framework.py 268.0 KB
Newer Older
G
gouzil 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

import textwrap
Y
Yu Yang 已提交
16
import collections
X
Xin Pan 已提交
17
from collections import defaultdict
H
huzhiqiang 已提交
18
from collections.abc import Iterable
Q
qiaolongfei 已提交
19
import contextlib
20
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
21
import os
F
fengjiayi 已提交
22
import re
23
import traceback
24
import copy
25
from types import MethodType, FunctionType
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
R
risemeup1 已提交
32 33 34

from .proto import framework_pb2, data_feed_pb2

35
from . import core
36
from . import unique_name
37
from .. import ir
38 39
import paddle.version as fluid_version
import warnings
40
import functools
41
from .variable_index import _getitem_static, _setitem_static, _setitem_impl_
42
import threading
Y
Yu Yang 已提交
43

44
__all__ = [
45 46 47 48
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
49
    'name_scope',
J
jianghaicheng 已提交
50
    'ipu_shard_guard',
51
    'set_ipu_shard',
S
sneaxiy 已提交
52 53
    'cuda_places',
    'cpu_places',
54
    'xpu_places',
S
sneaxiy 已提交
55
    'cuda_pinned_places',
L
lujun 已提交
56
    'in_dygraph_mode',
57
    'is_compiled_with_cinn',
C
chengduo 已提交
58
    'is_compiled_with_cuda',
59
    'is_compiled_with_rocm',
60
    'is_compiled_with_xpu',
61
    'Variable',
62
    'require_version',
63
    'device_guard',
G
guofei 已提交
64 65
    'set_flags',
    'get_flags',
66
    '_stride_in_no_check_dy2st_diff',
67
]
Y
Yu Yang 已提交
68

Q
qiaolongfei 已提交
69 70 71 72
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
73 74
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

75

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
# use thread local to create thread save global variables.
class GlobalThreadLocal(threading.local):
    def __init__(self):
        """
        init the thread local data.
        TODO(xiongkun): how to access another thread local data ?
        """
        global _dygraph_tracer_
        self._in_declarative_mode_ = False
        self._functional_dygraph_context_manager = None
        self._dygraph_tracer_ = _dygraph_tracer_

    def __str__(self):
        strings = []
        strings.append(
            "_in_declarative_mode_:" + str(self._in_declarative_mode_)
        )
        strings.append(
            "_functional_dygraph_context_manager:"
            + str(self._functional_dygraph_context_manager)
        )
        strings.append("_dygraph_tracer_:" + str(self._dygraph_tracer_))
        return "\n".join(strings)

    def __setattr__(self, name, val):
        if name == '_dygraph_tracer_':
            global _dygraph_tracer_
            _dygraph_tracer_ = val
        self.__dict__[name] = val


L
lujun 已提交
107
_dygraph_tracer_ = None
108 109
global_var = GlobalThreadLocal()

110
_global_expected_place_ = None
111
_current_device = None
112
global_prog_seed = 0
113
_current_pipeline_stage = None
114
_current_cuda_graph_mode = None
115
_global_flags_ = core.globals()
W
wanghuancoder 已提交
116
_stride_in_no_check_dy2st_diff_mode = False
J
Jiabin Yang 已提交
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
# special_op_attrs, extra_op_attrs are prepared for printing warnings
# when turning on FLAGS_print_extra_attrs
special_op_attrs = {
    "elementwise_add": [{"axis": -1}],
    "elementwise_sub": [{"axis": -1}],
    "elementwise_mul": [{"axis": -1}],
    "elementwise_div": [{"axis": -1}],
    "elementwise_max": [{"axis": -1}],
    "elementwise_min": [{"axis": -1}],
    "elementwise_pow": [{"axis": -1}],
    "elementwise_mod": [{"axis": -1}],
    "elementwise_floordiv": [{"axis": -1}],
    "less_than": [{"axis": -1}],
    "less_equal": [{"axis": -1}],
    "greater_than": [{"axis": -1}],
    "greater_equal": [{"axis": -1}],
    "equal": [{"axis": -1}],
    "not_equal": [{"axis": -1}],
    "amax": [{"reduce_all": False}],
    "amin": [{"reduce_all": False}],
    "any": [{"reduce_all": False}],
    "frobenius_norm": [{"reduce_all": False}],
    "logsumexp": [{"reduce_all": False}],
    "reduce_max": [{"reduce_all": False}],
    "reduce_min": [{"reduce_all": False}],
    "reduce_mean": [{"reduce_all": False}],
    "reduce_prod": [{"reduce_all": False}],
    "reduce_sum": [{"reduce_all": False}],
}

extra_op_attrs = {
    "gather": ["overwrite"],
    "graph_reindex": ["flag_buffer_hashtable"],
    "graph_sample_neighbors": ["flag_perm_buffer"],
    "relu6": ["threshold"],
    "swish": ["beta"],
    "hsigmoid_loss": ["remote_prefetch"],
    "max_pool2d_with_index": ["global_pooling"],
    "uniform": ["diag_num"],
    "unique": ["is_sorted"],
}

K
Kim Yann 已提交
160
# FIXME(dev): We haven't fully verified eager mode on XPU et.al but
161 162 163 164
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


J
Jiabin Yang 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
186
            print(paddle.in_dynamic_mode())  # False, Now we are in static graph mode
J
Jiabin Yang 已提交
187 188 189 190 191

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
192
    return global_var._dygraph_tracer_ is not None
J
Jiabin Yang 已提交
193 194


195 196
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
197 198 199 200 201
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


@signature_safe_contextmanager
202
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
203 204 205 206
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
207
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
208
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
209
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
210
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
211
            which means no pipelining computation order and run Ops in terms of graph.
212

G
gouzil 已提交
213 214 215 216 217 218 219
    Note:
        Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
        duplicated index.
J
jianghaicheng 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


254 255 256 257
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

G
gouzil 已提交
258 259 260 261 262
    Note:
        Only when enable_manual_shard=True to set the index to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        Only when enable_pipelining=True to set stage to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        An index supports a corresponding None stage or a stage, and a stage only supports a new index or a duplicate index.

263 264 265 266 267
    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
268
            The sharded model will be computed from small to large. The default value is -1,
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):
        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

294
    from paddle.nn import Layer
295

296 297 298 299 300
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
301 302
                "Unsupported type. Only accept paddle.nn.Layer or function."
            )
303 304 305 306 307 308 309 310 311 312 313 314

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):
        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


315 316
def require_version(min_version, max_version=None):
    """
317 318 319
    Check if the installed version of PaddlePaddle is in [min_version, max_version],
    if the installed version is lower than ``min_version`` or higher than ``max_version``,
    an exception will be thrown, NO returns if the installed version is satisfied.
320

321 322 323 324
    Args:
        min_version (str): the minimum version required (like '1.4.0').
        max_version (str, optional): the max version required (like '1.6.0'), default is None,
            meaning any version equal or higher than ``min_version`` is acceptable.
325

326 327
    Returns:
        None.
328

329 330 331 332 333 334
    Raises:
        TypeError: if the type of ``min_version`` is not str.
        TypeError: if the type of ``max_version`` is not str or type(None).
        ValueError: if the value of ``min_version`` is not in version format.
        ValueError: if the value of ``max_version`` is not in version format or None.
        Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.
335

336 337
    Examples:
        .. code-block:: python
338

339
            import paddle.fluid as fluid
340

341 342
            # any version >= 0.1.0 is acceptable.
            fluid.require_version('0.1.0')
343

344 345 346
            # if 0.1.0 <= version <= 10.0.0, it is acceptable.
            fluid.require_version(min_version='0.1.0', max_version='10.0.0')
    """
347 348 349
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
350 351
            % (type(min_version))
        )
352 353 354 355

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
356 357
            % (type(max_version))
        )
358 359 360 361 362

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
363 364
            "like '1.5.2.0', but received %s" % min_version
        )
365 366 367 368 369 370

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
371 372
                "like '1.5.2.0', but received %s" % max_version
            )
373 374

    version_installed = [
375 376 377 378
        fluid_version.major,
        fluid_version.minor,
        fluid_version.patch,
        fluid_version.rc,
379 380 381 382
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
383
        for i in range(len(ver_a)):
384 385 386 387 388 389 390 391 392 393 394
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
395 396 397
                "please make sure the version is good with your code."
                % (min_version, max_version, fluid_version.full_version)
            )
398 399 400 401
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
402 403 404
                "please make sure the version is good with your code."
                % (min_version, fluid_version.full_version)
            )
405 406 407
        return

    min_version_split = min_version.split('.')
408 409 410
    min_version_to_check = (
        min_version_split + zero_version[len(min_version_split) :]
    )
411 412 413

    if max_version is not None:
        max_version_split = max_version.split('.')
414 415 416
        max_version_to_check = (
            max_version_split + zero_version[len(max_version_split) :]
        )
417

418 419 420 421
        if (
            version_cmp(version_installed, max_version_to_check) > 0
            or version_cmp(version_installed, min_version_to_check) < 0
        ):
422 423
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
424 425
                % (min_version, max_version, fluid_version.full_version)
            )
426 427 428 429 430
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
431 432
                % (min_version, fluid_version.full_version, min_version)
            )
433 434


435 436
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
437
        assert not in_dygraph_mode(), (
438 439
            "We don't support %s in dynamic graph mode" % func.__name__
        )
440 441 442 443 444 445 446
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
447
        assert in_dygraph_mode(), (
448 449 450
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
451 452 453 454 455
        return func(*args, **kwargs)

    return __impl__


456 457 458
def _non_static_only_(func):
    def __impl__(*args, **kwargs):
        from .dygraph.base import in_declarative_mode
459

460
        assert in_dygraph_mode() or in_declarative_mode(), (
461 462 463
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
464 465 466 467 468
        return func(*args, **kwargs)

    return __impl__


469 470
def _static_only_(func):
    def __impl__(*args, **kwargs):
471
        assert not in_dygraph_mode(), (
472 473 474
            "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode."
            % func.__name__
        )
475 476 477 478 479
        return func(*args, **kwargs)

    return __impl__


480 481 482 483 484
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


485
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
W
wanghuancoder 已提交
486 487
# used to make Variable and Tensor has same interfaces, like numpy. Since Tensor is not exposed in our
# official docments, logically, we want to keep Tensor and logically consistent. While, actually,
488 489
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
W
wanghuancoder 已提交
490
# TODO(zhiqiu): We should make Tensor consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
491
# same base class.
492 493 494
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
495 496
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
R
Ryan 已提交
497
            "  2. If you are using `@paddle.jit.to_static`, you can call `paddle.jit.enable_to_static(False)`. "
498
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
499 500
            % (func.__name__, func.__name__)
        )
501 502 503 504

    return __impl__


T
tangwei12 已提交
505 506
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
507 508 509 510 511 512 513 514 515
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
516 517
                DeprecationWarning,
            )
518 519 520 521 522 523 524
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


525 526
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
527
static_only = wrap_decorator(_static_only_)
528
fake_interface_only = wrap_decorator(_fake_interface_only_)
529
non_static_only = wrap_decorator(_non_static_only_)
530 531


L
lujun 已提交
532
def _dygraph_tracer():
533
    return global_var._dygraph_tracer_
534

W
Wu Yi 已提交
535

536 537 538 539
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
540
def _current_expected_place():
541 542 543
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
544 545 546 547 548
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
549
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
550 551 552 553 554
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
555 556 557 558 559 560
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
561
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
562 563 564 565 566
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
        elif len(core.get_all_custom_device_type()) > 0:
            dev_type = core.get_all_custom_device_type()[0]
            try:
                device_count = core.get_custom_device_count(dev_type)
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CustomPlace(
                    dev_type, _custom_device_ids(dev_type)[0]
                )
            else:
                warnings.warn(
                    "You are using CUSTOM_DEVICE version Paddle, but your custom device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
582 583 584 585 586 587 588
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
589 590
    if global_var._dygraph_tracer_ is not None:
        global_var._dygraph_tracer_._expected_place = place
591 592 593 594 595


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
596
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
597 598


S
sneaxiy 已提交
599
def _cpu_num():
600
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
601 602 603 604 605 606 607
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
608 609 610
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()
                )
            )
C
chengduo 已提交
611
        os.environ['CPU_NUM'] = str(1)
612
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
613 614 615 616 617 618 619 620
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
621
        device_ids = range(core.get_cuda_device_count())
C
chengduo 已提交
622
    return device_ids
S
sneaxiy 已提交
623 624


625 626 627 628 629
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
630
        device_ids = range(core.get_xpu_device_count())
631 632 633
    return device_ids


634 635 636 637 638 639 640 641 642
def _custom_device_ids(device_type):
    custom_devices_env = os.getenv("FLAGS_selected_" + device_type + "s")
    if custom_devices_env:
        device_ids = [int(s) for s in custom_devices_env.split(",")]
    else:
        device_ids = range(core.get_custom_device_count(device_type))
    return device_ids


643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


658 659 660 661 662 663 664
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
665

666 667 668 669 670 671
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

Z
Zman 已提交
672 673
    Returns:
        None
674 675 676 677 678 679 680 681 682 683

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


684 685 686 687
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

688 689
    Returns:
        Bool: `True` if CINN is currently available, otherwise `False`.
690 691 692 693 694 695 696 697 698 699

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
700 701 702 703
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

704 705
    Returns:
        Bool: `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
706 707 708 709

    Examples:
        .. code-block:: python

710
            import paddle
711
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
712 713 714 715
    """
    return core.is_compiled_with_cuda()


716 717 718 719
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

720 721
    Returns:
        Bool: `True` if ROCm is currently available, otherwise `False`.
722 723 724 725 726

    Examples:
        .. code-block:: python

            import paddle
727
            support_gpu = paddle.device.is_compiled_with_rocm()
728 729 730 731
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
732
def cuda_places(device_ids=None):
L
lujun 已提交
733
    """
734
    Note:
735 736 737
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
738
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
739 740

    If :code:`device_ids` is None, environment variable of
741
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
742
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
743
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
744
    If :code:`FLAGS_selected_gpus` is not set, all visible
745
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
746 747

    If :code:`device_ids` is not None, it should be the device
748
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
749
    the returned list would be
C
Chen Weihang 已提交
750
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
751

752
    Parameters:
753
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
754 755

    Returns:
C
Chen Weihang 已提交
756
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
757 758

    Examples:
759

L
lujun 已提交
760 761
        .. code-block:: python

C
Chen Weihang 已提交
762 763
            import paddle
            import paddle.static as static
T
tangwei12 已提交
764

765
            # required: gpu
766

C
Chen Weihang 已提交
767 768 769
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
770 771

    """
772
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
773
    if device_ids is None:
C
chengduo 已提交
774
        device_ids = _cuda_ids()
S
sneaxiy 已提交
775 776 777 778 779
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


780 781 782 783
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
784 785 786 787 788 789 790 791 792
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
793
        the returned list would be
S
sunzhongkai588 已提交
794
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
795

796 797 798 799 800 801
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
802

803 804
            # required: xpu

805 806
            import paddle
            import paddle.static as static
807

808 809 810
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
811
    assert core.is_compiled_with_xpu(), "Not compiled with XPU"
812 813 814 815 816 817 818
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
819
def cpu_places(device_count=None):
L
lujun 已提交
820
    """
C
Chen Weihang 已提交
821
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
822

S
add doc  
sneaxiy 已提交
823
    If :code:`device_count` is None, the device count would
824
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
825 826
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
827 828
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
829

830 831
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
832 833

    Returns:
C
Chen Weihang 已提交
834
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
835 836

    Examples:
837

L
lujun 已提交
838 839
        .. code-block:: python

C
Chen Weihang 已提交
840 841
            import paddle
            import paddle.static as static
T
tangwei12 已提交
842

C
Chen Weihang 已提交
843 844 845
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
846 847
    """

S
sneaxiy 已提交
848 849 850 851 852 853
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
854
    """
855
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
856 857

    If :code:`device_count` is None, the device count would
858
    be determined by environment variable :code:`CPU_NUM`.
859 860 861 862
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
863

864 865
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
866 867

    Returns:
868
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
869 870 871 872

    Examples:
        .. code-block:: python

873
            import paddle.fluid as fluid
L
lujun 已提交
874 875 876 877 878
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
879
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
880
    if device_count is None:
881 882
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
883 884


885
class NameScope:
886 887 888 889 890 891 892 893 894 895
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
896 897 898
            new_child = NameScope(
                prefix + "_%d" % len(self._children[prefix]), self
            )
899 900 901 902 903 904 905 906 907 908 909 910 911
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
912
@signature_safe_contextmanager
913 914
def name_scope(prefix=None):
    """
915

916
    Generate hierarchical name prefix for the operators in Static Graph.
917

918
    Note:
T
Tao Luo 已提交
919 920
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
921
        Don't use it in dygraph, since it will cause memory leak.
922 923

    Args:
T
Tao Luo 已提交
924
        prefix(str, optional): prefix. Default is none.
925 926

    Examples:
927

928
        .. code-block:: python
T
Tink_Y 已提交
929

930 931 932
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
933
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
934
             b = a + 1
935
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
936
                c = b * 1
937
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
938
                d = c / 1
939 940 941
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
942 943
                g = f - 1

944
          # Op are created in the default main program.
945
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
961 962
    """
    # TODO(panyx0718): Only [0-9a-z].
963
    # in dygraph we don't need namescope since it will cause mem leak
964
    if in_dygraph_mode():
L
Leo Chen 已提交
965 966
        yield
    else:
T
tianshuo78520a 已提交
967
        assert prefix, "namescope prefix can not be empty."
968 969
        global _name_scope
        _name_scope = _name_scope.child(prefix)
970 971 972 973
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
974 975 976 977 978 979 980 981 982 983 984 985


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
986 987
def generate_control_dev_var_name():
    import random
988

W
Wu Yi 已提交
989
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
990 991 992 993


def grad_var_name(var_name):
    """
994 995
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
996 997 998
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
999

1000
def convert_np_dtype_to_dtype_(np_dtype):
1001
    """
1002
    Convert the data type in numpy to the data type in Paddle.
1003

1004
    Args:
1005 1006
        np_dtype (np.dtype|str): The data type in numpy or valid data type
            string.
1007

1008
    Returns:
1009
        core.VarDesc.VarType / core.DataType : The data type in Paddle.
1010 1011

    """
1012 1013
    # Convert the data type string to numpy data type.
    if isinstance(np_dtype, str) and np_dtype == "bfloat16":
1014 1015 1016
        dtype = np.uint16
    else:
        dtype = np.dtype(np_dtype)
1017

1018
    if ir.core._use_new_ir_api():
Y
YuanRisheng 已提交
1019 1020
        if dtype in ir.core.np_type_to_paddle_type.keys():
            return ir.core.np_type_to_paddle_type[dtype]
1021 1022
        else:
            raise ValueError("Not supported numpy dtype %s" % dtype)
1023
    else:
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
        if dtype == np.float32:
            return core.VarDesc.VarType.FP32
        elif dtype == np.float64:
            return core.VarDesc.VarType.FP64
        elif dtype == np.float16:
            return core.VarDesc.VarType.FP16
        elif dtype == np.int32:
            return core.VarDesc.VarType.INT32
        elif dtype == np.int16:
            return core.VarDesc.VarType.INT16
        elif dtype == np.int64:
            return core.VarDesc.VarType.INT64
        elif dtype == np.bool_:
            return core.VarDesc.VarType.BOOL
        elif dtype == np.uint16:
            # since there is still no support for bfloat16 in NumPy,
            # uint16 is used for casting bfloat16
            return core.VarDesc.VarType.BF16
        elif dtype == np.uint8:
            return core.VarDesc.VarType.UINT8
        elif dtype == np.int8:
            return core.VarDesc.VarType.INT8
        elif dtype == np.complex64:
            return core.VarDesc.VarType.COMPLEX64
        elif dtype == np.complex128:
            return core.VarDesc.VarType.COMPLEX128
        else:
            raise ValueError("Not supported numpy dtype %s" % dtype)
1052 1053 1054


def dtype_is_floating(dtype):
1055 1056 1057
    """
    Check the data type is floating or not.
    Args:
1058
        dtype(np.dtype|core.VarDesc.VarType): data type.
1059 1060 1061 1062 1063
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1064
    if not isinstance(dtype, core.VarDesc.VarType):
1065 1066
        dtype = convert_np_dtype_to_dtype_(dtype)

1067
    return dtype in [
1068 1069 1070
        core.VarDesc.VarType.FP16,
        core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64,
1071
    ]
1072 1073


Y
Yang Yang(Tony) 已提交
1074
def _debug_string_(proto, throw_on_error=True):
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1086
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1087
    if not proto.IsInitialized(error_fields) and throw_on_error:
1088 1089
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
1090 1091 1092
                error_fields, proto
            )
        )
Y
Yu Yang 已提交
1093 1094 1095
    return proto.__str__()


1096
def _create_tensor(
1097 1098 1099 1100 1101
    type=core.VarDesc.VarType.LOD_TENSOR,
    name=None,
    shape=None,
    dtype=None,
    persistable=None,
1102
    **kwargs,
1103
):
1104 1105 1106 1107
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

W
wanghuancoder 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116
    eager_tensor = core.eager.Tensor(
        dtype if dtype else core.VarDesc.VarType.FP32,
        list(shape) if shape else [],
        name,
        type if type else core.VarDesc.VarType.LOD_TENSOR,
        True if persistable else False,
    )
    eager_tensor.retain_grads()
    return eager_tensor
1117 1118


1119 1120 1121 1122 1123 1124 1125
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
1126 1127
    if not vals:
        return False
1128 1129 1130
    return all(isinstance(v, expected_type) for v in vals)


1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
def wrap_as_scalar(number):
    """Wrap a number(either python scalar or numpy scalar) as core.Scalar if
    it is not a scalar.


    Args:
        number (Number): number

    Returns:
        Scalar: A Scalar that contains the value.
    """
    if isinstance(number, core.Scalar):
        return number
    if isinstance(number, (bool, int, float, complex)):
        return core.Scalar(number)
    if isinstance(number, np.number):
        # it is a numpy scalar
        return core.Scalar(number.item())
    else:
        raise TypeError("Cannot wrap {} as core.Scalar".format(number))


def wrap_as_scalars(array):
    """This function is used to convert flat list, or numpy array(not
    necesarily flat) to list of core.Scalar, which correspond to
    std::vector<paddle::experimental::Scalar> in operator runtime.

    Args:
        array (List | np.ndarray): array of numbers

    Returns:
        List: list of core.Scalar, of which each element is a Scalar containing
          the corresponding value.
    """
    if isinstance(array, np.ndarray):
        array = array.ravel().tolist()
    return [wrap_as_scalar(item) for item in array]


def extract_plain_list(array):
    """extract value from a list of core.Scalar.

    Args:
        array (list): Scalars

    Returns:
        list: values extracted from the scalars.
    """
    return [item.value() for item in array]


def canonicalize_attrs(attrs, op_proto):
    """This function is used to canonicalize attributes(as a string->any dict)
    according to the type specification in the OpProto. This is especially
    important for operators that has any attributes of type Scalar or Scalars.

    Though various frontends of phi kernels & paddle operators can wrap variables
    of concrete types into Scalars(a tagged union of several numeric types) or
    vector of Scalars. Paddle operator requires strict type matching.

    Args:
        attrs (Dict[str, Any]): attribute dict intended to pass to an operator.
        op_proto (OpProto): Proto (signature) of the operator.

    Returns:
        Dict[str, Any]: canonicalized attributes.
    """
    canonicalized_attrs = attrs.copy()  # shallow copy is enough here
    for attr in op_proto.attrs:
        attr_name = attr.name
        type_index = attr.type
        if (attr_name not in attrs) or (attrs[attr_name] is None):
            continue

        attr_val = attrs[attr_name]

        # VAR and VARS should be skipped
        if isinstance(attr_val, Variable):
            continue
        if isinstance(attr_val, list) and _all_is_type(attr_val, Variable):
            continue

        # wrap
        if type_index == core.AttrType.SCALAR:
            canonicalized_attrs[attr_name] = core.Scalar(attr_val)
        elif type_index == core.AttrType.SCALARS:
            # it should be a list (or a numpy array)
            if len(attr_val) > 0:
                attr_val = np.array(attr_val).ravel().tolist()
                attr_val = [core.Scalar(x) for x in attr_val]
                canonicalized_attrs[attr_name] = attr_val

    return canonicalized_attrs


1226 1227 1228 1229 1230
class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1231
            return issubclass(t, core.eager.Tensor)
1232 1233 1234 1235 1236 1237 1238 1239 1240
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1241
            return issubclass(t, EagerParamBase)
1242 1243 1244 1245
        else:
            return issubclass(t, Parameter)


1246
class Variable(metaclass=VariableMetaClass):
1247
    """
J
Jiabin Yang 已提交
1248

U
ustiniankw 已提交
1249 1250 1251 1252
    Notes:
        The constructor of Variable should not be invoked directly.

        In Static Graph Mode: Please use ** `Block.create_var` ** to create a Static variable which has no data until being feed.
1253

U
ustiniankw 已提交
1254
        In Dygraph Mode: Please use ** :ref:`api_fluid_dygraph_to_variable` ** to create a dygraph variable with real data.
J
Jiabin Yang 已提交
1255 1256

    In Fluid, every input and output of an OP is a variable. In most
1257
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1258 1259
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1260

1261
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1262
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1263

T
tianshuo78520a 已提交
1264
    Most of a Variable's member variables can be set to be None. It mean
1265
    it is not available or will be specified later.
1266

1267
    Examples:
1268 1269
        In Static Graph Mode:

1270
        .. code-block:: python
C
cyberslack_lee 已提交
1271
            :name: code-example-1
1272

1273
            import paddle.fluid as fluid
1274
            cur_program = fluid.Program()
1275 1276 1277 1278
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1279

1280
        In Dygraph  Mode:
1281 1282

        .. code-block:: python
C
cyberslack_lee 已提交
1283
            :name: code-example-2
1284 1285 1286 1287 1288 1289 1290

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1291 1292
    """

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
    def __init__(
        self,
        block,
        type=core.VarDesc.VarType.LOD_TENSOR,
        name=None,
        shape=None,
        dtype=None,
        lod_level=None,
        capacity=None,
        persistable=None,
        error_clip=None,
        stop_gradient=False,
        is_data=False,
        need_check_feed=False,
        belong_to_optimizer=False,
1308
        **kwargs,
1309
    ):
Y
Yu Yang 已提交
1310 1311
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1312
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1313

Y
Yu Yang 已提交
1314
        if dtype is not None:
1315
            if not isinstance(dtype, core.VarDesc.VarType):
1316
                dtype = convert_np_dtype_to_dtype_(dtype)
1317

S
Steffy-zxf 已提交
1318 1319 1320 1321
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1322 1323 1324
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1325 1326
        self.belong_to_optimizer = belong_to_optimizer

1327 1328 1329
        self.error_clip = error_clip

        is_new_var = False
1330
        self.desc = self.block.desc.find_var(name.encode())
1331

1332
        if self.desc is None:
1333
            self.desc = self.block.desc.var(name.encode())
1334
            is_new_var = True
1335

1336 1337 1338
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
1339 1340 1341 1342 1343
            raise ValueError(
                "Variable '{0}' has been created before. The "
                "previous type is {1}, the new type is {2}. They"
                " are not matched".format(self.name, self.desc.type(), type)
            )
1344

1345
        if shape is not None:
1346
            if is_new_var:
1347 1348 1349 1350 1351 1352
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1353 1354
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1355 1356
                        "matched.".format(self.name, old_shape, shape)
                    )
1357 1358 1359 1360 1361 1362
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
1363 1364 1365 1366 1367 1368
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous data type is {1}, the new "
                        "data type is {2}. They are not "
                        "matched.".format(self.name, old_dtype, dtype)
                    )
1369 1370 1371 1372 1373 1374

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
1375 1376 1377 1378 1379 1380
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous lod_level is {1}, the new "
                        "lod_level is {2}. They are not "
                        "matched".format(self.name, self.lod_level, lod_level)
                    )
1381 1382 1383 1384 1385 1386
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1387 1388
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1389
                        "persistable is {2}. They are not matched".format(
1390 1391 1392
                            self.name, self.persistable, persistable
                        )
                    )
1393

1394 1395
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1396

1397 1398 1399 1400 1401 1402 1403
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1404

1405 1406
        self.block.vars[name] = self
        self.op = None
1407
        self.stop_gradient = stop_gradient
1408
        self.is_data = is_data
W
wanghuancoder 已提交
1409
        self.is_view_var = False
Y
Yu Yang 已提交
1410

1411 1412
    def detach(self):
        """
U
ustiniankw 已提交
1413

1414
        Returns a new Variable, detached from the current graph.
1415 1416
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1417

1418
        Returns:
U
ustiniankw 已提交
1419
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable), The detached Variable.
1420 1421 1422 1423

        Examples:
            .. code-block:: python

1424
                import paddle
1425

1426 1427 1428 1429
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1430

1431 1432
                # create a detached Variable
                y = x.detach()
U
ustiniankw 已提交
1433

1434
        """
1435

1436 1437 1438 1439
        assert (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ), "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"
1440 1441 1442 1443 1444 1445

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
1446 1447
            stop_gradient=True,
        )
1448

1449 1450 1451
        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]}
        )
1452
        return output
1453

1454
    @fake_interface_only
1455
    def numpy(self):
1456
        """
J
Jiabin Yang 已提交
1457
        **Notes**:
T
tianshuo78520a 已提交
1458
            **This API is ONLY available in Dygraph mode**
1459

J
Jiabin Yang 已提交
1460
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1461 1462 1463 1464 1465

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1466
            ndarray: dtype is same as current Variable
1467 1468 1469 1470 1471 1472

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1473
                from paddle.fluid.dygraph import Linear
1474 1475 1476 1477
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1478
                    linear = Linear(32, 64)
1479
                    data = to_variable(data)
1480
                    x = linear(data)
1481 1482 1483
                    print(x.numpy())

        """
1484
        pass
1485

1486
    @non_static_only
1487
    def backward(self, retain_graph=False):
1488
        """
J
Jiabin Yang 已提交
1489
        **Notes**:
T
tianshuo78520a 已提交
1490
            **This API is ONLY available in Dygraph mode**
1491

1492
        Run backward of current Graph which starts from current Tensor.
1493

J
Jiabin Yang 已提交
1494
        Args:
1495 1496 1497 1498
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1499

J
Jiabin Yang 已提交
1500 1501
        Returns:
            NoneType: None
1502 1503 1504 1505 1506

        Examples:
            .. code-block:: python

                import numpy as np
1507 1508
                import paddle
                paddle.disable_static()
1509 1510

                x = np.ones([2, 2], np.float32)
1511 1512 1513 1514 1515 1516 1517
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1518 1519
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1520
                loss.backward()
1521 1522

        """
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
        from .backward import append_backward

        if retain_graph is True:
            raise AssertionError(
                "`retain_graph` == True is not supported in @to_static function."
                "please set retain_graph = False."
            )
        param_grad_list = append_backward(self)
        for param, param_grad in param_grad_list:
            # set grad to simulate dygraph loss.backward() in static mode.
            setattr(param, "grad", param_grad)
1534

1535
    @fake_interface_only
1536
    def gradient(self):
1537
        """
J
Jiabin Yang 已提交
1538
        **Notes**:
T
tianshuo78520a 已提交
1539
            **This API is ONLY available in Dygraph mode**
1540 1541 1542

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1543
        Returns:
1544
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1545 1546 1547 1548

        Examples:
            .. code-block:: python

1549
                import paddle
1550 1551 1552
                import paddle.fluid as fluid
                import numpy as np

1553
                # example1: return ndarray
1554 1555 1556 1557 1558 1559 1560
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1561
                    ret2 = paddle.add_n(inputs2)
1562
                    loss2 = paddle.sum(ret2)
1563
                    loss2.backward()
1564 1565
                    print(loss2.gradient())

1566 1567
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
1568 1569 1570 1571 1572
                    embedding = paddle.nn.Embedding(
                        20,
                        32,
                        weight_attr='emb.w',
                        sparse=True)
1573 1574 1575 1576 1577 1578 1579
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1580
        """
1581
        pass
1582

1583
    @fake_interface_only
1584
    def clear_gradient(self):
1585
        """
J
Jiabin Yang 已提交
1586
        **Notes**:
T
tianshuo78520a 已提交
1587
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1588 1589

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1590

J
Jiabin Yang 已提交
1591
        Clear  (set to ``0`` ) the Gradient of Current Variable
1592 1593 1594 1595 1596 1597

        Returns:  None

        Examples:
            .. code-block:: python

1598
                import paddle
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1609
                    ret2 = paddle.add_n(inputs2)
1610
                    loss2 = paddle.sum(ret2)
1611
                    loss2.backward()
1612 1613 1614 1615 1616
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1617
        pass
X
Xin Pan 已提交
1618

1619
    def register_hook(self, hook):
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
        import paddle

        def backward_hook_wrapper(dy):
            """call the backward hook in ."""
            return hook(np.array(dy))

        def forward_hook_wrapper(x):
            """do nothing but return a new variable."""
            return x

        paddle.static.py_func(
            func=forward_hook_wrapper,
            x=self,
            out=self,
            backward_func=backward_hook_wrapper,
            skip_vars_in_backward_input=[self],
        )
1637

1638
    def __str__(self):
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1655 1656
                import paddle
                import paddle.static as static
1657

1658 1659 1660
                paddle.enable_static()

                cur_program = static.Program()
1661 1662 1663 1664 1665 1666
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1667 1668
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1669 1670 1671 1672
        if (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ):
1673
            dtype_str = str(self.dtype).split('.')[1]
1674 1675 1676 1677 1678 1679 1680
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".format(
                name=self.name,
                type=type_str,
                shape=self.shape,
                dtype=dtype_str,
                stop_gradient=self.stop_gradient,
            )
1681
        else:
1682
            var_str = "{name} : {type})".format(name=self.name, type=type_str)
1683

1684
        if self.is_parameter:
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1695
        from paddle.distributed.auto_parallel.static.dist_context import (
1696 1697 1698
            get_default_distributed_context,
        )

1699
        dist_context = get_default_distributed_context()
1700 1701
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1702 1703 1704
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_tensor
            )
1705

1706
        return var_str
Y
Yang Yang(Tony) 已提交
1707

F
update  
fengjiayi 已提交
1708
    def to_string(self, throw_on_error, with_details=False):
1709 1710 1711
        """
        Get debug string.

J
Jiabin Yang 已提交
1712 1713 1714 1715 1716
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1717

1718 1719
        Returns:
            str: The debug string.
1720 1721 1722 1723 1724

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1725
                import paddle
1726

1727
                paddle.enable_static()
1728 1729 1730 1731 1732
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1733
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1734
                print("=============with detail===============")
1735
                print(new_variable.to_string(True, True))
1736
        """
1737
        assert isinstance(throw_on_error, bool) and isinstance(
1738 1739
            with_details, bool
        )
1740
        protostr = self.desc.serialize_to_string()
1741
        proto = framework_pb2.VarDesc.FromString(bytes(protostr))
F
update  
fengjiayi 已提交
1742 1743
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1744
            additional_attr = ("error_clip",)
F
update  
fengjiayi 已提交
1745
            for attr_name in additional_attr:
1746
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
1747

F
update  
fengjiayi 已提交
1748
        return res_str
1749 1750 1751

    __repr__ = __str__

1752 1753 1754
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
1755

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1779
    @property
1780
    def stop_gradient(self):
J
Jiabin Yang 已提交
1781 1782 1783
        """
        Indicating if we stop gradient from current Variable

1784
        **Notes: This Property has default value as** ``True`` **in** Dygraph **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``
J
Jiabin Yang 已提交
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1796 1797
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1798 1799 1800
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1801 1802
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1803 1804 1805 1806
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1807
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1808 1809
                assert (out1.gradient() == 0).all()
        """
1810
        return self.desc.stop_gradient()
1811

1812 1813
    @stop_gradient.setter
    def stop_gradient(self, s):
1814
        self.desc.set_stop_gradient(s)
1815

1816 1817
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1818 1819 1820 1821 1822 1823 1824 1825
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

1826
            **2. In** Dygraph **mode, this property should not be changed**
J
Jiabin Yang 已提交
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1839
        return self.desc.persistable()
1840

Y
Yu Yang 已提交
1841 1842
    @persistable.setter
    def persistable(self, p):
1843
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1844

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1870 1871
    @property
    def name(self):
J
Jiabin Yang 已提交
1872 1873 1874
        """
        Indicating name of current Variable

1875
        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** Dygraph **mode. This is how we achieve Parameter sharing**
J
Jiabin Yang 已提交
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1888
        return self.desc.name()
Y
Yu Yang 已提交
1889

1890 1891 1892 1893 1894 1895
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1896 1897
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1898

1899 1900 1901
        Examples:
          .. code-block:: python

1902
          import paddle
1903

1904
          x = paddle.static.data(name="x", shape=[-1, 23, 48], dtype='float32')
1905
          print(x.grad_name) # output is ``x@GRAD``
1906 1907 1908 1909

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1910 1911
    @name.setter
    def name(self, new_name):
1912
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1913

Y
Yu Yang 已提交
1914 1915
    @property
    def shape(self):
J
Jiabin Yang 已提交
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1933
        # convert to tuple, make it as same as numpy API.
1934
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1935 1936

    @property
F
fengjiayi 已提交
1937
    def dtype(self):
J
Jiabin Yang 已提交
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1954
        return self.desc.dtype()
Y
Yu Yang 已提交
1955 1956 1957

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1958 1959 1960 1961 1962 1963 1964 1965
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

1966
            **2. Don't support this property in** Dygraph **mode, it's value should be** ``0(int)``
J
Jiabin Yang 已提交
1967 1968 1969 1970

        Examples:
          .. code-block:: python

1971
            import paddle
J
Jiabin Yang 已提交
1972
            import paddle.fluid as fluid
1973 1974

            paddle.enable_static()
J
Jiabin Yang 已提交
1975 1976 1977 1978 1979 1980 1981
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1982 1983
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
1984 1985
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
1986
        return self.desc.lod_level()
Y
Yu Yang 已提交
1987

Y
Yu Yang 已提交
1988 1989
    @property
    def type(self):
J
Jiabin Yang 已提交
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2006
        return self.desc.type()
Y
Yu Yang 已提交
2007

2008 2009 2010
    @property
    def T(self):
        """
U
ustiniankw 已提交
2011

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
U
ustiniankw 已提交
2030

2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
2043 2044
            stop_gradient=False,
        )
2045 2046 2047 2048 2049
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
2050 2051 2052 2053 2054 2055 2056 2057 2058
            stop_gradient=False,
        )

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': perm},
        )
2059 2060
        return out

2061 2062 2063
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
2064
        Variable. It remains in the current graph, that is, the cloned Variable
2065 2066 2067 2068
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
U
ustiniankw 已提交
2069
            Variable, The cloned Variable.
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
2089 2090
            stop_gradient=self.stop_gradient,
        )
2091

2092 2093 2094
        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]}
        )
2095 2096
        return output

W
Wu Yi 已提交
2097
    def _set_error_clip(self, error_clip):
2098
        """
U
ustiniankw 已提交
2099

2100 2101 2102 2103 2104 2105 2106
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
U
ustiniankw 已提交
2107

2108
        """
2109 2110
        self.error_clip = error_clip

2111 2112
    def _set_info(self, key, value):
        """
U
ustiniankw 已提交
2113

2114 2115 2116 2117 2118 2119
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

2120
        Returns:
2121
            None
U
ustiniankw 已提交
2122

2123 2124 2125 2126 2127 2128 2129
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
U
ustiniankw 已提交
2130

2131 2132 2133 2134 2135
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

2136
        Returns:
2137
            object
U
ustiniankw 已提交
2138

2139 2140 2141 2142 2143
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2144 2145
    def _slice_indices(self, slice, length):
        """
U
ustiniankw 已提交
2146

2147
        Reference implementation for the slice.indices method.
U
ustiniankw 已提交
2148

2149 2150 2151 2152 2153 2154 2155 2156
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2157
            raise ValueError("slice step can not be zero")
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2168 2169 2170
            start = (
                max(start + length, lower) if start < 0 else min(start, upper)
            )
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
2216 2217 2218
                if (index > 0 and index >= self.shape[index]) or (
                    index < 0 and (index + self.shape[index]) < 0
                ):
2219
                    raise IndexError("invalid index")
2220 2221 2222 2223 2224
                start = (
                    max(start + self.shape[index], 0)
                    if start < 0
                    else min(start, self.shape[index])
                )
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2238
    def _cloneVar(self, copy=False):
2239 2240
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2241
                name=unique_name.generate_with_ignorable_key(self.name),
2242 2243
                dtype=self.dtype,
            )
2244 2245 2246 2247
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2248
        new_var = self._cloneVar()
2249 2250 2251 2252 2253 2254
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes, 'starts': starts, 'ends': ends},
        )
2255 2256 2257
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2258
        new_var = self._cloneVar()
2259 2260 2261 2262 2263 2264 2265 2266
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={
                'axis': axis,
            },
        )
2267 2268 2269 2270 2271
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2272
                return self._cloneVar(True)
2273 2274 2275 2276 2277 2278 2279
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2280 2281 2282
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2283 2284 2285
                        start += step
                else:
                    while start > stop:
2286 2287 2288
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2289 2290 2291 2292
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2293
                return self._cloneVar(True)
2294
            index = int(item)
2295 2296 2297
            if (index > 0 and index >= self.shape[axis]) or (
                index < 0 and (index + self.shape[axis]) < 0
            ):
2298 2299 2300 2301 2302 2303
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2304
        return _getitem_static(self, item)
2305

2306
    def __setitem__(self, item, value):
2307 2308 2309
        from .dygraph.base import in_declarative_mode

        if in_declarative_mode():
2310 2311 2312 2313
            if is_compiled_with_xpu():
                # (NOTE): Currently, there is no index_put_xpu kernel.
                return _setitem_impl_(self, item, value)
            return _setitem_static(self, item, value)
2314 2315 2316 2317
        else:
            raise RuntimeError(
                "In static mode, the __setitem__ (looks like: x[indices] = values) should not be used. Please use x = paddle.static.setitem(x, indices, values)"
            )
2318

2319 2320
    def get_value(self, scope=None):
        """
2321
        Get the value of variable in given scope.
2322 2323

        Args:
2324
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2325 2326 2327 2328
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
U
ustiniankw 已提交
2329
            Tensor, the value in given scope.
2330 2331 2332 2333 2334

        Examples:
            .. code-block:: python

                import paddle
2335
                import paddle.static as static
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2360 2361
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2362 2363
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
2364

2365 2366
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2367 2368 2369 2370
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2371 2372 2373 2374 2375

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
2376 2377 2378
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2379 2380 2381 2382 2383
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
U
ustiniankw 已提交
2384

2385
        Set the value to the tensor in given scope.
2386 2387 2388

        Args:
            value(Tensor/ndarray) : The value to be set.
2389
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2390 2391 2392 2393 2394
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
2395

2396 2397 2398 2399
        Examples:
            .. code-block:: python

                import paddle
2400
                import paddle.static as static
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
U
ustiniankw 已提交
2424

2425 2426 2427
        '''

        # The 'framework' is a low-level module, and 'executor'
2428
        # can not be imported at the begainning of this file.
2429 2430 2431 2432 2433
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2434 2435 2436 2437
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".format(
                    type(value)
                )
            )
2438 2439 2440

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2441 2442 2443 2444
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2445 2446 2447 2448 2449 2450

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
2451 2452 2453
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
2464 2465 2466 2467
                    "{} expected a shape {}, but the received shape is {}.".format(
                        self.name, list(t.shape()), list(value_shape)
                    )
                )
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2478 2479 2480 2481 2482 2483
        elif p.is_custom_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.CustomPlace(
                p.custom_device_type(), p.custom_device_id()
            )
2484 2485 2486 2487 2488 2489 2490
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2491 2492
    def size(self):
        """
U
ustiniankw 已提交
2493

2494
        Returns the number of elements for current Variable, which is a int64 Variable with shape [] .
2495 2496

        Returns:
U
ustiniankw 已提交
2497
            Variable, the number of elements for current Variable
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
U
ustiniankw 已提交
2511

2512 2513 2514 2515
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
2516 2517
            dtype=core.VarDesc.VarType.INT64,
        )
2518

2519 2520 2521
        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]}
        )
2522 2523
        return output

2524 2525
    def _set_attr(self, name, val):
        """
U
ustiniankw 已提交
2526

2527 2528 2529 2530 2531
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
U
ustiniankw 已提交
2532

2533 2534 2535 2536 2537
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
U
ustiniankw 已提交
2538

2539 2540 2541 2542 2543 2544
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2545 2546
            bool, True if has this attribute.

2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

2568
    def attr(self, name):
2569 2570 2571 2572 2573 2574 2575
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2576
            int|str|list, The attribute value. The return value
2577 2578 2579 2580 2581
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2582
    def dist_attr(self):
2583
        """
2584
        Get distributed attribute of this Variable.
2585
        """
2586
        return self.desc.dist_attr
2587

2588 2589
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2590
        """
2591
        Set distributed attribute of this Variable.
2592
        """
2593
        self.desc.dist_attr = dist_attr
2594

Y
Yu Yang 已提交
2595

F
fengjiayi 已提交
2596 2597 2598
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2599

2600 2601
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2602 2603 2604 2605
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2606
        op_proto = framework_pb2.OpProto.FromString(bytes(pbstr))
F
fengjiayi 已提交
2607 2608 2609 2610
        ret_values.append(op_proto)
    return ret_values


2611
class OpProtoHolder:
2612 2613 2614 2615
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2616 2617 2618 2619 2620 2621 2622 2623
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
2624 2625
            self.__class__, '_instance'
        ), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2626 2627 2628 2629 2630 2631
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2632 2633 2634 2635 2636 2637 2638 2639
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2640 2641
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2642 2643
        return self.op_proto_map[type]

2644 2645
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2646
        custom_op_names = []
2647 2648 2649
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2650 2651 2652
                custom_op_names.append(proto.type)

        return custom_op_names
2653

2654 2655 2656
    def has_op_proto(self, type):
        return type in self.op_proto_map

2657 2658 2659 2660
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2661
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2662
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2663
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
2664
            core.op_proto_and_checker_maker.kOpDeviceAttrName(),
2665 2666
        }

F
fengjiayi 已提交
2667

2668
class Operator:
2669
    """
2670 2671 2672 2673 2674 2675 2676
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2677
        type(str): The type of operator. Default None.
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2698
        Block.append_op or Block._prepend_op instead.
2699 2700 2701 2702

    Examples:
        .. code-block:: python

2703
            import paddle.fluid as fluid
2704
            cur_program = fluid.Program()
2705 2706 2707 2708 2709
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2710
    """
2711

2712
    OP_WITHOUT_KERNEL_SET = {
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
        'feed',
        'fetch',
        'recurrent',
        'go',
        'rnn_memory_helper_grad',
        'conditional_block',
        'while',
        'send',
        'recv',
        'listen_and_serv',
        'fl_listen_and_serv',
        'ncclInit',
        'select',
        'checkpoint_notify',
        'gen_bkcl_id',
        'c_gen_bkcl_id',
        'gen_nccl_id',
        'c_gen_nccl_id',
        'c_comm_init',
        'c_sync_calc_stream',
        'c_sync_comm_stream',
        'queue_generator',
        'dequeue',
        'enqueue',
        'heter_listen_and_serv',
        'c_wait_comm',
        'c_wait_compute',
        'copy_cross_scope',
2741
    }
2742

2743 2744 2745
    def __init__(
        self, block, desc, type=None, inputs=None, outputs=None, attrs=None
    ):
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

2756
        if in_dygraph_mode():
2757 2758
            if type is None:
                raise ValueError(
2759 2760
                    "`type` to initialized an Operator can not be None."
                )
J
Jiabin Yang 已提交
2761
            self._type = type
M
minqiyang 已提交
2762
            self.attrs = attrs if attrs else {}
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2773
            # attr for static graph mode cuda graph
2774 2775
            self._cuda_graph_attr = _current_cuda_graph_mode

2776 2777 2778
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2779
                op_attrs[
2780 2781
                    op_maker.kOpRoleAttrName()
                ] = self.block.program._op_role
2782 2783

            role_var_name = op_maker.kOpRoleVarAttrName()
2784 2785 2786 2787
            if (
                len(self.block.program._op_role_var) != 0
                and role_var_name not in op_attrs
            ):
2788
                op_attrs[role_var_name] = self.block.program._op_role_var
2789 2790 2791 2792 2793

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2794 2795 2796 2797 2798
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2799 2800 2801
                return
            if type is None:
                raise ValueError(
2802 2803
                    "`type` to initialized an Operator can not be None."
                )
2804 2805
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2806 2807 2808
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2809
                        '  File "{}", line {}, in {}'.format(
2810 2811 2812 2813 2814 2815
                            frame[0], frame[1], frame[2]
                        )
                    )
                    op_attrs[callstack_var_name].append(
                        '    {}'.format(frame[3])
                    )
2816 2817 2818 2819 2820 2821 2822

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2823 2824 2825 2826 2827 2828 2829 2830
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
2831 2832 2833
                    warnings.warn(
                        "The Op(%s) is not support to set device." % type
                    )
2834
                if 'force_cpu' in op_attrs:
2835
                    if (
2836 2837
                        type == 'less_than'
                        and op_attrs['force_cpu'] is not None
2838
                    ) or op_attrs['force_cpu'] != False:
2839 2840 2841
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
2842 2843
                            "used at the same time." % type
                        )
2844
            if _current_pipeline_stage is not None:
2845 2846 2847 2848 2849
                pipeline_attr_name = (
                    'pipeline_stage' + core.kAutoParallelSuffix()
                )
                self._update_desc_attr(
                    pipeline_attr_name, _current_pipeline_stage
2850
                )
2851

2852 2853 2854 2855 2856 2857 2858 2859 2860
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
2861 2862 2863
                    assert (
                        found or in_proto.dispensable
                    ), "Input {} not found".format(in_proto.name)
2864 2865
                    if found:
                        in_args = inputs[in_proto.name]
2866
                        if not isinstance(in_args, (list, tuple)):
2867 2868 2869 2870
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
2871 2872
                                % (in_proto.name, len(in_args))
                            )
2873
                        in_arg_names = []
2874
                        for index, arg in enumerate(in_args):
2875
                            if isinstance(arg, str):
2876
                                in_arg_names.append(arg)
2877
                            elif isinstance(arg, bytes):
2878
                                in_arg_names.append(arg.decode())
W
wanghuancoder 已提交
2879
                            elif isinstance(arg, (Variable, core.eager.Tensor)):
2880
                                in_arg_names.append(arg.name)
2881
                            else:
2882
                                raise TypeError(
2883 2884
                                    f"The type of '%{in_proto.name}' in operator {type} should be "
                                    f"one of [str, bytes, Variable]. but received : {arg}"
2885
                                )
2886 2887 2888 2889 2890 2891 2892 2893
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911

                    # FIXME: The outputs of primitive operator currently
                    # doesn't include intermediate output as it will be dropped
                    # in operator codegen, such as xshape output of reshape2.
                    # It will fixed when the operator codegen support
                    # intermediate output.
                    if core._is_bwd_prim_enabled():
                        if not (
                            (m.name in outputs)
                            or m.dispensable
                            or m.intermediate
                        ):
                            raise ValueError(
                                (
                                    "Incorrect setting for output(s) of "
                                    "operator \"%s\", should set: [%s]."
                                )
                                % (type, m.name)
2912
                            )
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
                    else:
                        if not ((m.name in outputs) or m.dispensable):
                            raise ValueError(
                                (
                                    "Incorrect setting for output(s) of "
                                    "operator \"%s\", should set: [%s]."
                                )
                                % (type, m.name)
                            )

2923 2924 2925 2926 2927 2928 2929 2930 2931
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
2932 2933
                            % (out_proto.name, len(out_args))
                        )
2934 2935
                    out_arg_names = []
                    for arg in out_args:
2936
                        if isinstance(arg, str):
2937 2938
                            out_arg_names.append(arg)
                        else:
2939
                            out_arg_names.append(arg.name)
2940
                        # TODO(minqiyang): could we remove variable's op in static graph mode?
2941
                        if not in_dygraph_mode():
2942
                            if isinstance(arg, str):
2943 2944 2945
                                block.var(arg).op = self
                            else:
                                arg.op = self
2946 2947
                    self.desc.set_output(out_proto.name, out_arg_names)

2948
            extra_attrs_map = core.get_op_extra_attrs(type)
2949 2950 2951 2952 2953
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
2954 2955 2956
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
2957 2958 2959
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
2960
                for attr_name in extra_attrs_map.keys():
2961 2962 2963 2964 2965
                    if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                        warnings.warn(
                            "op %s use extra_attr: %s" % (type, attr_name)
                        )

2966 2967 2968 2969 2970 2971
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
                        self._update_desc_attr(
                            attr_name, extra_attrs_map[attr_name]
                        )
2972 2973
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
2974

2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
                if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                    if type in extra_op_attrs:
                        attrs = extra_op_attrs.get(type, [])
                        for attr in attrs:
                            if attr in op_attrs.keys():
                                warnings.warn(
                                    "op %s use extra_attr: %s" % (type, attr)
                                )

                    if type in special_op_attrs:
                        attrs = special_op_attrs.get(type, [])
                        for attr in attrs:
                            a_name = list(attr.keys())[0]
                            default_value = list(attr.values())[0]
                            if (
                                a_name in op_attrs.keys()
                                and default_value != op_attrs[a_name]
                            ):
                                warnings.warn(
                                    "op %s's attr %s = %s is not the default value: %s"
                                    % (
                                        type,
                                        a_name,
                                        op_attrs[a_name],
                                        default_value,
                                    )
                                )

J
jianghaicheng 已提交
3003 3004
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
3005
                if global_ipu_index >= 0:
3006 3007 3008
                    self._update_desc_attr(
                        ipu_index_attr_name, global_ipu_index
                    )
3009
                if global_ipu_stage >= 0:
3010 3011 3012
                    self._update_desc_attr(
                        ipu_stage_attr_name, global_ipu_stage
                    )
J
jianghaicheng 已提交
3013

3014
            self.desc.check_attrs()
3015

3016 3017 3018 3019
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
3020
    def _has_kernel(self, op_type):
3021 3022
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
3023
    def to_string(self, throw_on_error):
3024
        """
3025 3026
        Get debug string.

3027
        Args:
3028 3029
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
3030

3031 3032
        Returns:
            str: The debug string.
3033 3034

        """
3035
        protostr = self.desc.serialize_to_string()
3036
        proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang(Tony) 已提交
3037 3038
        return _debug_string_(proto, throw_on_error)

3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3071
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3072 3073
            type(skip_op_callstack)
        )
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

3100 3101 3102
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
3103 3104 3105
                a = "{name} = Var['{value}']".format(
                    name=name, type=attr_type, value=attr_var_name
                )
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
3116 3117
                    name=name, type=attr_type, value=','.join(attr_var_names)
                )
3118 3119 3120 3121 3122
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3123 3124
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
3125 3126
                    name=name, type=attr_type, value=self._block_attr_id(name)
                )
3127 3128 3129 3130 3131 3132 3133
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
3134 3135
                    name=name, type=attr_type, value=self._blocks_attr_ids(name)
                )
3136 3137 3138 3139 3140
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3141
            # it is bytes of serialized protobuf
3142 3143 3144 3145 3146
            if (
                is_compiled_with_cinn()
                and self.type == 'cinn_launch'
                and name == 'compilation_key'
            ):
3147 3148
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3149 3150 3151 3152 3153 3154 3155 3156 3157
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3158 3159 3160
            a = "{name} = {value}".format(
                name=name, type=attr_type, value=value
            )
3161

3162 3163 3164 3165
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3166
        from paddle.distributed.auto_parallel.static.dist_context import (
3167 3168 3169
            get_default_distributed_context,
        )

3170
        dist_context = get_default_distributed_context()
3171 3172
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3173 3174 3175
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_op
            )
3176

3177
        if outputs_str != "{}":
3178 3179 3180 3181 3182 3183
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".format(
                outputs=outputs_str,
                op_type=self.type,
                inputs=inputs_str,
                attrs=attrs_str,
            )
3184
        else:
3185 3186 3187
            op_str = "{op_type}(inputs={inputs}, {attrs})".format(
                op_type=self.type, inputs=inputs_str, attrs=attrs_str
            )
3188 3189
        return op_str

Y
Yang Yang(Tony) 已提交
3190
    def __str__(self):
3191
        return self._to_readable_code()
3192 3193 3194

    __repr__ = __str__

F
fengjiayi 已提交
3195 3196
    @property
    def type(self):
3197
        return self.desc.type()
F
fengjiayi 已提交
3198 3199

    def input(self, name):
3200
        r"""
U
ustiniankw 已提交
3201

3202
        Get the input arguments according to the input parameter name.
3203

3204 3205
        Args:
            name(str): The input parameter name.
3206

3207
        Returns:
U
ustiniankw 已提交
3208
            list, return the list of argument names that associated with \
3209
                the specific parameter name.
U
ustiniankw 已提交
3210

3211
        """
F
fengjiayi 已提交
3212 3213
        return self.desc.input(name)

W
Wu Yi 已提交
3214
    def _rename_input(self, old_name, new_name):
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3225
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3226

W
Wu Yi 已提交
3227
    def _rename_output(self, old_name, new_name):
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3238
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3239

F
fengjiayi 已提交
3240 3241 3242 3243
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3244 3245 3246 3247 3248 3249 3250 3251
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3252
    def output(self, name):
3253
        r"""
3254
        Get output arguments by the output parameter name.
3255

3256 3257
        Args:
            name(str): The output parameter name.
3258

3259 3260 3261
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3262
        """
F
fengjiayi 已提交
3263 3264 3265 3266 3267 3268
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3269 3270 3271 3272 3273 3274
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
3275 3276
            "Can't find op itself in it's block. It could be a bug of Paddle."
        )
3277

F
fengjiayi 已提交
3278
    def has_attr(self, name):
3279
        """
3280 3281
        Whether this Operator has the attribute with name or not.

3282
        Args:
3283
            name(str): the attribute name.
3284

3285 3286
        Returns:
            bool: True if has this attribute.
3287 3288

        """
F
fengjiayi 已提交
3289 3290 3291
        return self.desc.has_attr(name)

    def attr_type(self, name):
3292
        """
3293
        Get the type of attribute by attribute's name.
3294

3295 3296
        Args:
            name(str): the attribute name.
3297

3298 3299
        Returns:
            core.AttrType: the attribute type.
3300
        """
3301
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3302

W
Wu Yi 已提交
3303
    def _set_attr(self, name, val):
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3314 3315
        self._update_desc_attr(name, val)

3316 3317 3318
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3330 3331 3332 3333 3334
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3335
            self.desc.set_block_attr(name, val.desc)
3336
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3337
            self.desc.set_blocks_attr(name, [v.desc for v in val])
3338 3339 3340
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
Q
Qiyang Min 已提交
3341 3342
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3343 3344 3345 3346 3347 3348 3349 3350 3351
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
3352 3353 3354 3355 3356 3357
        # if the required attribute is a SCALAR, pass as-is
        if type_index == core.AttrType.SCALAR:
            desc._set_scalar_attr(name, wrap_as_scalar(val))
        elif type_index == core.AttrType.SCALARS:
            desc._set_scalars_attr(name, wrap_as_scalars(val))
        elif type_index == core.AttrType.BOOL:
3358 3359 3360 3361 3362 3363 3364
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
3365 3366
        elif type_index == core.AttrType.FLOAT64:
            desc._set_float64_attr(name, val)
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3384

F
fengjiayi 已提交
3385 3386
    @property
    def attr_names(self):
3387
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3388 3389

    def attr(self, name):
3390
        """
3391 3392
        Get the attribute by name.

3393
        Args:
3394
            name(str): the attribute name.
3395

3396 3397
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3398 3399
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3400
        return self.desc.attr(name)
Y
Yu Yang 已提交
3401

W
Wu Yi 已提交
3402
    def _block_attr_id(self, name):
3403
        """
G
gongweibao 已提交
3404
        Get the block attribute's id by name.
3405

3406 3407
        Args:
            name(str): the attribute name.
3408

3409 3410
        Returns:
            int: the block index.
3411
        """
W
Wu Yi 已提交
3412
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3413

W
Wu Yi 已提交
3414
    def _block_attr(self, name):
G
gongweibao 已提交
3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3425
        id = self._block_attr_id(name)
3426
        assert id >= 0 and id < len(self.block.program.blocks)
G
gongweibao 已提交
3427 3428
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3429
    def _blocks_attr(self, name):
G
gongweibao 已提交
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3440
        for i in self._blocks_attr_ids(name):
3441
            assert i >= 0 and i < len(self.block.program.blocks)
G
gongweibao 已提交
3442 3443 3444 3445
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3446
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3457
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3458

3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3470 3471 3472 3473 3474
        assert (
            attr_type == core.AttrType.VAR
        ), "Required type attr({}) is Variable, but received {}".format(
            name, attr_type
        )
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3489 3490 3491 3492 3493
        assert (
            attr_type == core.AttrType.VARS
        ), "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type
        )
3494 3495 3496 3497 3498 3499
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3500
    def all_attrs(self):
F
fengjiayi 已提交
3501
        """
3502 3503 3504
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3505
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3506 3507 3508 3509
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3510
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3511
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3512
                attr_map[n] = self._block_attr(n)
3513
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3514
                attr_map[n] = self._blocks_attr(n)
3515 3516 3517 3518 3519 3520
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3521

F
fengjiayi 已提交
3522 3523
        return attr_map

3524 3525 3526
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3527 3528 3529 3530

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3531 3532 3533
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3534 3535 3536 3537 3538 3539 3540 3541

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3542 3543
            return False

3544 3545 3546 3547 3548 3549
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3550
    @property
3551
    def dist_attr(self):
3552
        """
3553
        Get distributed attribute of this Variable.
3554
        """
3555
        return self.desc.dist_attr
3556

3557 3558
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3559
        """
3560
        Set distributed attribute of this Variable.
3561
        """
3562
        self.desc.dist_attr = dist_attr
3563

Y
Yu Yang 已提交
3564

W
wanghuancoder 已提交
3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
@signature_safe_contextmanager
def _stride_in_no_check_dy2st_diff():
    global _stride_in_no_check_dy2st_diff_mode
    _stride_in_no_check_dy2st_diff_mode = True
    try:
        yield
    finally:
        _stride_in_no_check_dy2st_diff_mode = False


def check_if_to_static_diff_with_dygraph(op_type, inplace_map, outputs):
3576 3577 3578 3579
    if (
        op_type == "while"
    ):  # dont' need check while, while is only a wrapper of inner ops, we will stuck in inner op.
        return
W
wanghuancoder 已提交
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
    if outputs is not None:
        for k, v in outputs.items():
            if isinstance(v, Variable):
                if v.is_view_var and not (
                    op_type == "set_value"
                    and inplace_map.get("Input", None) == "Out"
                ):
                    raise ValueError(
                        'Sorry about what\'s happend. In to_static mode, %s\'s output variable %s is a viewed Tensor in dygraph. This will result in inconsistent calculation behavior between dynamic and static graphs. If you are sure it is safe, you can call with paddle.fluid.framework._stride_in_no_check_dy2st_diff() in your safe code block.'
                        % (op_type, k)
                    )
            elif isinstance(v, list):
                for var in v:
                    if isinstance(var, Variable):
                        if var.is_view_var and not (
                            op_type == "set_value"
                            and inplace_map.get("Input", None) == "Out"
                        ):
                            raise ValueError(
                                'Sorry about what\'s happend. In to_static mode, %s\'s output variable %s is a viewed Tensor in dygraph. This will result in inconsistent calculation behavior between dynamic and static graphs. If you are sure it is safe, you can call with paddle.fluid.framework._stride_in_no_check_dy2st_diff() in your safe code block.'
                                % (op_type, k)
                            )


def record_is_view_var(op_type, inputs, outputs):
    if op_type == "slice":
        if inputs is not None and isinstance(inputs["Input"], list):
            if hasattr(inputs["Input"][0], "is_view_var"):
                inputs["Input"][0].is_view_var = True
        else:
            if hasattr(inputs["Input"], "is_view_var"):
                inputs["Input"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "strided_slice":
        if inputs is not None and isinstance(inputs["Input"], list):
            if hasattr(inputs["Input"][0], "is_view_var"):
                inputs["Input"][0].is_view_var = True
        else:
            if hasattr(inputs["Input"], "is_view_var"):
                inputs["Input"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "index_select":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "split":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None:
            for out in outputs["Out"]:
                if hasattr(out, "is_view_var"):
                    out.is_view_var = True
    elif op_type == "unsqueeze" or op_type == "unsqueeze2":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "squeeze" or op_type == "squeeze2":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "transpose" or op_type == "transpose2":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "unbind":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "diagonal":
        if inputs is not None and isinstance(inputs["Input"], list):
            if hasattr(inputs["Input"][0], "is_view_var"):
                inputs["Input"][0].is_view_var = True
        else:
            if hasattr(inputs["Input"], "is_view_var"):
                inputs["Input"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "flatten":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "imag":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "real":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "reshape" or op_type == "reshape2":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "as_real":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True


3787
class Block:
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3802
        use `Program._create_block()` to create a block.
3803 3804 3805 3806

    Examples:
        .. code-block:: python

3807 3808 3809
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3810 3811 3812 3813 3814 3815 3816 3817 3818
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3819
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3820
        self.desc = program.desc.block(idx)
3821
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3822
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3823 3824
        self.program = program

3825
    def __str__(self):
3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3860
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3861 3862
            type(skip_op_callstack)
        )
3863 3864 3865 3866 3867 3868 3869
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
3870 3871
                op._to_readable_code(skip_op_callstack)
            )
3872 3873
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3874

F
fengjiayi 已提交
3875 3876
    def to_string(self, throw_on_error, with_details=False):
        """
3877 3878
        Get debug string.

F
fengjiayi 已提交
3879 3880
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3881
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3882
            with_details(bool): more details about variables and parameters
3883 3884
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3885

3886 3887
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3888
        """
3889
        assert isinstance(throw_on_error, bool) and isinstance(
3890 3891
            with_details, bool
        )
F
fengjiayi 已提交
3892
        if with_details:
F
fengjiayi 已提交
3893
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3894
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
3895 3896 3897
                self.idx,
                self.parent_idx,
            )
3898
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3899
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
3900 3901
                    r"\n    \1", var.to_string(throw_on_error, with_details)
                )
F
fengjiayi 已提交
3902
            for op in self.ops:
F
fengjiayi 已提交
3903
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
3904 3905
                    r"\n    \1", op.to_string(throw_on_error)
                )
F
fengjiayi 已提交
3906 3907 3908
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3909
            proto = framework_pb2.BlockDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
3910 3911
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3912 3913 3914

    __repr__ = __str__

Y
Yu Yang 已提交
3915 3916
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3917
        return self.desc.parent
Y
Yu Yang 已提交
3918

Y
Yu Yang 已提交
3919 3920 3921 3922
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3923
    def _set_forward_block_idx(self, idx):
3924 3925 3926 3927 3928 3929 3930 3931 3932
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3933
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3934

3935 3936 3937 3938 3939 3940 3941 3942
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3943 3944
    @property
    def idx(self):
Y
Yu Yang 已提交
3945
        return self.desc.id
Y
Yu Yang 已提交
3946

Q
Qiao Longfei 已提交
3947
    def var(self, name):
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3961
        if not isinstance(name, str):
M
minqiyang 已提交
3962
            raise TypeError(
3963 3964 3965
                "var require string as parameter, but get %s instead."
                % (type(name))
            )
Y
Yu Yang 已提交
3966 3967
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3968
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3969
        return v
Q
Qiao Longfei 已提交
3970

X
Xin Pan 已提交
3971
    def _find_var_recursive(self, name):
3972 3973 3974 3975 3976 3977 3978
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3979
            Variable: the Variable with the giving name. Or None if not found.
3980
        """
Y
Yu Yang 已提交
3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
4005
        return None
Y
Yu Yang 已提交
4006

X
Xin Pan 已提交
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
4026

Q
Qiao Longfei 已提交
4027
    def all_parameters(self):
4028
        return list(self.iter_parameters())
4029

4030
    def iter_parameters(self):
4031 4032 4033 4034 4035
        return (
            item[1]
            for item in self.vars.items()
            if isinstance(item[1], Parameter)
        )
Q
Qiao Longfei 已提交
4036

Y
Yu Yang 已提交
4037
    def create_var(self, *args, **kwargs):
4038
        if in_dygraph_mode():
4039
            var = _create_tensor(*args, **kwargs)
L
Leo Chen 已提交
4040
        else:
4041 4042 4043
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
4044
        return var
Y
Yu Yang 已提交
4045

Q
Qiao Longfei 已提交
4046 4047 4048
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
4049
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
4050 4051
        """
        Rename variable in vars and ops' inputs and outputs
4052 4053

        Args:
4054 4055
            name(str|bytes): the name that need to be renamed.
            new_name(str|bytes): the name that need to rename to.
4056 4057 4058 4059 4060 4061 4062 4063

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
4064
        """
4065 4066
        # Ensure the type of name and new_name is str
        name = name.decode() if isinstance(name, bytes) else name
4067 4068 4069
        new_name = (
            new_name.decode() if isinstance(new_name, bytes) else new_name
        )
M
minqiyang 已提交
4070

T
typhoonzero 已提交
4071
        if not self.has_var(name):
4072
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
4073 4074
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
4075
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
4076 4077 4078 4079 4080 4081
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
4082
            var_type = "Variable"
T
wip  
typhoonzero 已提交
4083 4084 4085 4086
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
4087
        orig_var_type = v.type
4088
        self.desc._rename_var(name.encode(), new_name.encode())
W
Wu Yi 已提交
4089
        # NOTE: v is destroyed by C++ after calling _rename_var.
4090
        d = self.desc.find_var(new_name.encode())
T
typhoonzero 已提交
4091
        if var_type == "Parameter":
L
Leo Chen 已提交
4092
            if in_dygraph_mode():
4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
                var = EagerParamBase(
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
4104
            else:
姜永久 已提交
4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
                var = Parameter(
                    self,
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
T
typhoonzero 已提交
4117
        elif var_type == "Variable":
4118 4119 4120 4121 4122 4123 4124
            var = Variable(
                self,
                type=orig_var_type,
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient,
            )
T
wip  
typhoonzero 已提交
4125

W
Wu Yi 已提交
4126
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
4127 4128 4129
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
4130
        self._sync_with_cpp()
4131
        return var
T
typhoonzero 已提交
4132

4133 4134 4135
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
4136
        self.desc._remove_var(name.encode())
4137 4138
        del self.vars[name]

Y
Yu Yang 已提交
4139 4140
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
4141
        param = None
L
Leo Chen 已提交
4142
        if in_dygraph_mode():
J
Jiabin Yang 已提交
4143
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
4144
        else:
姜永久 已提交
4145
            param = Parameter(global_block, *args, **kwargs)
4146 4147 4148
        # NOTE(Aurelius84): we deliver stop_gradient in append_op, so we
        # need recorde it state and reset it back after calling this API
        stop_gradient = param.stop_gradient
4149

4150
        if 'initializer' in kwargs:
4151 4152 4153 4154 4155

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
4156
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
4157
                        # are treated as initialization ops that cause error.
4158
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
4159 4160
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
4161 4162 4163
                            "c_broadcast",
                            "c_sync_comm_stream",
                            "coalesce_tensor",
4164
                        ]:
4165
                            continue
4166 4167 4168 4169 4170 4171 4172
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
4173 4174 4175 4176 4177 4178
                raise RuntimeError(
                    "param "
                    + param.name
                    + " is inited by multiple init ops "
                    + str(init_ops)
                )
4179
            elif init_ops_len == 1:
4180
                # TODO already inited, do nothing, should log a warning
4181 4182 4183
                pass
            else:
                initializer(param, self)
4184
        param.stop_gradient = stop_gradient
Q
Qiao Longfei 已提交
4185
        return param
Y
Yu Yang 已提交
4186

Y
Yu Yang 已提交
4187
    def append_op(self, *args, **kwargs):
4188 4189 4190 4191 4192 4193
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
W
wanghuancoder 已提交
4194
        inplace_map = kwargs.get("inplace_map", None)
4195
        op_type = kwargs.get("type", None)
4196
        if in_dygraph_mode():
4197
            attrs = kwargs.get("attrs", {})
4198 4199 4200
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
4201 4202 4203 4204 4205 4206
                "using `_C_ops` method." % type,
                DeprecationWarning,
            )
            op = Operator(
                block=self,
                desc=None,
4207
                type=op_type,
4208 4209 4210 4211
                inputs=None,
                outputs=None,
                attrs=attrs,
            )
4212

M
minqiyang 已提交
4213 4214
            # record ops in tracer rather than blocks
            #
4215
            # TODO(minqiyang): add op stop_gradient support in static graph mode too.
L
lujun 已提交
4216
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
4217

4218
            _dygraph_tracer().trace_op(
4219
                op_type,
4220 4221 4222 4223 4224 4225
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
                inplace_map,
            )
M
minqiyang 已提交
4226
        else:
4227
            from paddle.fluid.dygraph.base import param_guard
4228
            from paddle.utils import flatten
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242

            def pass_stop_gradient(ins, outs):
                """
                Set out.stop_gradient = True if all inputs stop_gradient is True.
                """
                need_reset = True
                for var in flatten(ins):
                    if getattr(var, 'stop_gradient', None) is False:
                        need_reset = False
                        break
                if need_reset:
                    for var in flatten(outs):
                        if isinstance(var, Variable):
                            var.stop_gradient = True
4243

4244
            op_desc = self.desc.append_op()
4245 4246
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
W
wanghuancoder 已提交
4247
            # NOTE(Aurelius84): In case of @to_static, all Tensor(s) should
4248 4249
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
4250 4251 4252 4253 4254 4255 4256 4257
            ignore_ops = {
                'conditional_block',
                'conditional_block_grad',
                'recurrent',
                'recurrent_grad',
                'while',
                'while_grad',
            }
W
wanghuancoder 已提交
4258 4259 4260 4261 4262 4263 4264 4265 4266
            from .dygraph.base import in_declarative_mode

            if (
                in_declarative_mode()
                and not _stride_in_no_check_dy2st_diff_mode
            ):
                check_if_to_static_diff_with_dygraph(
                    op_type, inplace_map, outputs
                )
4267 4268
            if op_type not in ignore_ops:
                pass_stop_gradient(inputs, outputs)
4269
            with param_guard(inputs), param_guard(outputs):
4270 4271 4272
                op = Operator(
                    block=self,
                    desc=op_desc,
4273
                    type=op_type,
4274 4275 4276 4277
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None),
                )
4278

M
minqiyang 已提交
4279
            self.ops.append(op)
W
wanghuancoder 已提交
4280 4281
            if in_declarative_mode():
                record_is_view_var(op_type, inputs, outputs)
M
minqiyang 已提交
4282

4283 4284
        return op

W
Wu Yi 已提交
4285
    def _insert_op(self, index, *args, **kwargs):
4286 4287 4288 4289 4290 4291 4292 4293 4294
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
4295
        self._sync_with_cpp()
F
fangshuixun007 已提交
4296
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
4297

4298 4299
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
4300
        Insert an Operator according to the giving arguments,
4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
4315 4316 4317 4318 4319 4320 4321 4322 4323
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
4324 4325
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
4326
        self.desc._remove_op(index, index + 1)
4327 4328
        del self.ops[index]

W
Wu Yi 已提交
4329
    def _slice_ops(self, start, end):
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
4340
        return self.ops[start:end]
Y
Yancey1989 已提交
4341

W
Wu Yi 已提交
4342
    def _prepend_op(self, *args, **kwargs):
4343
        if in_dygraph_mode():
J
Jiabin Yang 已提交
4344 4345
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356
            op = Operator(
                self, None, type=type, inputs=None, outputs=None, attrs=attrs
            )

            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
            )
M
minqiyang 已提交
4357
        else:
4358
            op_desc = self.desc._prepend_op()
4359 4360 4361 4362 4363 4364 4365 4366
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None),
            )
M
minqiyang 已提交
4367
            self.ops.insert(0, op)
4368

Y
Yu Yang 已提交
4369 4370
        return op

W
Wu Yi 已提交
4371
    def _sync_with_cpp(self):
4372
        """
4373 4374
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
4375
        """
Q
Qiao Longfei 已提交
4376 4377 4378
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
4379 4380 4381 4382
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
4383 4384 4385 4386 4387 4388 4389 4390
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient,
                    )
4391
                else:
4392 4393 4394 4395 4396 4397
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient,
                    )
Q
Qiao Longfei 已提交
4398

4399
        # sync variables removed from c++ end
4400
        for var in list(self.vars.keys()):
4401
            if not self.desc.find_var(var.encode()):
4402 4403
                self.vars.pop(var)

Q
Qiao Longfei 已提交
4404
        # sync operators from cpp
4405 4406 4407 4408
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
4425 4426 4427 4428 4429

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
4430
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
4431 4432 4433 4434 4435 4436 4437

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

4438 4439 4440 4441 4442
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
4443 4444 4445 4446 4447 4448
                self.ops
            ) and ops_in_cpp_index < len(ops_in_cpp):
                if (
                    self.ops[ops_in_python_index].desc
                    != ops_in_cpp[ops_in_cpp_index]
                ):
4449 4450 4451 4452 4453
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4454 4455 4456 4457
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4458
    def _copy_param_info_from(self, other):
4459
        """
4460 4461
        Copy the information of parameters from the other block.

4462
        Args:
4463 4464 4465 4466 4467
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4468 4469 4470 4471 4472

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4473
            raise TypeError(
4474 4475
                "_copy_param_info_from should be invoked with Block"
            )
4476
        for p in other.iter_parameters():
4477 4478 4479
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4480 4481
                # if the Parameter is pruned, v may be None
                continue
4482
            assert isinstance(v, Variable)
4483
            new_p = None
L
Leo Chen 已提交
4484
            if in_dygraph_mode():
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
                new_p = EagerParamBase(
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4497
            else:
姜永久 已提交
4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512
                new_p = Parameter(
                    block=self,
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR
                    else None,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4513 4514
            self.vars[new_p.name] = new_p

4515
    def _clone_variable(self, var, force_persistable=True):
4516 4517
        """
        Clone a variable into current block.
4518

4519 4520
        Args:
            var: the variable to be cloned.
4521 4522 4523
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4524 4525

        Returns:
4526
            Variable: the new  variable cloned from 'var' in current block.
4527 4528
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4529 4530 4531
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4532 4533 4534
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
tangwei12 已提交
4535
        elif var.type == core.VarDesc.VarType.RAW:
4536 4537 4538
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
typhoonzero 已提交
4539 4540 4541 4542 4543 4544
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4545
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4546
                is_data=var.is_data,
4547 4548
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4549 4550 4551 4552 4553 4554 4555
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4556
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4557
                is_data=var.is_data,
4558 4559
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4560
        return ret_var
4561

Y
Yu Yang 已提交
4562

4563 4564 4565 4566
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4567
# of some old Python Variables(all old Python Operators) may have
4568
# been destructed.
4569 4570 4571
def _apply_pass(
    main_program, startup_program, pass_name, pass_attrs={}, pass_attr_types={}
):
4572 4573 4574 4575
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
4576 4577 4578 4579 4580 4581 4582
    attrs = core.apply_pass(
        tmp_main_program,
        tmp_startup_program,
        pass_name,
        pass_attrs,
        pass_attr_types,
    )
4583 4584 4585 4586 4587
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4588
class IrNode:
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4600 4601 4602
        assert isinstance(
            node, core.Node
        ), 'node must be the instance of core.Node.'
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4684
    def remove_input_by_id(self, node_id):
4685 4686 4687 4688 4689 4690
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4691
        self.node.remove_input(node_id)
4692

4693
    def remove_input(self, node):
4694 4695 4696 4697
        """
        Remove a node from inputs.

        Args:
4698
            node(IrNode): the node being removed.
4699
        """
4700
        self.node.remove_input(node.node)
4701

4702
    def append_input(self, node):
4703 4704 4705 4706
        """
        Append a node in inputs.

        Args:
4707
            node(IrNode): the node being appended.
4708
        """
4709
        self.node.append_input(node.node)
4710 4711 4712 4713 4714 4715 4716 4717

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4718
    def remove_output_by_id(self, node_id):
4719 4720 4721 4722 4723 4724
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4725
        self.node.remove_output(node_id)
4726

4727
    def remove_output(self, node):
4728 4729 4730 4731
        """
        Remove a node from outputs.

        Args:
4732
            node(IrNode): the node being removed.
4733
        """
4734
        self.node.remove_output(node.node)
4735

4736
    def append_output(self, node):
4737 4738 4739 4740
        """
        Append a node in outputs.

        Args:
4741
            node(IrNode): the node being appended.
4742
        """
4743
        self.node.append_output(node.node)
4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4778 4779 4780
        assert (
            isinstance(node, core.Node) and node.is_var()
        ), 'node must be the instance of core.Node and it must be a variable node.'
4781
        super().__init__(node)
4782 4783 4784 4785 4786 4787 4788 4789 4790
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
4791 4792 4793
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4794 4795 4796 4797 4798 4799 4800 4801 4802
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
4803 4804 4805
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4806 4807
        return self.node.var().persistable()

4808 4809 4810 4811 4812 4813 4814
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
4815 4816 4817
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4818 4819 4820 4821 4822 4823 4824 4825 4826
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
4827 4828 4829
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4830 4831 4832 4833 4834 4835 4836 4837 4838
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
4839 4840 4841
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4842 4843
        return self.node.var().shape()

4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4877 4878 4879
        assert (
            isinstance(node, core.Node) and node.is_op()
        ), 'node must be the instance of core.Node and it must be a operator node.'
4880
        super().__init__(node)
4881 4882 4883 4884 4885 4886 4887 4888 4889 4890
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
4891 4892 4893
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4894 4895
        self.node.op()._rename_input(old_input_name, new_input_name)

4896 4897 4898 4899 4900 4901 4902 4903
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
4904 4905 4906
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4907 4908
        self.node.op()._rename_output(old_output_name, new_output_name)

4909 4910 4911 4912 4913 4914 4915 4916 4917 4918
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4919 4920 4921
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4934 4935 4936
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4937 4938 4939 4940 4941 4942 4943 4944 4945
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
4946 4947 4948
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4949 4950
        return self.node.op().set_type(new_type)

4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
4965 4966 4967
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4968
        desc = self.node.op()
4969 4970 4971 4972 4973
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4974
            desc.set_block_attr(name, val.desc)
4975
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4976
            desc.set_blocks_attr(name, [v.desc for v in val])
4977 4978 4979
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
4980 4981 4982 4983
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4984 4985 4986 4987 4988 4989 4990
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
4991 4992 4993
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4994 4995 4996 4997 4998 4999 5000 5001 5002
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
5003 5004 5005
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
5006 5007
        return self.node.op().output_arg_names()

5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


5029
class IrGraph:
5030
    """
5031
    Python IrGraph. Beneath it is a core.Graph, which is used for
5032
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
5033 5034
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
5035 5036 5037 5038
    """

    def __init__(self, graph, for_test=False):
        """
5039 5040
        Construct an IrGraph using core.Graph.

5041 5042 5043 5044 5045
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
5046 5047
            graph, core.Graph
        ), 'graph must be the instance of core.Graph.'
5048 5049 5050
        self.graph = graph
        self._for_test = for_test

5051 5052 5053 5054
    def clone(self):
        """
        Create a new and duplicated IrGraph.

5055 5056 5057
        Warns:
            The method only clones the graph structure, not its attributes.

5058 5059 5060
        Returns:
            IrGraph: A new and duplicated graph.
        """
5061
        g = self.graph.clone()
5062 5063
        return IrGraph(g, self._for_test)

5064
    def is_test(self):
5065 5066 5067
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
5068 5069
        return self._for_test

W
WangZhen 已提交
5070
    def all_nodes(self):
5071 5072 5073
        """
        Return all nodes included in the graph as a set.
        """
5074
        return {IrNode(node) for node in self.graph.nodes()}
5075

5076
    def all_var_nodes(self):
5077 5078 5079
        """
        Return all variable nodes included in the graph as a set.
        """
5080
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
5081

5082
    def all_persistable_nodes(self):
5083 5084 5085
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
5086 5087
        persistable_nodes = set()
        for node in self.graph.nodes():
5088 5089 5090 5091 5092
            if (
                node.is_var()
                and node.var() is not None
                and node.var().persistable()
            ):
W
WangZhen 已提交
5093
                persistable_nodes.add(node)
5094
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
5095

5096
    def all_op_nodes(self):
5097 5098 5099
        """
        Return all operator nodes included in the graph as a set.
        """
5100
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
5101

5102 5103 5104 5105 5106 5107
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
5108
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
5109 5110 5111 5112 5113 5114 5115 5116 5117
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

5118
    def create_persistable_node(self, name, var_type, shape, var_dtype):
5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
5130
            IrVarNode: the created persistable variable node.
5131
        """
5132 5133 5134 5135 5136
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
5137
        return IrVarNode(self.graph.create_var_node(var_desc))
5138 5139

    def create_var_node(self, name, var_type, shape, var_dtype):
5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
5151
            IrVarNode: the created variable node.
5152 5153
        """

5154 5155 5156 5157
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
5158
        return IrVarNode(self.graph.create_var_node(var_desc))
5159

5160 5161 5162 5163 5164 5165
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

5166
    def create_var_node_from_desc(self, var_desc):
5167 5168 5169 5170 5171 5172 5173 5174
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
5175
            IrVarNode: the created variable node.
5176
        """
5177
        return IrVarNode(self.graph.create_var_node(var_desc))
5178 5179

    def create_op_node(self, op_type, attrs, inputs, outputs):
5180 5181 5182 5183 5184 5185 5186
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
5187
            outputs(dict): the outputs of the operator node.
5188 5189

        Returns:
5190
            IrOpNode: the created operator node.
5191
        """
5192 5193
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
5194
        for attr, value in attrs.items():
5195
            self._update_desc_attr(op_desc, attr, value)
5196
        for input_name, var_nodes in inputs.items():
5197 5198
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
5199 5200 5201
            op_desc.set_input(
                input_name, [var_node.name() for var_node in var_nodes]
            )
5202
        for output_name, var_nodes in outputs.items():
5203 5204
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
5205 5206 5207
            op_desc.set_output(
                output_name, [var_node.name() for var_node in var_nodes]
            )
5208
        return IrOpNode(self.graph.create_op_node(op_desc))
5209 5210

    def create_op_node_from_desc(self, op_desc):
5211 5212 5213 5214 5215 5216 5217
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
5218
            IrOpNode: the created operator node.
5219
        """
5220
        return IrOpNode(self.graph.create_op_node(op_desc))
5221 5222

    def update_input_link(self, old_input_node, new_input_node, op_node):
5223 5224 5225 5226
        """
        Update the input's link of a operator node.

        Args:
5227 5228 5229
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
5230
        """
5231 5232 5233 5234 5235
        assert (
            old_input_node.node in self.graph.nodes()
            and new_input_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
5236 5237 5238 5239
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
5240
        op_node.rename_input(old_input_node.name(), new_input_node.name())
5241

5242 5243 5244 5245 5246 5247 5248 5249 5250
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
5251 5252 5253 5254 5255
        assert (
            old_output_node.node in self.graph.nodes()
            and new_output_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
5256 5257 5258 5259 5260 5261
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

5262
    def link_to(self, node_in, node_out):
5263 5264 5265 5266
        """
        Connect two nodes.

        Args:
5267 5268
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
5269
        """
5270
        assert node_in.node in self.graph.nodes(), (
5271 5272
            'node_in(%s) must be in the graph nodes.' % node_in.node.name()
        )
5273
        assert node_out.node in self.graph.nodes(), (
5274 5275
            'node_out(%s) must be in the graph nodes.' % node_out.node.name()
        )
5276 5277
        node_in.append_output(node_out)
        node_out.append_input(node_in)
5278 5279

    def safe_remove_nodes(self, remove_nodes):
5280 5281 5282 5283 5284 5285 5286
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
5287
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
5288 5289 5290 5291
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
5292 5293
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
5294

Z
Zhen Wang 已提交
5295 5296 5297 5298 5299 5300 5301 5302
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5303
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
5304 5305 5306 5307
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5308
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
5309 5310 5311
                        ]
                    else:
                        var_nodes[each_var_name].append(
5312 5313
                            self._find_node_by_name(node.outputs, each_var_name)
                        )
Z
Zhen Wang 已提交
5314 5315
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
5316
    def has_circle(self):
5317 5318 5319 5320 5321 5322
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
5323 5324 5325
        return core.has_circle(self.graph)

    def graph_num(self):
5326 5327 5328 5329 5330 5331
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
5332 5333 5334
        return core.graph_num(self.graph)

    def topology_sort(self):
5335 5336 5337
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
5338
        Notes: the `graph` can not contain a circle.
5339 5340

        Returns:
Z
Zhen Wang 已提交
5341
            list(IrNode): nodes in topology order.
5342
        """
5343
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
5344
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
5345 5346

    def build_adjacency_list(self):
5347 5348 5349 5350
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
5351
            dict{IrNode: set(IrNode)}: the adjacency list.
5352
        """
5353 5354
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
5355
        for k, v in adj_list.items():
5356 5357
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
5358

5359 5360 5361 5362 5363 5364 5365 5366
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
5367
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
5368 5369 5370 5371 5372
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

5373 5374
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
5375 5376 5377 5378
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True,
            )
5379 5380
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
5381 5382 5383
                print(
                    'The {} is saved as the dot filetype.'.format(dot_file_path)
                )
5384

5385
        remove_ctr_vars = set()
5386
        if remove_ctr_var:
5387
            for node in self.all_var_nodes():
5388 5389 5390
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
5391 5392
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

5393 5394
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
5395 5396 5397 5398 5399 5400
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
5401 5402 5403 5404
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
5405 5406
        if not os.path.exists(save_path):
            os.makedirs(save_path)
5407 5408 5409 5410 5411 5412 5413
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
5414 5415 5416
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
5417
        WARN: When the graph includes backward operator nodes, the
5418 5419 5420 5421 5422 5423
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
5424
        convert_pass = core.get_pass('graph_to_program_pass')
5425 5426
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
5427 5428 5429 5430
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

5431 5432 5433 5434 5435 5436 5437 5438
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
5439
        assert target_node is not None, (
5440 5441
            "Cannot find the target node (%s)in the giving set." % node_name
        )
5442 5443
        return target_node

5444 5445 5446 5447
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
5448 5449 5450 5451 5452
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
5453
            desc.set_block_attr(name, val.desc)
5454
        elif isinstance(val, list) and val and _all_is_type(val, Block):
5455
            desc.set_blocks_attr(name, [v.desc for v in val])
5456 5457 5458
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5459 5460 5461 5462 5463
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


5464
class Program:
D
dzhwinter 已提交
5465
    """
5466
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
5467
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
5468
    it will contain nested block.
5469

J
Jiabin Yang 已提交
5470 5471 5472
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
5473

J
Jiabin Yang 已提交
5474
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
5475
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
5476 5477 5478 5479 5480 5481 5482
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
5483
    **Notes**:
5484 5485 5486
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5487 5488

    Returns:
J
Jiabin Yang 已提交
5489
        Program: An empty Program.
D
dzhwinter 已提交
5490 5491

    Examples:
5492 5493
        .. code-block:: python

5494 5495 5496 5497
            import paddle
            import paddle.static as static

            paddle.enable_static()
5498

5499 5500 5501 5502 5503
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5504
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5505 5506 5507

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5508 5509 5510

    """

5511 5512
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5513 5514
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5515 5516
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5517
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5518
        self.__op_role_var = []
T
tangwei12 已提交
5519

5520 5521
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5522
        self._is_distributed = False
5523
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5524
        self._is_chief = False
5525 5526 5527
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5528
        self._endpoints = []
5529 5530 5531
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5532
        self._trainers_endpoints = []
5533
        # the distributed lookup table names
T
tangwei12 已提交
5534
        self._distributed_lookup_table = None
5535 5536 5537

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5538 5539
        self._use_lamb = False

5540 5541 5542
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5543

5544 5545 5546
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5547
        self._program_config = None
5548

5549 5550
        self._pass_applied = None

H
hutuxian 已提交
5551 5552 5553
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5554 5555 5556
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5557 5558 5559
        # appending gradients times
        self._appending_grad_times = 0

5560 5561
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
5562 5563
            "__auto_checkpoint_program__"
        )
5564

5565 5566
        # compiled program, i.e. Graph
        self._graph = None
5567 5568
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5569

5570
    def _find_var_class_kwargs(self, new_desc):
5571 5572 5573 5574 5575 5576 5577 5578
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5579 5580 5581 5582
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5583
            if idx > (len(self.blocks) - 1):
5584
                self._create_block()
5585 5586 5587 5588 5589 5590 5591 5592 5593 5594
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
                    'shape': get_var_desc_attr_or_none(
                        new_var_desc,
                        "shape",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'dtype': get_var_desc_attr_or_none(
                        new_var_desc,
                        "dtype",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'lod_level': get_var_desc_attr_or_none(
                        new_var_desc,
                        "lod_level",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'error_clip': old_var.error_clip
                    if old_var is not None
                    else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None
                    else False,
                    'is_data': old_var.is_data
                    if old_var is not None
                    else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None
                    else False,
5636 5637 5638
                }

                if isinstance(old_var, Parameter):
5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655
                    kwargs.update(
                        {
                            'trainable': old_var.trainable,
                            'optimize_attr': old_var.optimize_attr,
                            'regularizer': old_var.regularizer,
                            'do_model_average': old_var.do_model_average,
                            'need_clip': old_var.need_clip,
                            'is_distributed': old_var.is_distributed,
                            'is_parameter': old_var.is_parameter,
                        }
                    )
                    block_new_vars.append(
                        {
                            'class': Parameter,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5656 5657
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
5658 5659 5660 5661 5662 5663
                    block_new_vars.append(
                        {
                            'class': Variable,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5664 5665 5666 5667 5668 5669 5670

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5671
        assert block_num == self.desc.num_blocks()
5672 5673

        # clear old blocks and desc
5674 5675 5676 5677 5678 5679 5680 5681 5682
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5683

5684
        del desc
5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5704 5705 5706 5707 5708 5709 5710 5711 5712 5713
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5714 5715
                import paddle
                import paddle.static as static
5716

5717 5718 5719
                paddle.enable_static()

                prog = static.default_main_program()
5720 5721 5722 5723 5724
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5725
                prog1 = static.default_main_program()
5726 5727 5728 5729 5730 5731 5732 5733
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5734
    @property
5735
    def _op_role(self):
Y
yuyang18 已提交
5736 5737 5738 5739 5740 5741 5742 5743
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5744
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5745 5746 5747 5748
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5749 5750
        return self._current_role

5751 5752
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5753 5754 5755
        self._current_role = role

    @property
5756
    def _op_role_var(self):
Y
yuyang18 已提交
5757
        """
5758
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5759

5760
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5761 5762 5763

        Notes: This is a very low-level API. Users should not use it directly.
        """
5764
        return self.__op_role_var
Y
yuyang18 已提交
5765

5766
    @signature_safe_contextmanager
5767 5768 5769 5770 5771
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5772 5773 5774 5775
        try:
            yield
        finally:
            self._current_role = tmp_role
5776

S
rename  
sneaxiy 已提交
5777
    @signature_safe_contextmanager
W
Wu Yi 已提交
5778
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5779 5780 5781 5782 5783 5784 5785
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5786
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5787 5788 5789

        Examples:

5790
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5791
            >>> p, g = backward(...)
W
Wu Yi 已提交
5792
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5793 5794
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5795
        tmp_role = self._current_role
5796
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5797

Y
yuyang18 已提交
5798 5799
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5800
        self.__op_role_var = [
5801 5802 5803
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5804 5805 5806 5807 5808
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5809

S
rename  
sneaxiy 已提交
5810
    @signature_safe_contextmanager
X
Xin Pan 已提交
5811
    def _lr_schedule_guard(self, is_with_opt=False):
5812 5813 5814 5815 5816 5817 5818
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5819 5820 5821 5822
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5823 5824 5825

        Examples:

5826
            >>> import paddle.fluid as fluid
5827 5828 5829 5830
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5831 5832

        tmp_role = self._current_role
5833
        tmp_var = self.__op_role_var
5834

5835 5836
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5837 5838
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5839
        # TODO(typhoonzero): how to set target learning rate var
5840
        self.__op_role_var = []
5841 5842 5843 5844 5845
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5846

5847
    def __str__(self):
Y
yuyang18 已提交
5848 5849 5850 5851 5852 5853 5854 5855 5856
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5877 5878
            import paddle
            import paddle.static as static
5879

5880 5881 5882
            paddle.enable_static()

            cur_program = static.Program()
5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5894
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5895 5896
            type(skip_op_callstack)
        )
5897 5898 5899
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5900
            program_str += '\n'
5901
        return program_str
Y
Yang Yang(Tony) 已提交
5902

F
fengjiayi 已提交
5903 5904 5905
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5906

J
Jiabin Yang 已提交
5907 5908 5909
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5910

J
Jiabin Yang 已提交
5911
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5912

H
haowang101779990 已提交
5913
        Returns:
J
Jiabin Yang 已提交
5914
            str: The debug string describe current Program.
Y
yuyang18 已提交
5915 5916

        Raises:
J
Jiabin Yang 已提交
5917
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5918

5919 5920 5921
        Examples:
            .. code-block:: python

5922 5923 5924 5925
                import paddle
                import paddle.static as static

                paddle.enable_static()
5926

5927 5928 5929
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5930
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5931
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5932
                print("program string without detail: {}".format(prog_string))
5933
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5934
        """
5935 5936 5937
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
5938 5939
            type(throw_on_error)
        )
5940 5941 5942
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
5943 5944
            type(with_details)
        )
5945

F
fengjiayi 已提交
5946 5947 5948 5949
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965
            protostr = self.desc.serialize_to_string()
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
            res_str += (
                "version {\n  "
                + textwrap.indent(
                    _debug_string_(proto.version, throw_on_error), "  "
                )
                + "}\n"
            )
            res_str += (
                "op_version_map {\n  "
                + textwrap.indent(
                    _debug_string_(proto.op_version_map, throw_on_error), "  "
                )
                + "}\n"
            )
F
fengjiayi 已提交
5966 5967
        else:
            protostr = self.desc.serialize_to_string()
5968
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
5969 5970
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5971

W
Wu Yi 已提交
5972
    def _get_desc(self):
Y
yuyang18 已提交
5973 5974 5975 5976 5977 5978 5979
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5980 5981
        return self.desc

X
version  
Xin Pan 已提交
5982 5983 5984
    def _version(self):
        return self.desc._version()

5985
    def clone(self, for_test=False):
Y
yuyang18 已提交
5986
        """
5987
        .. note:::
5988 5989
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
5990
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5991

5992
        Create a new Program with forward content of original one when ``for_test=True``.
5993
        Create a new Program as same as the original one when ``for_test=False``.
5994

5995
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5996 5997 5998
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5999

6000 6001
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
6002 6003
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
6004
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
6005

C
cyberslack_lee 已提交
6006 6007 6008
        Examples:
            .. code-block:: python
                :name: code-example-1
L
Luo Tao 已提交
6009

C
cyberslack_lee 已提交
6010 6011
                import paddle
                import paddle.static as static
6012

C
cyberslack_lee 已提交
6013
                paddle.enable_static()
6014

C
cyberslack_lee 已提交
6015 6016 6017 6018 6019 6020 6021
                img = static.data(name='image', shape=[None, 784])
                pred = static.nn.fc(x=img, size=10, actvation='relu')
                loss = paddle.mean(pred)
                # Here we use clone before Momentum
                test_program = static.default_main_program().clone(for_test=True)
                optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
                optimizer.minimize(loss)
6022

J
Jiabin Yang 已提交
6023
        Args:
6024

6025 6026
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
6027

J
Jiabin Yang 已提交
6028
        Returns:
6029
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
6030

Y
yuyang18 已提交
6031 6032 6033

        Examples:

6034 6035 6036 6037 6038 6039 6040
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

6041
            .. code-block:: python
C
cyberslack_lee 已提交
6042
                :name: code-example-2
6043

6044
                import paddle
6045 6046

                def print_prog(prog):
6047
                    for name, value in sorted(prog.block(0).vars.items()):
6048 6049 6050 6051 6052
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
6053
                        for key, value in sorted(op.all_attrs().items()):
6054 6055 6056 6057
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


6058
            1. To clone a test program, the sample code is:
6059
                .. code-block:: python
C
cyberslack_lee 已提交
6060
                    :name: code-example-3
6061

6062 6063 6064 6065 6066 6067
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
6068 6069

                    def print_prog(prog):
6070
                        for name, value in sorted(prog.block(0).vars.items()):
6071 6072 6073 6074 6075
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
6076
                            for key, value in sorted(op.all_attrs().items()):
6077 6078 6079
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

6080 6081
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
6082 6083 6084

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
6085 6086 6087
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
6088
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
6089 6090
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
6091
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
6092 6093
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
6094
                            test_program = train_program.clone(for_test=True)
6095
                    print_prog(test_program)
J
Jiabin Yang 已提交
6096 6097 6098 6099

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

6100
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
6101 6102 6103 6104
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

6105 6106 6107
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
6108 6109 6110
                            sgd.minimize(avg_loss)


6111
            2. The clone method can be avoid if you create program for training and program for testing individually.
6112
                .. code-block:: python
C
cyberslack_lee 已提交
6113
                    :name: code-example-4
6114

6115 6116 6117 6118 6119 6120
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
6121 6122

                    def print_prog(prog):
6123
                        for name, value in sorted(prog.block(0).vars.items()):
6124 6125 6126 6127 6128
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
6129
                            for key, value in sorted(op.all_attrs().items()):
6130 6131
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
6132

6133
                    def network():
6134
                        img = static.data(name='image', shape=[None, 784])
6135
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
6136 6137
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
6138
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
6139 6140
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
6141 6142
                        return avg_loss

6143 6144 6145 6146 6147
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
6148
                            avg_loss = network()
6149
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
6150
                            sgd.minimize(avg_loss)
6151
                    # the test startup program is not used.
6152 6153
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
6154 6155
                            avg_loss = network()
                    print_prog(test_program_2)
6156

6157
            The two code snippets above will generate and print same programs.
6158
        """
6159

T
tangwei12 已提交
6160
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
6161 6162 6163
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

6164
        pruned_origin_block_id_map = None
6165
        if for_test:
6166 6167
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
6168 6169
                self.desc
            )
6170 6171
            forward_prog.blocks = [
                Block(forward_prog, i)
6172
                for i in range(forward_prog.desc.num_blocks())
6173 6174 6175
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
6176
        else:
6177
            p = Program()
G
gongweibao 已提交
6178 6179
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
6180
            p.desc = core.ProgramDesc(self.desc)
6181
            p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())]
G
gongweibao 已提交
6182 6183

            p._current_role = self._current_role
6184
            p.__op_role_var = self.__op_role_var
6185
            p._appending_grad_times = self._appending_grad_times
6186 6187
            if hasattr(self, 'lr_scheduler'):
                p.lr_scheduler = self.lr_scheduler
6188 6189
            if hasattr(self, '_pipeline_opt'):
                p._pipeline_opt = self._pipeline_opt
G
gongweibao 已提交
6190

T
tangwei12 已提交
6191
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
6192
            # its desc.
W
Wu Yi 已提交
6193
            p._sync_with_cpp()
6194

W
Wu Yi 已提交
6195
        p._copy_param_info_from(self)
6196
        p._copy_data_info_from(self, pruned_origin_block_id_map)
6197
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
6198
        return p
6199

6200
    def _prune(self, targets):
Y
yuyang18 已提交
6201 6202 6203 6204 6205 6206 6207 6208
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
6209
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
6210 6211 6212 6213
                need to be pruned

        Returns:
            Program:  A new, pruned program.
6214
        """
6215
        return self._prune_with_input([], targets)
6216 6217

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
6218
        """
6219
        Prune operators and variables which are not needed to generate
6220 6221
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
6222 6223 6224 6225 6226 6227 6228

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
6229
            targets(list|Variable|Operator): A list of variables, operators, or variable names
6230 6231 6232 6233 6234 6235
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
6236
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
6237 6238 6239
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

6240 6241
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
6242 6243
        if not isinstance(targets, list):
            targets = [targets]
6244 6245

        for var in feeded_var_names:
6246
            if not isinstance(var, str):
6247 6248
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
6249 6250
                    "str, but received %s." % type(var)
                )
6251

6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

6268 6269 6270 6271
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
6272
                    name = t.name
6273
                elif isinstance(t, str):
6274
                    name = str(t)
6275
                else:
6276 6277
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
6278 6279
                        "Variable or Operator, but received %s." % type(t)
                    )
6280 6281 6282 6283 6284 6285

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
6286 6287 6288
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
6289

6290 6291 6292 6293 6294 6295 6296 6297 6298
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
6299
                        # Skip optimize op except for optimize op in targets,
6300 6301 6302 6303 6304
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
6305

6306
                if target_op is not None:
6307 6308 6309
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
6310

6311
        res = Program()
6312
        res.desc, pruned_origin_block_id_map = core.prune(
6313 6314
            self.desc, set(feeded_var_names), targets_idx
        )
6315
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6316
        res._sync_with_cpp()
6317 6318 6319 6320 6321

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

6322 6323
        return res

X
Xin Pan 已提交
6324
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
6325
        """
F
fengjiayi 已提交
6326 6327 6328 6329 6330
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

6331
        3. change the :code:`is_test`
Y
yuyang18 已提交
6332 6333 6334
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

6335
        Args:
X
Xin Pan 已提交
6336 6337
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
6338

Y
yuyang18 已提交
6339 6340 6341 6342 6343 6344
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
6345
        res = Program()
6346
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
6347 6348 6349 6350

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
6351
        if prune_read_op:
6352
            while True:
6353 6354 6355 6356
                if (
                    read_op_idx >= root_block.op_size()
                    or root_block.op(read_op_idx).type() == 'read'
                ):
6357 6358 6359 6360 6361 6362
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
6363
                    root_block._remove_var(var.name().encode())
F
fengjiayi 已提交
6364 6365

        # change all `is_test` attributes to True
6366
        for i in range(res.desc.num_blocks()):
6367
            block = res.desc.block(i)
6368
            for j in range(block.op_size()):
6369 6370
                op = block.op(j)
                if op.has_attr('is_test'):
6371
                    op._set_bool_attr('is_test', True)
6372 6373 6374
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
6375
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6376
        res._sync_with_cpp()
6377 6378
        return res

6379
    def _remove_training_info(self, clip_extra=True):
6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

6394
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
6395 6396
        res._sync_with_cpp()

6397 6398
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
6399
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
6400

6401
        for i in range(res.desc.num_blocks()):
6402 6403 6404 6405
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
6406 6407
            if not clip_extra:
                continue
6408 6409 6410 6411
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
6412 6413 6414

                extra_attrs_map = core.get_op_extra_attrs(op.type())

6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
6428 6429 6430
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
6444
                # The extra output of op will be removed in the future
6445 6446
                for name in remove_output_list:
                    op.remove_output(name)
6447

6448 6449 6450 6451 6452 6453 6454
                op_quant_name = (
                    core.op_proto_and_checker_maker.kOpWithQuantAttrName()
                )
                quant = (
                    bool(op.attr(op_quant_name))
                    if op_quant_name in op.attr_names()
                    else False
6455 6456
                )
                quant_attrs = [
6457 6458 6459 6460 6461 6462 6463
                    op_quant_name,
                    "quantization_type",
                    "skip_quant",
                    "activation_bits",
                    "bit_length",
                    "quantize_weight_bits",
                    "weight_quant_scale",
6464
                ]
6465 6466
                for extra_attr_name in extra_attrs_map.keys():
                    op.remove_attr(extra_attr_name)
6467
                remove_attr_list = []
6468 6469 6470 6471 6472 6473
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
6474
                    if len(extra_attrs_map) > 0:
6475
                        if name in common_clipped_attrs_list:
6476
                            op.remove_attr(name)
6477
                        continue
6478 6479 6480 6481 6482 6483 6484 6485 6486 6487
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
6488 6489
        return res

6490 6491
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
6492
        """
6493
        .. note::
6494
            1. All information about parameters will be lost after serialization;
6495
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6496

6497 6498
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
6499

J
Jiabin Yang 已提交
6500
        Args:
Y
yuyang18 已提交
6501

J
Jiabin Yang 已提交
6502
            binary_str_type (str): the binary prootbuf string.
6503

J
Jiabin Yang 已提交
6504 6505
        Returns:
            Program: A deserialized Program.
6506 6507 6508 6509

        Examples:
            .. code-block:: python

6510 6511 6512 6513
                import paddle
                import paddle.static as static

                paddle.enable_static()
6514

6515 6516 6517 6518
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
6519

6520
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
6521

6522
                    z = paddle.matmul(x=x, y=y)
6523

6524 6525
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
6526

6527
                    print(static.default_main_program())
6528
                    print(prog_restored)
Y
yuyang18 已提交
6529
        """
6530 6531
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
6532
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
W
Wu Yi 已提交
6533
        p._sync_with_cpp()
6534
        return p
Y
Yu Yang 已提交
6535

6536
    @staticmethod
6537
    def _construct_from_desc(desc):
6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
6549
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
6550 6551 6552
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6553 6554
    @property
    def random_seed(self):
Y
yuyang18 已提交
6555
        """
J
Jiabin Yang 已提交
6556
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6557 6558
        the random seed from random device.

6559
        .. note::
6560
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6561 6562 6563

        Returns:
            int64: Random seed in current Program
6564

6565 6566 6567 6568

        Examples:
            .. code-block:: python

6569 6570 6571
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6572

6573 6574 6575
                paddle.enable_static()

                prog = static.default_main_program()
6576
                random_seed = prog.random_seed
6577
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6578 6579 6580
                print(random_seed)
                ## 0
                ## the default random seed is 0
6581

6582
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6583
                prog.random_seed = 1
6584
                z_var = F.dropout(x_var, 0.7)
6585

6586
                print(prog.random_seed)
6587 6588
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6589
        """
D
dzhwinter 已提交
6590 6591
        return self._seed

Q
qiaolongfei 已提交
6592 6593
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6594
        """
6595 6596
        The number of :ref:`api_guide_Block_en`  in this Program.

6597
        .. note::
6598
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6599 6600 6601

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6602

6603 6604 6605 6606

        Examples:
            .. code-block:: python

6607 6608 6609 6610
                import paddle
                import paddle.static as static

                paddle.enable_static()
6611

6612
                prog = static.default_main_program()
6613 6614
                num_blocks = prog.num_blocks
                print(num_blocks)
6615

6616 6617
                # print result:
                # 1
Y
yuyang18 已提交
6618
        """
Q
qiaolongfei 已提交
6619 6620
        return self.desc.num_blocks()

D
dzhwinter 已提交
6621 6622 6623
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6624 6625
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
6626 6627
                % type(seed)
            )
D
dzhwinter 已提交
6628 6629
        self._seed = seed

Y
Yu Yang 已提交
6630
    def __repr__(self):
6631
        return self.__str__()
6632

Y
Yu Yang 已提交
6633
    def global_block(self):
Y
yuyang18 已提交
6634
        """
6635 6636
        .. note::
            This API has no effect in Dygraph mode.
6637 6638 6639

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6640 6641
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6642

6643 6644 6645 6646

        Examples:
            .. code-block:: python

6647 6648 6649 6650
                import paddle
                import paddle.static as static

                paddle.enable_static()
6651

6652
                prog = static.default_main_program()
6653 6654
                gb_block = prog.global_block()
                print(gb_block)
6655

Y
yuyang18 已提交
6656
        """
Y
Yu Yang 已提交
6657 6658
        return self.blocks[0]

Q
Qiao Longfei 已提交
6659
    def block(self, index):
Y
yuyang18 已提交
6660
        """
6661 6662
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6663

6664 6665
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6666 6667
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6668

J
Jiabin Yang 已提交
6669 6670
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6671 6672 6673 6674

        Examples:
            .. code-block:: python

6675 6676 6677 6678
                import paddle
                import paddle.static as static

                paddle.enable_static()
6679

6680
                prog = static.default_main_program()
6681 6682
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6683
        """
Q
Qiao Longfei 已提交
6684 6685
        return self.blocks[index]

Y
Yu Yang 已提交
6686
    def current_block(self):
Y
yuyang18 已提交
6687
        """
6688 6689
        .. note::
            This API has no effect in Dygraph mode.
6690

J
Jiabin Yang 已提交
6691 6692
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6693

J
Jiabin Yang 已提交
6694 6695
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6696

6697 6698 6699
        Examples:
            .. code-block:: python

6700 6701 6702 6703
                import paddle
                import paddle.static as static

                paddle.enable_static()
6704

6705
                prog = static.default_main_program()
6706 6707
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6708
        """
Y
Yu Yang 已提交
6709 6710
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6711
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6712 6713 6714 6715 6716
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6717

Y
yuyang18 已提交
6718 6719 6720 6721 6722
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6723
        new_block_idx = len(self.blocks)
6724 6725 6726 6727 6728
        parent = (
            self.current_block()
            if parent_idx is None
            else self.block(parent_idx)
        )
F
update  
fengjiayi 已提交
6729
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6730 6731 6732 6733
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6734
    def _rollback(self):
Y
yuyang18 已提交
6735 6736 6737 6738 6739
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6740 6741
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6742
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6743 6744 6745 6746 6747 6748 6749 6750 6751 6752
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6753 6754 6755
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6756
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6757

W
Wu Yi 已提交
6758
    def _copy_param_info_from(self, other):
6759
        """
6760
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6761

Y
yuyang18 已提交
6762 6763 6764
        Notes: This is a very low level API. Users should not invoke it
        directly.

6765 6766 6767 6768 6769 6770 6771
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6772 6773
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6774 6775
                % type(other)
            )
6776

W
Wu Yi 已提交
6777
        self.global_block()._copy_param_info_from(other.global_block())
6778

6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6790 6791
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6792 6793
                % type(other)
            )
6794 6795
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6796
        self._parameters_on_pservers = other._parameters_on_pservers
6797
        self._endpoints = other._endpoints
6798
        self._ps_endpoint = other._ps_endpoint
6799 6800
        self._distributed_lookup_table = other._distributed_lookup_table

6801
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6802 6803
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6804

Y
yuyang18 已提交
6805 6806 6807
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6808 6809
        Args:
            other(Program): Other program
6810
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
6811 6812
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6813
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6814 6815 6816 6817 6818

        Returns:
            None
        """
        if not isinstance(other, Program):
6819 6820
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6821 6822
                % type(other)
            )
F
fengjiayi 已提交
6823

6824 6825
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
6826
                i: i for i in range(self.desc.num_blocks())
6827
            }
6828 6829 6830

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6831 6832
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6833
            for var in list(block.vars.values()):
6834 6835 6836 6837 6838 6839 6840
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6841

6842
    def list_vars(self):
Y
yuyang18 已提交
6843
        """
6844
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6845

J
Jiabin Yang 已提交
6846
        Returns:
6847
            iterable Tensors: The Generator will yield every Tensor in this program.
6848 6849 6850 6851

        Examples:
            .. code-block:: python

6852 6853
                import paddle
                import paddle.static as static
6854

6855 6856 6857 6858 6859
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6860 6861
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6862

6863 6864
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6865
        """
6866
        for each_block in self.blocks:
6867
            for each_var in list(each_block.vars.values()):
6868 6869
                yield each_var

6870 6871 6872 6873 6874 6875 6876 6877 6878 6879
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6880 6881 6882 6883
                import paddle
                import paddle.static as static

                paddle.enable_static()
6884

6885 6886
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6887
                hidden = static.nn.fc(x=data, size=10)
6888 6889
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6890 6891 6892 6893 6894 6895 6896

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6897 6898
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6899 6900 6901 6902 6903 6904 6905 6906 6907 6908
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6909 6910 6911 6912 6913 6914 6915 6916 6917
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
6918 6919 6920
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6921 6922
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
6923
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6951
        # can not be imported at the begainning of this file.
6952 6953
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
6954

6955 6956
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6957 6958 6959 6960
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".format(
                    type(scope)
                )
            )
6961 6962 6963 6964 6965

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6966 6967
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
6968 6969 6970
                    type(mode)
                )
            )
6971 6972 6973 6974 6975

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
6976 6977 6978 6979 6980
            if (
                var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
                or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
                or var.desc.type() == core.VarDesc.VarType.READER
            ):
6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):
            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6998 6999 7000 7001
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".format(
                        mode
                    )
                )
7002 7003 7004 7005 7006 7007 7008 7009

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
7010 7011 7012 7013
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".format(
                        var.name
                    )
                )
7014 7015 7016 7017 7018 7019
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
7020
        Set parameters and persistable buffers in state_dict to program.
7021
        An exception will throw if shape or dtype of the parameters is not match.
7022

7023 7024 7025 7026
        .. note::
            This function MUST called after run start_up_program

        Args:
7027
            state_dict(dict): the dict store parameters and persistable buffers.
7028 7029
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
7030
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
7031 7032
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
7033

7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
7063 7064 7065
                    type(state_dict)
                )
            )
7066 7067

        vars_dict = {var.name: var for var in self.list_vars()}
7068 7069 7070
        condition = (
            True if 'StructuredToParameterName@@' in state_dict else False
        )
7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
7082 7083
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
7084 7085
                except TypeError as err:
                    warnings.warn(
7086 7087
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
7088
            else:
7089
                warnings.warn(
7090 7091 7092 7093 7094 7095
                    (
                        "Skip loading for '{0}'. Because '{0}' not in the program.".format(
                            name
                        )
                    )
                )
7096

Y
Yu Yang 已提交
7097

7098
class Parameter(Variable, metaclass=ParameterMetaClass):
7099
    """
7100
    Parameter is derived from Variable. A parameter is a persistable
7101
    Variable, and will be updated by optimizers after each iteration.
7102
    The training of a neural network is essentially the updating of
7103 7104
    its parameters.

7105
    Relative to a general Variable, a Parameter has several its own
7106 7107
    member variables:

7108 7109 7110 7111 7112 7113 7114 7115 7116 7117
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
7118
        need_clip (bool): Whether the parameter gradient need to be cliped
7119
            in optimizer. Default is True.
7120 7121
    """

7122 7123 7124 7125 7126 7127
    def __init__(
        self,
        block,
        shape,
        dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
7128
        **kwargs,
7129
    ):
7130 7131 7132 7133 7134
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
7135 7136
        for each in shape:
            if each < 0:
7137 7138
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7139 7140 7141 7142 7143 7144 7145 7146 7147 7148
                    % list(shape)
                )

        Variable.__init__(
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
7149
            **kwargs,
7150
        )
Y
Yu Yang 已提交
7151 7152
        self.trainable = kwargs.get('trainable', True)

J
JYChen 已提交
7153 7154
        self.stop_gradient = not self.trainable

Y
Yu Yang 已提交
7155 7156
        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

7157 7158
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
7159
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
7160

7161 7162
        self.need_clip = kwargs.get('need_clip', True)

7163 7164
        self.is_distributed = False

7165 7166
        self.is_parameter = True

F
fengjiayi 已提交
7167
    def __str__(self):
7168
        return self._to_readable_code()
F
fengjiayi 已提交
7169

F
update  
fengjiayi 已提交
7170 7171 7172
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
7173

F
update  
fengjiayi 已提交
7174 7175 7176 7177 7178 7179 7180 7181
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

7182 7183 7184 7185
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
G
GGBond8488 已提交
7186
                import paddle
7187 7188

                prog = fluid.default_main_program()
G
GGBond8488 已提交
7189
                rlt = paddle.static.data("fake_data", shape=[-1,1,1], dtype='float32')
7190 7191
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
7192
        """
7193
        assert isinstance(throw_on_error, bool) and isinstance(
7194 7195
            with_details, bool
        )
F
update  
fengjiayi 已提交
7196 7197
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
7198 7199 7200 7201 7202 7203 7204
            additional_attr = (
                "trainable",
                "optimize_attr",
                "regularizer",
                "do_model_average",
                "need_clip",
            )
F
update  
fengjiayi 已提交
7205
            for attr_name in additional_attr:
7206
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
F
update  
fengjiayi 已提交
7207 7208
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
7209 7210 7211 7212
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
7213

W
wanghuancoder 已提交
7214
class EagerParamBase(core.eager.Tensor):
7215
    """
7216 7217
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
7235
        need_clip (bool): Whether the parameter gradient need to be cliped
7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7250 7251
                    % list(shape)
                )
7252 7253 7254 7255 7256 7257 7258

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

7259 7260 7261
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

7262
        super().__init__(
7263 7264 7265 7266 7267 7268
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
7283 7284 7285
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
7286 7287

    def set_init_func(self, obj):
7288
        self._init_func = obj
7289 7290 7291

    @dygraph_only
    def initialize(self):
7292 7293 7294
        assert (
            self._init_func is not None
        ), "Required self._init_func is not None, but received None."
7295
        self._init_func(self, None)
7296
        # clear function handle to release resource
7297
        self._init_func = None
7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7310 7311
                type(trainable),
            )
7312

7313 7314 7315 7316
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
7317 7318 7319
        assert (
            self._init_op_creator is not None
        ), "Required self._init_op_creator is not None, but received None."
7320
        self._init_op_creator(self, block)
7321

7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
7341
            tensor=super().__str__()
7342
        )
7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
7372 7373
        new_param._init_func = self._init_func
        new_param._init_op_creator = self._init_op_creator
7374 7375 7376 7377 7378 7379
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
7380 7381
        return new_param

7382 7383 7384
    __repr__ = __str__


Y
Yu Yang 已提交
7385
# program is a global instance.
Y
Yu Yang 已提交
7386 7387
_main_program_ = Program()
_startup_program_ = Program()
7388
_startup_program_._is_start_up_program_ = True
7389

7390

7391
def default_startup_program():
Y
Yu Yang 已提交
7392
    """
Y
yuyang18 已提交
7393 7394
    Get default/global startup program.

7395
    The :code:`paddle.nn` function will append the initialization operators into startup program.
7396
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
7397

7398 7399
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
7400

7401 7402
    Returns:
        Program: current default startup program.
7403

7404
    Returns type:
7405 7406 7407 7408

    Examples:
        .. code-block:: python

7409
            import paddle
7410

7411
            paddle.enable_static()
7412 7413 7414 7415
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
7416
    """
Y
Yu Yang 已提交
7417
    return _startup_program_
7418

7419

7420
def default_main_program():
Y
Yu Yang 已提交
7421
    """
7422
    This API can be used to get ``default main program`` which store the
7423
    descriptions of Ops and tensors.
T
tangwei12 已提交
7424

7425 7426
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
7427

7428
    The ``default main program`` is the default value for ``Program`` parameter in
7429
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7430
    :code:`default_main_program` when the program is not specified.
7431

7432
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7433

Y
Yu Yang 已提交
7434
    Returns:
7435
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7436 7437 7438 7439

    Examples:
        ..  code-block:: python

7440
            import paddle
7441

7442
            paddle.enable_static()
7443
            # Sample Network:
7444 7445 7446
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7447

7448 7449 7450
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7451
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7452
    """
Y
Yu Yang 已提交
7453
    return _main_program_
Y
Yu Yang 已提交
7454 7455 7456 7457 7458


def switch_main_program(program):
    """
    Switch the main program to a new program.
7459

Y
Yu Yang 已提交
7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7474
    Switch the startup program to a new program
Y
Yu Yang 已提交
7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7487
@signature_safe_contextmanager
Y
Yu Yang 已提交
7488 7489
def program_guard(main_program, startup_program=None):
    """
7490 7491
    :api_attr: Static Graph

7492 7493 7494
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7495

G
guofei 已提交
7496
    Args:
7497
        main_program(Program): New main program inside ``with`` statement.
7498 7499
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7500 7501 7502
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7503
    Examples:
C
cyberslack_lee 已提交
7504 7505
        .. code-block:: python
            :name: code-example-1
T
tangwei12 已提交
7506

C
cyberslack_lee 已提交
7507
            import paddle
Y
yuyang18 已提交
7508

C
cyberslack_lee 已提交
7509 7510 7511 7512 7513 7514
            paddle.enable_static()
            main_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(main_program, startup_program):
                data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
                hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7515 7516 7517

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7518

Y
Yu Yang 已提交
7519
    Examples:
C
cyberslack_lee 已提交
7520 7521
        .. code-block:: python
            :name: code-example-2
Y
yuyang18 已提交
7522

C
cyberslack_lee 已提交
7523
            import paddle
7524

C
cyberslack_lee 已提交
7525 7526 7527 7528 7529
            paddle.enable_static()
            main_program = paddle.static.Program()
            # does not care about startup program. Just pass a temporary value.
            with paddle.static.program_guard(main_program, paddle.static.Program()):
                data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7530

Y
Yu Yang 已提交
7531
    """
7532
    from .data_feeder import check_type
7533 7534 7535 7536

    check_type(
        main_program, 'main_program', Program, 'paddle.static.program_guard'
    )
Y
Yu Yang 已提交
7537 7538
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7539 7540 7541 7542 7543 7544
        check_type(
            startup_program,
            'startup_program',
            Program,
            'paddle.static.program_guard',
        )
7545 7546
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7547
        startup_program = switch_startup_program(startup_program)
7548 7549 7550 7551 7552 7553
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7554 7555


W
Wu Yi 已提交
7556
def _get_var(name, program=None):
X
xuwei06 已提交
7557
    """
Y
yuyang18 已提交
7558
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7559

X
xuwei06 已提交
7560 7561 7562
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7563
        If None, default_global_program() will be used.
X
xuwei06 已提交
7564 7565 7566 7567 7568 7569 7570

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7571
    assert isinstance(program, Program)
X
xuwei06 已提交
7572 7573

    return program.global_block().var(name)
7574 7575


7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588
@signature_safe_contextmanager
def dygraph_guard_if_declarative():
    from .dygraph.base import in_declarative_mode
    from .dygraph import Tracer

    if in_declarative_mode():
        # Under @paddle.jit.to_static decorator, we switch back dygraph mode temporarily.
        with _dygraph_guard(tracer=Tracer()):
            yield
    else:
        yield


S
rename  
sneaxiy 已提交
7589
@signature_safe_contextmanager
L
lujun 已提交
7590
def _dygraph_guard(tracer):
7591 7592 7593 7594
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = tracer
    if tracer is not None:
        core._switch_tracer(tracer)
M
minqiyang 已提交
7595

C
Charles-hit 已提交
7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607
    try:
        yield
    finally:
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer


@signature_safe_contextmanager
def _static_guard():
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = None
7608 7609 7610
    try:
        yield
    finally:
7611 7612 7613
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7614 7615


S
rename  
sneaxiy 已提交
7616
@signature_safe_contextmanager
L
lujun 已提交
7617
def _dygraph_place_guard(place):
7618 7619 7620
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7621 7622
    _set_dygraph_tracer_expected_place(place)

7623 7624 7625
    try:
        yield
    finally:
7626
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7627
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7628 7629


7630 7631 7632 7633 7634 7635 7636 7637 7638 7639
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7640

7641
    Note:
7642
        The API only supports static graph mode.
7643 7644 7645 7646

    A context manager that specifies the device on which the OP will be placed.

    Args:
7647
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
7648
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7649 7650 7651 7652 7653 7654 7655
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7656

7657
        .. code-block:: python
7658

7659
            # required: gpu
Z
Zhang Ting 已提交
7660
            import paddle
7661

Z
Zhang Ting 已提交
7662 7663 7664
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7665
            if support_gpu:
Z
Zhang Ting 已提交
7666
                place = paddle.CUDAPlace(0)
7667 7668

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7669 7670 7671
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7672

Z
Zhang Ting 已提交
7673
            with paddle.static.device_guard("cpu"):
7674
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7675 7676
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7677
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7678
                out = paddle.reshape(data1, shape=shape)
7679

Z
Zhang Ting 已提交
7680 7681
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7682 7683 7684
            result = exe.run(fetch_list=[out])
    """

7685 7686 7687 7688 7689
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7690 7691 7692 7693
    if (
        device not in ['cpu', 'gpu', 'xpu', '', None]
        and device not in core.get_all_custom_device_type()
    ):
7694
        raise ValueError(
7695
            "The Attr(device) should be 'cpu', 'xpu', 'gpu' or custom device, and it can also be empty string or None "
7696 7697
            "when there is no need to specify device. But received %s" % device
        )
7698 7699
    if index:
        device = ":".join([device, index])
7700
    pre_device = switch_device(device)
7701 7702 7703 7704
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7705 7706


7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
7719
        The API only supports static graph mode.
7720

7721
    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static graph mode.
7722 7723 7724 7725 7726

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
7727
    assert (
7728
        not in_dygraph_mode()
7729
    ), "cuda_graph_guard only works under static graph mode"
7730 7731
    assert (
        core.is_compiled_with_cuda()
7732 7733 7734 7735 7736 7737 7738 7739
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7740 7741 7742
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7743
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7744 7745 7746 7747 7748 7749 7750

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7751 7752
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7753 7754 7755 7756
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7757 7758
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7759 7760
        else:
            raise ValueError(
7761 7762
                "Flag %s cannot set its value through this function." % (key)
            )
G
guofei 已提交
7763 7764 7765 7766 7767


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7768
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7769 7770 7771 7772 7773 7774 7775 7776 7777 7778

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7779
            import paddle
G
guofei 已提交
7780 7781

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7782
            res = paddle.get_flags(flags)
G
guofei 已提交
7783 7784 7785 7786 7787 7788
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7789
            if _global_flags().is_public(key):
7790
                value = _global_flags()[key]
G
guofei 已提交
7791 7792 7793 7794
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
7795 7796 7797
                    'Flag %s cannot get its value through this function.'
                    % (key)
                )
G
guofei 已提交
7798
    elif isinstance(flags, str):
7799
        if _global_flags().is_public(flags):
7800
            value = _global_flags()[flags]
G
guofei 已提交
7801 7802 7803 7804
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
7805 7806
                'Flag %s cannot get its value through this function.' % (flags)
            )
G
guofei 已提交
7807 7808 7809
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7810 7811 7812 7813 7814 7815


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827
    if isinstance(
        place,
        (
            core.Place,
            core.XPUPlace,
            core.CPUPlace,
            core.CUDAPinnedPlace,
            core.CUDAPlace,
            core.IPUPlace,
            core.CustomPlace,
        ),
    ):
7828 7829 7830 7831
        return place

    if not isinstance(place, str):
        raise ValueError(
7832 7833
            "place only support string which is 'Place' and so on."
        )
7834 7835

    place = place.lower()
7836
    if place == "cpu":
7837
        return core.CPUPlace()
7838

7839
    if place == "device":
7840 7841
        return core.Place()

7842
    # GPU
7843 7844 7845 7846
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
7847
                "The device should not be {}, since PaddlePaddle is "
7848
                "not compiled with CUDA".format(avaliable_gpu_place.group())
7849
            )
7850 7851 7852 7853 7854 7855 7856 7857 7858
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7859 7860

    # XPU
7861 7862 7863 7864
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
7865
                "The device should not be {}, since PaddlePaddle is "
7866
                "not compiled with XPU".format(avaliable_xpu_place.group())
7867
            )
7868 7869 7870 7871
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7872

J
jianghaicheng 已提交
7873 7874 7875 7876 7877
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
7878
                "The device should not be {}, since PaddlePaddle is "
7879
                "not compiled with IPU".format(avaliable_ipu_place.group())
7880
            )
J
jianghaicheng 已提交
7881 7882 7883 7884 7885
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7886 7887 7888 7889 7890 7891 7892
    place_info_list = place.split(':', 1)
    device_type = place_info_list[0]
    if device_type in core.get_all_custom_device_type():
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.CustomPlace(device_type, device_id)

7893
    raise ValueError(
7894
        f"Paddle supports CPUPlace, CUDAPlace, CUDAPinnedPlace, XPUPlace, IPUPlace and CustomPlace, but received {place}."
7895
    )
7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907


def _get_paddle_place_list(places):
    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret