parallel_executor.cc 42.4 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
16

D
dzhwinter 已提交
17
#include <algorithm>
Q
qingqing01 已提交
18
#include <memory>
C
chengduoZH 已提交
19
#include <string>
20
#include <tuple>
Q
Qiao Longfei 已提交
21
#include <utility>
Q
qiaolongfei 已提交
22
#include <vector>
23

Q
Qiao Longfei 已提交
24
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
Y
yuyang18 已提交
25
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
26
#include "paddle/fluid/framework/details/multi_devices_helper.h"
27
#include "paddle/fluid/framework/details/op_handle_base.h"
Y
Yancey1989 已提交
28
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
Y
yuyang18 已提交
29
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
30
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
31 32
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
33
#include "paddle/fluid/framework/ir/memory_optimize_pass/memory_optimization_var_info.h"
34
#include "paddle/fluid/framework/ir/memory_optimize_pass/reference_count_pass_helper.h"
35
#include "paddle/fluid/framework/ir/multi_devices_graph_pass/set_reader_device_info_utils.h"
W
wangchaochaohu 已提交
36
#include "paddle/fluid/platform/event.h"
37
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
38

39 40
DECLARE_double(eager_delete_tensor_gb);

Y
Yu Yang 已提交
41
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
42
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
43
#endif
Y
Yu Yang 已提交
44
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
45 46
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
47
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
48
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
49

Y
Yang Yang 已提交
50
namespace paddle {
Y
Yu Yang 已提交
51 52
namespace framework {

Y
Yu Yang 已提交
53
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
54
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
55
static bool gProfileStarted = false;
Y
Yu Yang 已提交
56
#endif
57

Y
Yu Yang 已提交
58 59
class ParallelExecutorPrivate {
 public:
60 61 62
  ParallelExecutorPrivate(const std::vector<platform::Place> &places,
                          Scope *global_scope)
      : places_(places), global_scope_(global_scope) {
Y
Yu Yang 已提交
63
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
64 65
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
66
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
67 68 69
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
70
          "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
71 72 73 74
#endif
      });
    }
  }
Y
Yu Yang 已提交
75

76 77 78 79 80 81 82 83 84 85 86
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
87

88 89 90 91
  void SetHasFeed(size_t dev_idx, bool has_feed = true);

  bool AllowPartialFeed() const;

92
  ir::Graph *ApplyMemoryOptimizePass(ir::Graph *graph);
S
sneaxiy 已提交
93 94 95

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

96
  /**
T
tianshuo78520a 已提交
97 98
   * NOTE(zengjinle): the fed variables of users should not be reused,
   * because users may feed them into another network. Changing the fed
99 100 101 102 103 104
   * variables that users can visit may cause calculation wrong, which is
   * a very subtle bug when traning networks. However, these variables
   * can be garbage collected.
   *
   * ParallelExecutor provides 2 methods to feed variables:
   *
T
tianshuo78520a 已提交
105
   *  - FeedTensorsIntoLocalScopes: this method would share memory of fed
106 107
   *                                variables, so we have to skip these.
   *
T
tianshuo78520a 已提交
108
   *  - FeedAndSplitTensorIntoLocalScopes: this method would copy data of fed
109 110 111 112
   *                                       variables, so we do not need to skip
   *                                       them.
   */
  inline void SetSkipMemoryReuse(size_t scope_idx, const std::string &name) {
113 114 115 116 117
    if (mem_opt_var_infos_.size() == 0) {
      VLOG(4) << "The mem_opt_var_infos_ is empty, maybe no memory "
                 "optimization strategy is enabled";
      return;
    }
118 119 120 121 122 123
    auto iter = mem_opt_var_infos_[scope_idx].find(name);
    if (iter != mem_opt_var_infos_[scope_idx].end()) {
      iter->second->SetSkipMemoryReuse(true);
    }
  }

124
#if defined(PADDLE_WITH_NCCL)
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
  void InitNCCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "nccl comm num:" << bst.nccl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    if (bst.use_hierarchical_allreduce_) {
      VLOG(1) << ", use_hierarchical_allreduce:"
              << bst.use_hierarchical_allreduce_ << ", inter_trainers_num:"
              << bst.hierarchical_allreduce_inter_nranks_
              << ", exter_trainers_num:"
              << bst.hierarchical_allreduce_exter_nranks_;
    }

    std::vector<ncclUniqueId *> flat_nccl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create ncclid when nranks==1
141 142
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
143 144 145 146 147 148 149 150 151 152 153 154
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one ncclid in pg model";

      ncclUniqueId *nccl_id = nullptr;

      std::string var_name = platform::GetFlatNCCLVarName(0);
      auto nccl_id_var = scope->FindVar(var_name);
      if (nccl_id_var) {
        nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
155
        VLOG(10) << "find nccl_id_var:" << var_name << ", nccl_id:" << nccl_id;
156 157
      } else {
        nccl_id = new ncclUniqueId();
158 159 160
        PADDLE_ENFORCE_EQ(
            platform::dynload::ncclGetUniqueId(nccl_id), ncclSuccess,
            platform::errors::PreconditionNotMet("Get NCCL unique ID failed."));
161 162
        VLOG(10) << "can't find nccl_id_var:" << var_name
                 << ", nccl_id:" << nccl_id;
163 164 165 166
      }

      flat_nccl_ids.push_back(nccl_id);

167 168
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
169 170 171 172 173 174
      VLOG(1) << "init bst nccl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
175 176
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
177 178 179 180 181 182
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
      std::string var_name = platform::GetFlatNCCLVarName(i);
      auto nccl_id_var = scope->FindVar(var_name);
183 184 185
      PADDLE_ENFORCE_NOT_NULL(
          nccl_id_var,
          platform::errors::NotFound("Can't find nccl_id_var '%s'.", var_name));
186 187 188 189
      auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      flat_nccl_ids.push_back(nccl_id);
    }

190 191
    nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                             bst.trainer_id_);
192 193

    if (bst.use_hierarchical_allreduce_) {
G
gongweibao 已提交
194 195 196 197
      std::vector<ncclUniqueId *> inter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalInterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
198 199 200
        PADDLE_ENFORCE_NOT_NULL(nccl_id_var,
                                platform::errors::NotFound(
                                    "Can't find nccl_id_var '%s'.", var_name));
G
gongweibao 已提交
201 202 203
        auto inter_nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        inter_nccl_ids.push_back(inter_nccl_id);
      }
204 205 206 207 208

      std::vector<ncclUniqueId *> exter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalExterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
209 210 211
        PADDLE_ENFORCE_NOT_NULL(nccl_id_var,
                                platform::errors::NotFound(
                                    "Can't find nccl_id_var '%s'.", var_name));
212 213 214
        auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        exter_nccl_ids.push_back(nccl_id);
      }
G
gongweibao 已提交
215

216 217 218 219
      nccl_ctxs_->InitHierarchicalCtxs(
          places_, inter_nccl_ids, exter_nccl_ids, bst.num_trainers_,
          bst.trainer_id_, bst.hierarchical_allreduce_inter_nranks_,
          bst.hierarchical_allreduce_exter_nranks_);
220 221
    }
  }
222

223
  void InitOrGetNCCLCommunicator(framework::Scope *scope, BuildStrategy *bst) {
224 225 226
    const std::string var_name = "NCCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
227 228 229
      PADDLE_ENFORCE_EQ(var->IsInitialized(), true,
                        platform::errors::PreconditionNotMet(
                            "if %s exists, it must be initialized", var_name));
230 231 232 233 234 235
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      nccl_ctxs_ = var->GetMutable<platform::NCCLCommunicator>();
      return;
    }

236
    if (bst->use_hierarchical_allreduce_) {
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
      PADDLE_ENFORCE_GT(
          bst->num_trainers_, 1,
          platform::errors::PreconditionNotMet(
              "The num_trainers should be greater than 1, but received %llu.",
              bst->num_trainers_));
      PADDLE_ENFORCE_GT(
          bst->hierarchical_allreduce_inter_nranks_, 1,
          platform::errors::PreconditionNotMet(
              "The inter_nranks should be greater than 1, but received %d.",
              bst->hierarchical_allreduce_inter_nranks_));
      PADDLE_ENFORCE_EQ(
          bst->num_trainers_ % bst->hierarchical_allreduce_inter_nranks_, 0,
          platform::errors::PreconditionNotMet(
              "num_trainers:%llu mod inter_nranks:%d != 0", bst->num_trainers_,
              bst->hierarchical_allreduce_inter_nranks_));
252 253 254 255 256

      bst->hierarchical_allreduce_exter_nranks_ =
          bst->num_trainers_ / bst->hierarchical_allreduce_inter_nranks_;
    }

257 258
    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    nccl_ctxs_ = scope->Var(var_name)->GetMutable<platform::NCCLCommunicator>();
259
    InitNCCLCtxs(scope, *bst);
260
  }
261 262
#endif

263 264 265 266 267
  inline bool IsPersistable(const std::string &name) const {
    auto iter = is_persistable_.find(name);
    return iter != is_persistable_.end() && iter->second;
  }

D
dzhwinter 已提交
268
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
269 270
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
271
  std::vector<Scope *> local_exec_scopes_;
272
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
273
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
274

275 276
  std::unordered_map<std::string, bool> is_persistable_;

277
#if defined(PADDLE_WITH_NCCL)
278
  platform::NCCLCommunicator *nccl_ctxs_{nullptr};
Y
Yu Yang 已提交
279
#endif
C
chengduoZH 已提交
280 281
  bool own_local_scope_;
  bool use_cuda_;
282
  bool use_all_reduce_;
283
  size_t nranks_;
S
sneaxiy 已提交
284

285
  ir::MemOptVarInfoMapList mem_opt_var_infos_;
286
  ir::GarbageCollectorMap gcs_;
287 288

  details::ParallelSSAGraphExecutor *inference_executor_{nullptr};
Y
Yu Yang 已提交
289 290
};

291 292 293 294 295 296 297 298 299 300
void ParallelExecutorPrivate::SetHasFeed(size_t dev_idx, bool has_feed) {
  if (inference_executor_) {
    inference_executor_->SetHasFeed(dev_idx, has_feed);
  }
}

bool ParallelExecutorPrivate::AllowPartialFeed() const {
  return inference_executor_ && inference_executor_->SupportPartialFeed();
}

301
ir::Graph *ParallelExecutorPrivate::ApplyMemoryOptimizePass(ir::Graph *graph) {
Z
Zeng Jinle 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
  /**
   * NOTE(zengjinle): If BuildStrategy.memory_optimize = None in Python,
   * set BuildStrategy.memory_optimize according to whether gc is enabled.
   * If gc is enabled, BuildStrategy.memory_optimize = False.
   * If gc is disabled, BuildStrategy.memory_optimize = True.
   * This is because gc+memory_optimize is worse than gc only.
   *
   * As an option, users can enable BuildStrategy.memory_optimize forcely
   * by setting True, and disable it forcely by setting False.
   */
  bool is_gc_enabled = (GetEagerDeletionThreshold() >= 0);
  if (!build_strategy_.memory_optimize_) {
    build_strategy_.memory_optimize_ = !is_gc_enabled;
  }

  bool need_mem_opt = build_strategy_.enable_inplace_ ||
318
                      build_strategy_.enable_addto_ ||
Z
Zeng Jinle 已提交
319 320 321 322
                      build_strategy_.memory_optimize_.get() || is_gc_enabled;

  if (!need_mem_opt) return graph;

323 324 325 326 327 328 329 330
  std::vector<ir::LastLiveOpsOfVars> last_live_ops_of_vars;

  auto ref_cnt_pass = ir::PassRegistry::Instance().Get("reference_count_pass");
  ref_cnt_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
  ref_cnt_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
  graph = ref_cnt_pass->Apply(graph);
  VLOG(10) << "ReferenceCountPass Applied";

331 332 333 334 335 336 337 338 339 340
  if (build_strategy_.enable_addto_) {
    auto addto_pass = ir::PassRegistry::Instance().Get("inplace_addto_op_pass");
    addto_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    addto_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
    addto_pass->SetNotOwned(ir::kUseCuda, &use_cuda_);
    VLOG(10) << "Start to apply inplace_addto_op_pass";
    graph = addto_pass->Apply(graph);
    VLOG(10) << "inplace_addto_op_pass Applied";
  }

341 342 343 344 345 346 347 348 349
  if (build_strategy_.enable_inplace_) {
    auto inplace_pass =
        ir::PassRegistry::Instance().Get("buffer_shared_inplace_pass");
    inplace_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    inplace_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
    inplace_pass->SetNotOwned(ir::kUseCuda, &use_cuda_);
    VLOG(10) << "Start to apply buffer_shared_inplace_pass";
    graph = inplace_pass->Apply(graph);
    VLOG(10) << "buffer_shared_inplace_pass Applied";
350 351
    VLOG(1) << "Inplace strategy is enabled, when "
               "build_strategy.enable_inplace = True";
352 353
  }

354
  if (build_strategy_.memory_optimize_.get()) {
355 356 357 358 359 360 361 362 363 364
    auto cross_op_memory_reuse_pass = ir::PassRegistry::Instance().Get(
        "buffer_shared_cross_op_memory_reuse_pass");
    cross_op_memory_reuse_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                            &mem_opt_var_infos_);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
                                            &last_live_ops_of_vars);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kUseCuda, &use_cuda_);
    VLOG(10) << "Start to apply buffer_shared_cross_op_memory_reuse_pass";
    graph = cross_op_memory_reuse_pass->Apply(graph);
    VLOG(10) << "buffer_shared_cross_op_memory_reuse_pass Applied";
Z
Zeng Jinle 已提交
365 366 367
    LOG(INFO) << "Cross op memory reuse strategy is enabled, when "
                 "build_strategy.memory_optimize = True or garbage collection "
                 "strategy is disabled, which is not recommended";
368
  }
369

370
  if (!is_gc_enabled) {
371 372 373 374
    return graph;
  }
  size_t max_memory_size = static_cast<size_t>(GetEagerDeletionThreshold());

S
sneaxiy 已提交
375 376 377 378 379
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
380
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
381
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
382 383
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
384
        gc.reset(new UnsafeFastGPUGarbageCollector(
385
            BOOST_GET_CONST(platform::CUDAPlace, place), max_memory_size));
S
sneaxiy 已提交
386
      } else {
S
sneaxiy 已提交
387
        gc.reset(new StreamGarbageCollector(
388
            BOOST_GET_CONST(platform::CUDAPlace, place), max_memory_size));
S
sneaxiy 已提交
389 390
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
391
    } else {
S
sneaxiy 已提交
392
#endif
S
sneaxiy 已提交
393
      if (platform::is_cpu_place(place)) {
394 395
        gc.reset(new CPUGarbageCollector(
            BOOST_GET_CONST(platform::CPUPlace, place), max_memory_size));
S
sneaxiy 已提交
396 397
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
398 399
        PADDLE_THROW(platform::errors::PreconditionNotMet(
            "Unsupported place for garbage collection"));
S
sneaxiy 已提交
400
      }
S
sneaxiy 已提交
401 402 403 404
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
405
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
406 407
  }

S
sneaxiy 已提交
408
  if (!gcs_.empty()) {
S
sneaxiy 已提交
409 410
    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
411 412
    eager_deletion_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                     &mem_opt_var_infos_);
413 414
    eager_deletion_pass->SetNotOwned(ir::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
S
sneaxiy 已提交
415
                                     &last_live_ops_of_vars);
416
    eager_deletion_pass->SetNotOwned(ir::kAllPlaces, &places_);
417
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
418
    VLOG(10) << "EagerDeletionPass Applied";
419 420 421
    VLOG(1) << "Garbage collection strategy is enabled, when "
            << "FLAGS_eager_delete_tensor_gb = "
            << FLAGS_eager_delete_tensor_gb;
S
sneaxiy 已提交
422 423 424 425
  }
  return graph;
}

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
class ResetHasFeedGuard {
 public:
  explicit ResetHasFeedGuard(ParallelExecutorPrivate *pe_member)
      : pe_member_(pe_member) {}

  ~ResetHasFeedGuard() {
    for (size_t i = 0; i < pe_member_->places_.size(); ++i) {
      pe_member_->SetHasFeed(i, false);
    }
  }

 private:
  ParallelExecutorPrivate *pe_member_;
};

441 442
size_t ParallelExecutor::DeviceCount() const { return member_->places_.size(); }

443 444 445 446
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

447 448 449 450 451 452 453 454 455 456 457 458 459 460
void ParallelExecutor::DropLocalExeScopes() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  if (executor) {
    executor->DropLocalExeScopes();
  }
}

bool ParallelExecutor::NeedCreateLocalExeScope() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  return executor && executor->NeedCreateLocalExeScope();
}

Y
Yan Xu 已提交
461 462 463 464 465 466 467 468
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
469
    : member_(new ParallelExecutorPrivate(places, scope)) {
470 471 472
  PADDLE_ENFORCE(places.size() > 0 && !is_xpu_place(places[0]),
                 platform::errors::Unavailable(
                     "XPU is not supported in ParallelExecutor"));
473 474
  ir::InitReaderQueueDeviceCount(graph, *(member_->global_scope_),
                                 member_->places_.size());
475
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
476
  member_->build_strategy_ = build_strategy;
C
chengduo 已提交
477 478
  member_->use_all_reduce_ = member_->build_strategy_.reduce_ ==
                             BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
479
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
C
chengduo 已提交
480 481 482 483 484 485 486
  if (!member_->use_all_reduce_ && member_->nranks_ == 1) {
    LOG(INFO) << "If you set build_strategy.reduce with 'Reduce',"
                 "the number of places should be greater than 1.";
    member_->build_strategy_.reduce_ =
        BuildStrategy::ReduceStrategy::kAllReduce;
    member_->use_all_reduce_ = true;
  }
487 488
#if defined(PADDLE_WITH_CUDA) && defined(_WIN32)
  if (member_->use_cuda_) {
489 490 491
    PADDLE_ENFORCE_EQ(
        places.size(), 1,
        platform::errors::Unavailable("Windows can support Single GPU only."));
492 493
  }
#endif
Y
Yancey1989 已提交
494

495 496 497 498 499 500 501 502 503 504
#if defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_NCCL)
  PADDLE_ENFORCE_EQ(
      places.size(), 1,
      platform::errors::PermissionDenied(
          "Your machine has multiple cards, "
          "but the WITH_NCCL option is not turned on during compilation, "
          "and you cannot use multi-card training or prediction. "
          "Please recompile and turn on the WITH_NCCL option."));
#endif

505
  VLOG(1) << string::Sprintf(
506 507 508
      "The Program will be executed on %s using ParallelExecutor, %lu "
      "cards are used, so %lu programs are executed in parallel.",
      (member_->use_cuda_ ? "CUDA" : "CPU"), places.size(), places.size());
C
chengduo 已提交
509

510
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
511
  // Create local scopes
512
  if (local_scopes.empty()) {
C
chengduoZH 已提交
513
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
514 515
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
516
      member_->local_scopes_.emplace_back(&scope->NewScope());
517 518
    }
  } else {
C
chengduoZH 已提交
519
    member_->own_local_scope_ = false;
520 521 522 523 524
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size(),
                      platform::errors::PreconditionNotMet(
                          "member_->places_.size() = %d is not equal to "
                          "local_scopes.size() = %d",
                          member_->places_.size(), local_scopes.size()));
525
    for (size_t i = 0; i < member_->places_.size(); ++i) {
526
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
527
    }
Y
Yu Yang 已提交
528 529
  }

Q
Qiao Longfei 已提交
530
  std::vector<ir::Graph *> graphs;
C
chengduo 已提交
531
  if (member_->build_strategy_.async_mode_) {
532 533 534
    PADDLE_ENFORCE_EQ(member_->use_cuda_, false,
                      platform::errors::Unavailable(
                          "gpu mode does not support async_mode_ now!"));
Q
Qiao Longfei 已提交
535
    graphs.push_back(graph);
D
dongdaxiang 已提交
536
    for (size_t i = 1; i < places.size(); ++i) {
Q
Qiao Longfei 已提交
537 538 539 540
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
Q
Qiao Longfei 已提交
541
  }
Q
Qiao Longfei 已提交
542

Y
Yancey1989 已提交
543 544 545
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
C
chengduo 已提交
546 547 548 549
  member_->build_strategy_.enable_parallel_graph_ =
      EnableParallelGraphExecution(*graph, exec_strategy,
                                   member_->build_strategy_);
  if (member_->build_strategy_.enable_parallel_graph_) {
550 551 552 553
    LOG(INFO) << "The Executor would execute the graph by ParallelGraph "
                 "Execution which can get better performance,"
              << "you can force it off by env FLAGS_enable_parallel_graph=0";
  }
Y
Yancey1989 已提交
554

555
  if (member_->use_cuda_ && member_->nranks_ > 1) {
556
#if defined(PADDLE_WITH_NCCL)
557
    member_->InitOrGetNCCLCommunicator(scope, &member_->build_strategy_);
Q
qingqing01 已提交
558

W
Wu Yi 已提交
559 560 561
    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
Q
qingqing01 已提交
562
    // be rewrite and there will be some problem.
W
Wu Yi 已提交
563 564 565
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
566 567
    auto *nccl_ctxs =
        member_->nccl_ctxs_->GetSyncBatchNormCtx(scope, member_->places_);
568
    auto &pool = platform::DeviceContextPool::Instance();
Q
qingqing01 已提交
569 570 571
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
572
      auto &nccl_ctx = nccl_ctxs->at(member_->places_[dev_id]);
573
      dev_ctx->set_nccl_comm(nccl_ctx.comm());
Q
qingqing01 已提交
574
    }
Y
Yu Yang 已提交
575
#endif
C
chengduoZH 已提交
576
  }
Y
Yan Xu 已提交
577 578
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
C
chengduo 已提交
579
    if (member_->build_strategy_.num_trainers_ > 1) {
Y
Yan Xu 已提交
580 581 582 583 584 585 586 587 588
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };
589
  // Bcast Parameters to all GPUs
Y
Yan Xu 已提交
590
  if (need_broadcast()) {
C
chengduo 已提交
591
    BCastParamsToDevices(bcast_vars, member_->build_strategy_.trainer_id_);
Y
Yu Yang 已提交
592
  }
593

Q
Qiao Longfei 已提交
594
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
595

Q
Qiao Longfei 已提交
596 597 598
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<ir::Graph *> async_graphs(places.size());
599
#if defined(PADDLE_WITH_NCCL)
C
chengduo 已提交
600
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
601
    VLOG(3) << "use local async mode";
C
chengduo 已提交
602 603 604 605
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_cuda_,
        member_->nccl_ctxs_);
D
dongdaxiang 已提交
606
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
607 608 609 610
      graphs[i] = member_->build_strategy_.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, 1, member_->use_cuda_,
          member_->nccl_ctxs_);
611
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
612
    }
Q
Qiao Longfei 已提交
613
  } else {
C
chengduo 已提交
614 615 616
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_, member_->nccl_ctxs_);
Q
Qiao Longfei 已提交
617
  }
C
chengduoZH 已提交
618
#else
C
chengduo 已提交
619
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
620
    VLOG(3) << "use local async mode";
C
chengduo 已提交
621 622 623
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_cuda_);
624
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
625
      graphs[i] = member_->build_strategy_.Apply(
626
          graphs[i], {member_->places_[i]}, loss_var_name,
Q
Qiao Longfei 已提交
627
          {member_->local_scopes_[i]}, 1, member_->use_cuda_);
628
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
629
    }
Q
can run  
Qiao Longfei 已提交
630
  } else {
C
chengduo 已提交
631 632 633
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_);
Q
can run  
Qiao Longfei 已提交
634
  }
Y
Yu Yang 已提交
635
#endif
636

637
  graph = member_->ApplyMemoryOptimizePass(graph);
Y
Yancey1989 已提交
638

Q
Qiao Longfei 已提交
639 640
  async_graphs[0] = graph;

641 642
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
643
  std::vector<details::VariableInfo> var_infos;
Q
Qiao Longfei 已提交
644 645 646 647 648 649
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
650 651 652

      member_->is_persistable_.emplace(node->Var()->Name(),
                                       node->Var()->Persistable());
Y
Yancey1989 已提交
653 654
    }
  }
Y
Yancey1989 已提交
655

656 657 658 659 660 661 662
  std::unordered_map<Scope *, Scope *> scope_map;
  for (auto *scope : member_->local_scopes_) {
    auto &local_exec_scope = scope->NewScope();
    member_->local_exec_scopes_.emplace_back(&local_exec_scope);
    scope_map.emplace(scope, &local_exec_scope);
  }

663 664 665 666 667 668
  PADDLE_ENFORCE_EQ(
      member_->local_scopes_.size(), member_->local_exec_scopes_.size(),
      platform::errors::PreconditionNotMet(
          "member_->local_scopes_.size() = %d is not equal to "
          "member_->local_exec_scopes_.size() = %d",
          member_->local_scopes_.size(), member_->local_exec_scopes_.size()));
669 670 671

  std::vector<ir::Graph *> final_graphs;

C
chengduo 已提交
672
  if (member_->build_strategy_.async_mode_) {
Q
can run  
Qiao Longfei 已提交
673 674
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
675 676 677
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, async_graphs));
    final_graphs = async_graphs;
C
chengduo 已提交
678
  } else if (member_->build_strategy_.enable_parallel_graph_) {
Q
can run  
Qiao Longfei 已提交
679
    VLOG(3) << "use ParallelSSAGraphExecutor";
Y
Yancey1989 已提交
680
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
681 682
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
683 684 685
    bool is_inference = details::IsDataParallelInferenceGraph(*graph);
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);

686 687 688 689 690
    auto *pg_exe = new details::ParallelSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, graph);
    final_graphs = pg_exe->Graphs();
    member_->executor_.reset(pg_exe);
691 692 693 694 695 696 697 698

    if (is_inference && member_->places_.size() > 1) {
      member_->inference_executor_ = pg_exe;
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
    }
Y
Yancey1989 已提交
699
#else
700 701
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Paddle should be compiled with CUDA for ParallelGraph Execution."));
Y
Yancey1989 已提交
702
#endif
Y
yuyang18 已提交
703
  } else {
704 705 706 707 708 709
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);
    auto possible_inference_graphs =
        details::TrySeparateToMultipleSingleDeviceGraphs(graph);
    if (!possible_inference_graphs.empty()) {
      VLOG(5) << "Use ParallelSSAGraphExecutor in inference phase";
      auto *pg_exe = new details::ParallelSSAGraphExecutor(
710
          exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
711 712 713 714 715 716 717 718
          member_->places_, std::move(possible_inference_graphs));
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
      final_graphs = pg_exe->Graphs();
      member_->executor_.reset(pg_exe);
      member_->inference_executor_ = pg_exe;
Y
Yancey1989 已提交
719
    } else {
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
      LOG_IF(WARNING, details::HasKeepLastReadOp(*graph))
          << "drop_last=False for DataLoader is not supported in training "
             "network. It is automatically turned to drop_last=True.";
      if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
        VLOG(3) << "use ThreadedSSAGraphExecutor";
        member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
            exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
            member_->places_, graph));
      } else {
        VLOG(3) << "use FastThreadedSSAGraphExecutor";
        member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
            exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
            member_->places_, graph));
      }
      final_graphs.emplace_back(graph);
Y
Yancey1989 已提交
735
    }
C
chengduoZH 已提交
736
  }
Y
yuyang18 已提交
737

Q
can run  
Qiao Longfei 已提交
738
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
C
chengduo 已提交
739
  if (!member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
740
    member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
741 742 743 744 745 746 747 748 749
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        std::move(var_infos), member_->places_, std::move(member_->executor_)));
  }

  for (auto *g : final_graphs) {
    auto ops = ir::FilterByNodeWrapper<details::OpHandleBase>(*g);
    for (auto *op : ops) {
      op->SetLocalExecScopes(scope_map);
    }
Q
Qiao Longfei 已提交
750
  }
751 752 753 754 755 756 757 758

  if (final_graphs.size() == 1) {
    ir::SetReaderOpDeviceInfo(final_graphs[0], member_->places_.size());
  } else {
    for (size_t i = 0; i < final_graphs.size(); ++i) {
      ir::SetReaderOpDeviceInfo(final_graphs[i], member_->places_.size(), i);
    }
  }
Y
Yu Yang 已提交
759 760
}

Y
Yancey1989 已提交
761
void ParallelExecutor::BCastParamsToDevices(
Y
Yan Xu 已提交
762
    const std::vector<std::string> &vars, int trainer_id) const {
Q
Qiao Longfei 已提交
763
  VLOG(3) << "BCastParamsToDevices";
X
Xin Pan 已提交
764
  // the initializing bcast, all vars would be bcast from device(0).
765
  for (auto &var : vars) {
X
Xin Pan 已提交
766
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
767
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
768 769 770 771
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
772
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
773
      VLOG(3) << "one in var not inited, return!";
774 775
      continue;
    }
776 777
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
778
#if defined(PADDLE_WITH_NCCL)
779
      std::vector<void *> buffers;
C
chengduo 已提交
780
      buffers.reserve(member_->places_.size());
781 782 783 784 785
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
786

Y
Yan Xu 已提交
787
        if (i == 0 && trainer_id == 0) {
788 789
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
790
          auto local_scope = member_->local_scopes_[i];
791
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
792
          t->Resize(dims);
793
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
794
        }
795
        buffers.push_back(buffer);
796
      }
797

798
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
799 800 801 802
                        platform::errors::PreconditionNotMet(
                            "variables' buffer size to bcast is %d, which is "
                            "NOT equal to places size %d",
                            buffers.size(), member_->places_.size()));
803
      {
804
        auto *nccl_ctxs = member_->nccl_ctxs_->DefaultFlatCtx();
805 806
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
807
          auto &nccl_ctx = nccl_ctxs->at(member_->places_[i]);
X
Xin Pan 已提交
808 809
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
810
        }
811
        nccl_ctxs->WaitAll();
812
      }
C
chengduoZH 已提交
813
#endif
814 815
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
816
      for (size_t i = 1; i < member_->places_.size(); ++i) {
817 818
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
819

Q
Qiao Longfei 已提交
820
        auto copy_memory = [&] {
821 822 823
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
824 825
        };

Q
Qiao Longfei 已提交
826
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
827 828 829 830 831 832 833

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
        } else if (member_->use_all_reduce_ || member_->use_cuda_ ||
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
834
        } else {
Q
can run  
Qiao Longfei 已提交
835
          share_memory();
836
        }
Y
Yu Yang 已提交
837
      }
Y
Stash  
Yu Yang 已提交
838 839
    }
  }
Y
Yu Yang 已提交
840
}
Y
Yu Yang 已提交
841

Z
Zhen Wang 已提交
842 843
FetchResultType ParallelExecutor::Run(
    const std::vector<std::string> &fetch_tensors, bool return_merged) {
844
  VLOG(3) << "enter ParallelExecutor Run";
W
wangchaochaohu 已提交
845 846
  platform::RecordEvent parallel_executor_event(
      "ParallelExecutor::Run", paddle::platform::EventRole::kSpecial);
Y
Yu Yang 已提交
847 848 849
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
850 851
  }
#endif
Y
Yu Yang 已提交
852

X
Xin Pan 已提交
853
  platform::RecordBlock b(0);
854

855 856
  ResetHasFeedGuard reset_has_feed_guard(member_);

857 858
  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_), fetch_tensors,
                                member_->HasGarbageCollectors());
859 860

  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
Z
Zhen Wang 已提交
861
  auto fetch_data = member_->executor_->Run(fetch_tensors, return_merged);
862
  return fetch_data;
Y
Yu Yang 已提交
863
}
Y
Yu Yang 已提交
864

Y
Yu Yang 已提交
865 866
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
  if (!member_->AllowPartialFeed()) {
    PADDLE_ENFORCE_EQ(tensors.size(), member_->local_scopes_.size(),
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
                          tensors.size(), member_->local_scopes_.size()));
  } else {
    PADDLE_ENFORCE_GE(member_->local_scopes_.size(), tensors.size(),
                      platform::errors::InvalidArgument(
                          "The feed tensor number exceeds the device number"));
  }
Y
Yu Yang 已提交
882

883
  size_t feed_num = 0;
Y
Yu Yang 已提交
884 885
  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
886 887 888 889 890 891
    if (map.empty()) {
      continue;
    }

    member_->SetHasFeed(i);
    ++feed_num;
Y
Yu Yang 已提交
892
    for (auto &pair : map) {
893
      bool is_persistable = member_->IsPersistable(pair.first);
894 895 896
      if (!is_persistable) {
        member_->SetSkipMemoryReuse(i, pair.first);
      }
897 898 899 900 901
      auto *feed_scope = is_persistable ? member_->local_scopes_[i]
                                        : member_->local_exec_scopes_[i];
      auto *feed_var = feed_scope->Var(pair.first);

      auto *trg = feed_var->GetMutable<LoDTensor>();
Y
Yu Yang 已提交
902 903 904 905
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
906 907 908 909 910 911 912 913 914 915 916 917

  if (!member_->AllowPartialFeed()) {
    PADDLE_ENFORCE_EQ(feed_num, member_->local_scopes_.size(),
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
                          feed_num, member_->local_scopes_.size()));
  }
Y
Yu Yang 已提交
918 919 920 921
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
922
  size_t num_places = member_->places_.size();
923 924 925 926 927
  bool allow_partial_feed = member_->AllowPartialFeed();

  size_t persistable_feed_len = -1UL;
  size_t non_persistable_feed_len = -1UL;

928
  for (auto &pair : tensors) {
929 930 931 932
    bool is_persistable = member_->IsPersistable(pair.first);
    VLOG(3) << "Split " << (is_persistable ? "persistable" : "no persistable")
            << " data (" << pair.first << "), dim:" << pair.second.dims()
            << ", place: " << pair.second.place();
Y
Yu Yang 已提交
933
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
934
    bool is_cpu_place = platform::is_cpu_place(member_->places_.front());
935 936
    if (!is_persistable && num_places != lod_tensors.size() &&
        !allow_partial_feed) {
C
chengduo 已提交
937
      auto error_info = string::Sprintf(
938 939 940
          "The number(%d) of samples[%s] of current batch is less than the "
          "count(%d) of devices(%s), currently, it is not allowed. ",
          lod_tensors.size(), pair.first, num_places,
C
chengduo 已提交
941 942 943 944 945 946
          (is_cpu_place ? "CPU" : "GPU"));
      if (is_cpu_place) {
        error_info +=
            "You should set the environment variable CPU_NUM in the system "
            "to determine the number of devices you need.";
      }
947
      PADDLE_THROW(platform::errors::PreconditionNotMet(error_info));
948 949 950 951
    } else if (is_persistable) {
      if (lod_tensors.size() == 1) {
        lod_tensors.reserve(num_places);
        auto &tensor = lod_tensors.front();
952 953 954 955 956 957
        PADDLE_ENFORCE_EQ(
            tensor.dims(), pair.second.dims(),
            platform::errors::PreconditionNotMet("The dim doesn't match."));
        PADDLE_ENFORCE_EQ(
            tensor.place(), member_->places_.at(0),
            platform::errors::PreconditionNotMet("The place doesn't match."));
958 959 960 961 962 963
        for (size_t i = 1; i < num_places; ++i) {
          lod_tensors.emplace_back();
          auto &tmp = lod_tensors.back();
          framework::TensorCopy(pair.second, member_->places_.at(i), &tmp);
        }
      }
964
      if (lod_tensors.size() != num_places && !allow_partial_feed) {
965 966 967 968 969 970 971 972 973
        auto error_info = string::Sprintf(
            "The number(%d) of samples[%s] of the current batch does not match "
            "the count(%d) of devices(%s). Because that %s is a persistable "
            "variable, you can feed just one sample, in that case, the input "
            "sample will be copied in %d copies and be sent to different "
            "places separately. If you need that different place has different "
            "value, you should feed %d samples.",
            lod_tensors.size(), pair.first, num_places,
            (is_cpu_place ? "CPU" : "GPU"), pair.first, num_places, num_places);
974
        PADDLE_THROW(platform::errors::PreconditionNotMet(error_info));
975
      }
C
chengduo 已提交
976
    }
977

978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
    if (allow_partial_feed) {
      if (is_persistable) {
        if (persistable_feed_len == -1UL) {
          persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
              persistable_feed_len, lod_tensors.size(),
              platform::errors::InvalidArgument(
                  "The feeded number of different persistable variables "
                  "should be the same"));
        }
      } else {
        if (non_persistable_feed_len == -1UL) {
          non_persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
              non_persistable_feed_len, lod_tensors.size(),
              platform::errors::InvalidArgument(
                  "The feeded number of different non-persistable variables "
                  "should be the same"));
        }
      }
    }

    for (size_t j = 0; j < lod_tensors.size(); ++j) {
1003 1004 1005 1006 1007
      auto *feed_scope = is_persistable ? member_->local_scopes_[j]
                                        : member_->local_exec_scopes_[j];
      auto *feed_var = feed_scope->Var(pair.first);

      auto t = feed_var->GetMutable<LoDTensor>();
1008 1009
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
1010 1011
    }
  }
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027

  if (allow_partial_feed && persistable_feed_len != -1UL &&
      non_persistable_feed_len != -1UL) {
    VLOG(10) << "Persistable len " << persistable_feed_len;
    VLOG(10) << "Non persistable len " << non_persistable_feed_len;
    PADDLE_ENFORCE_GE(persistable_feed_len, non_persistable_feed_len,
                      platform::errors::InvalidArgument(
                          "The feeded number of persistable variables should "
                          "not be less than non-persistable variables"));
  }

  if (non_persistable_feed_len != -1UL) {
    for (size_t i = 0; i < non_persistable_feed_len; ++i) {
      member_->SetHasFeed(i);
    }
  }
X
Xin Pan 已提交
1028 1029
}

X
Xin Pan 已提交
1030 1031 1032 1033 1034 1035 1036
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

1037
bool ParallelExecutor::EnableParallelGraphExecution(
X
Xin Pan 已提交
1038
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
1039
    const BuildStrategy &build_strategy) const {
1040 1041 1042
  if (!FLAGS_enable_parallel_graph) {
    return false;
  }
1043

Y
Yancey1989 已提交
1044
  bool enable_parallel_graph = true;
1045

X
Xin Pan 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
1059 1060 1061
    }
  }

1062
  if (!member_->use_all_reduce_ || !member_->use_cuda_) {
Y
Yancey1989 已提交
1063
    if (build_strategy.enable_sequential_execution_ ||
1064
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental) {
Y
Yancey1989 已提交
1065
      enable_parallel_graph = false;
1066 1067 1068 1069 1070 1071 1072 1073 1074
    }
  }

#ifdef WIN32
  VLOG(1) << "Windows has no support to parallel graph, enable_parallel_graph "
             "would be forced to false.";
  enable_parallel_graph = false;
#endif

Y
Yancey1989 已提交
1075
  return enable_parallel_graph;
1076 1077
}

1078 1079 1080 1081
const ir::Graph &ParallelExecutor::Graph() const {
  return member_->executor_->Graph();
}

Y
Yu Yang 已提交
1082
}  // namespace framework
Y
Yang Yang 已提交
1083
}  // namespace paddle
S
sneaxiy 已提交
1084

S
sneaxiy 已提交
1085
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
1086
USE_PASS(eager_deletion_pass);
1087
USE_PASS(buffer_shared_inplace_pass);
1088
USE_PASS(buffer_shared_cross_op_memory_reuse_pass);
1089
USE_PASS(inplace_addto_op_pass);