framework.py 268.7 KB
Newer Older
G
gouzil 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

import textwrap
Y
Yu Yang 已提交
16
import collections
X
Xin Pan 已提交
17
from collections import defaultdict
H
huzhiqiang 已提交
18
from collections.abc import Iterable
Q
qiaolongfei 已提交
19
import contextlib
20
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
21
import os
F
fengjiayi 已提交
22
import re
23
import traceback
24
import copy
25
from types import MethodType, FunctionType
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
R
risemeup1 已提交
32 33 34

from .proto import framework_pb2, data_feed_pb2

35
from . import core
36
from . import unique_name
37
from .. import ir
38 39
import paddle.version as fluid_version
import warnings
40
import functools
41
from .variable_index import _getitem_static, _setitem_static, _setitem_impl_
42
import threading
Y
Yu Yang 已提交
43

44
__all__ = [
45 46 47 48
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
49
    'name_scope',
J
jianghaicheng 已提交
50
    'ipu_shard_guard',
51
    'set_ipu_shard',
S
sneaxiy 已提交
52 53
    'cuda_places',
    'cpu_places',
54
    'xpu_places',
S
sneaxiy 已提交
55
    'cuda_pinned_places',
L
lujun 已提交
56
    'in_dygraph_mode',
57
    'is_compiled_with_cinn',
C
chengduo 已提交
58
    'is_compiled_with_cuda',
59
    'is_compiled_with_rocm',
60
    'is_compiled_with_xpu',
61
    'Variable',
62
    'require_version',
63
    'device_guard',
G
guofei 已提交
64 65
    'set_flags',
    'get_flags',
66
    '_stride_in_no_check_dy2st_diff',
67
]
Y
Yu Yang 已提交
68

Q
qiaolongfei 已提交
69 70 71 72
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
73 74
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

75

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
# use thread local to create thread save global variables.
class GlobalThreadLocal(threading.local):
    def __init__(self):
        """
        init the thread local data.
        TODO(xiongkun): how to access another thread local data ?
        """
        global _dygraph_tracer_
        self._in_declarative_mode_ = False
        self._functional_dygraph_context_manager = None
        self._dygraph_tracer_ = _dygraph_tracer_

    def __str__(self):
        strings = []
        strings.append(
            "_in_declarative_mode_:" + str(self._in_declarative_mode_)
        )
        strings.append(
            "_functional_dygraph_context_manager:"
            + str(self._functional_dygraph_context_manager)
        )
        strings.append("_dygraph_tracer_:" + str(self._dygraph_tracer_))
        return "\n".join(strings)

    def __setattr__(self, name, val):
        if name == '_dygraph_tracer_':
            global _dygraph_tracer_
            _dygraph_tracer_ = val
        self.__dict__[name] = val


L
lujun 已提交
107
_dygraph_tracer_ = None
108 109
global_var = GlobalThreadLocal()

110
_global_expected_place_ = None
111
_current_device = None
112
global_prog_seed = 0
113
_current_pipeline_stage = None
114
_current_cuda_graph_mode = None
115
_global_flags_ = core.globals()
W
wanghuancoder 已提交
116
_stride_in_no_check_dy2st_diff_mode = False
J
Jiabin Yang 已提交
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
# special_op_attrs, extra_op_attrs are prepared for printing warnings
# when turning on FLAGS_print_extra_attrs
special_op_attrs = {
    "elementwise_add": [{"axis": -1}],
    "elementwise_sub": [{"axis": -1}],
    "elementwise_mul": [{"axis": -1}],
    "elementwise_div": [{"axis": -1}],
    "elementwise_max": [{"axis": -1}],
    "elementwise_min": [{"axis": -1}],
    "elementwise_pow": [{"axis": -1}],
    "elementwise_mod": [{"axis": -1}],
    "elementwise_floordiv": [{"axis": -1}],
    "less_than": [{"axis": -1}],
    "less_equal": [{"axis": -1}],
    "greater_than": [{"axis": -1}],
    "greater_equal": [{"axis": -1}],
    "equal": [{"axis": -1}],
    "not_equal": [{"axis": -1}],
    "amax": [{"reduce_all": False}],
    "amin": [{"reduce_all": False}],
    "any": [{"reduce_all": False}],
    "frobenius_norm": [{"reduce_all": False}],
    "logsumexp": [{"reduce_all": False}],
    "reduce_max": [{"reduce_all": False}],
    "reduce_min": [{"reduce_all": False}],
    "reduce_mean": [{"reduce_all": False}],
    "reduce_prod": [{"reduce_all": False}],
    "reduce_sum": [{"reduce_all": False}],
}

extra_op_attrs = {
    "gather": ["overwrite"],
    "graph_reindex": ["flag_buffer_hashtable"],
    "graph_sample_neighbors": ["flag_perm_buffer"],
    "relu6": ["threshold"],
    "swish": ["beta"],
    "hsigmoid_loss": ["remote_prefetch"],
    "max_pool2d_with_index": ["global_pooling"],
    "uniform": ["diag_num"],
    "unique": ["is_sorted"],
}

K
Kim Yann 已提交
160
# FIXME(dev): We haven't fully verified eager mode on XPU et.al but
161 162 163 164
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


J
Jiabin Yang 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
186
            print(paddle.in_dynamic_mode())  # False, Now we are in static graph mode
J
Jiabin Yang 已提交
187 188 189 190 191

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
192
    return global_var._dygraph_tracer_ is not None
J
Jiabin Yang 已提交
193 194


195 196
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
197 198 199 200 201
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


@signature_safe_contextmanager
202
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
203 204 205 206
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
207
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
208
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
209
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
210
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
211
            which means no pipelining computation order and run Ops in terms of graph.
212

G
gouzil 已提交
213 214 215 216 217 218 219
    Note:
        Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
        duplicated index.
J
jianghaicheng 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


254 255 256 257
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

G
gouzil 已提交
258 259 260 261 262
    Note:
        Only when enable_manual_shard=True to set the index to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        Only when enable_pipelining=True to set stage to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        An index supports a corresponding None stage or a stage, and a stage only supports a new index or a duplicate index.

263 264 265 266 267
    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
268
            The sharded model will be computed from small to large. The default value is -1,
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):
        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

294
    from paddle.nn import Layer
295

296 297 298 299 300
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
301 302
                "Unsupported type. Only accept paddle.nn.Layer or function."
            )
303 304 305 306 307 308 309 310 311 312 313 314

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):
        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


315 316
def require_version(min_version, max_version=None):
    """
317 318 319
    Check if the installed version of PaddlePaddle is in [min_version, max_version],
    if the installed version is lower than ``min_version`` or higher than ``max_version``,
    an exception will be thrown, NO returns if the installed version is satisfied.
320

321 322 323 324
    Args:
        min_version (str): the minimum version required (like '1.4.0').
        max_version (str, optional): the max version required (like '1.6.0'), default is None,
            meaning any version equal or higher than ``min_version`` is acceptable.
325

326 327
    Returns:
        None.
328

329 330 331 332 333 334
    Raises:
        TypeError: if the type of ``min_version`` is not str.
        TypeError: if the type of ``max_version`` is not str or type(None).
        ValueError: if the value of ``min_version`` is not in version format.
        ValueError: if the value of ``max_version`` is not in version format or None.
        Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.
335

336 337
    Examples:
        .. code-block:: python
338

339
            import paddle.fluid as fluid
340

341 342
            # any version >= 0.1.0 is acceptable.
            fluid.require_version('0.1.0')
343

344 345 346
            # if 0.1.0 <= version <= 10.0.0, it is acceptable.
            fluid.require_version(min_version='0.1.0', max_version='10.0.0')
    """
347 348 349
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
350 351
            % (type(min_version))
        )
352 353 354 355

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
356 357
            % (type(max_version))
        )
358 359 360 361 362

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
363 364
            "like '1.5.2.0', but received %s" % min_version
        )
365 366 367 368 369 370

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
371 372
                "like '1.5.2.0', but received %s" % max_version
            )
373 374

    version_installed = [
375 376 377 378
        fluid_version.major,
        fluid_version.minor,
        fluid_version.patch,
        fluid_version.rc,
379 380 381 382
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
383
        for i in range(len(ver_a)):
384 385 386 387 388 389 390 391 392 393 394
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
395 396 397
                "please make sure the version is good with your code."
                % (min_version, max_version, fluid_version.full_version)
            )
398 399 400 401
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
402 403 404
                "please make sure the version is good with your code."
                % (min_version, fluid_version.full_version)
            )
405 406 407
        return

    min_version_split = min_version.split('.')
408 409 410
    min_version_to_check = (
        min_version_split + zero_version[len(min_version_split) :]
    )
411 412 413

    if max_version is not None:
        max_version_split = max_version.split('.')
414 415 416
        max_version_to_check = (
            max_version_split + zero_version[len(max_version_split) :]
        )
417

418 419 420 421
        if (
            version_cmp(version_installed, max_version_to_check) > 0
            or version_cmp(version_installed, min_version_to_check) < 0
        ):
422 423
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
424 425
                % (min_version, max_version, fluid_version.full_version)
            )
426 427 428 429 430
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
431 432
                % (min_version, fluid_version.full_version, min_version)
            )
433 434


435 436
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
437
        assert not in_dygraph_mode(), (
438 439
            "We don't support %s in dynamic graph mode" % func.__name__
        )
440 441 442 443 444 445 446
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
447
        assert in_dygraph_mode(), (
448 449 450
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
451 452 453 454 455
        return func(*args, **kwargs)

    return __impl__


456 457 458
def _non_static_only_(func):
    def __impl__(*args, **kwargs):
        from .dygraph.base import in_declarative_mode
459

460
        assert in_dygraph_mode() or in_declarative_mode(), (
461 462 463
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
464 465 466 467 468
        return func(*args, **kwargs)

    return __impl__


469 470
def _static_only_(func):
    def __impl__(*args, **kwargs):
471
        assert not in_dygraph_mode(), (
472 473 474
            "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode."
            % func.__name__
        )
475 476 477 478 479
        return func(*args, **kwargs)

    return __impl__


480 481 482 483 484
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


485
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
W
wanghuancoder 已提交
486 487
# used to make Variable and Tensor has same interfaces, like numpy. Since Tensor is not exposed in our
# official docments, logically, we want to keep Tensor and logically consistent. While, actually,
488 489
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
W
wanghuancoder 已提交
490
# TODO(zhiqiu): We should make Tensor consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
491
# same base class.
492 493 494
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
495 496
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
R
Ryan 已提交
497
            "  2. If you are using `@paddle.jit.to_static`, you can call `paddle.jit.enable_to_static(False)`. "
498
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
499 500
            % (func.__name__, func.__name__)
        )
501 502 503 504

    return __impl__


T
tangwei12 已提交
505 506
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
507 508 509 510 511 512 513 514 515
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
516 517
                DeprecationWarning,
            )
518 519 520 521 522 523 524
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


525 526
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
527
static_only = wrap_decorator(_static_only_)
528
fake_interface_only = wrap_decorator(_fake_interface_only_)
529
non_static_only = wrap_decorator(_non_static_only_)
530 531


L
lujun 已提交
532
def _dygraph_tracer():
533
    return global_var._dygraph_tracer_
534

W
Wu Yi 已提交
535

536 537 538 539
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
540
def _current_expected_place():
541 542 543
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
544 545 546 547 548
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
549
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
550 551 552 553 554
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
555 556 557 558 559 560
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
561
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
562 563 564 565 566
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
        elif len(core.get_all_custom_device_type()) > 0:
            dev_type = core.get_all_custom_device_type()[0]
            try:
                device_count = core.get_custom_device_count(dev_type)
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CustomPlace(
                    dev_type, _custom_device_ids(dev_type)[0]
                )
            else:
                warnings.warn(
                    "You are using CUSTOM_DEVICE version Paddle, but your custom device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
582 583 584 585 586 587 588
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
589 590
    if global_var._dygraph_tracer_ is not None:
        global_var._dygraph_tracer_._expected_place = place
591 592 593 594 595


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
596
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
597 598


S
sneaxiy 已提交
599
def _cpu_num():
600
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
601 602 603 604 605 606 607
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
608 609 610
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()
                )
            )
C
chengduo 已提交
611
        os.environ['CPU_NUM'] = str(1)
612
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
613 614 615 616 617 618 619 620
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
621
        device_ids = range(core.get_cuda_device_count())
C
chengduo 已提交
622
    return device_ids
S
sneaxiy 已提交
623 624


625 626 627 628 629
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
630
        device_ids = range(core.get_xpu_device_count())
631 632 633
    return device_ids


634 635 636 637 638 639 640 641 642
def _custom_device_ids(device_type):
    custom_devices_env = os.getenv("FLAGS_selected_" + device_type + "s")
    if custom_devices_env:
        device_ids = [int(s) for s in custom_devices_env.split(",")]
    else:
        device_ids = range(core.get_custom_device_count(device_type))
    return device_ids


643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


658 659 660 661 662 663 664
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
665

666 667 668 669 670 671
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

Z
Zman 已提交
672 673
    Returns:
        None
674 675 676 677 678 679 680 681 682 683

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


684 685 686 687
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

688 689
    Returns:
        Bool: `True` if CINN is currently available, otherwise `False`.
690 691 692 693 694 695 696 697 698 699

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
700 701 702 703
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

704 705
    Returns:
        Bool: `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
706 707 708 709

    Examples:
        .. code-block:: python

710
            import paddle
711
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
712 713 714 715
    """
    return core.is_compiled_with_cuda()


716 717 718 719
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

720 721
    Returns:
        Bool: `True` if ROCm is currently available, otherwise `False`.
722 723 724 725 726

    Examples:
        .. code-block:: python

            import paddle
727
            support_gpu = paddle.device.is_compiled_with_rocm()
728 729 730 731
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
732
def cuda_places(device_ids=None):
L
lujun 已提交
733
    """
734
    Note:
735 736 737
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
738
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
739 740

    If :code:`device_ids` is None, environment variable of
741
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
742
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
743
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
744
    If :code:`FLAGS_selected_gpus` is not set, all visible
745
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
746 747

    If :code:`device_ids` is not None, it should be the device
748
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
749
    the returned list would be
C
Chen Weihang 已提交
750
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
751

752
    Parameters:
753
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
754 755

    Returns:
C
Chen Weihang 已提交
756
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
757 758

    Examples:
759

L
lujun 已提交
760 761
        .. code-block:: python

C
Chen Weihang 已提交
762 763
            import paddle
            import paddle.static as static
T
tangwei12 已提交
764

765
            # required: gpu
766

C
Chen Weihang 已提交
767 768 769
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
770 771

    """
772
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
773
    if device_ids is None:
C
chengduo 已提交
774
        device_ids = _cuda_ids()
S
sneaxiy 已提交
775 776 777 778 779
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


780 781 782 783
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
784 785 786 787 788 789 790 791 792
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
793
        the returned list would be
S
sunzhongkai588 已提交
794
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
795

796 797 798 799 800 801
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
802

803 804
            # required: xpu

805 806
            import paddle
            import paddle.static as static
807

808 809 810
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
811
    assert core.is_compiled_with_xpu(), "Not compiled with XPU"
812 813 814 815 816 817 818
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
819
def cpu_places(device_count=None):
L
lujun 已提交
820
    """
C
Chen Weihang 已提交
821
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
822

S
add doc  
sneaxiy 已提交
823
    If :code:`device_count` is None, the device count would
824
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
825 826
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
827 828
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
829

830 831
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
832 833

    Returns:
C
Chen Weihang 已提交
834
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
835 836

    Examples:
837

L
lujun 已提交
838 839
        .. code-block:: python

C
Chen Weihang 已提交
840 841
            import paddle
            import paddle.static as static
T
tangwei12 已提交
842

C
Chen Weihang 已提交
843 844 845
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
846 847
    """

S
sneaxiy 已提交
848 849 850 851 852 853
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
854
    """
855
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
856 857

    If :code:`device_count` is None, the device count would
858
    be determined by environment variable :code:`CPU_NUM`.
859 860 861 862
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
863

864 865
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
866 867

    Returns:
868
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
869 870 871 872

    Examples:
        .. code-block:: python

873
            import paddle.fluid as fluid
L
lujun 已提交
874 875 876 877 878
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
879
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
880
    if device_count is None:
881 882
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
883 884


885
class NameScope:
886 887 888 889 890 891 892 893 894 895
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
896 897 898
            new_child = NameScope(
                prefix + "_%d" % len(self._children[prefix]), self
            )
899 900 901 902 903 904 905 906 907 908 909 910 911
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
912
@signature_safe_contextmanager
913 914
def name_scope(prefix=None):
    """
915

916
    Generate hierarchical name prefix for the operators in Static Graph.
917

918
    Note:
T
Tao Luo 已提交
919 920
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
921
        Don't use it in dygraph, since it will cause memory leak.
922 923

    Args:
T
Tao Luo 已提交
924
        prefix(str, optional): prefix. Default is none.
925 926

    Examples:
927

928
        .. code-block:: python
T
Tink_Y 已提交
929

930 931 932
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
933
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
934
             b = a + 1
935
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
936
                c = b * 1
937
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
938
                d = c / 1
939 940 941
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
942 943
                g = f - 1

944
          # Op are created in the default main program.
945
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
961 962
    """
    # TODO(panyx0718): Only [0-9a-z].
963
    # in dygraph we don't need namescope since it will cause mem leak
964
    if in_dygraph_mode():
L
Leo Chen 已提交
965 966
        yield
    else:
T
tianshuo78520a 已提交
967
        assert prefix, "namescope prefix can not be empty."
968 969
        global _name_scope
        _name_scope = _name_scope.child(prefix)
970 971 972 973
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
974 975 976 977 978 979 980 981 982 983 984 985


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
986 987
def generate_control_dev_var_name():
    import random
988

W
Wu Yi 已提交
989
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
990 991 992 993


def grad_var_name(var_name):
    """
994 995
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
996 997 998
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
999

1000
def convert_np_dtype_to_dtype_(np_dtype):
1001
    """
1002
    Convert the data type in numpy to the data type in Paddle.
1003

1004
    Args:
1005 1006
        np_dtype (np.dtype|str): The data type in numpy or valid data type
            string.
1007

1008
    Returns:
1009
        core.VarDesc.VarType / core.DataType : The data type in Paddle.
1010 1011

    """
1012 1013
    # Convert the data type string to numpy data type.
    if isinstance(np_dtype, str) and np_dtype == "bfloat16":
1014 1015 1016
        dtype = np.uint16
    else:
        dtype = np.dtype(np_dtype)
1017

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
    if ir.core._use_new_ir_api():
        if dtype == np.float32:
            return core.DataType.FLOAT32
        elif dtype == np.float64:
            return core.DataType.FLOAT64
        elif dtype == np.float16:
            return core.DataType.FLOAT16
        elif dtype == np.int32:
            return core.DataType.INT32
        elif dtype == np.int16:
            return core.DataType.INT16
        elif dtype == np.int64:
            return core.DataType.INT64
        elif dtype == np.bool_:
            return core.DataType.BOOL
        elif dtype == np.uint16:
            # since there is still no support for bfloat16 in NumPy,
            # uint16 is used for casting bfloat16
            return core.DataType.UINT16
        elif dtype == np.uint8:
            return core.DataType.UINT8
        elif dtype == np.int8:
            return core.DataType.INT8
        elif dtype == np.complex64:
            return core.DataType.COMPLEX64
        elif dtype == np.complex128:
            return core.DataType.COMPLEX128
        else:
            raise ValueError("Not supported numpy dtype %s" % dtype)
1047
    else:
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
        if dtype == np.float32:
            return core.VarDesc.VarType.FP32
        elif dtype == np.float64:
            return core.VarDesc.VarType.FP64
        elif dtype == np.float16:
            return core.VarDesc.VarType.FP16
        elif dtype == np.int32:
            return core.VarDesc.VarType.INT32
        elif dtype == np.int16:
            return core.VarDesc.VarType.INT16
        elif dtype == np.int64:
            return core.VarDesc.VarType.INT64
        elif dtype == np.bool_:
            return core.VarDesc.VarType.BOOL
        elif dtype == np.uint16:
            # since there is still no support for bfloat16 in NumPy,
            # uint16 is used for casting bfloat16
            return core.VarDesc.VarType.BF16
        elif dtype == np.uint8:
            return core.VarDesc.VarType.UINT8
        elif dtype == np.int8:
            return core.VarDesc.VarType.INT8
        elif dtype == np.complex64:
            return core.VarDesc.VarType.COMPLEX64
        elif dtype == np.complex128:
            return core.VarDesc.VarType.COMPLEX128
        else:
            raise ValueError("Not supported numpy dtype %s" % dtype)
1076 1077 1078


def dtype_is_floating(dtype):
1079 1080 1081
    """
    Check the data type is floating or not.
    Args:
1082
        dtype(np.dtype|core.VarDesc.VarType): data type.
1083 1084 1085 1086 1087
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1088
    if not isinstance(dtype, core.VarDesc.VarType):
1089 1090
        dtype = convert_np_dtype_to_dtype_(dtype)

1091
    return dtype in [
1092 1093 1094
        core.VarDesc.VarType.FP16,
        core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64,
1095
    ]
1096 1097


Y
Yang Yang(Tony) 已提交
1098
def _debug_string_(proto, throw_on_error=True):
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1110
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1111
    if not proto.IsInitialized(error_fields) and throw_on_error:
1112 1113
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
1114 1115 1116
                error_fields, proto
            )
        )
Y
Yu Yang 已提交
1117 1118 1119
    return proto.__str__()


1120
def _create_tensor(
1121 1122 1123 1124 1125
    type=core.VarDesc.VarType.LOD_TENSOR,
    name=None,
    shape=None,
    dtype=None,
    persistable=None,
1126
    **kwargs,
1127
):
1128 1129 1130 1131
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

W
wanghuancoder 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140
    eager_tensor = core.eager.Tensor(
        dtype if dtype else core.VarDesc.VarType.FP32,
        list(shape) if shape else [],
        name,
        type if type else core.VarDesc.VarType.LOD_TENSOR,
        True if persistable else False,
    )
    eager_tensor.retain_grads()
    return eager_tensor
1141 1142


1143 1144 1145 1146 1147 1148 1149
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
1150 1151
    if not vals:
        return False
1152 1153 1154
    return all(isinstance(v, expected_type) for v in vals)


1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
def wrap_as_scalar(number):
    """Wrap a number(either python scalar or numpy scalar) as core.Scalar if
    it is not a scalar.


    Args:
        number (Number): number

    Returns:
        Scalar: A Scalar that contains the value.
    """
    if isinstance(number, core.Scalar):
        return number
    if isinstance(number, (bool, int, float, complex)):
        return core.Scalar(number)
    if isinstance(number, np.number):
        # it is a numpy scalar
        return core.Scalar(number.item())
    else:
        raise TypeError("Cannot wrap {} as core.Scalar".format(number))


def wrap_as_scalars(array):
    """This function is used to convert flat list, or numpy array(not
    necesarily flat) to list of core.Scalar, which correspond to
    std::vector<paddle::experimental::Scalar> in operator runtime.

    Args:
        array (List | np.ndarray): array of numbers

    Returns:
        List: list of core.Scalar, of which each element is a Scalar containing
          the corresponding value.
    """
    if isinstance(array, np.ndarray):
        array = array.ravel().tolist()
    return [wrap_as_scalar(item) for item in array]


def extract_plain_list(array):
    """extract value from a list of core.Scalar.

    Args:
        array (list): Scalars

    Returns:
        list: values extracted from the scalars.
    """
    return [item.value() for item in array]


def canonicalize_attrs(attrs, op_proto):
    """This function is used to canonicalize attributes(as a string->any dict)
    according to the type specification in the OpProto. This is especially
    important for operators that has any attributes of type Scalar or Scalars.

    Though various frontends of phi kernels & paddle operators can wrap variables
    of concrete types into Scalars(a tagged union of several numeric types) or
    vector of Scalars. Paddle operator requires strict type matching.

    Args:
        attrs (Dict[str, Any]): attribute dict intended to pass to an operator.
        op_proto (OpProto): Proto (signature) of the operator.

    Returns:
        Dict[str, Any]: canonicalized attributes.
    """
    canonicalized_attrs = attrs.copy()  # shallow copy is enough here
    for attr in op_proto.attrs:
        attr_name = attr.name
        type_index = attr.type
        if (attr_name not in attrs) or (attrs[attr_name] is None):
            continue

        attr_val = attrs[attr_name]

        # VAR and VARS should be skipped
        if isinstance(attr_val, Variable):
            continue
        if isinstance(attr_val, list) and _all_is_type(attr_val, Variable):
            continue

        # wrap
        if type_index == core.AttrType.SCALAR:
            canonicalized_attrs[attr_name] = core.Scalar(attr_val)
        elif type_index == core.AttrType.SCALARS:
            # it should be a list (or a numpy array)
            if len(attr_val) > 0:
                attr_val = np.array(attr_val).ravel().tolist()
                attr_val = [core.Scalar(x) for x in attr_val]
                canonicalized_attrs[attr_name] = attr_val

    return canonicalized_attrs


1250 1251 1252 1253 1254
class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1255
            return issubclass(t, core.eager.Tensor)
1256 1257 1258 1259 1260 1261 1262 1263 1264
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1265
            return issubclass(t, EagerParamBase)
1266 1267 1268 1269
        else:
            return issubclass(t, Parameter)


1270
class Variable(metaclass=VariableMetaClass):
1271
    """
J
Jiabin Yang 已提交
1272

U
ustiniankw 已提交
1273 1274 1275 1276
    Notes:
        The constructor of Variable should not be invoked directly.

        In Static Graph Mode: Please use ** `Block.create_var` ** to create a Static variable which has no data until being feed.
1277

U
ustiniankw 已提交
1278
        In Dygraph Mode: Please use ** :ref:`api_fluid_dygraph_to_variable` ** to create a dygraph variable with real data.
J
Jiabin Yang 已提交
1279 1280

    In Fluid, every input and output of an OP is a variable. In most
1281
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1282 1283
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1284

1285
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1286
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1287

T
tianshuo78520a 已提交
1288
    Most of a Variable's member variables can be set to be None. It mean
1289
    it is not available or will be specified later.
1290

1291
    Examples:
1292 1293
        In Static Graph Mode:

1294
        .. code-block:: python
C
cyberslack_lee 已提交
1295
            :name: code-example-1
1296

1297
            import paddle.fluid as fluid
1298
            cur_program = fluid.Program()
1299 1300 1301 1302
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1303

1304
        In Dygraph  Mode:
1305 1306

        .. code-block:: python
C
cyberslack_lee 已提交
1307
            :name: code-example-2
1308 1309 1310 1311 1312 1313 1314

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1315 1316
    """

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
    def __init__(
        self,
        block,
        type=core.VarDesc.VarType.LOD_TENSOR,
        name=None,
        shape=None,
        dtype=None,
        lod_level=None,
        capacity=None,
        persistable=None,
        error_clip=None,
        stop_gradient=False,
        is_data=False,
        need_check_feed=False,
        belong_to_optimizer=False,
1332
        **kwargs,
1333
    ):
Y
Yu Yang 已提交
1334 1335
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1336
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1337

Y
Yu Yang 已提交
1338
        if dtype is not None:
1339
            if not isinstance(dtype, core.VarDesc.VarType):
1340
                dtype = convert_np_dtype_to_dtype_(dtype)
1341

S
Steffy-zxf 已提交
1342 1343 1344 1345
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1346 1347 1348
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1349 1350
        self.belong_to_optimizer = belong_to_optimizer

1351 1352 1353
        self.error_clip = error_clip

        is_new_var = False
1354
        self.desc = self.block.desc.find_var(name.encode())
1355

1356
        if self.desc is None:
1357
            self.desc = self.block.desc.var(name.encode())
1358
            is_new_var = True
1359

1360 1361 1362
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
1363 1364 1365 1366 1367
            raise ValueError(
                "Variable '{0}' has been created before. The "
                "previous type is {1}, the new type is {2}. They"
                " are not matched".format(self.name, self.desc.type(), type)
            )
1368

1369
        if shape is not None:
1370
            if is_new_var:
1371 1372 1373 1374 1375 1376
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1377 1378
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1379 1380
                        "matched.".format(self.name, old_shape, shape)
                    )
1381 1382 1383 1384 1385 1386
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
1387 1388 1389 1390 1391 1392
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous data type is {1}, the new "
                        "data type is {2}. They are not "
                        "matched.".format(self.name, old_dtype, dtype)
                    )
1393 1394 1395 1396 1397 1398

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
1399 1400 1401 1402 1403 1404
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous lod_level is {1}, the new "
                        "lod_level is {2}. They are not "
                        "matched".format(self.name, self.lod_level, lod_level)
                    )
1405 1406 1407 1408 1409 1410
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1411 1412
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1413
                        "persistable is {2}. They are not matched".format(
1414 1415 1416
                            self.name, self.persistable, persistable
                        )
                    )
1417

1418 1419
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1420

1421 1422 1423 1424 1425 1426 1427
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1428

1429 1430
        self.block.vars[name] = self
        self.op = None
1431
        self.stop_gradient = stop_gradient
1432
        self.is_data = is_data
W
wanghuancoder 已提交
1433
        self.is_view_var = False
Y
Yu Yang 已提交
1434

1435 1436
    def detach(self):
        """
U
ustiniankw 已提交
1437

1438
        Returns a new Variable, detached from the current graph.
1439 1440
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1441

1442
        Returns:
U
ustiniankw 已提交
1443
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable), The detached Variable.
1444 1445 1446 1447

        Examples:
            .. code-block:: python

1448
                import paddle
1449

1450 1451 1452 1453
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1454

1455 1456
                # create a detached Variable
                y = x.detach()
U
ustiniankw 已提交
1457

1458
        """
1459

1460 1461 1462 1463
        assert (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ), "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"
1464 1465 1466 1467 1468 1469

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
1470 1471
            stop_gradient=True,
        )
1472

1473 1474 1475
        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]}
        )
1476
        return output
1477

1478
    @fake_interface_only
1479
    def numpy(self):
1480
        """
J
Jiabin Yang 已提交
1481
        **Notes**:
T
tianshuo78520a 已提交
1482
            **This API is ONLY available in Dygraph mode**
1483

J
Jiabin Yang 已提交
1484
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1485 1486 1487 1488 1489

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1490
            ndarray: dtype is same as current Variable
1491 1492 1493 1494 1495 1496

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1497
                from paddle.fluid.dygraph import Linear
1498 1499 1500 1501
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1502
                    linear = Linear(32, 64)
1503
                    data = to_variable(data)
1504
                    x = linear(data)
1505 1506 1507
                    print(x.numpy())

        """
1508
        pass
1509

1510
    @non_static_only
1511
    def backward(self, retain_graph=False):
1512
        """
J
Jiabin Yang 已提交
1513
        **Notes**:
T
tianshuo78520a 已提交
1514
            **This API is ONLY available in Dygraph mode**
1515

1516
        Run backward of current Graph which starts from current Tensor.
1517

J
Jiabin Yang 已提交
1518
        Args:
1519 1520 1521 1522
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1523

J
Jiabin Yang 已提交
1524 1525
        Returns:
            NoneType: None
1526 1527 1528 1529 1530

        Examples:
            .. code-block:: python

                import numpy as np
1531 1532
                import paddle
                paddle.disable_static()
1533 1534

                x = np.ones([2, 2], np.float32)
1535 1536 1537 1538 1539 1540 1541
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1542 1543
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1544
                loss.backward()
1545 1546

        """
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
        from .backward import append_backward

        if retain_graph is True:
            raise AssertionError(
                "`retain_graph` == True is not supported in @to_static function."
                "please set retain_graph = False."
            )
        param_grad_list = append_backward(self)
        for param, param_grad in param_grad_list:
            # set grad to simulate dygraph loss.backward() in static mode.
            setattr(param, "grad", param_grad)
1558

1559
    @fake_interface_only
1560
    def gradient(self):
1561
        """
J
Jiabin Yang 已提交
1562
        **Notes**:
T
tianshuo78520a 已提交
1563
            **This API is ONLY available in Dygraph mode**
1564 1565 1566

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1567
        Returns:
1568
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1569 1570 1571 1572

        Examples:
            .. code-block:: python

1573
                import paddle
1574 1575 1576
                import paddle.fluid as fluid
                import numpy as np

1577
                # example1: return ndarray
1578 1579 1580 1581 1582 1583 1584
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1585
                    ret2 = paddle.add_n(inputs2)
1586
                    loss2 = paddle.sum(ret2)
1587
                    loss2.backward()
1588 1589
                    print(loss2.gradient())

1590 1591
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
1592 1593 1594 1595 1596
                    embedding = paddle.nn.Embedding(
                        20,
                        32,
                        weight_attr='emb.w',
                        sparse=True)
1597 1598 1599 1600 1601 1602 1603
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1604
        """
1605
        pass
1606

1607
    @fake_interface_only
1608
    def clear_gradient(self):
1609
        """
J
Jiabin Yang 已提交
1610
        **Notes**:
T
tianshuo78520a 已提交
1611
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1612 1613

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1614

J
Jiabin Yang 已提交
1615
        Clear  (set to ``0`` ) the Gradient of Current Variable
1616 1617 1618 1619 1620 1621

        Returns:  None

        Examples:
            .. code-block:: python

1622
                import paddle
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1633
                    ret2 = paddle.add_n(inputs2)
1634
                    loss2 = paddle.sum(ret2)
1635
                    loss2.backward()
1636 1637 1638 1639 1640
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1641
        pass
X
Xin Pan 已提交
1642

1643
    def register_hook(self, hook):
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
        import paddle

        def backward_hook_wrapper(dy):
            """call the backward hook in ."""
            return hook(np.array(dy))

        def forward_hook_wrapper(x):
            """do nothing but return a new variable."""
            return x

        paddle.static.py_func(
            func=forward_hook_wrapper,
            x=self,
            out=self,
            backward_func=backward_hook_wrapper,
            skip_vars_in_backward_input=[self],
        )
1661

1662
    def __str__(self):
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1679 1680
                import paddle
                import paddle.static as static
1681

1682 1683 1684
                paddle.enable_static()

                cur_program = static.Program()
1685 1686 1687 1688 1689 1690
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1691 1692
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1693 1694 1695 1696
        if (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ):
1697
            dtype_str = str(self.dtype).split('.')[1]
1698 1699 1700 1701 1702 1703 1704
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".format(
                name=self.name,
                type=type_str,
                shape=self.shape,
                dtype=dtype_str,
                stop_gradient=self.stop_gradient,
            )
1705
        else:
1706
            var_str = "{name} : {type})".format(name=self.name, type=type_str)
1707

1708
        if self.is_parameter:
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1719
        from paddle.distributed.auto_parallel.static.dist_context import (
1720 1721 1722
            get_default_distributed_context,
        )

1723
        dist_context = get_default_distributed_context()
1724 1725
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1726 1727 1728
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_tensor
            )
1729

1730
        return var_str
Y
Yang Yang(Tony) 已提交
1731

F
update  
fengjiayi 已提交
1732
    def to_string(self, throw_on_error, with_details=False):
1733 1734 1735
        """
        Get debug string.

J
Jiabin Yang 已提交
1736 1737 1738 1739 1740
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1741

1742 1743
        Returns:
            str: The debug string.
1744 1745 1746 1747 1748

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1749
                import paddle
1750

1751
                paddle.enable_static()
1752 1753 1754 1755 1756
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1757
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1758
                print("=============with detail===============")
1759
                print(new_variable.to_string(True, True))
1760
        """
1761
        assert isinstance(throw_on_error, bool) and isinstance(
1762 1763
            with_details, bool
        )
1764
        protostr = self.desc.serialize_to_string()
1765
        proto = framework_pb2.VarDesc.FromString(bytes(protostr))
F
update  
fengjiayi 已提交
1766 1767
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1768
            additional_attr = ("error_clip",)
F
update  
fengjiayi 已提交
1769
            for attr_name in additional_attr:
1770
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
1771

F
update  
fengjiayi 已提交
1772
        return res_str
1773 1774 1775

    __repr__ = __str__

1776 1777 1778
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
1779

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1803
    @property
1804
    def stop_gradient(self):
J
Jiabin Yang 已提交
1805 1806 1807
        """
        Indicating if we stop gradient from current Variable

1808
        **Notes: This Property has default value as** ``True`` **in** Dygraph **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``
J
Jiabin Yang 已提交
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1820 1821
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1822 1823 1824
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1825 1826
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1827 1828 1829 1830
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1831
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1832 1833
                assert (out1.gradient() == 0).all()
        """
1834
        return self.desc.stop_gradient()
1835

1836 1837
    @stop_gradient.setter
    def stop_gradient(self, s):
1838
        self.desc.set_stop_gradient(s)
1839

1840 1841
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1842 1843 1844 1845 1846 1847 1848 1849
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

1850
            **2. In** Dygraph **mode, this property should not be changed**
J
Jiabin Yang 已提交
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1863
        return self.desc.persistable()
1864

Y
Yu Yang 已提交
1865 1866
    @persistable.setter
    def persistable(self, p):
1867
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1868

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1894 1895
    @property
    def name(self):
J
Jiabin Yang 已提交
1896 1897 1898
        """
        Indicating name of current Variable

1899
        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** Dygraph **mode. This is how we achieve Parameter sharing**
J
Jiabin Yang 已提交
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1912
        return self.desc.name()
Y
Yu Yang 已提交
1913

1914 1915 1916 1917 1918 1919
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1920 1921
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1922

1923 1924 1925
        Examples:
          .. code-block:: python

1926
          import paddle
1927

1928
          x = paddle.static.data(name="x", shape=[-1, 23, 48], dtype='float32')
1929
          print(x.grad_name) # output is ``x@GRAD``
1930 1931 1932 1933

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1934 1935
    @name.setter
    def name(self, new_name):
1936
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1937

Y
Yu Yang 已提交
1938 1939
    @property
    def shape(self):
J
Jiabin Yang 已提交
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1957
        # convert to tuple, make it as same as numpy API.
1958
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1959 1960

    @property
F
fengjiayi 已提交
1961
    def dtype(self):
J
Jiabin Yang 已提交
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1978
        return self.desc.dtype()
Y
Yu Yang 已提交
1979 1980 1981

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1982 1983 1984 1985 1986 1987 1988 1989
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

1990
            **2. Don't support this property in** Dygraph **mode, it's value should be** ``0(int)``
J
Jiabin Yang 已提交
1991 1992 1993 1994

        Examples:
          .. code-block:: python

1995
            import paddle
J
Jiabin Yang 已提交
1996
            import paddle.fluid as fluid
1997 1998

            paddle.enable_static()
J
Jiabin Yang 已提交
1999 2000 2001 2002 2003 2004 2005
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
2006 2007
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
2008 2009
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
2010
        return self.desc.lod_level()
Y
Yu Yang 已提交
2011

Y
Yu Yang 已提交
2012 2013
    @property
    def type(self):
J
Jiabin Yang 已提交
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2030
        return self.desc.type()
Y
Yu Yang 已提交
2031

2032 2033 2034
    @property
    def T(self):
        """
U
ustiniankw 已提交
2035

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
U
ustiniankw 已提交
2054

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
2067 2068
            stop_gradient=False,
        )
2069 2070 2071 2072 2073
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
2074 2075 2076 2077 2078 2079 2080 2081 2082
            stop_gradient=False,
        )

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': perm},
        )
2083 2084
        return out

2085 2086 2087
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
2088
        Variable. It remains in the current graph, that is, the cloned Variable
2089 2090 2091 2092
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
U
ustiniankw 已提交
2093
            Variable, The cloned Variable.
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
2113 2114
            stop_gradient=self.stop_gradient,
        )
2115

2116 2117 2118
        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]}
        )
2119 2120
        return output

W
Wu Yi 已提交
2121
    def _set_error_clip(self, error_clip):
2122
        """
U
ustiniankw 已提交
2123

2124 2125 2126 2127 2128 2129 2130
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
U
ustiniankw 已提交
2131

2132
        """
2133 2134
        self.error_clip = error_clip

2135 2136
    def _set_info(self, key, value):
        """
U
ustiniankw 已提交
2137

2138 2139 2140 2141 2142 2143
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

2144
        Returns:
2145
            None
U
ustiniankw 已提交
2146

2147 2148 2149 2150 2151 2152 2153
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
U
ustiniankw 已提交
2154

2155 2156 2157 2158 2159
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

2160
        Returns:
2161
            object
U
ustiniankw 已提交
2162

2163 2164 2165 2166 2167
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2168 2169
    def _slice_indices(self, slice, length):
        """
U
ustiniankw 已提交
2170

2171
        Reference implementation for the slice.indices method.
U
ustiniankw 已提交
2172

2173 2174 2175 2176 2177 2178 2179 2180
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2181
            raise ValueError("slice step can not be zero")
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2192 2193 2194
            start = (
                max(start + length, lower) if start < 0 else min(start, upper)
            )
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
2240 2241 2242
                if (index > 0 and index >= self.shape[index]) or (
                    index < 0 and (index + self.shape[index]) < 0
                ):
2243
                    raise IndexError("invalid index")
2244 2245 2246 2247 2248
                start = (
                    max(start + self.shape[index], 0)
                    if start < 0
                    else min(start, self.shape[index])
                )
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2262
    def _cloneVar(self, copy=False):
2263 2264
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2265
                name=unique_name.generate_with_ignorable_key(self.name),
2266 2267
                dtype=self.dtype,
            )
2268 2269 2270 2271
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2272
        new_var = self._cloneVar()
2273 2274 2275 2276 2277 2278
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes, 'starts': starts, 'ends': ends},
        )
2279 2280 2281
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2282
        new_var = self._cloneVar()
2283 2284 2285 2286 2287 2288 2289 2290
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={
                'axis': axis,
            },
        )
2291 2292 2293 2294 2295
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2296
                return self._cloneVar(True)
2297 2298 2299 2300 2301 2302 2303
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2304 2305 2306
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2307 2308 2309
                        start += step
                else:
                    while start > stop:
2310 2311 2312
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2313 2314 2315 2316
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2317
                return self._cloneVar(True)
2318
            index = int(item)
2319 2320 2321
            if (index > 0 and index >= self.shape[axis]) or (
                index < 0 and (index + self.shape[axis]) < 0
            ):
2322 2323 2324 2325 2326 2327
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2328
        return _getitem_static(self, item)
2329

2330
    def __setitem__(self, item, value):
2331 2332 2333
        from .dygraph.base import in_declarative_mode

        if in_declarative_mode():
2334 2335 2336 2337
            if is_compiled_with_xpu():
                # (NOTE): Currently, there is no index_put_xpu kernel.
                return _setitem_impl_(self, item, value)
            return _setitem_static(self, item, value)
2338 2339 2340 2341
        else:
            raise RuntimeError(
                "In static mode, the __setitem__ (looks like: x[indices] = values) should not be used. Please use x = paddle.static.setitem(x, indices, values)"
            )
2342

2343 2344
    def get_value(self, scope=None):
        """
2345
        Get the value of variable in given scope.
2346 2347

        Args:
2348
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2349 2350 2351 2352
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
U
ustiniankw 已提交
2353
            Tensor, the value in given scope.
2354 2355 2356 2357 2358

        Examples:
            .. code-block:: python

                import paddle
2359
                import paddle.static as static
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2384 2385
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2386 2387
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
2388

2389 2390
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2391 2392 2393 2394
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2395 2396 2397 2398 2399

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
2400 2401 2402
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2403 2404 2405 2406 2407
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
U
ustiniankw 已提交
2408

2409
        Set the value to the tensor in given scope.
2410 2411 2412

        Args:
            value(Tensor/ndarray) : The value to be set.
2413
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2414 2415 2416 2417 2418
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
2419

2420 2421 2422 2423
        Examples:
            .. code-block:: python

                import paddle
2424
                import paddle.static as static
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
U
ustiniankw 已提交
2448

2449 2450 2451
        '''

        # The 'framework' is a low-level module, and 'executor'
2452
        # can not be imported at the begainning of this file.
2453 2454 2455 2456 2457
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2458 2459 2460 2461
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".format(
                    type(value)
                )
            )
2462 2463 2464

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2465 2466 2467 2468
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2469 2470 2471 2472 2473 2474

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
2475 2476 2477
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
2488 2489 2490 2491
                    "{} expected a shape {}, but the received shape is {}.".format(
                        self.name, list(t.shape()), list(value_shape)
                    )
                )
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2502 2503 2504 2505 2506 2507
        elif p.is_custom_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.CustomPlace(
                p.custom_device_type(), p.custom_device_id()
            )
2508 2509 2510 2511 2512 2513 2514
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2515 2516
    def size(self):
        """
U
ustiniankw 已提交
2517

2518
        Returns the number of elements for current Variable, which is a int64 Variable with shape [] .
2519 2520

        Returns:
U
ustiniankw 已提交
2521
            Variable, the number of elements for current Variable
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
U
ustiniankw 已提交
2535

2536 2537 2538 2539
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
2540 2541
            dtype=core.VarDesc.VarType.INT64,
        )
2542

2543 2544 2545
        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]}
        )
2546 2547
        return output

2548 2549
    def _set_attr(self, name, val):
        """
U
ustiniankw 已提交
2550

2551 2552 2553 2554 2555
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
U
ustiniankw 已提交
2556

2557 2558 2559 2560 2561
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
U
ustiniankw 已提交
2562

2563 2564 2565 2566 2567 2568
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2569 2570
            bool, True if has this attribute.

2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

2592
    def attr(self, name):
2593 2594 2595 2596 2597 2598 2599
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2600
            int|str|list, The attribute value. The return value
2601 2602 2603 2604 2605
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2606
    def dist_attr(self):
2607
        """
2608
        Get distributed attribute of this Variable.
2609
        """
2610
        return self.desc.dist_attr
2611

2612 2613
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2614
        """
2615
        Set distributed attribute of this Variable.
2616
        """
2617
        self.desc.dist_attr = dist_attr
2618

Y
Yu Yang 已提交
2619

F
fengjiayi 已提交
2620 2621 2622
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2623

2624 2625
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2626 2627 2628 2629
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2630
        op_proto = framework_pb2.OpProto.FromString(bytes(pbstr))
F
fengjiayi 已提交
2631 2632 2633 2634
        ret_values.append(op_proto)
    return ret_values


2635
class OpProtoHolder:
2636 2637 2638 2639
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2640 2641 2642 2643 2644 2645 2646 2647
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
2648 2649
            self.__class__, '_instance'
        ), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2650 2651 2652 2653 2654 2655
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2656 2657 2658 2659 2660 2661 2662 2663
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2664 2665
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2666 2667
        return self.op_proto_map[type]

2668 2669
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2670
        custom_op_names = []
2671 2672 2673
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2674 2675 2676
                custom_op_names.append(proto.type)

        return custom_op_names
2677

2678 2679 2680
    def has_op_proto(self, type):
        return type in self.op_proto_map

2681 2682 2683 2684
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2685
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2686
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2687
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
2688
            core.op_proto_and_checker_maker.kOpDeviceAttrName(),
2689 2690
        }

F
fengjiayi 已提交
2691

2692
class Operator:
2693
    """
2694 2695 2696 2697 2698 2699 2700
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2701
        type(str): The type of operator. Default None.
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2722
        Block.append_op or Block._prepend_op instead.
2723 2724 2725 2726

    Examples:
        .. code-block:: python

2727
            import paddle.fluid as fluid
2728
            cur_program = fluid.Program()
2729 2730 2731 2732 2733
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2734
    """
2735

2736
    OP_WITHOUT_KERNEL_SET = {
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
        'feed',
        'fetch',
        'recurrent',
        'go',
        'rnn_memory_helper_grad',
        'conditional_block',
        'while',
        'send',
        'recv',
        'listen_and_serv',
        'fl_listen_and_serv',
        'ncclInit',
        'select',
        'checkpoint_notify',
        'gen_bkcl_id',
        'c_gen_bkcl_id',
        'gen_nccl_id',
        'c_gen_nccl_id',
        'c_comm_init',
        'c_sync_calc_stream',
        'c_sync_comm_stream',
        'queue_generator',
        'dequeue',
        'enqueue',
        'heter_listen_and_serv',
        'c_wait_comm',
        'c_wait_compute',
        'copy_cross_scope',
2765
    }
2766

2767 2768 2769
    def __init__(
        self, block, desc, type=None, inputs=None, outputs=None, attrs=None
    ):
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

2780
        if in_dygraph_mode():
2781 2782
            if type is None:
                raise ValueError(
2783 2784
                    "`type` to initialized an Operator can not be None."
                )
J
Jiabin Yang 已提交
2785
            self._type = type
M
minqiyang 已提交
2786
            self.attrs = attrs if attrs else {}
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2797
            # attr for static graph mode cuda graph
2798 2799
            self._cuda_graph_attr = _current_cuda_graph_mode

2800 2801 2802
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2803
                op_attrs[
2804 2805
                    op_maker.kOpRoleAttrName()
                ] = self.block.program._op_role
2806 2807

            role_var_name = op_maker.kOpRoleVarAttrName()
2808 2809 2810 2811
            if (
                len(self.block.program._op_role_var) != 0
                and role_var_name not in op_attrs
            ):
2812
                op_attrs[role_var_name] = self.block.program._op_role_var
2813 2814 2815 2816 2817

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2818 2819 2820 2821 2822
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2823 2824 2825
                return
            if type is None:
                raise ValueError(
2826 2827
                    "`type` to initialized an Operator can not be None."
                )
2828 2829
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2830 2831 2832
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2833
                        '  File "{}", line {}, in {}'.format(
2834 2835 2836 2837 2838 2839
                            frame[0], frame[1], frame[2]
                        )
                    )
                    op_attrs[callstack_var_name].append(
                        '    {}'.format(frame[3])
                    )
2840 2841 2842 2843 2844 2845 2846

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2847 2848 2849 2850 2851 2852 2853 2854
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
2855 2856 2857
                    warnings.warn(
                        "The Op(%s) is not support to set device." % type
                    )
2858
                if 'force_cpu' in op_attrs:
2859
                    if (
2860 2861
                        type == 'less_than'
                        and op_attrs['force_cpu'] is not None
2862
                    ) or op_attrs['force_cpu'] != False:
2863 2864 2865
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
2866 2867
                            "used at the same time." % type
                        )
2868
            if _current_pipeline_stage is not None:
2869 2870 2871 2872 2873
                pipeline_attr_name = (
                    'pipeline_stage' + core.kAutoParallelSuffix()
                )
                self._update_desc_attr(
                    pipeline_attr_name, _current_pipeline_stage
2874
                )
2875

2876 2877 2878 2879 2880 2881 2882 2883 2884
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
2885 2886 2887
                    assert (
                        found or in_proto.dispensable
                    ), "Input {} not found".format(in_proto.name)
2888 2889
                    if found:
                        in_args = inputs[in_proto.name]
2890
                        if not isinstance(in_args, (list, tuple)):
2891 2892 2893 2894
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
2895 2896
                                % (in_proto.name, len(in_args))
                            )
2897
                        in_arg_names = []
2898
                        for index, arg in enumerate(in_args):
2899
                            if isinstance(arg, str):
2900
                                in_arg_names.append(arg)
2901
                            elif isinstance(arg, bytes):
2902
                                in_arg_names.append(arg.decode())
W
wanghuancoder 已提交
2903
                            elif isinstance(arg, (Variable, core.eager.Tensor)):
2904
                                in_arg_names.append(arg.name)
2905
                            else:
2906
                                raise TypeError(
2907 2908
                                    f"The type of '%{in_proto.name}' in operator {type} should be "
                                    f"one of [str, bytes, Variable]. but received : {arg}"
2909
                                )
2910 2911 2912 2913 2914 2915 2916 2917
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935

                    # FIXME: The outputs of primitive operator currently
                    # doesn't include intermediate output as it will be dropped
                    # in operator codegen, such as xshape output of reshape2.
                    # It will fixed when the operator codegen support
                    # intermediate output.
                    if core._is_bwd_prim_enabled():
                        if not (
                            (m.name in outputs)
                            or m.dispensable
                            or m.intermediate
                        ):
                            raise ValueError(
                                (
                                    "Incorrect setting for output(s) of "
                                    "operator \"%s\", should set: [%s]."
                                )
                                % (type, m.name)
2936
                            )
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
                    else:
                        if not ((m.name in outputs) or m.dispensable):
                            raise ValueError(
                                (
                                    "Incorrect setting for output(s) of "
                                    "operator \"%s\", should set: [%s]."
                                )
                                % (type, m.name)
                            )

2947 2948 2949 2950 2951 2952 2953 2954 2955
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
2956 2957
                            % (out_proto.name, len(out_args))
                        )
2958 2959
                    out_arg_names = []
                    for arg in out_args:
2960
                        if isinstance(arg, str):
2961 2962
                            out_arg_names.append(arg)
                        else:
2963
                            out_arg_names.append(arg.name)
2964
                        # TODO(minqiyang): could we remove variable's op in static graph mode?
2965
                        if not in_dygraph_mode():
2966
                            if isinstance(arg, str):
2967 2968 2969
                                block.var(arg).op = self
                            else:
                                arg.op = self
2970 2971
                    self.desc.set_output(out_proto.name, out_arg_names)

2972
            extra_attrs_map = core.get_op_extra_attrs(type)
2973 2974 2975 2976 2977
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
2978 2979 2980
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
2981 2982 2983
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
2984
                for attr_name in extra_attrs_map.keys():
2985 2986 2987 2988 2989
                    if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                        warnings.warn(
                            "op %s use extra_attr: %s" % (type, attr_name)
                        )

2990 2991 2992 2993 2994 2995
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
                        self._update_desc_attr(
                            attr_name, extra_attrs_map[attr_name]
                        )
2996 2997
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
2998

2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
                if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                    if type in extra_op_attrs:
                        attrs = extra_op_attrs.get(type, [])
                        for attr in attrs:
                            if attr in op_attrs.keys():
                                warnings.warn(
                                    "op %s use extra_attr: %s" % (type, attr)
                                )

                    if type in special_op_attrs:
                        attrs = special_op_attrs.get(type, [])
                        for attr in attrs:
                            a_name = list(attr.keys())[0]
                            default_value = list(attr.values())[0]
                            if (
                                a_name in op_attrs.keys()
                                and default_value != op_attrs[a_name]
                            ):
                                warnings.warn(
                                    "op %s's attr %s = %s is not the default value: %s"
                                    % (
                                        type,
                                        a_name,
                                        op_attrs[a_name],
                                        default_value,
                                    )
                                )

J
jianghaicheng 已提交
3027 3028
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
3029
                if global_ipu_index >= 0:
3030 3031 3032
                    self._update_desc_attr(
                        ipu_index_attr_name, global_ipu_index
                    )
3033
                if global_ipu_stage >= 0:
3034 3035 3036
                    self._update_desc_attr(
                        ipu_stage_attr_name, global_ipu_stage
                    )
J
jianghaicheng 已提交
3037

3038
            self.desc.check_attrs()
3039

3040 3041 3042 3043
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
3044
    def _has_kernel(self, op_type):
3045 3046
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
3047
    def to_string(self, throw_on_error):
3048
        """
3049 3050
        Get debug string.

3051
        Args:
3052 3053
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
3054

3055 3056
        Returns:
            str: The debug string.
3057 3058

        """
3059
        protostr = self.desc.serialize_to_string()
3060
        proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang(Tony) 已提交
3061 3062
        return _debug_string_(proto, throw_on_error)

3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3095
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3096 3097
            type(skip_op_callstack)
        )
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

3124 3125 3126
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
3127 3128 3129
                a = "{name} = Var['{value}']".format(
                    name=name, type=attr_type, value=attr_var_name
                )
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
3140 3141
                    name=name, type=attr_type, value=','.join(attr_var_names)
                )
3142 3143 3144 3145 3146
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3147 3148
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
3149 3150
                    name=name, type=attr_type, value=self._block_attr_id(name)
                )
3151 3152 3153 3154 3155 3156 3157
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
3158 3159
                    name=name, type=attr_type, value=self._blocks_attr_ids(name)
                )
3160 3161 3162 3163 3164
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3165
            # it is bytes of serialized protobuf
3166 3167 3168 3169 3170
            if (
                is_compiled_with_cinn()
                and self.type == 'cinn_launch'
                and name == 'compilation_key'
            ):
3171 3172
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3173 3174 3175 3176 3177 3178 3179 3180 3181
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3182 3183 3184
            a = "{name} = {value}".format(
                name=name, type=attr_type, value=value
            )
3185

3186 3187 3188 3189
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3190
        from paddle.distributed.auto_parallel.static.dist_context import (
3191 3192 3193
            get_default_distributed_context,
        )

3194
        dist_context = get_default_distributed_context()
3195 3196
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3197 3198 3199
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_op
            )
3200

3201
        if outputs_str != "{}":
3202 3203 3204 3205 3206 3207
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".format(
                outputs=outputs_str,
                op_type=self.type,
                inputs=inputs_str,
                attrs=attrs_str,
            )
3208
        else:
3209 3210 3211
            op_str = "{op_type}(inputs={inputs}, {attrs})".format(
                op_type=self.type, inputs=inputs_str, attrs=attrs_str
            )
3212 3213
        return op_str

Y
Yang Yang(Tony) 已提交
3214
    def __str__(self):
3215
        return self._to_readable_code()
3216 3217 3218

    __repr__ = __str__

F
fengjiayi 已提交
3219 3220
    @property
    def type(self):
3221
        return self.desc.type()
F
fengjiayi 已提交
3222 3223

    def input(self, name):
3224
        r"""
U
ustiniankw 已提交
3225

3226
        Get the input arguments according to the input parameter name.
3227

3228 3229
        Args:
            name(str): The input parameter name.
3230

3231
        Returns:
U
ustiniankw 已提交
3232
            list, return the list of argument names that associated with \
3233
                the specific parameter name.
U
ustiniankw 已提交
3234

3235
        """
F
fengjiayi 已提交
3236 3237
        return self.desc.input(name)

W
Wu Yi 已提交
3238
    def _rename_input(self, old_name, new_name):
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3249
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3250

W
Wu Yi 已提交
3251
    def _rename_output(self, old_name, new_name):
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3262
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3263

F
fengjiayi 已提交
3264 3265 3266 3267
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3268 3269 3270 3271 3272 3273 3274 3275
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3276
    def output(self, name):
3277
        r"""
3278
        Get output arguments by the output parameter name.
3279

3280 3281
        Args:
            name(str): The output parameter name.
3282

3283 3284 3285
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3286
        """
F
fengjiayi 已提交
3287 3288 3289 3290 3291 3292
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3293 3294 3295 3296 3297 3298
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
3299 3300
            "Can't find op itself in it's block. It could be a bug of Paddle."
        )
3301

F
fengjiayi 已提交
3302
    def has_attr(self, name):
3303
        """
3304 3305
        Whether this Operator has the attribute with name or not.

3306
        Args:
3307
            name(str): the attribute name.
3308

3309 3310
        Returns:
            bool: True if has this attribute.
3311 3312

        """
F
fengjiayi 已提交
3313 3314 3315
        return self.desc.has_attr(name)

    def attr_type(self, name):
3316
        """
3317
        Get the type of attribute by attribute's name.
3318

3319 3320
        Args:
            name(str): the attribute name.
3321

3322 3323
        Returns:
            core.AttrType: the attribute type.
3324
        """
3325
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3326

W
Wu Yi 已提交
3327
    def _set_attr(self, name, val):
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3338 3339
        self._update_desc_attr(name, val)

3340 3341 3342
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3354 3355 3356 3357 3358
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3359
            self.desc.set_block_attr(name, val.desc)
3360
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3361
            self.desc.set_blocks_attr(name, [v.desc for v in val])
3362 3363 3364
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
Q
Qiyang Min 已提交
3365 3366
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3367 3368 3369 3370 3371 3372 3373 3374 3375
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
3376 3377 3378 3379 3380 3381
        # if the required attribute is a SCALAR, pass as-is
        if type_index == core.AttrType.SCALAR:
            desc._set_scalar_attr(name, wrap_as_scalar(val))
        elif type_index == core.AttrType.SCALARS:
            desc._set_scalars_attr(name, wrap_as_scalars(val))
        elif type_index == core.AttrType.BOOL:
3382 3383 3384 3385 3386 3387 3388
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
3389 3390
        elif type_index == core.AttrType.FLOAT64:
            desc._set_float64_attr(name, val)
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3408

F
fengjiayi 已提交
3409 3410
    @property
    def attr_names(self):
3411
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3412 3413

    def attr(self, name):
3414
        """
3415 3416
        Get the attribute by name.

3417
        Args:
3418
            name(str): the attribute name.
3419

3420 3421
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3422 3423
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3424
        return self.desc.attr(name)
Y
Yu Yang 已提交
3425

W
Wu Yi 已提交
3426
    def _block_attr_id(self, name):
3427
        """
G
gongweibao 已提交
3428
        Get the block attribute's id by name.
3429

3430 3431
        Args:
            name(str): the attribute name.
3432

3433 3434
        Returns:
            int: the block index.
3435
        """
W
Wu Yi 已提交
3436
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3437

W
Wu Yi 已提交
3438
    def _block_attr(self, name):
G
gongweibao 已提交
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3449
        id = self._block_attr_id(name)
3450
        assert id >= 0 and id < len(self.block.program.blocks)
G
gongweibao 已提交
3451 3452
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3453
    def _blocks_attr(self, name):
G
gongweibao 已提交
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3464
        for i in self._blocks_attr_ids(name):
3465
            assert i >= 0 and i < len(self.block.program.blocks)
G
gongweibao 已提交
3466 3467 3468 3469
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3470
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3481
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3482

3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3494 3495 3496 3497 3498
        assert (
            attr_type == core.AttrType.VAR
        ), "Required type attr({}) is Variable, but received {}".format(
            name, attr_type
        )
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3513 3514 3515 3516 3517
        assert (
            attr_type == core.AttrType.VARS
        ), "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type
        )
3518 3519 3520 3521 3522 3523
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3524
    def all_attrs(self):
F
fengjiayi 已提交
3525
        """
3526 3527 3528
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3529
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3530 3531 3532 3533
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3534
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3535
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3536
                attr_map[n] = self._block_attr(n)
3537
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3538
                attr_map[n] = self._blocks_attr(n)
3539 3540 3541 3542 3543 3544
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3545

F
fengjiayi 已提交
3546 3547
        return attr_map

3548 3549 3550
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3551 3552 3553 3554

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3555 3556 3557
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3558 3559 3560 3561 3562 3563 3564 3565

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3566 3567
            return False

3568 3569 3570 3571 3572 3573
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3574
    @property
3575
    def dist_attr(self):
3576
        """
3577
        Get distributed attribute of this Variable.
3578
        """
3579
        return self.desc.dist_attr
3580

3581 3582
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3583
        """
3584
        Set distributed attribute of this Variable.
3585
        """
3586
        self.desc.dist_attr = dist_attr
3587

Y
Yu Yang 已提交
3588

W
wanghuancoder 已提交
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
@signature_safe_contextmanager
def _stride_in_no_check_dy2st_diff():
    global _stride_in_no_check_dy2st_diff_mode
    _stride_in_no_check_dy2st_diff_mode = True
    try:
        yield
    finally:
        _stride_in_no_check_dy2st_diff_mode = False


def check_if_to_static_diff_with_dygraph(op_type, inplace_map, outputs):
    if outputs is not None:
        for k, v in outputs.items():
            if isinstance(v, Variable):
                if v.is_view_var and not (
                    op_type == "set_value"
                    and inplace_map.get("Input", None) == "Out"
                ):
                    raise ValueError(
                        'Sorry about what\'s happend. In to_static mode, %s\'s output variable %s is a viewed Tensor in dygraph. This will result in inconsistent calculation behavior between dynamic and static graphs. If you are sure it is safe, you can call with paddle.fluid.framework._stride_in_no_check_dy2st_diff() in your safe code block.'
                        % (op_type, k)
                    )
            elif isinstance(v, list):
                for var in v:
                    if isinstance(var, Variable):
                        if var.is_view_var and not (
                            op_type == "set_value"
                            and inplace_map.get("Input", None) == "Out"
                        ):
                            raise ValueError(
                                'Sorry about what\'s happend. In to_static mode, %s\'s output variable %s is a viewed Tensor in dygraph. This will result in inconsistent calculation behavior between dynamic and static graphs. If you are sure it is safe, you can call with paddle.fluid.framework._stride_in_no_check_dy2st_diff() in your safe code block.'
                                % (op_type, k)
                            )


def record_is_view_var(op_type, inputs, outputs):
    if op_type == "slice":
        if inputs is not None and isinstance(inputs["Input"], list):
            if hasattr(inputs["Input"][0], "is_view_var"):
                inputs["Input"][0].is_view_var = True
        else:
            if hasattr(inputs["Input"], "is_view_var"):
                inputs["Input"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "strided_slice":
        if inputs is not None and isinstance(inputs["Input"], list):
            if hasattr(inputs["Input"][0], "is_view_var"):
                inputs["Input"][0].is_view_var = True
        else:
            if hasattr(inputs["Input"], "is_view_var"):
                inputs["Input"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "index_select":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "split":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None:
            for out in outputs["Out"]:
                if hasattr(out, "is_view_var"):
                    out.is_view_var = True
    elif op_type == "unsqueeze" or op_type == "unsqueeze2":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "squeeze" or op_type == "squeeze2":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "transpose" or op_type == "transpose2":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "unbind":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "diagonal":
        if inputs is not None and isinstance(inputs["Input"], list):
            if hasattr(inputs["Input"][0], "is_view_var"):
                inputs["Input"][0].is_view_var = True
        else:
            if hasattr(inputs["Input"], "is_view_var"):
                inputs["Input"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "flatten":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "imag":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "real":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "reshape" or op_type == "reshape2":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "as_real":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True


3807
class Block:
3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3822
        use `Program._create_block()` to create a block.
3823 3824 3825 3826

    Examples:
        .. code-block:: python

3827 3828 3829
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3830 3831 3832 3833 3834 3835 3836 3837 3838
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3839
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3840
        self.desc = program.desc.block(idx)
3841
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3842
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3843 3844
        self.program = program

3845
    def __str__(self):
3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3880
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3881 3882
            type(skip_op_callstack)
        )
3883 3884 3885 3886 3887 3888 3889
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
3890 3891
                op._to_readable_code(skip_op_callstack)
            )
3892 3893
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3894

F
fengjiayi 已提交
3895 3896
    def to_string(self, throw_on_error, with_details=False):
        """
3897 3898
        Get debug string.

F
fengjiayi 已提交
3899 3900
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3901
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3902
            with_details(bool): more details about variables and parameters
3903 3904
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3905

3906 3907
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3908
        """
3909
        assert isinstance(throw_on_error, bool) and isinstance(
3910 3911
            with_details, bool
        )
F
fengjiayi 已提交
3912
        if with_details:
F
fengjiayi 已提交
3913
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3914
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
3915 3916 3917
                self.idx,
                self.parent_idx,
            )
3918
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3919
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
3920 3921
                    r"\n    \1", var.to_string(throw_on_error, with_details)
                )
F
fengjiayi 已提交
3922
            for op in self.ops:
F
fengjiayi 已提交
3923
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
3924 3925
                    r"\n    \1", op.to_string(throw_on_error)
                )
F
fengjiayi 已提交
3926 3927 3928
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3929
            proto = framework_pb2.BlockDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
3930 3931
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3932 3933 3934

    __repr__ = __str__

Y
Yu Yang 已提交
3935 3936
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3937
        return self.desc.parent
Y
Yu Yang 已提交
3938

Y
Yu Yang 已提交
3939 3940 3941 3942
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3943
    def _set_forward_block_idx(self, idx):
3944 3945 3946 3947 3948 3949 3950 3951 3952
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3953
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3954

3955 3956 3957 3958 3959 3960 3961 3962
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3963 3964
    @property
    def idx(self):
Y
Yu Yang 已提交
3965
        return self.desc.id
Y
Yu Yang 已提交
3966

Q
Qiao Longfei 已提交
3967
    def var(self, name):
3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3981
        if not isinstance(name, str):
M
minqiyang 已提交
3982
            raise TypeError(
3983 3984 3985
                "var require string as parameter, but get %s instead."
                % (type(name))
            )
Y
Yu Yang 已提交
3986 3987
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3988
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3989
        return v
Q
Qiao Longfei 已提交
3990

X
Xin Pan 已提交
3991
    def _find_var_recursive(self, name):
3992 3993 3994 3995 3996 3997 3998
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3999
            Variable: the Variable with the giving name. Or None if not found.
4000
        """
Y
Yu Yang 已提交
4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
4025
        return None
Y
Yu Yang 已提交
4026

X
Xin Pan 已提交
4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
4046

Q
Qiao Longfei 已提交
4047
    def all_parameters(self):
4048
        return list(self.iter_parameters())
4049

4050
    def iter_parameters(self):
4051 4052 4053 4054 4055
        return (
            item[1]
            for item in self.vars.items()
            if isinstance(item[1], Parameter)
        )
Q
Qiao Longfei 已提交
4056

Y
Yu Yang 已提交
4057
    def create_var(self, *args, **kwargs):
4058
        if in_dygraph_mode():
4059
            var = _create_tensor(*args, **kwargs)
L
Leo Chen 已提交
4060
        else:
4061 4062 4063
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
4064
        return var
Y
Yu Yang 已提交
4065

Q
Qiao Longfei 已提交
4066 4067 4068
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
4069
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
4070 4071
        """
        Rename variable in vars and ops' inputs and outputs
4072 4073

        Args:
4074 4075
            name(str|bytes): the name that need to be renamed.
            new_name(str|bytes): the name that need to rename to.
4076 4077 4078 4079 4080 4081 4082 4083

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
4084
        """
4085 4086
        # Ensure the type of name and new_name is str
        name = name.decode() if isinstance(name, bytes) else name
4087 4088 4089
        new_name = (
            new_name.decode() if isinstance(new_name, bytes) else new_name
        )
M
minqiyang 已提交
4090

T
typhoonzero 已提交
4091
        if not self.has_var(name):
4092
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
4093 4094
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
4095
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
4096 4097 4098 4099 4100 4101
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
4102
            var_type = "Variable"
T
wip  
typhoonzero 已提交
4103 4104 4105 4106
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
4107
        orig_var_type = v.type
4108
        self.desc._rename_var(name.encode(), new_name.encode())
W
Wu Yi 已提交
4109
        # NOTE: v is destroyed by C++ after calling _rename_var.
4110
        d = self.desc.find_var(new_name.encode())
T
typhoonzero 已提交
4111
        if var_type == "Parameter":
L
Leo Chen 已提交
4112
            if in_dygraph_mode():
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
                var = EagerParamBase(
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
4124
            else:
姜永久 已提交
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
                var = Parameter(
                    self,
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
T
typhoonzero 已提交
4137
        elif var_type == "Variable":
4138 4139 4140 4141 4142 4143 4144
            var = Variable(
                self,
                type=orig_var_type,
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient,
            )
T
wip  
typhoonzero 已提交
4145

W
Wu Yi 已提交
4146
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
4147 4148 4149
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
4150
        self._sync_with_cpp()
4151
        return var
T
typhoonzero 已提交
4152

4153 4154 4155
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
4156
        self.desc._remove_var(name.encode())
4157 4158
        del self.vars[name]

Y
Yu Yang 已提交
4159 4160
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
4161
        param = None
L
Leo Chen 已提交
4162
        if in_dygraph_mode():
J
Jiabin Yang 已提交
4163
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
4164
        else:
姜永久 已提交
4165
            param = Parameter(global_block, *args, **kwargs)
4166 4167 4168
        # NOTE(Aurelius84): we deliver stop_gradient in append_op, so we
        # need recorde it state and reset it back after calling this API
        stop_gradient = param.stop_gradient
4169

4170
        if 'initializer' in kwargs:
4171 4172 4173 4174 4175

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
4176
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
4177
                        # are treated as initialization ops that cause error.
4178
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
4179 4180
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
4181 4182 4183
                            "c_broadcast",
                            "c_sync_comm_stream",
                            "coalesce_tensor",
4184
                        ]:
4185
                            continue
4186 4187 4188 4189 4190 4191 4192
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
4193 4194 4195 4196 4197 4198
                raise RuntimeError(
                    "param "
                    + param.name
                    + " is inited by multiple init ops "
                    + str(init_ops)
                )
4199
            elif init_ops_len == 1:
4200
                # TODO already inited, do nothing, should log a warning
4201 4202 4203
                pass
            else:
                initializer(param, self)
4204
        param.stop_gradient = stop_gradient
Q
Qiao Longfei 已提交
4205
        return param
Y
Yu Yang 已提交
4206

Y
Yu Yang 已提交
4207
    def append_op(self, *args, **kwargs):
4208 4209 4210 4211 4212 4213
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
W
wanghuancoder 已提交
4214
        inplace_map = kwargs.get("inplace_map", None)
4215
        op_type = kwargs.get("type", None)
4216
        if in_dygraph_mode():
4217
            attrs = kwargs.get("attrs", {})
4218 4219 4220
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
4221 4222 4223 4224 4225 4226
                "using `_C_ops` method." % type,
                DeprecationWarning,
            )
            op = Operator(
                block=self,
                desc=None,
4227
                type=op_type,
4228 4229 4230 4231
                inputs=None,
                outputs=None,
                attrs=attrs,
            )
4232

M
minqiyang 已提交
4233 4234
            # record ops in tracer rather than blocks
            #
4235
            # TODO(minqiyang): add op stop_gradient support in static graph mode too.
L
lujun 已提交
4236
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
4237

4238
            _dygraph_tracer().trace_op(
4239
                op_type,
4240 4241 4242 4243 4244 4245
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
                inplace_map,
            )
M
minqiyang 已提交
4246
        else:
4247
            from paddle.fluid.dygraph.base import param_guard
4248
            from paddle.utils import flatten
4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262

            def pass_stop_gradient(ins, outs):
                """
                Set out.stop_gradient = True if all inputs stop_gradient is True.
                """
                need_reset = True
                for var in flatten(ins):
                    if getattr(var, 'stop_gradient', None) is False:
                        need_reset = False
                        break
                if need_reset:
                    for var in flatten(outs):
                        if isinstance(var, Variable):
                            var.stop_gradient = True
4263

4264
            op_desc = self.desc.append_op()
4265 4266
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
W
wanghuancoder 已提交
4267
            # NOTE(Aurelius84): In case of @to_static, all Tensor(s) should
4268 4269
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
4270 4271 4272 4273 4274 4275 4276 4277
            ignore_ops = {
                'conditional_block',
                'conditional_block_grad',
                'recurrent',
                'recurrent_grad',
                'while',
                'while_grad',
            }
W
wanghuancoder 已提交
4278 4279 4280 4281 4282 4283 4284 4285 4286
            from .dygraph.base import in_declarative_mode

            if (
                in_declarative_mode()
                and not _stride_in_no_check_dy2st_diff_mode
            ):
                check_if_to_static_diff_with_dygraph(
                    op_type, inplace_map, outputs
                )
4287 4288
            if op_type not in ignore_ops:
                pass_stop_gradient(inputs, outputs)
4289
            with param_guard(inputs), param_guard(outputs):
4290 4291 4292
                op = Operator(
                    block=self,
                    desc=op_desc,
4293
                    type=op_type,
4294 4295 4296 4297
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None),
                )
4298

M
minqiyang 已提交
4299
            self.ops.append(op)
W
wanghuancoder 已提交
4300 4301
            if in_declarative_mode():
                record_is_view_var(op_type, inputs, outputs)
M
minqiyang 已提交
4302

4303 4304
        return op

W
Wu Yi 已提交
4305
    def _insert_op(self, index, *args, **kwargs):
4306 4307 4308 4309 4310 4311 4312 4313 4314
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
4315
        self._sync_with_cpp()
F
fangshuixun007 已提交
4316
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
4317

4318 4319
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
4320
        Insert an Operator according to the giving arguments,
4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
4335 4336 4337 4338 4339 4340 4341 4342 4343
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
4344 4345
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
4346
        self.desc._remove_op(index, index + 1)
4347 4348
        del self.ops[index]

W
Wu Yi 已提交
4349
    def _slice_ops(self, start, end):
4350 4351 4352 4353 4354 4355 4356 4357 4358 4359
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
4360
        return self.ops[start:end]
Y
Yancey1989 已提交
4361

W
Wu Yi 已提交
4362
    def _prepend_op(self, *args, **kwargs):
4363
        if in_dygraph_mode():
J
Jiabin Yang 已提交
4364 4365
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376
            op = Operator(
                self, None, type=type, inputs=None, outputs=None, attrs=attrs
            )

            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
            )
M
minqiyang 已提交
4377
        else:
4378
            op_desc = self.desc._prepend_op()
4379 4380 4381 4382 4383 4384 4385 4386
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None),
            )
M
minqiyang 已提交
4387
            self.ops.insert(0, op)
4388

Y
Yu Yang 已提交
4389 4390
        return op

W
Wu Yi 已提交
4391
    def _sync_with_cpp(self):
4392
        """
4393 4394
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
4395
        """
Q
Qiao Longfei 已提交
4396 4397 4398
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
4399 4400 4401 4402
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
4403 4404 4405 4406 4407 4408 4409 4410
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient,
                    )
4411
                else:
4412 4413 4414 4415 4416 4417
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient,
                    )
Q
Qiao Longfei 已提交
4418

4419
        # sync variables removed from c++ end
4420
        for var in list(self.vars.keys()):
4421
            if not self.desc.find_var(var.encode()):
4422 4423
                self.vars.pop(var)

Q
Qiao Longfei 已提交
4424
        # sync operators from cpp
4425 4426 4427 4428
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
4445 4446 4447 4448 4449

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
4450
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
4451 4452 4453 4454 4455 4456 4457

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

4458 4459 4460 4461 4462
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
4463 4464 4465 4466 4467 4468
                self.ops
            ) and ops_in_cpp_index < len(ops_in_cpp):
                if (
                    self.ops[ops_in_python_index].desc
                    != ops_in_cpp[ops_in_cpp_index]
                ):
4469 4470 4471 4472 4473
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4474 4475 4476 4477
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4478
    def _copy_param_info_from(self, other):
4479
        """
4480 4481
        Copy the information of parameters from the other block.

4482
        Args:
4483 4484 4485 4486 4487
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4488 4489 4490 4491 4492

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4493
            raise TypeError(
4494 4495
                "_copy_param_info_from should be invoked with Block"
            )
4496
        for p in other.iter_parameters():
4497 4498 4499
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4500 4501
                # if the Parameter is pruned, v may be None
                continue
4502
            assert isinstance(v, Variable)
4503
            new_p = None
L
Leo Chen 已提交
4504
            if in_dygraph_mode():
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516
                new_p = EagerParamBase(
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4517
            else:
姜永久 已提交
4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532
                new_p = Parameter(
                    block=self,
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR
                    else None,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4533 4534
            self.vars[new_p.name] = new_p

4535
    def _clone_variable(self, var, force_persistable=True):
4536 4537
        """
        Clone a variable into current block.
4538

4539 4540
        Args:
            var: the variable to be cloned.
4541 4542 4543
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4544 4545

        Returns:
4546
            Variable: the new  variable cloned from 'var' in current block.
4547 4548
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4549 4550 4551
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4552 4553 4554
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
tangwei12 已提交
4555
        elif var.type == core.VarDesc.VarType.RAW:
4556 4557 4558
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
typhoonzero 已提交
4559 4560 4561 4562 4563 4564
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4565
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4566
                is_data=var.is_data,
4567 4568
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4569 4570 4571 4572 4573 4574 4575
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4576
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4577
                is_data=var.is_data,
4578 4579
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4580
        return ret_var
4581

Y
Yu Yang 已提交
4582

4583 4584 4585 4586
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4587
# of some old Python Variables(all old Python Operators) may have
4588
# been destructed.
4589 4590 4591
def _apply_pass(
    main_program, startup_program, pass_name, pass_attrs={}, pass_attr_types={}
):
4592 4593 4594 4595
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
4596 4597 4598 4599 4600 4601 4602
    attrs = core.apply_pass(
        tmp_main_program,
        tmp_startup_program,
        pass_name,
        pass_attrs,
        pass_attr_types,
    )
4603 4604 4605 4606 4607
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4608
class IrNode:
4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4620 4621 4622
        assert isinstance(
            node, core.Node
        ), 'node must be the instance of core.Node.'
4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4704
    def remove_input_by_id(self, node_id):
4705 4706 4707 4708 4709 4710
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4711
        self.node.remove_input(node_id)
4712

4713
    def remove_input(self, node):
4714 4715 4716 4717
        """
        Remove a node from inputs.

        Args:
4718
            node(IrNode): the node being removed.
4719
        """
4720
        self.node.remove_input(node.node)
4721

4722
    def append_input(self, node):
4723 4724 4725 4726
        """
        Append a node in inputs.

        Args:
4727
            node(IrNode): the node being appended.
4728
        """
4729
        self.node.append_input(node.node)
4730 4731 4732 4733 4734 4735 4736 4737

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4738
    def remove_output_by_id(self, node_id):
4739 4740 4741 4742 4743 4744
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4745
        self.node.remove_output(node_id)
4746

4747
    def remove_output(self, node):
4748 4749 4750 4751
        """
        Remove a node from outputs.

        Args:
4752
            node(IrNode): the node being removed.
4753
        """
4754
        self.node.remove_output(node.node)
4755

4756
    def append_output(self, node):
4757 4758 4759 4760
        """
        Append a node in outputs.

        Args:
4761
            node(IrNode): the node being appended.
4762
        """
4763
        self.node.append_output(node.node)
4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4798 4799 4800
        assert (
            isinstance(node, core.Node) and node.is_var()
        ), 'node must be the instance of core.Node and it must be a variable node.'
4801
        super().__init__(node)
4802 4803 4804 4805 4806 4807 4808 4809 4810
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
4811 4812 4813
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4814 4815 4816 4817 4818 4819 4820 4821 4822
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
4823 4824 4825
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4826 4827
        return self.node.var().persistable()

4828 4829 4830 4831 4832 4833 4834
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
4835 4836 4837
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4838 4839 4840 4841 4842 4843 4844 4845 4846
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
4847 4848 4849
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4850 4851 4852 4853 4854 4855 4856 4857 4858
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
4859 4860 4861
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4862 4863
        return self.node.var().shape()

4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4897 4898 4899
        assert (
            isinstance(node, core.Node) and node.is_op()
        ), 'node must be the instance of core.Node and it must be a operator node.'
4900
        super().__init__(node)
4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
4911 4912 4913
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4914 4915
        self.node.op()._rename_input(old_input_name, new_input_name)

4916 4917 4918 4919 4920 4921 4922 4923
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
4924 4925 4926
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4927 4928
        self.node.op()._rename_output(old_output_name, new_output_name)

4929 4930 4931 4932 4933 4934 4935 4936 4937 4938
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4939 4940 4941
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4954 4955 4956
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4957 4958 4959 4960 4961 4962 4963 4964 4965
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
4966 4967 4968
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4969 4970
        return self.node.op().set_type(new_type)

4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
4985 4986 4987
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4988
        desc = self.node.op()
4989 4990 4991 4992 4993
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4994
            desc.set_block_attr(name, val.desc)
4995
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4996
            desc.set_blocks_attr(name, [v.desc for v in val])
4997 4998 4999
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5000 5001 5002 5003
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

5004 5005 5006 5007 5008 5009 5010
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
5011 5012 5013
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
5014 5015 5016 5017 5018 5019 5020 5021 5022
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
5023 5024 5025
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
5026 5027
        return self.node.op().output_arg_names()

5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


5049
class IrGraph:
5050
    """
5051
    Python IrGraph. Beneath it is a core.Graph, which is used for
5052
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
5053 5054
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
5055 5056 5057 5058
    """

    def __init__(self, graph, for_test=False):
        """
5059 5060
        Construct an IrGraph using core.Graph.

5061 5062 5063 5064 5065
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
5066 5067
            graph, core.Graph
        ), 'graph must be the instance of core.Graph.'
5068 5069 5070
        self.graph = graph
        self._for_test = for_test

5071 5072 5073 5074
    def clone(self):
        """
        Create a new and duplicated IrGraph.

5075 5076 5077
        Warns:
            The method only clones the graph structure, not its attributes.

5078 5079 5080
        Returns:
            IrGraph: A new and duplicated graph.
        """
5081
        g = self.graph.clone()
5082 5083
        return IrGraph(g, self._for_test)

5084
    def is_test(self):
5085 5086 5087
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
5088 5089
        return self._for_test

W
WangZhen 已提交
5090
    def all_nodes(self):
5091 5092 5093
        """
        Return all nodes included in the graph as a set.
        """
5094
        return {IrNode(node) for node in self.graph.nodes()}
5095

5096
    def all_var_nodes(self):
5097 5098 5099
        """
        Return all variable nodes included in the graph as a set.
        """
5100
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
5101

5102
    def all_persistable_nodes(self):
5103 5104 5105
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
5106 5107
        persistable_nodes = set()
        for node in self.graph.nodes():
5108 5109 5110 5111 5112
            if (
                node.is_var()
                and node.var() is not None
                and node.var().persistable()
            ):
W
WangZhen 已提交
5113
                persistable_nodes.add(node)
5114
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
5115

5116
    def all_op_nodes(self):
5117 5118 5119
        """
        Return all operator nodes included in the graph as a set.
        """
5120
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
5121

5122 5123 5124 5125 5126 5127
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
5128
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
5129 5130 5131 5132 5133 5134 5135 5136 5137
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

5138
    def create_persistable_node(self, name, var_type, shape, var_dtype):
5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
5150
            IrVarNode: the created persistable variable node.
5151
        """
5152 5153 5154 5155 5156
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
5157
        return IrVarNode(self.graph.create_var_node(var_desc))
5158 5159

    def create_var_node(self, name, var_type, shape, var_dtype):
5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
5171
            IrVarNode: the created variable node.
5172 5173
        """

5174 5175 5176 5177
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
5178
        return IrVarNode(self.graph.create_var_node(var_desc))
5179

5180 5181 5182 5183 5184 5185
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

5186
    def create_var_node_from_desc(self, var_desc):
5187 5188 5189 5190 5191 5192 5193 5194
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
5195
            IrVarNode: the created variable node.
5196
        """
5197
        return IrVarNode(self.graph.create_var_node(var_desc))
5198 5199

    def create_op_node(self, op_type, attrs, inputs, outputs):
5200 5201 5202 5203 5204 5205 5206
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
5207
            outputs(dict): the outputs of the operator node.
5208 5209

        Returns:
5210
            IrOpNode: the created operator node.
5211
        """
5212 5213
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
5214
        for attr, value in attrs.items():
5215
            self._update_desc_attr(op_desc, attr, value)
5216
        for input_name, var_nodes in inputs.items():
5217 5218
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
5219 5220 5221
            op_desc.set_input(
                input_name, [var_node.name() for var_node in var_nodes]
            )
5222
        for output_name, var_nodes in outputs.items():
5223 5224
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
5225 5226 5227
            op_desc.set_output(
                output_name, [var_node.name() for var_node in var_nodes]
            )
5228
        return IrOpNode(self.graph.create_op_node(op_desc))
5229 5230

    def create_op_node_from_desc(self, op_desc):
5231 5232 5233 5234 5235 5236 5237
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
5238
            IrOpNode: the created operator node.
5239
        """
5240
        return IrOpNode(self.graph.create_op_node(op_desc))
5241 5242

    def update_input_link(self, old_input_node, new_input_node, op_node):
5243 5244 5245 5246
        """
        Update the input's link of a operator node.

        Args:
5247 5248 5249
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
5250
        """
5251 5252 5253 5254 5255
        assert (
            old_input_node.node in self.graph.nodes()
            and new_input_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
5256 5257 5258 5259
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
5260
        op_node.rename_input(old_input_node.name(), new_input_node.name())
5261

5262 5263 5264 5265 5266 5267 5268 5269 5270
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
5271 5272 5273 5274 5275
        assert (
            old_output_node.node in self.graph.nodes()
            and new_output_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
5276 5277 5278 5279 5280 5281
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

5282
    def link_to(self, node_in, node_out):
5283 5284 5285 5286
        """
        Connect two nodes.

        Args:
5287 5288
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
5289
        """
5290
        assert node_in.node in self.graph.nodes(), (
5291 5292
            'node_in(%s) must be in the graph nodes.' % node_in.node.name()
        )
5293
        assert node_out.node in self.graph.nodes(), (
5294 5295
            'node_out(%s) must be in the graph nodes.' % node_out.node.name()
        )
5296 5297
        node_in.append_output(node_out)
        node_out.append_input(node_in)
5298 5299

    def safe_remove_nodes(self, remove_nodes):
5300 5301 5302 5303 5304 5305 5306
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
5307
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
5308 5309 5310 5311
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
5312 5313
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
5314

Z
Zhen Wang 已提交
5315 5316 5317 5318 5319 5320 5321 5322
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5323
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
5324 5325 5326 5327
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5328
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
5329 5330 5331
                        ]
                    else:
                        var_nodes[each_var_name].append(
5332 5333
                            self._find_node_by_name(node.outputs, each_var_name)
                        )
Z
Zhen Wang 已提交
5334 5335
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
5336
    def has_circle(self):
5337 5338 5339 5340 5341 5342
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
5343 5344 5345
        return core.has_circle(self.graph)

    def graph_num(self):
5346 5347 5348 5349 5350 5351
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
5352 5353 5354
        return core.graph_num(self.graph)

    def topology_sort(self):
5355 5356 5357
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
5358
        Notes: the `graph` can not contain a circle.
5359 5360

        Returns:
Z
Zhen Wang 已提交
5361
            list(IrNode): nodes in topology order.
5362
        """
5363
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
5364
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
5365 5366

    def build_adjacency_list(self):
5367 5368 5369 5370
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
5371
            dict{IrNode: set(IrNode)}: the adjacency list.
5372
        """
5373 5374
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
5375
        for k, v in adj_list.items():
5376 5377
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
5378

5379 5380 5381 5382 5383 5384 5385 5386
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
5387
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
5388 5389 5390 5391 5392
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

5393 5394
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
5395 5396 5397 5398
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True,
            )
5399 5400
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
5401 5402 5403
                print(
                    'The {} is saved as the dot filetype.'.format(dot_file_path)
                )
5404

5405
        remove_ctr_vars = set()
5406
        if remove_ctr_var:
5407
            for node in self.all_var_nodes():
5408 5409 5410
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
5411 5412
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

5413 5414
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
5415 5416 5417 5418 5419 5420
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
5421 5422 5423 5424
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
5425 5426
        if not os.path.exists(save_path):
            os.makedirs(save_path)
5427 5428 5429 5430 5431 5432 5433
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
5434 5435 5436
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
5437
        WARN: When the graph includes backward operator nodes, the
5438 5439 5440 5441 5442 5443
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
5444
        convert_pass = core.get_pass('graph_to_program_pass')
5445 5446
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
5447 5448 5449 5450
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

5451 5452 5453 5454 5455 5456 5457 5458
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
5459
        assert target_node is not None, (
5460 5461
            "Cannot find the target node (%s)in the giving set." % node_name
        )
5462 5463
        return target_node

5464 5465 5466 5467
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
5468 5469 5470 5471 5472
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
5473
            desc.set_block_attr(name, val.desc)
5474
        elif isinstance(val, list) and val and _all_is_type(val, Block):
5475
            desc.set_blocks_attr(name, [v.desc for v in val])
5476 5477 5478
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5479 5480 5481 5482 5483
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


5484
class Program:
D
dzhwinter 已提交
5485
    """
5486
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
5487
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
5488
    it will contain nested block.
5489

J
Jiabin Yang 已提交
5490 5491 5492
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
5493

J
Jiabin Yang 已提交
5494
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
5495
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
5496 5497 5498 5499 5500 5501 5502
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
5503
    **Notes**:
5504 5505 5506
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5507 5508

    Returns:
J
Jiabin Yang 已提交
5509
        Program: An empty Program.
D
dzhwinter 已提交
5510 5511

    Examples:
5512 5513
        .. code-block:: python

5514 5515 5516 5517
            import paddle
            import paddle.static as static

            paddle.enable_static()
5518

5519 5520 5521 5522 5523
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5524
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5525 5526 5527

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5528 5529 5530

    """

5531 5532
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5533 5534
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5535 5536
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5537
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5538
        self.__op_role_var = []
T
tangwei12 已提交
5539

5540 5541
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5542
        self._is_distributed = False
5543
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5544
        self._is_chief = False
5545 5546 5547
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5548
        self._endpoints = []
5549 5550 5551
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5552
        self._trainers_endpoints = []
5553
        # the distributed lookup table names
T
tangwei12 已提交
5554
        self._distributed_lookup_table = None
5555 5556 5557

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5558 5559
        self._use_lamb = False

5560 5561 5562
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5563

5564 5565 5566
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5567
        self._program_config = None
5568

5569 5570
        self._pass_applied = None

H
hutuxian 已提交
5571 5572 5573
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5574 5575 5576
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5577 5578 5579
        # appending gradients times
        self._appending_grad_times = 0

5580 5581
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
5582 5583
            "__auto_checkpoint_program__"
        )
5584

5585 5586
        # compiled program, i.e. Graph
        self._graph = None
5587 5588
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5589

5590
    def _find_var_class_kwargs(self, new_desc):
5591 5592 5593 5594 5595 5596 5597 5598
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5599 5600 5601 5602
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5603
            if idx > (len(self.blocks) - 1):
5604
                self._create_block()
5605 5606 5607 5608 5609 5610 5611 5612 5613 5614
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
                    'shape': get_var_desc_attr_or_none(
                        new_var_desc,
                        "shape",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'dtype': get_var_desc_attr_or_none(
                        new_var_desc,
                        "dtype",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'lod_level': get_var_desc_attr_or_none(
                        new_var_desc,
                        "lod_level",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'error_clip': old_var.error_clip
                    if old_var is not None
                    else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None
                    else False,
                    'is_data': old_var.is_data
                    if old_var is not None
                    else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None
                    else False,
5656 5657 5658
                }

                if isinstance(old_var, Parameter):
5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675
                    kwargs.update(
                        {
                            'trainable': old_var.trainable,
                            'optimize_attr': old_var.optimize_attr,
                            'regularizer': old_var.regularizer,
                            'do_model_average': old_var.do_model_average,
                            'need_clip': old_var.need_clip,
                            'is_distributed': old_var.is_distributed,
                            'is_parameter': old_var.is_parameter,
                        }
                    )
                    block_new_vars.append(
                        {
                            'class': Parameter,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5676 5677
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
5678 5679 5680 5681 5682 5683
                    block_new_vars.append(
                        {
                            'class': Variable,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5684 5685 5686 5687 5688 5689 5690

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5691
        assert block_num == self.desc.num_blocks()
5692 5693

        # clear old blocks and desc
5694 5695 5696 5697 5698 5699 5700 5701 5702
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5703

5704
        del desc
5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5724 5725 5726 5727 5728 5729 5730 5731 5732 5733
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5734 5735
                import paddle
                import paddle.static as static
5736

5737 5738 5739
                paddle.enable_static()

                prog = static.default_main_program()
5740 5741 5742 5743 5744
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5745
                prog1 = static.default_main_program()
5746 5747 5748 5749 5750 5751 5752 5753
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5754
    @property
5755
    def _op_role(self):
Y
yuyang18 已提交
5756 5757 5758 5759 5760 5761 5762 5763
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5764
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5765 5766 5767 5768
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5769 5770
        return self._current_role

5771 5772
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5773 5774 5775
        self._current_role = role

    @property
5776
    def _op_role_var(self):
Y
yuyang18 已提交
5777
        """
5778
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5779

5780
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5781 5782 5783

        Notes: This is a very low-level API. Users should not use it directly.
        """
5784
        return self.__op_role_var
Y
yuyang18 已提交
5785

5786
    @signature_safe_contextmanager
5787 5788 5789 5790 5791
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5792 5793 5794 5795
        try:
            yield
        finally:
            self._current_role = tmp_role
5796

S
rename  
sneaxiy 已提交
5797
    @signature_safe_contextmanager
W
Wu Yi 已提交
5798
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5799 5800 5801 5802 5803 5804 5805
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5806
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5807 5808 5809

        Examples:

5810
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5811
            >>> p, g = backward(...)
W
Wu Yi 已提交
5812
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5813 5814
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5815
        tmp_role = self._current_role
5816
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5817

Y
yuyang18 已提交
5818 5819
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5820
        self.__op_role_var = [
5821 5822 5823
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5824 5825 5826 5827 5828
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5829

S
rename  
sneaxiy 已提交
5830
    @signature_safe_contextmanager
X
Xin Pan 已提交
5831
    def _lr_schedule_guard(self, is_with_opt=False):
5832 5833 5834 5835 5836 5837 5838
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5839 5840 5841 5842
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5843 5844 5845

        Examples:

5846
            >>> import paddle.fluid as fluid
5847 5848 5849 5850
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5851 5852

        tmp_role = self._current_role
5853
        tmp_var = self.__op_role_var
5854

5855 5856
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5857 5858
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5859
        # TODO(typhoonzero): how to set target learning rate var
5860
        self.__op_role_var = []
5861 5862 5863 5864 5865
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5866

5867
    def __str__(self):
Y
yuyang18 已提交
5868 5869 5870 5871 5872 5873 5874 5875 5876
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5897 5898
            import paddle
            import paddle.static as static
5899

5900 5901 5902
            paddle.enable_static()

            cur_program = static.Program()
5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5914
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5915 5916
            type(skip_op_callstack)
        )
5917 5918 5919
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5920
            program_str += '\n'
5921
        return program_str
Y
Yang Yang(Tony) 已提交
5922

F
fengjiayi 已提交
5923 5924 5925
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5926

J
Jiabin Yang 已提交
5927 5928 5929
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5930

J
Jiabin Yang 已提交
5931
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5932

H
haowang101779990 已提交
5933
        Returns:
J
Jiabin Yang 已提交
5934
            str: The debug string describe current Program.
Y
yuyang18 已提交
5935 5936

        Raises:
J
Jiabin Yang 已提交
5937
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5938

5939 5940 5941
        Examples:
            .. code-block:: python

5942 5943 5944 5945
                import paddle
                import paddle.static as static

                paddle.enable_static()
5946

5947 5948 5949
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5950
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5951
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5952
                print("program string without detail: {}".format(prog_string))
5953
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5954
        """
5955 5956 5957
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
5958 5959
            type(throw_on_error)
        )
5960 5961 5962
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
5963 5964
            type(with_details)
        )
5965

F
fengjiayi 已提交
5966 5967 5968 5969
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985
            protostr = self.desc.serialize_to_string()
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
            res_str += (
                "version {\n  "
                + textwrap.indent(
                    _debug_string_(proto.version, throw_on_error), "  "
                )
                + "}\n"
            )
            res_str += (
                "op_version_map {\n  "
                + textwrap.indent(
                    _debug_string_(proto.op_version_map, throw_on_error), "  "
                )
                + "}\n"
            )
F
fengjiayi 已提交
5986 5987
        else:
            protostr = self.desc.serialize_to_string()
5988
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
5989 5990
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5991

W
Wu Yi 已提交
5992
    def _get_desc(self):
Y
yuyang18 已提交
5993 5994 5995 5996 5997 5998 5999
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
6000 6001
        return self.desc

X
version  
Xin Pan 已提交
6002 6003 6004
    def _version(self):
        return self.desc._version()

6005
    def clone(self, for_test=False):
Y
yuyang18 已提交
6006
        """
6007
        .. note:::
6008 6009
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
6010
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
6011

6012
        Create a new Program with forward content of original one when ``for_test=True``.
6013
        Create a new Program as same as the original one when ``for_test=False``.
6014

6015
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
6016 6017 6018
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
6019

6020 6021
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
6022 6023
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
6024
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
6025

C
cyberslack_lee 已提交
6026 6027 6028
        Examples:
            .. code-block:: python
                :name: code-example-1
L
Luo Tao 已提交
6029

C
cyberslack_lee 已提交
6030 6031
                import paddle
                import paddle.static as static
6032

C
cyberslack_lee 已提交
6033
                paddle.enable_static()
6034

C
cyberslack_lee 已提交
6035 6036 6037 6038 6039 6040 6041
                img = static.data(name='image', shape=[None, 784])
                pred = static.nn.fc(x=img, size=10, actvation='relu')
                loss = paddle.mean(pred)
                # Here we use clone before Momentum
                test_program = static.default_main_program().clone(for_test=True)
                optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
                optimizer.minimize(loss)
6042

J
Jiabin Yang 已提交
6043
        Args:
6044

6045 6046
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
6047

J
Jiabin Yang 已提交
6048
        Returns:
6049
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
6050

Y
yuyang18 已提交
6051 6052 6053

        Examples:

6054 6055 6056 6057 6058 6059 6060
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

6061
            .. code-block:: python
C
cyberslack_lee 已提交
6062
                :name: code-example-2
6063

6064
                import paddle
6065 6066

                def print_prog(prog):
6067
                    for name, value in sorted(prog.block(0).vars.items()):
6068 6069 6070 6071 6072
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
6073
                        for key, value in sorted(op.all_attrs().items()):
6074 6075 6076 6077
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


6078
            1. To clone a test program, the sample code is:
6079
                .. code-block:: python
C
cyberslack_lee 已提交
6080
                    :name: code-example-3
6081

6082 6083 6084 6085 6086 6087
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
6088 6089

                    def print_prog(prog):
6090
                        for name, value in sorted(prog.block(0).vars.items()):
6091 6092 6093 6094 6095
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
6096
                            for key, value in sorted(op.all_attrs().items()):
6097 6098 6099
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

6100 6101
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
6102 6103 6104

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
6105 6106 6107
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
6108
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
6109 6110
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
6111
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
6112 6113
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
6114
                            test_program = train_program.clone(for_test=True)
6115
                    print_prog(test_program)
J
Jiabin Yang 已提交
6116 6117 6118 6119

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

6120
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
6121 6122 6123 6124
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

6125 6126 6127
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
6128 6129 6130
                            sgd.minimize(avg_loss)


6131
            2. The clone method can be avoid if you create program for training and program for testing individually.
6132
                .. code-block:: python
C
cyberslack_lee 已提交
6133
                    :name: code-example-4
6134

6135 6136 6137 6138 6139 6140
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
6141 6142

                    def print_prog(prog):
6143
                        for name, value in sorted(prog.block(0).vars.items()):
6144 6145 6146 6147 6148
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
6149
                            for key, value in sorted(op.all_attrs().items()):
6150 6151
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
6152

6153
                    def network():
6154
                        img = static.data(name='image', shape=[None, 784])
6155
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
6156 6157
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
6158
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
6159 6160
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
6161 6162
                        return avg_loss

6163 6164 6165 6166 6167
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
6168
                            avg_loss = network()
6169
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
6170
                            sgd.minimize(avg_loss)
6171
                    # the test startup program is not used.
6172 6173
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
6174 6175
                            avg_loss = network()
                    print_prog(test_program_2)
6176

6177
            The two code snippets above will generate and print same programs.
6178
        """
6179

T
tangwei12 已提交
6180
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
6181 6182 6183
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

6184
        pruned_origin_block_id_map = None
6185
        if for_test:
6186 6187
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
6188 6189
                self.desc
            )
6190 6191
            forward_prog.blocks = [
                Block(forward_prog, i)
6192
                for i in range(forward_prog.desc.num_blocks())
6193 6194 6195
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
6196
        else:
6197
            p = Program()
G
gongweibao 已提交
6198 6199
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
6200
            p.desc = core.ProgramDesc(self.desc)
6201
            p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())]
G
gongweibao 已提交
6202 6203

            p._current_role = self._current_role
6204
            p.__op_role_var = self.__op_role_var
6205
            p._appending_grad_times = self._appending_grad_times
6206 6207
            if hasattr(self, 'lr_scheduler'):
                p.lr_scheduler = self.lr_scheduler
6208 6209
            if hasattr(self, '_pipeline_opt'):
                p._pipeline_opt = self._pipeline_opt
G
gongweibao 已提交
6210

T
tangwei12 已提交
6211
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
6212
            # its desc.
W
Wu Yi 已提交
6213
            p._sync_with_cpp()
6214

W
Wu Yi 已提交
6215
        p._copy_param_info_from(self)
6216
        p._copy_data_info_from(self, pruned_origin_block_id_map)
6217
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
6218
        return p
6219

6220
    def _prune(self, targets):
Y
yuyang18 已提交
6221 6222 6223 6224 6225 6226 6227 6228
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
6229
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
6230 6231 6232 6233
                need to be pruned

        Returns:
            Program:  A new, pruned program.
6234
        """
6235
        return self._prune_with_input([], targets)
6236 6237

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
6238
        """
6239
        Prune operators and variables which are not needed to generate
6240 6241
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
6242 6243 6244 6245 6246 6247 6248

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
6249
            targets(list|Variable|Operator): A list of variables, operators, or variable names
6250 6251 6252 6253 6254 6255
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
6256
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
6257 6258 6259
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

6260 6261
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
6262 6263
        if not isinstance(targets, list):
            targets = [targets]
6264 6265

        for var in feeded_var_names:
6266
            if not isinstance(var, str):
6267 6268
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
6269 6270
                    "str, but received %s." % type(var)
                )
6271

6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

6288 6289 6290 6291
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
6292
                    name = t.name
6293
                elif isinstance(t, str):
6294
                    name = str(t)
6295
                else:
6296 6297
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
6298 6299
                        "Variable or Operator, but received %s." % type(t)
                    )
6300 6301 6302 6303 6304 6305

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
6306 6307 6308
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
6309

6310 6311 6312 6313 6314 6315 6316 6317 6318
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
6319
                        # Skip optimize op except for optimize op in targets,
6320 6321 6322 6323 6324
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
6325

6326
                if target_op is not None:
6327 6328 6329
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
6330

6331
        res = Program()
6332
        res.desc, pruned_origin_block_id_map = core.prune(
6333 6334
            self.desc, set(feeded_var_names), targets_idx
        )
6335
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6336
        res._sync_with_cpp()
6337 6338 6339 6340 6341

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

6342 6343
        return res

X
Xin Pan 已提交
6344
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
6345
        """
F
fengjiayi 已提交
6346 6347 6348 6349 6350
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

6351
        3. change the :code:`is_test`
Y
yuyang18 已提交
6352 6353 6354
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

6355
        Args:
X
Xin Pan 已提交
6356 6357
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
6358

Y
yuyang18 已提交
6359 6360 6361 6362 6363 6364
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
6365
        res = Program()
6366
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
6367 6368 6369 6370

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
6371
        if prune_read_op:
6372
            while True:
6373 6374 6375 6376
                if (
                    read_op_idx >= root_block.op_size()
                    or root_block.op(read_op_idx).type() == 'read'
                ):
6377 6378 6379 6380 6381 6382
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
6383
                    root_block._remove_var(var.name().encode())
F
fengjiayi 已提交
6384 6385

        # change all `is_test` attributes to True
6386
        for i in range(res.desc.num_blocks()):
6387
            block = res.desc.block(i)
6388
            for j in range(block.op_size()):
6389 6390
                op = block.op(j)
                if op.has_attr('is_test'):
6391
                    op._set_bool_attr('is_test', True)
6392 6393 6394
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
6395
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6396
        res._sync_with_cpp()
6397 6398
        return res

6399
    def _remove_training_info(self, clip_extra=True):
6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

6414
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
6415 6416
        res._sync_with_cpp()

6417 6418
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
6419
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
6420

6421
        for i in range(res.desc.num_blocks()):
6422 6423 6424 6425
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
6426 6427
            if not clip_extra:
                continue
6428 6429 6430 6431
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
6432 6433 6434

                extra_attrs_map = core.get_op_extra_attrs(op.type())

6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
6448 6449 6450
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
6464
                # The extra output of op will be removed in the future
6465 6466
                for name in remove_output_list:
                    op.remove_output(name)
6467

6468 6469 6470 6471 6472 6473 6474
                op_quant_name = (
                    core.op_proto_and_checker_maker.kOpWithQuantAttrName()
                )
                quant = (
                    bool(op.attr(op_quant_name))
                    if op_quant_name in op.attr_names()
                    else False
6475 6476
                )
                quant_attrs = [
6477 6478 6479 6480 6481 6482 6483
                    op_quant_name,
                    "quantization_type",
                    "skip_quant",
                    "activation_bits",
                    "bit_length",
                    "quantize_weight_bits",
                    "weight_quant_scale",
6484
                ]
6485 6486
                for extra_attr_name in extra_attrs_map.keys():
                    op.remove_attr(extra_attr_name)
6487
                remove_attr_list = []
6488 6489 6490 6491 6492 6493
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
6494
                    if len(extra_attrs_map) > 0:
6495
                        if name in common_clipped_attrs_list:
6496
                            op.remove_attr(name)
6497
                        continue
6498 6499 6500 6501 6502 6503 6504 6505 6506 6507
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
6508 6509
        return res

6510 6511
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
6512
        """
6513
        .. note::
6514
            1. All information about parameters will be lost after serialization;
6515
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6516

6517 6518
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
6519

J
Jiabin Yang 已提交
6520
        Args:
Y
yuyang18 已提交
6521

J
Jiabin Yang 已提交
6522
            binary_str_type (str): the binary prootbuf string.
6523

J
Jiabin Yang 已提交
6524 6525
        Returns:
            Program: A deserialized Program.
6526 6527 6528 6529

        Examples:
            .. code-block:: python

6530 6531 6532 6533
                import paddle
                import paddle.static as static

                paddle.enable_static()
6534

6535 6536 6537 6538
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
6539

6540
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
6541

6542
                    z = paddle.matmul(x=x, y=y)
6543

6544 6545
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
6546

6547
                    print(static.default_main_program())
6548
                    print(prog_restored)
Y
yuyang18 已提交
6549
        """
6550 6551
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
6552
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
W
Wu Yi 已提交
6553
        p._sync_with_cpp()
6554
        return p
Y
Yu Yang 已提交
6555

6556
    @staticmethod
6557
    def _construct_from_desc(desc):
6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
6569
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
6570 6571 6572
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6573 6574
    @property
    def random_seed(self):
Y
yuyang18 已提交
6575
        """
J
Jiabin Yang 已提交
6576
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6577 6578
        the random seed from random device.

6579
        .. note::
6580
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6581 6582 6583

        Returns:
            int64: Random seed in current Program
6584

6585 6586 6587 6588

        Examples:
            .. code-block:: python

6589 6590 6591
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6592

6593 6594 6595
                paddle.enable_static()

                prog = static.default_main_program()
6596
                random_seed = prog.random_seed
6597
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6598 6599 6600
                print(random_seed)
                ## 0
                ## the default random seed is 0
6601

6602
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6603
                prog.random_seed = 1
6604
                z_var = F.dropout(x_var, 0.7)
6605

6606
                print(prog.random_seed)
6607 6608
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6609
        """
D
dzhwinter 已提交
6610 6611
        return self._seed

Q
qiaolongfei 已提交
6612 6613
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6614
        """
6615 6616
        The number of :ref:`api_guide_Block_en`  in this Program.

6617
        .. note::
6618
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6619 6620 6621

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6622

6623 6624 6625 6626

        Examples:
            .. code-block:: python

6627 6628 6629 6630
                import paddle
                import paddle.static as static

                paddle.enable_static()
6631

6632
                prog = static.default_main_program()
6633 6634
                num_blocks = prog.num_blocks
                print(num_blocks)
6635

6636 6637
                # print result:
                # 1
Y
yuyang18 已提交
6638
        """
Q
qiaolongfei 已提交
6639 6640
        return self.desc.num_blocks()

D
dzhwinter 已提交
6641 6642 6643
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6644 6645
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
6646 6647
                % type(seed)
            )
D
dzhwinter 已提交
6648 6649
        self._seed = seed

Y
Yu Yang 已提交
6650
    def __repr__(self):
6651
        return self.__str__()
6652

Y
Yu Yang 已提交
6653
    def global_block(self):
Y
yuyang18 已提交
6654
        """
6655 6656
        .. note::
            This API has no effect in Dygraph mode.
6657 6658 6659

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6660 6661
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6662

6663 6664 6665 6666

        Examples:
            .. code-block:: python

6667 6668 6669 6670
                import paddle
                import paddle.static as static

                paddle.enable_static()
6671

6672
                prog = static.default_main_program()
6673 6674
                gb_block = prog.global_block()
                print(gb_block)
6675

Y
yuyang18 已提交
6676
        """
Y
Yu Yang 已提交
6677 6678
        return self.blocks[0]

Q
Qiao Longfei 已提交
6679
    def block(self, index):
Y
yuyang18 已提交
6680
        """
6681 6682
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6683

6684 6685
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6686 6687
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6688

J
Jiabin Yang 已提交
6689 6690
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6691 6692 6693 6694

        Examples:
            .. code-block:: python

6695 6696 6697 6698
                import paddle
                import paddle.static as static

                paddle.enable_static()
6699

6700
                prog = static.default_main_program()
6701 6702
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6703
        """
Q
Qiao Longfei 已提交
6704 6705
        return self.blocks[index]

Y
Yu Yang 已提交
6706
    def current_block(self):
Y
yuyang18 已提交
6707
        """
6708 6709
        .. note::
            This API has no effect in Dygraph mode.
6710

J
Jiabin Yang 已提交
6711 6712
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6713

J
Jiabin Yang 已提交
6714 6715
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6716

6717 6718 6719
        Examples:
            .. code-block:: python

6720 6721 6722 6723
                import paddle
                import paddle.static as static

                paddle.enable_static()
6724

6725
                prog = static.default_main_program()
6726 6727
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6728
        """
Y
Yu Yang 已提交
6729 6730
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6731
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6732 6733 6734 6735 6736
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6737

Y
yuyang18 已提交
6738 6739 6740 6741 6742
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6743
        new_block_idx = len(self.blocks)
6744 6745 6746 6747 6748
        parent = (
            self.current_block()
            if parent_idx is None
            else self.block(parent_idx)
        )
F
update  
fengjiayi 已提交
6749
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6750 6751 6752 6753
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6754
    def _rollback(self):
Y
yuyang18 已提交
6755 6756 6757 6758 6759
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6760 6761
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6762
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6763 6764 6765 6766 6767 6768 6769 6770 6771 6772
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6773 6774 6775
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6776
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6777

W
Wu Yi 已提交
6778
    def _copy_param_info_from(self, other):
6779
        """
6780
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6781

Y
yuyang18 已提交
6782 6783 6784
        Notes: This is a very low level API. Users should not invoke it
        directly.

6785 6786 6787 6788 6789 6790 6791
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6792 6793
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6794 6795
                % type(other)
            )
6796

W
Wu Yi 已提交
6797
        self.global_block()._copy_param_info_from(other.global_block())
6798

6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6810 6811
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6812 6813
                % type(other)
            )
6814 6815
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6816
        self._parameters_on_pservers = other._parameters_on_pservers
6817
        self._endpoints = other._endpoints
6818
        self._ps_endpoint = other._ps_endpoint
6819 6820
        self._distributed_lookup_table = other._distributed_lookup_table

6821
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6822 6823
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6824

Y
yuyang18 已提交
6825 6826 6827
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6828 6829
        Args:
            other(Program): Other program
6830
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
6831 6832
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6833
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6834 6835 6836 6837 6838

        Returns:
            None
        """
        if not isinstance(other, Program):
6839 6840
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6841 6842
                % type(other)
            )
F
fengjiayi 已提交
6843

6844 6845
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
6846
                i: i for i in range(self.desc.num_blocks())
6847
            }
6848 6849 6850

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6851 6852
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6853
            for var in list(block.vars.values()):
6854 6855 6856 6857 6858 6859 6860
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6861

6862
    def list_vars(self):
Y
yuyang18 已提交
6863
        """
6864
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6865

J
Jiabin Yang 已提交
6866
        Returns:
6867
            iterable Tensors: The Generator will yield every Tensor in this program.
6868 6869 6870 6871

        Examples:
            .. code-block:: python

6872 6873
                import paddle
                import paddle.static as static
6874

6875 6876 6877 6878 6879
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6880 6881
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6882

6883 6884
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6885
        """
6886
        for each_block in self.blocks:
6887
            for each_var in list(each_block.vars.values()):
6888 6889
                yield each_var

6890 6891 6892 6893 6894 6895 6896 6897 6898 6899
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6900 6901 6902 6903
                import paddle
                import paddle.static as static

                paddle.enable_static()
6904

6905 6906
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6907
                hidden = static.nn.fc(x=data, size=10)
6908 6909
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6910 6911 6912 6913 6914 6915 6916

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6917 6918
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6919 6920 6921 6922 6923 6924 6925 6926 6927 6928
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6929 6930 6931 6932 6933 6934 6935 6936 6937
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
6938 6939 6940
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6941 6942
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
6943
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6971
        # can not be imported at the begainning of this file.
6972 6973
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
6974

6975 6976
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6977 6978 6979 6980
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".format(
                    type(scope)
                )
            )
6981 6982 6983 6984 6985

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6986 6987
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
6988 6989 6990
                    type(mode)
                )
            )
6991 6992 6993 6994 6995

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
6996 6997 6998 6999 7000
            if (
                var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
                or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
                or var.desc.type() == core.VarDesc.VarType.READER
            ):
7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):
            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
7018 7019 7020 7021
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".format(
                        mode
                    )
                )
7022 7023 7024 7025 7026 7027 7028 7029

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
7030 7031 7032 7033
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".format(
                        var.name
                    )
                )
7034 7035 7036 7037 7038 7039
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
7040
        Set parameters and persistable buffers in state_dict to program.
7041
        An exception will throw if shape or dtype of the parameters is not match.
7042

7043 7044 7045 7046
        .. note::
            This function MUST called after run start_up_program

        Args:
7047
            state_dict(dict): the dict store parameters and persistable buffers.
7048 7049
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
7050
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
7051 7052
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
7053

7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
7083 7084 7085
                    type(state_dict)
                )
            )
7086 7087

        vars_dict = {var.name: var for var in self.list_vars()}
7088 7089 7090
        condition = (
            True if 'StructuredToParameterName@@' in state_dict else False
        )
7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
7102 7103
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
7104 7105
                except TypeError as err:
                    warnings.warn(
7106 7107
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
7108
            else:
7109
                warnings.warn(
7110 7111 7112 7113 7114 7115
                    (
                        "Skip loading for '{0}'. Because '{0}' not in the program.".format(
                            name
                        )
                    )
                )
7116

Y
Yu Yang 已提交
7117

7118
class Parameter(Variable, metaclass=ParameterMetaClass):
7119
    """
7120
    Parameter is derived from Variable. A parameter is a persistable
7121
    Variable, and will be updated by optimizers after each iteration.
7122
    The training of a neural network is essentially the updating of
7123 7124
    its parameters.

7125
    Relative to a general Variable, a Parameter has several its own
7126 7127
    member variables:

7128 7129 7130 7131 7132 7133 7134 7135 7136 7137
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
7138
        need_clip (bool): Whether the parameter gradient need to be cliped
7139
            in optimizer. Default is True.
7140 7141
    """

7142 7143 7144 7145 7146 7147
    def __init__(
        self,
        block,
        shape,
        dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
7148
        **kwargs,
7149
    ):
7150 7151 7152 7153 7154
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
7155 7156
        for each in shape:
            if each < 0:
7157 7158
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7159 7160 7161 7162 7163 7164 7165 7166 7167 7168
                    % list(shape)
                )

        Variable.__init__(
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
7169
            **kwargs,
7170
        )
Y
Yu Yang 已提交
7171 7172
        self.trainable = kwargs.get('trainable', True)

J
JYChen 已提交
7173 7174
        self.stop_gradient = not self.trainable

Y
Yu Yang 已提交
7175 7176
        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

7177 7178
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
7179
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
7180

7181 7182
        self.need_clip = kwargs.get('need_clip', True)

7183 7184
        self.is_distributed = False

7185 7186
        self.is_parameter = True

F
fengjiayi 已提交
7187
    def __str__(self):
7188
        return self._to_readable_code()
F
fengjiayi 已提交
7189

F
update  
fengjiayi 已提交
7190 7191 7192
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
7193

F
update  
fengjiayi 已提交
7194 7195 7196 7197 7198 7199 7200 7201
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

7202 7203 7204 7205
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
G
GGBond8488 已提交
7206
                import paddle
7207 7208

                prog = fluid.default_main_program()
G
GGBond8488 已提交
7209
                rlt = paddle.static.data("fake_data", shape=[-1,1,1], dtype='float32')
7210 7211
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
7212
        """
7213
        assert isinstance(throw_on_error, bool) and isinstance(
7214 7215
            with_details, bool
        )
F
update  
fengjiayi 已提交
7216 7217
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
7218 7219 7220 7221 7222 7223 7224
            additional_attr = (
                "trainable",
                "optimize_attr",
                "regularizer",
                "do_model_average",
                "need_clip",
            )
F
update  
fengjiayi 已提交
7225
            for attr_name in additional_attr:
7226
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
F
update  
fengjiayi 已提交
7227 7228
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
7229 7230 7231 7232
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
7233

W
wanghuancoder 已提交
7234
class EagerParamBase(core.eager.Tensor):
7235
    """
7236 7237
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
7255
        need_clip (bool): Whether the parameter gradient need to be cliped
7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7270 7271
                    % list(shape)
                )
7272 7273 7274 7275 7276 7277 7278

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

7279 7280 7281
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

7282
        super().__init__(
7283 7284 7285 7286 7287 7288
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
7303 7304 7305
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
7306 7307

    def set_init_func(self, obj):
7308
        self._init_func = obj
7309 7310 7311

    @dygraph_only
    def initialize(self):
7312 7313 7314
        assert (
            self._init_func is not None
        ), "Required self._init_func is not None, but received None."
7315
        self._init_func(self, None)
7316
        # clear function handle to release resource
7317
        self._init_func = None
7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7330 7331
                type(trainable),
            )
7332

7333 7334 7335 7336
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
7337 7338 7339
        assert (
            self._init_op_creator is not None
        ), "Required self._init_op_creator is not None, but received None."
7340
        self._init_op_creator(self, block)
7341

7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
7361
            tensor=super().__str__()
7362
        )
7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
7392 7393
        new_param._init_func = self._init_func
        new_param._init_op_creator = self._init_op_creator
7394 7395 7396 7397 7398 7399
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
7400 7401
        return new_param

7402 7403 7404
    __repr__ = __str__


Y
Yu Yang 已提交
7405
# program is a global instance.
Y
Yu Yang 已提交
7406 7407
_main_program_ = Program()
_startup_program_ = Program()
7408
_startup_program_._is_start_up_program_ = True
7409

7410

7411
def default_startup_program():
Y
Yu Yang 已提交
7412
    """
Y
yuyang18 已提交
7413 7414
    Get default/global startup program.

7415
    The :code:`paddle.nn` function will append the initialization operators into startup program.
7416
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
7417

7418 7419
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
7420

7421 7422
    Returns:
        Program: current default startup program.
7423

7424
    Returns type:
7425 7426 7427 7428

    Examples:
        .. code-block:: python

7429
            import paddle
7430

7431
            paddle.enable_static()
7432 7433 7434 7435
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
7436
    """
Y
Yu Yang 已提交
7437
    return _startup_program_
7438

7439

7440
def default_main_program():
Y
Yu Yang 已提交
7441
    """
7442
    This API can be used to get ``default main program`` which store the
7443
    descriptions of Ops and tensors.
T
tangwei12 已提交
7444

7445 7446
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
7447

7448
    The ``default main program`` is the default value for ``Program`` parameter in
7449
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7450
    :code:`default_main_program` when the program is not specified.
7451

7452
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7453

Y
Yu Yang 已提交
7454
    Returns:
7455
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7456 7457 7458 7459

    Examples:
        ..  code-block:: python

7460
            import paddle
7461

7462
            paddle.enable_static()
7463
            # Sample Network:
7464 7465 7466
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7467

7468 7469 7470
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7471
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7472
    """
Y
Yu Yang 已提交
7473
    return _main_program_
Y
Yu Yang 已提交
7474 7475 7476 7477 7478


def switch_main_program(program):
    """
    Switch the main program to a new program.
7479

Y
Yu Yang 已提交
7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7494
    Switch the startup program to a new program
Y
Yu Yang 已提交
7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7507
@signature_safe_contextmanager
Y
Yu Yang 已提交
7508 7509
def program_guard(main_program, startup_program=None):
    """
7510 7511
    :api_attr: Static Graph

7512 7513 7514
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7515

G
guofei 已提交
7516
    Args:
7517
        main_program(Program): New main program inside ``with`` statement.
7518 7519
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7520 7521 7522
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7523
    Examples:
C
cyberslack_lee 已提交
7524 7525
        .. code-block:: python
            :name: code-example-1
T
tangwei12 已提交
7526

C
cyberslack_lee 已提交
7527
            import paddle
Y
yuyang18 已提交
7528

C
cyberslack_lee 已提交
7529 7530 7531 7532 7533 7534
            paddle.enable_static()
            main_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(main_program, startup_program):
                data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
                hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7535 7536 7537

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7538

Y
Yu Yang 已提交
7539
    Examples:
C
cyberslack_lee 已提交
7540 7541
        .. code-block:: python
            :name: code-example-2
Y
yuyang18 已提交
7542

C
cyberslack_lee 已提交
7543
            import paddle
7544

C
cyberslack_lee 已提交
7545 7546 7547 7548 7549
            paddle.enable_static()
            main_program = paddle.static.Program()
            # does not care about startup program. Just pass a temporary value.
            with paddle.static.program_guard(main_program, paddle.static.Program()):
                data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7550

Y
Yu Yang 已提交
7551
    """
7552
    from .data_feeder import check_type
7553 7554 7555 7556

    check_type(
        main_program, 'main_program', Program, 'paddle.static.program_guard'
    )
Y
Yu Yang 已提交
7557 7558
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7559 7560 7561 7562 7563 7564
        check_type(
            startup_program,
            'startup_program',
            Program,
            'paddle.static.program_guard',
        )
7565 7566
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7567
        startup_program = switch_startup_program(startup_program)
7568 7569 7570 7571 7572 7573
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7574 7575


W
Wu Yi 已提交
7576
def _get_var(name, program=None):
X
xuwei06 已提交
7577
    """
Y
yuyang18 已提交
7578
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7579

X
xuwei06 已提交
7580 7581 7582
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7583
        If None, default_global_program() will be used.
X
xuwei06 已提交
7584 7585 7586 7587 7588 7589 7590

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7591
    assert isinstance(program, Program)
X
xuwei06 已提交
7592 7593

    return program.global_block().var(name)
7594 7595


7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608
@signature_safe_contextmanager
def dygraph_guard_if_declarative():
    from .dygraph.base import in_declarative_mode
    from .dygraph import Tracer

    if in_declarative_mode():
        # Under @paddle.jit.to_static decorator, we switch back dygraph mode temporarily.
        with _dygraph_guard(tracer=Tracer()):
            yield
    else:
        yield


S
rename  
sneaxiy 已提交
7609
@signature_safe_contextmanager
L
lujun 已提交
7610
def _dygraph_guard(tracer):
7611 7612 7613 7614
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = tracer
    if tracer is not None:
        core._switch_tracer(tracer)
M
minqiyang 已提交
7615

C
Charles-hit 已提交
7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627
    try:
        yield
    finally:
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer


@signature_safe_contextmanager
def _static_guard():
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = None
7628 7629 7630
    try:
        yield
    finally:
7631 7632 7633
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7634 7635


S
rename  
sneaxiy 已提交
7636
@signature_safe_contextmanager
L
lujun 已提交
7637
def _dygraph_place_guard(place):
7638 7639 7640
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7641 7642
    _set_dygraph_tracer_expected_place(place)

7643 7644 7645
    try:
        yield
    finally:
7646
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7647
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7648 7649


7650 7651 7652 7653 7654 7655 7656 7657 7658 7659
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7660

7661
    Note:
7662
        The API only supports static graph mode.
7663 7664 7665 7666

    A context manager that specifies the device on which the OP will be placed.

    Args:
7667
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
7668
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7669 7670 7671 7672 7673 7674 7675
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7676

7677
        .. code-block:: python
7678

7679
            # required: gpu
Z
Zhang Ting 已提交
7680
            import paddle
7681

Z
Zhang Ting 已提交
7682 7683 7684
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7685
            if support_gpu:
Z
Zhang Ting 已提交
7686
                place = paddle.CUDAPlace(0)
7687 7688

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7689 7690 7691
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7692

Z
Zhang Ting 已提交
7693
            with paddle.static.device_guard("cpu"):
7694
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7695 7696
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7697
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7698
                out = paddle.reshape(data1, shape=shape)
7699

Z
Zhang Ting 已提交
7700 7701
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7702 7703 7704
            result = exe.run(fetch_list=[out])
    """

7705 7706 7707 7708 7709
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7710 7711 7712 7713
    if (
        device not in ['cpu', 'gpu', 'xpu', '', None]
        and device not in core.get_all_custom_device_type()
    ):
7714
        raise ValueError(
7715
            "The Attr(device) should be 'cpu', 'xpu', 'gpu' or custom device, and it can also be empty string or None "
7716 7717
            "when there is no need to specify device. But received %s" % device
        )
7718 7719
    if index:
        device = ":".join([device, index])
7720
    pre_device = switch_device(device)
7721 7722 7723 7724
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7725 7726


7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
7739
        The API only supports static graph mode.
7740

7741
    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static graph mode.
7742 7743 7744 7745 7746

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
7747
    assert (
7748
        not in_dygraph_mode()
7749
    ), "cuda_graph_guard only works under static graph mode"
7750 7751
    assert (
        core.is_compiled_with_cuda()
7752 7753 7754 7755 7756 7757 7758 7759
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7760 7761 7762
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7763
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7764 7765 7766 7767 7768 7769 7770

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7771 7772
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7773 7774 7775 7776
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7777 7778
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7779 7780
        else:
            raise ValueError(
7781 7782
                "Flag %s cannot set its value through this function." % (key)
            )
G
guofei 已提交
7783 7784 7785 7786 7787


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7788
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7789 7790 7791 7792 7793 7794 7795 7796 7797 7798

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7799
            import paddle
G
guofei 已提交
7800 7801

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7802
            res = paddle.get_flags(flags)
G
guofei 已提交
7803 7804 7805 7806 7807 7808
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7809
            if _global_flags().is_public(key):
7810
                value = _global_flags()[key]
G
guofei 已提交
7811 7812 7813 7814
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
7815 7816 7817
                    'Flag %s cannot get its value through this function.'
                    % (key)
                )
G
guofei 已提交
7818
    elif isinstance(flags, str):
7819
        if _global_flags().is_public(flags):
7820
            value = _global_flags()[flags]
G
guofei 已提交
7821 7822 7823 7824
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
7825 7826
                'Flag %s cannot get its value through this function.' % (flags)
            )
G
guofei 已提交
7827 7828 7829
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7830 7831 7832 7833 7834 7835


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847
    if isinstance(
        place,
        (
            core.Place,
            core.XPUPlace,
            core.CPUPlace,
            core.CUDAPinnedPlace,
            core.CUDAPlace,
            core.IPUPlace,
            core.CustomPlace,
        ),
    ):
7848 7849 7850 7851
        return place

    if not isinstance(place, str):
        raise ValueError(
7852 7853
            "place only support string which is 'Place' and so on."
        )
7854 7855

    place = place.lower()
7856
    if place == "cpu":
7857
        return core.CPUPlace()
7858

7859
    if place == "device":
7860 7861
        return core.Place()

7862
    # GPU
7863 7864 7865 7866
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
7867
                "The device should not be {}, since PaddlePaddle is "
7868
                "not compiled with CUDA".format(avaliable_gpu_place.group())
7869
            )
7870 7871 7872 7873 7874 7875 7876 7877 7878
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7879 7880

    # XPU
7881 7882 7883 7884
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
7885
                "The device should not be {}, since PaddlePaddle is "
7886
                "not compiled with XPU".format(avaliable_xpu_place.group())
7887
            )
7888 7889 7890 7891
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7892

J
jianghaicheng 已提交
7893 7894 7895 7896 7897
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
7898
                "The device should not be {}, since PaddlePaddle is "
7899
                "not compiled with IPU".format(avaliable_ipu_place.group())
7900
            )
J
jianghaicheng 已提交
7901 7902 7903 7904 7905
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7906 7907 7908 7909 7910 7911 7912
    place_info_list = place.split(':', 1)
    device_type = place_info_list[0]
    if device_type in core.get_all_custom_device_type():
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.CustomPlace(device_type, device_id)

7913
    raise ValueError(
7914
        f"Paddle supports CPUPlace, CUDAPlace, CUDAPinnedPlace, XPUPlace, IPUPlace and CustomPlace, but received {place}."
7915
    )
7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927


def _get_paddle_place_list(places):
    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret