled.
   * If gc is enabled, BuildStrategy.memory_optimize = False.
   * If gc is disabled, BuildStrategy.memory_optimize = True.
   * This is because gc+memory_optimize is worse than gc only.
   *
   * As an option, users can enable BuildStrategy.memory_optimize forcely
   * by setting True, and disable it forcely by setting False.
   */
  bool is_gc_enabled = (GetEagerDeletionThreshold() >= 0);
  if (!build_strategy_.memory_optimize_) {
    build_strategy_.memory_optimize_ = !is_gc_enabled;
  }

  if (build_strategy_.memory_optimize_.get()) {
271 272 273 274 275 276 277 278 279 280 281
    auto cross_op_memory_reuse_pass = ir::PassRegistry::Instance().Get(
        "buffer_shared_cross_op_memory_reuse_pass");
    cross_op_memory_reuse_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                            &mem_opt_var_infos_);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
                                            &last_live_ops_of_vars);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kUseCuda, &use_cuda_);
    VLOG(10) << "Start to apply buffer_shared_cross_op_memory_reuse_pass";
    graph = cross_op_memory_reuse_pass->Apply(graph);
    VLOG(10) << "buffer_shared_cross_op_memory_reuse_pass Applied";
  }
282

283
  if (!is_gc_enabled) {
284 285 286 287
    return graph;
  }
  size_t max_memory_size = static_cast<size_t>(GetEagerDeletionThreshold());

S
sneaxiy 已提交
288 289 290 291 292
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
293
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
294
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
295 296
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
297 298
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
299
      } else {
S
sneaxiy 已提交
300 301
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
302 303
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
304
    } else {
S
sneaxiy 已提交
305
#endif
S
sneaxiy 已提交
306 307 308 309 310 311 312
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
313 314 315 316
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
317
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
318 319
  }

S
sneaxiy 已提交
320
  if (!gcs_.empty()) {
S
sneaxiy 已提交
321 322
    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
323 324
    eager_deletion_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                     &mem_opt_var_infos_);
325 326
    eager_deletion_pass->SetNotOwned(ir::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
S
sneaxiy 已提交
327
                                     &last_live_ops_of_vars);
328
    eager_deletion_pass->SetNotOwned(ir::kAllPlaces, &places_);
329
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
330
    VLOG(10) << "EagerDeletionPass Applied";
331 332 333
    LOG(INFO) << "Garbage collection strategy is enabled, when "
              << "FLAGS_eager_delete_tensor_gb = "
              << (static_cast<double>(GetEagerDeletionThreshold()) / (1 << 30));
S
sneaxiy 已提交
334 335 336 337
  }
  return graph;
}

338 339 340 341
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

342 343 344 345 346 347 348 349 350 351 352 353 354 355
void ParallelExecutor::DropLocalExeScopes() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  if (executor) {
    executor->DropLocalExeScopes();
  }
}

bool ParallelExecutor::NeedCreateLocalExeScope() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  return executor && executor->NeedCreateLocalExeScope();
}

Y
Yan Xu 已提交
356 357 358 359 360 361 362 363
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
Y
Yu Yang 已提交
364
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
365
  member_->global_scope_ = scope;
366
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
367
  member_->build_strategy_ = build_strategy;
C
chengduo 已提交
368 369
  member_->use_all_reduce_ = member_->build_strategy_.reduce_ ==
                             BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
370
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
C
chengduo 已提交
371 372 373 374 375 376 377
  if (!member_->use_all_reduce_ && member_->nranks_ == 1) {
    LOG(INFO) << "If you set build_strategy.reduce with 'Reduce',"
                 "the number of places should be greater than 1.";
    member_->build_strategy_.reduce_ =
        BuildStrategy::ReduceStrategy::kAllReduce;
    member_->use_all_reduce_ = true;
  }
378 379 380 381 382
#if defined(PADDLE_WITH_CUDA) && defined(_WIN32)
  if (member_->use_cuda_) {
    PADDLE_ENFORCE(places.size() == 1, "Windows can support Single GPU only.");
  }
#endif
Y
Yancey1989 已提交
383

384
  LOG(INFO) << string::Sprintf(
C
chengduo 已提交
385 386 387 388 389
      "The number of %s, which is used in ParallelExecutor, is %lu. And "
      "the Program will be copied %lu copies",
      (member_->use_cuda_ ? "CUDAPlace" : "CPUPlace"), places.size(),
      places.size());

390
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
391
  // Create local scopes
392
  if (local_scopes.empty()) {
C
chengduoZH 已提交
393
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
394 395
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
396
      member_->local_scopes_.emplace_back(&scope->NewScope());
397 398
    }
  } else {
C
chengduoZH 已提交
399
    member_->own_local_scope_ = false;
400 401
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
402
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
403
    }
Y
Yu Yang 已提交
404 405
  }

Q
Qiao Longfei 已提交
406
  std::vector<ir::Graph *> graphs;
C
chengduo 已提交
407
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
408 409
    PADDLE_ENFORCE(!member_->use_cuda_,
                   "gpu mode does not support async_mode_ now!");
Q
Qiao Longfei 已提交
410
    graphs.push_back(graph);
D
dongdaxiang 已提交
411
    for (size_t i = 1; i < places.size(); ++i) {
Q
Qiao Longfei 已提交
412 413 414 415
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
Q
Qiao Longfei 已提交
416
  }
Q
Qiao Longfei 已提交
417

Y
Yancey1989 已提交
418 419 420
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
C
chengduo 已提交
421 422 423 424
  member_->build_strategy_.enable_parallel_graph_ =
      EnableParallelGraphExecution(*graph, exec_strategy,
                                   member_->build_strategy_);
  if (member_->build_strategy_.enable_parallel_graph_) {
425 426 427 428
    LOG(INFO) << "The Executor would execute the graph by ParallelGraph "
                 "Execution which can get better performance,"
              << "you can force it off by env FLAGS_enable_parallel_graph=0";
  }
Y
Yancey1989 已提交
429

430
  if (member_->use_cuda_ && member_->nranks_ > 1) {
P
peizhilin 已提交
431
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
432
    member_->InitOrGetNCCLCommunicator(scope, &member_->build_strategy_);
Q
qingqing01 已提交
433

W
Wu Yi 已提交
434 435 436
    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
Q
qingqing01 已提交
437
    // be rewrite and there will be some problem.
W
Wu Yi 已提交
438 439 440
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
441 442
    auto *nccl_ctxs =
        member_->nccl_ctxs_->GetSyncBatchNormCtx(scope, member_->places_);
443
    auto &pool = platform::DeviceContextPool::Instance();
Q
qingqing01 已提交
444 445 446
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
447
      auto &nccl_ctx = nccl_ctxs->at(member_->places_[dev_id]);
448
      dev_ctx->set_nccl_comm(nccl_ctx.comm());
Q
qingqing01 已提交
449
    }
Y
Yu Yang 已提交
450
#endif
C
chengduoZH 已提交
451
  }
Y
Yan Xu 已提交
452 453
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
C
chengduo 已提交
454
    if (member_->build_strategy_.num_trainers_ > 1) {
Y
Yan Xu 已提交
455 456 457 458 459 460 461 462 463
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };
464
  // Bcast Parameters to all GPUs
Y
Yan Xu 已提交
465
  if (need_broadcast()) {
C
chengduo 已提交
466
    BCastParamsToDevices(bcast_vars, member_->build_strategy_.trainer_id_);
Y
Yu Yang 已提交
467
  }
468

Q
Qiao Longfei 已提交
469
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
470

Q
Qiao Longfei 已提交
471 472 473
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<ir::Graph *> async_graphs(places.size());
P
peizhilin 已提交
474
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
C
chengduo 已提交
475
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
476
    VLOG(3) << "use local async mode";
C
chengduo 已提交
477 478 479 480
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_cuda_,
        member_->nccl_ctxs_);
D
dongdaxiang 已提交
481
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
482 483 484 485
      graphs[i] = member_->build_strategy_.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, 1, member_->use_cuda_,
          member_->nccl_ctxs_);
486
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
487
    }
Q
Qiao Longfei 已提交
488
  } else {
C
chengduo 已提交
489 490 491
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_, member_->nccl_ctxs_);
Q
Qiao Longfei 已提交
492
  }
C
chengduoZH 已提交
493
#else
C
chengduo 已提交
494
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
495
    VLOG(3) << "use local async mode";
C
chengduo 已提交
496 497 498
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_cuda_);
499
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
500
      graphs[i] = member_->build_strategy_.Apply(
501
          graphs[i], {member_->places_[i]}, loss_var_name,
Q
Qiao Longfei 已提交
502
          {member_->local_scopes_[i]}, 1, member_->use_cuda_);
503
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
504
    }
Q
can run  
Qiao Longfei 已提交
505
  } else {
C
chengduo 已提交
506 507 508
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_);
Q
can run  
Qiao Longfei 已提交
509
  }
Y
Yu Yang 已提交
510
#endif
511

512
  graph = member_->ApplyMemoryOptimizePass(graph);
Y
Yancey1989 已提交
513

Q
Qiao Longfei 已提交
514 515
  async_graphs[0] = graph;

516 517
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
518
  std::vector<details::VariableInfo> var_infos;
Q
Qiao Longfei 已提交
519 520 521 522 523 524
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
525 526 527

      member_->is_persistable_.emplace(node->Var()->Name(),
                                       node->Var()->Persistable());
Y
Yancey1989 已提交
528 529
    }
  }
Y
Yancey1989 已提交
530

W
Wu Yi 已提交
531 532
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
Q
Qiao Longfei 已提交
533
    size_t graph_num = ir::GraphNum(*graph);
C
chengduo 已提交
534 535 536 537
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
Q
Qiao Longfei 已提交
538
          << ir::GraphNum(*graph)
C
chengduo 已提交
539 540 541 542 543
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
544 545
  }

546 547 548 549 550 551 552 553 554 555 556 557
  std::unordered_map<Scope *, Scope *> scope_map;
  for (auto *scope : member_->local_scopes_) {
    auto &local_exec_scope = scope->NewScope();
    member_->local_exec_scopes_.emplace_back(&local_exec_scope);
    scope_map.emplace(scope, &local_exec_scope);
  }

  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(),
                    member_->local_exec_scopes_.size());

  std::vector<ir::Graph *> final_graphs;

C
chengduo 已提交
558
  if (member_->build_strategy_.async_mode_) {
Q
can run  
Qiao Longfei 已提交
559 560
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
561 562 563
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, async_graphs));
    final_graphs = async_graphs;
C
chengduo 已提交
564
  } else if (member_->build_strategy_.enable_parallel_graph_) {
Q
can run  
Qiao Longfei 已提交
565
    VLOG(3) << "use ParallelSSAGraphExecutor";
Y
Yancey1989 已提交
566
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
567 568
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
569 570 571 572 573
    auto *pg_exe = new details::ParallelSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, graph);
    final_graphs = pg_exe->Graphs();
    member_->executor_.reset(pg_exe);
Y
Yancey1989 已提交
574 575 576 577
#else
    PADDLE_THROW(
        "Paddle should be compiled with CUDA for ParallelGraph Execution.");
#endif
Y
yuyang18 已提交
578
  } else {
Y
Yancey1989 已提交
579
    if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
Q
can run  
Qiao Longfei 已提交
580
      VLOG(3) << "use ThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
581
      member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
582 583
          exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
          member_->places_, graph));
Y
Yancey1989 已提交
584
    } else {
Q
can run  
Qiao Longfei 已提交
585
      VLOG(3) << "use FastThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
586
      member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
587 588
          exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
          member_->places_, graph));
Y
Yancey1989 已提交
589
    }
590
    final_graphs.emplace_back(graph);
C
chengduoZH 已提交
591
  }
Y
yuyang18 已提交
592

Q
can run  
Qiao Longfei 已提交
593
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
C
chengduo 已提交
594
  if (!member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
595
    member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
596 597 598 599 600 601 602 603 604
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        std::move(var_infos), member_->places_, std::move(member_->executor_)));
  }

  for (auto *g : final_graphs) {
    auto ops = ir::FilterByNodeWrapper<details::OpHandleBase>(*g);
    for (auto *op : ops) {
      op->SetLocalExecScopes(scope_map);
    }
Q
Qiao Longfei 已提交
605
  }
Y
Yu Yang 已提交
606 607
}

Y
Yancey1989 已提交
608
void ParallelExecutor::BCastParamsToDevices(
Y
Yan Xu 已提交
609
    const std::vector<std::string> &vars, int trainer_id) const {
Q
Qiao Longfei 已提交
610
  VLOG(3) << "BCastParamsToDevices";
X
Xin Pan 已提交
611
  // the initializing bcast, all vars would be bcast from device(0).
612
  for (auto &var : vars) {
X
Xin Pan 已提交
613
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
614
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
615 616 617 618
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
619
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
620
      VLOG(3) << "one in var not inited, return!";
621 622
      continue;
    }
623 624
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
625
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
626
      std::vector<void *> buffers;
C
chengduo 已提交
627
      buffers.reserve(member_->places_.size());
628 629 630 631 632
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
633

Y
Yan Xu 已提交
634
        if (i == 0 && trainer_id == 0) {
635 636
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
637
          auto local_scope = member_->local_scopes_[i];
638
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
639
          t->Resize(dims);
640
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
641
        }
642
        buffers.push_back(buffer);
643
      }
644

645 646 647
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
648
        auto *nccl_ctxs = member_->nccl_ctxs_->DefaultFlatCtx();
649 650
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
651
          auto &nccl_ctx = nccl_ctxs->at(member_->places_[i]);
X
Xin Pan 已提交
652 653
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
654
        }
655
        nccl_ctxs->WaitAll();
656
      }
C
chengduoZH 已提交
657
#endif
658 659
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
660
      for (size_t i = 1; i < member_->places_.size(); ++i) {
661 662
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
663

Q
Qiao Longfei 已提交
664
        auto copy_memory = [&] {
665 666 667
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
668 669
        };

Q
Qiao Longfei 已提交
670
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
671 672 673 674 675 676 677

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
        } else if (member_->use_all_reduce_ || member_->use_cuda_ ||
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
678
        } else {
Q
can run  
Qiao Longfei 已提交
679
          share_memory();
680
        }
Y
Yu Yang 已提交
681
      }
Y
Stash  
Yu Yang 已提交
682 683
    }
  }
Y
Yu Yang 已提交
684
}
Y
Yu Yang 已提交
685

686 687
FeedFetchList ParallelExecutor::Run(
    const std::vector<std::string> &fetch_tensors) {
688
  VLOG(3) << "enter ParallelExecutor Run";
Y
Yu Yang 已提交
689 690 691
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
692 693
  }
#endif
Y
Yu Yang 已提交
694

X
Xin Pan 已提交
695
  platform::RecordBlock b(0);
696 697 698

  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_), fetch_tensors,
                                member_->HasGarbageCollectors());
699 700

  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
S
sneaxiy 已提交
701
  auto fetch_data = member_->executor_->Run(fetch_tensors);
702
  return fetch_data;
Y
Yu Yang 已提交
703
}
Y
Yu Yang 已提交
704

Y
Yu Yang 已提交
705 706 707 708 709 710 711
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    for (auto &pair : map) {
712 713 714 715 716 717
      bool is_persistable = member_->IsPersistable(pair.first);
      auto *feed_scope = is_persistable ? member_->local_scopes_[i]
                                        : member_->local_exec_scopes_[i];
      auto *feed_var = feed_scope->Var(pair.first);

      auto *trg = feed_var->GetMutable<LoDTensor>();
Y
Yu Yang 已提交
718 719 720 721 722 723 724 725
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
726
  size_t num_places = member_->places_.size();
727
  for (auto &pair : tensors) {
728 729 730 731
    bool is_persistable = member_->IsPersistable(pair.first);
    VLOG(3) << "Split " << (is_persistable ? "persistable" : "no persistable")
            << " data (" << pair.first << "), dim:" << pair.second.dims()
            << ", place: " << pair.second.place();
Y
Yu Yang 已提交
732
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
733 734
    bool is_cpu_place = platform::is_cpu_place(member_->places_.front());
    if (!is_persistable && num_places != lod_tensors.size()) {
C
chengduo 已提交
735
      auto error_info = string::Sprintf(
736 737 738
          "The number(%d) of samples[%s] of current batch is less than the "
          "count(%d) of devices(%s), currently, it is not allowed. ",
          lod_tensors.size(), pair.first, num_places,
C
chengduo 已提交
739 740 741 742 743 744 745
          (is_cpu_place ? "CPU" : "GPU"));
      if (is_cpu_place) {
        error_info +=
            "You should set the environment variable CPU_NUM in the system "
            "to determine the number of devices you need.";
      }
      PADDLE_THROW(error_info);
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
    } else if (is_persistable) {
      if (lod_tensors.size() == 1) {
        lod_tensors.reserve(num_places);
        auto &tensor = lod_tensors.front();
        PADDLE_ENFORCE_EQ(tensor.dims(), pair.second.dims(),
                          "The dim doesn't match.");
        PADDLE_ENFORCE_EQ(tensor.place(), member_->places_.at(0),
                          "The place doesn't match.");
        for (size_t i = 1; i < num_places; ++i) {
          lod_tensors.emplace_back();
          auto &tmp = lod_tensors.back();
          framework::TensorCopy(pair.second, member_->places_.at(i), &tmp);
        }
      }
      if (lod_tensors.size() != num_places) {
        auto error_info = string::Sprintf(
            "The number(%d) of samples[%s] of the current batch does not match "
            "the count(%d) of devices(%s). Because that %s is a persistable "
            "variable, you can feed just one sample, in that case, the input "
            "sample will be copied in %d copies and be sent to different "
            "places separately. If you need that different place has different "
            "value, you should feed %d samples.",
            lod_tensors.size(), pair.first, num_places,
            (is_cpu_place ? "CPU" : "GPU"), pair.first, num_places, num_places);
        PADDLE_THROW(error_info);
      }
C
chengduo 已提交
772
    }
773

774
    for (size_t j = 0; j < num_places; ++j) {
775 776 777 778 779
      auto *feed_scope = is_persistable ? member_->local_scopes_[j]
                                        : member_->local_exec_scopes_[j];
      auto *feed_var = feed_scope->Var(pair.first);

      auto t = feed_var->GetMutable<LoDTensor>();
780 781
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
782 783 784 785
    }
  }
}

X
Xin Pan 已提交
786 787 788 789 790 791 792
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

793
bool ParallelExecutor::EnableParallelGraphExecution(
X
Xin Pan 已提交
794
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
795
    const BuildStrategy &build_strategy) const {
796 797 798
  if (!FLAGS_enable_parallel_graph) {
    return false;
  }
799

Y
Yancey1989 已提交
800
  bool enable_parallel_graph = true;
801

X
Xin Pan 已提交
802 803 804 805 806 807 808 809 810 811 812 813 814
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
815 816 817
    }
  }

818
  if (!member_->use_all_reduce_ || !member_->use_cuda_) {
Y
Yancey1989 已提交
819
    if (build_strategy.enable_sequential_execution_ ||
820
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental) {
Y
Yancey1989 已提交
821
      enable_parallel_graph = false;
822 823 824 825 826 827 828 829 830
    }
  }

#ifdef WIN32
  VLOG(1) << "Windows has no support to parallel graph, enable_parallel_graph "
             "would be forced to false.";
  enable_parallel_graph = false;
#endif

Y
Yancey1989 已提交
831
  return enable_parallel_graph;
832 833
}

Y
Yu Yang 已提交
834
}  // namespace framework
Y
Yang Yang 已提交
835
}  // namespace paddle
S
sneaxiy 已提交
836

S
sneaxiy 已提交
837
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
838
USE_PASS(eager_deletion_pass);
839
USE_PASS(buffer_shared_inplace_pass);
840
USE_PASS(buffer_shared_cross_op_memory_reuse_pass);