linalg.py 122.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

myq406450149's avatar
myq406450149 已提交
15
import numpy as np
16 17

import paddle
18
from paddle import _C_ops
19 20
from paddle.common_ops_import import VarDesc

21
from ..common_ops_import import Variable
22 23
from ..fluid.data_feeder import (
    check_dtype,
24 25
    check_type,
    check_variable_and_dtype,
26
)
27
from ..framework import LayerHelper, in_dygraph_mode
28
from .creation import full
29 30 31
from .logic import logical_not
from .manipulation import cast
from .math import add, multiply
32

33 34
__all__ = []

35 36 37
# Consistent with kDefaultDim from C++ Backend
K_DEFAULT_DIM = 9

38

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
        Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
90
        return _C_ops.transpose(x, perm)
91
    else:
92 93 94 95 96 97 98 99 100 101
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
102
                'uint16',
103 104 105 106
                'complex64',
                'complex128',
            ],
            'transpose',
107
        )
108 109 110 111
        check_type(perm, 'perm', (list, tuple), 'transpose')
        if isinstance(perm, tuple):
            perm = list(perm)
        if len(perm) != len(x.shape):
112
            raise ValueError(
113 114
                "Input(perm) is the permutation of dimensions of Input(x), "
                "its length should be equal to dimensions of Input(x), "
115 116 117 118
                "but received dimension of Input(x) is {}, "
                "the length of Input(perm) is {}.".format(
                    len(x.shape), len(perm)
                )
119
            )
120 121 122 123 124 125 126
        for idx, dim in enumerate(perm):
            if dim >= len(x.shape):
                raise ValueError(
                    "Each element in Input(perm) should be less than Input(x)'s dimension, "
                    "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                    "dimension %d." % (idx, perm[idx], len(x.shape))
                )
127

128 129 130 131 132 133 134 135 136 137
        helper = LayerHelper('transpose', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        x_shape = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='transpose2',
            inputs={'X': [x]},
            outputs={'Out': [out], 'XShape': [x_shape]},
            attrs={'axis': perm},
        )
        return out
138 139


S
ShenLiang 已提交
140
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
141
    """
142 143
    Applies matrix multiplication to two tensors. `matmul` follows
    the complete broadcast rules,
S
ShenLiang 已提交
144
    and its behavior is consistent with `np.matmul`.
S
swtkiwi 已提交
145

S
ShenLiang 已提交
146 147
    Currently, the input tensors' number of dimensions can be any, `matmul` can be used to
    achieve the `dot`, `matmul` and `batchmatmul`.
148 149 150 151 152

    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:

    - If a transpose flag is specified, the last two dimensions of the tensor
153 154
      are transposed. If the tensor is ndim-1 of shape, the transpose is invalid. If the tensor
      is ndim-1 of shape :math:`[D]`, then for :math:`x` it is treated as :math:`[1, D]`, whereas
S
ShenLiang 已提交
155 156 157 158 159 160 161 162
      for :math:`y` it is the opposite: It is treated as :math:`[D, 1]`.

    The multiplication behavior depends on the dimensions of `x` and `y`. Specifically:

    - If both tensors are 1-dimensional, the dot product result is obtained.

    - If both tensors are 2-dimensional, the matrix-matrix product is obtained.

163 164
    - If the `x` is 1-dimensional and the `y` is 2-dimensional,
      a `1` is prepended to its dimension in order to conduct the matrix multiply.
S
ShenLiang 已提交
165
      After the matrix multiply, the prepended dimension is removed.
166 167

    - If the `x` is 2-dimensional and `y` is 1-dimensional,
S
ShenLiang 已提交
168 169
      the matrix-vector product is obtained.

170 171 172 173 174 175 176 177 178
    - If both arguments are at least 1-dimensional and at least one argument
      is N-dimensional (where N > 2), then a batched matrix multiply is obtained.
      If the first argument is 1-dimensional, a 1 is prepended to its dimension
      in order to conduct the batched matrix multiply and removed after.
      If the second argument is 1-dimensional, a 1 is appended to its
      dimension for the purpose of the batched matrix multiple and removed after.
      The non-matrix (exclude the last two dimensions) dimensions are
      broadcasted according the broadcast rule.
      For example, if input is a (j, 1, n, m) tensor and the other is a (k, m, p) tensor,
S
ShenLiang 已提交
179
      out will be a (j, k, n, p) tensor.
180 181

    Args:
S
ShenLiang 已提交
182 183
        x (Tensor): The input tensor which is a Tensor.
        y (Tensor): The input tensor which is a Tensor.
184 185 186
        transpose_x (bool, optional): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool, optional): Whether to transpose :math:`y` before multiplication.
        name(str, optional): A name for this layer(optional). If set None, the layer
187 188 189
            will be named automatically.

    Returns:
S
ShenLiang 已提交
190
        Tensor: The output Tensor.
191 192 193

    Examples:

C
Chen Long 已提交
194 195 196 197 198 199 200 201 202
        .. code-block:: python

            import paddle

            # vector * vector
            x = paddle.rand([10])
            y = paddle.rand([10])
            z = paddle.matmul(x, y)
            print(z.shape)
203
            # (1,)
C
Chen Long 已提交
204 205 206 207 208 209

            # matrix * vector
            x = paddle.rand([10, 5])
            y = paddle.rand([5])
            z = paddle.matmul(x, y)
            print(z.shape)
210
            # (10,)
C
Chen Long 已提交
211 212 213 214 215 216

            # batched matrix * broadcasted vector
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([2])
            z = paddle.matmul(x, y)
            print(z.shape)
217
            # (10, 5)
C
Chen Long 已提交
218 219 220 221 222 223

            # batched matrix * batched matrix
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([10, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
224
            # (10, 5, 5)
C
Chen Long 已提交
225 226 227 228 229 230

            # batched matrix * broadcasted matrix
            x = paddle.rand([10, 1, 5, 2])
            y = paddle.rand([1, 3, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
231
            # (10, 3, 5, 5)
232 233

    """
234
    if in_dygraph_mode():
235
        return _C_ops.matmul(x, y, transpose_x, transpose_y)
236 237 238 239 240
    else:
        attrs = {
            'trans_x': transpose_x,
            'trans_y': transpose_y,
        }
241

242 243 244 245 246 247 248
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val,
                    name,
                    [
249
                        'uint16',
250 251 252 253 254 255 256 257
                        'float16',
                        'float32',
                        'float64',
                        'complex64',
                        'complex128',
                    ],
                    'matmul',
                )
258

259
        __check_input(x, y)
260

261 262 263 264 265 266 267 268 269
        helper = LayerHelper('matmul_v2', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='matmul_v2',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
Z
Zhang Ting 已提交
270 271


myq406450149's avatar
myq406450149 已提交
272
def norm(x, p='fro', axis=None, keepdim=False, name=None):
273
    """
S
swtkiwi 已提交
274

275 276 277
    Returns the matrix norm (Frobenius) or vector norm (the 1-norm, the Euclidean
    or 2-norm, and in general the p-norm for p > 0) of a given tensor.

278
    Note:
279 280 281 282 283
        This norm API is different from `numpy.linalg.norm`.
        This api supports high-order input tensors (rank >= 3), and certain axis need to be pointed out to calculate the norm.
        But `numpy.linalg.norm` only supports 1-D vector or 2-D matrix as input tensor.
        For p-order matrix norm, this api actually treats matrix as a flattened vector to calculate the vector norm, NOT REAL MATRIX NORM.

284
    Args:
myq406450149's avatar
myq406450149 已提交
285
        x (Tensor): The input tensor could be N-D tensor, and the input data
286
            type could be float32 or float64.
myq406450149's avatar
myq406450149 已提交
287
        p (float|string, optional): Order of the norm. Supported values are `fro`, `0`, `1`, `2`,
288
            `inf`, `-inf` and any positive real number yielding the corresponding p-norm. Not supported: ord < 0 and nuclear norm.
myq406450149's avatar
myq406450149 已提交
289
            Default value is `fro`.
myq406450149's avatar
myq406450149 已提交
290 291
        axis (int|list|tuple, optional): The axis on which to apply norm operation. If axis is int
            or list(int)/tuple(int)  with only one element, the vector norm is computed over the axis.
292
            If `axis < 0`, the dimension to norm operation is rank(input) + axis.
myq406450149's avatar
myq406450149 已提交
293
            If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis.
294
            Default value is `None`.
295 296 297 298 299 300 301 302
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have fewer dimension
            than the :attr:`input` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
myq406450149's avatar
myq406450149 已提交
303
        Tensor: results of norm operation on the specified axis of input tensor,
304
        it's data type is the same as input's Tensor.
305

306 307
    Examples:
        .. code-block:: python
308

309
            import paddle
310 311 312 313 314 315 316 317 318
            x = paddle.arange(24, dtype="float32").reshape([2, 3, 4]) - 12
            # x: Tensor(shape=[2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #          [[[-12., -11., -10., -9. ],
            #            [-8. , -7. , -6. , -5. ],
            #            [-4. , -3. , -2. , -1. ]],

            #           [[ 0. ,  1. ,  2. ,  3. ],
            #            [ 4. ,  5. ,  6. ,  7. ],
            #            [ 8. ,  9. ,  10.,  11.]]])
myq406450149's avatar
myq406450149 已提交
319

320
            # compute frobenius norm along last two dimensions.
321
            out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1])
322 323
            # out_fro: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
324

325
            # compute 2-order vector norm along last dimension.
326
            out_pnorm = paddle.linalg.norm(x, p=2, axis=-1)
327 328 329
            # out_pnorm: Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                [[21.11871147, 13.19090557, 5.47722578 ],
            #                 [3.74165750 , 11.22497177, 19.13112640]])
myq406450149's avatar
myq406450149 已提交
330 331

            # compute 2-order  norm along [0,1] dimension.
332
            out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1])
333 334
            # out_pnorm: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
335 336

            # compute inf-order  norm
337 338 339 340 341 342 343 344 345
            out_pnorm = paddle.linalg.norm(x, p=float("inf"))
            # out_pnorm  = Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                    [12.])

            out_pnorm = paddle.linalg.norm(x, p=float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [[12., 11., 10., 9. ],
            #                  [8. , 7. , 6. , 7. ],
            #                  [8. , 9. , 10., 11.]])
myq406450149's avatar
myq406450149 已提交
346 347

            # compute -inf-order  norm
348 349 350 351 352 353 354 355 356
            out_pnorm = paddle.linalg.norm(x, p=-float("inf"))
            # out_pnorm: Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [0.])

            out_pnorm = paddle.linalg.norm(x, p=-float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [[0., 1., 2., 3.],
            #                  [4., 5., 6., 5.],
            #                  [4., 3., 2., 1.]])
357 358
    """

myq406450149's avatar
myq406450149 已提交
359
    def frobenius_norm(input, dim=None, keepdim=False, name=None):
360 361 362 363 364 365 366 367 368 369 370
        """
        The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          dim (list, optional): None for last two dimensions.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
        if dim is not None and not (isinstance(dim, list) and len(dim) == 2):
            raise ValueError(
                "The dim of frobenius norm op should be None or two elements list!"
            )
F
From00 已提交
371 372 373

        if in_dygraph_mode():
            if dim is None:
374 375
                return _C_ops.frobenius_norm(input, [], keepdim, True)
            return _C_ops.frobenius_norm(input, dim, keepdim, False)
376 377
        else:
            attrs = {'dim': dim, 'keep_dim': keepdim, 'reduce_all': False}
myq406450149's avatar
myq406450149 已提交
378
            if dim is None:
379 380 381
                attrs['reduce_all'] = True
            check_variable_and_dtype(
                input, 'input', ['float32', 'float64'], 'frobenius_norm'
382
            )
383

384 385 386 387
            helper = LayerHelper('frobenius_norm', **locals())
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
388

389 390 391 392 393 394 395
            helper.append_op(
                type='frobenius_norm',
                inputs={'X': input},
                outputs={'Out': out},
                attrs=attrs,
            )
            return out
396

397 398 399
    def vector_norm(
        input, porder=None, axis=None, keepdim=False, asvector=False, name=None
    ):
400 401 402 403 404 405 406 407
        """
        Calculate the p-order vector norm for certain  dimension of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          porder (float, optional): None for porder=2.0.
          axis (int, optional): None for last dimension.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
408
        if in_dygraph_mode():
409 410
            if axis is None:
                axis = -1
411
            return _C_ops.p_norm(input, porder, axis, 1e-12, keepdim, asvector)
412 413 414 415 416 417
        else:
            if porder is not None:
                check_type(porder, 'porder', (float, int), 'p_norm')
            if axis is not None:
                check_type(axis, 'axis', (int), 'p_norm')
            check_variable_and_dtype(
418 419 420 421
                input,
                'input',
                ['float16', 'uint16', 'float32', 'float64'],
                'p_norm',
422
            )
423

424 425 426 427 428 429 430 431 432 433 434
            attrs = {
                'axis': axis if axis is not None else -1,
                'porder': float(porder) if porder is not None else 2.0,
                'keepdim': keepdim,
                'asvector': asvector,
                'epsilon': 1e-12,
            }
            helper = LayerHelper('p_norm', **locals())
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
435

436 437 438 439 440 441 442
            helper.append_op(
                type='p_norm',
                inputs={'X': input},
                outputs={'Out': out},
                attrs=attrs,
            )
            return out
443

444 445 446
    def inf_norm(
        input, porder=None, axis=axis, keepdim=False, asvector=False, name=None
    ):
447
        if in_dygraph_mode():
448
            out = _C_ops.abs(input)
449
            if porder == np.float64('inf'):
450
                return _C_ops.max(out, axis, keepdim)
451
            else:
452
                return _C_ops.min(out, axis, keepdim)
453 454 455 456 457 458 459 460 461 462 463
        else:
            helper = LayerHelper('inf_norm', **locals())
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
            helper.append_op(
                type='abs', inputs={'X': input}, outputs={'Out': out}
            )
            reduce_out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
464

465 466 467 468
            reduce_all = (
                True if axis is None or axis == [] or asvector else False
            )
            axis = axis if axis is not None and axis != [] else [0]
myq406450149's avatar
myq406450149 已提交
469

470 471 472 473 474 475 476 477 478 479 480 481 482
            reduce_type = (
                'reduce_max' if porder == np.float64('inf') else 'reduce_min'
            )
            helper.append_op(
                type=reduce_type,
                inputs={'X': out},
                outputs={'Out': reduce_out},
                attrs={
                    'dim': axis,
                    'keep_dim': keepdim,
                    'reduce_all': reduce_all,
                },
            )
myq406450149's avatar
myq406450149 已提交
483

484
            return reduce_out
myq406450149's avatar
myq406450149 已提交
485

486
    def p_matrix_norm(input, porder=1.0, axis=axis, keepdim=False, name=None):
487 488 489 490
        """
        NOTE:
            This function actually treats the matrix as flattened vector to calculate vector norm instead of matrix norm.
        """
491
        if in_dygraph_mode():
492 493 494
            abs_out = _C_ops.abs(input)
            pow_out = _C_ops.pow(abs_out, porder)
            sum_out = _C_ops.sum(pow_out, axis, None, keepdim)
495
            out = _C_ops.pow(sum_out, float(1.0 / porder))
496 497
            return out

myq406450149's avatar
myq406450149 已提交
498 499
        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
500 501
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
502
        abs_out = block.create_variable_for_type_inference(
503 504 505 506 507
            dtype=block.input_dtype()
        )
        block.append_op(
            type='abs', inputs={'X': input}, outputs={'Out': abs_out}
        )
myq406450149's avatar
myq406450149 已提交
508
        pow_out = block.create_variable_for_type_inference(
509 510
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
511

512 513 514 515 516 517
        block.append_op(
            type='pow',
            inputs={'X': abs_out},
            outputs={'Out': pow_out},
            attrs={'factor': porder},
        )
myq406450149's avatar
myq406450149 已提交
518
        sum_out = block.create_variable_for_type_inference(
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
            dtype=block.input_dtype()
        )
        block.append_op(
            type='reduce_sum',
            inputs={'X': pow_out},
            outputs={'Out': sum_out},
            attrs={
                'dim': axis,
                'keep_dim': keepdim,
                'reduce_all': True if axis is None else False,
            },
        )
        block.append_op(
            type='pow',
            inputs={'X': sum_out},
            outputs={'Out': out},
            attrs={'factor': float(1.0 / porder)},
        )
myq406450149's avatar
myq406450149 已提交
537 538
        return out

539 540 541
    if axis is None and p is not None:
        if isinstance(p, str):
            if p == "fro":
myq406450149's avatar
myq406450149 已提交
542
                return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
543 544
            else:
                raise ValueError(
545
                    f"only valid string values are 'fro', found {p}"
546
                )
547
        elif isinstance(p, (int, float)):
548 549 550 551 552 553 554 555
            return vector_norm(
                x,
                porder=p,
                axis=axis,
                keepdim=keepdim,
                asvector=True,
                name=name,
            )
556
        else:
557
            raise ValueError(
558
                f"only valid p type is string or float, found {type(p)}"
559
            )
560

myq406450149's avatar
myq406450149 已提交
561 562
    if isinstance(axis, tuple):
        axis = list(axis)
563 564 565
    if isinstance(axis, list) and len(axis) == 1:
        axis = axis[0]

566
    # calculate vector norm, where axis is int or list with only one integer
567
    if isinstance(axis, int):
myq406450149's avatar
myq406450149 已提交
568 569
        if isinstance(p, str):
            if p == "fro":
570 571 572 573 574 575 576 577
                return vector_norm(
                    x,
                    porder=2,
                    axis=axis,
                    keepdim=keepdim,
                    asvector=False,
                    name=name,
                )
myq406450149's avatar
myq406450149 已提交
578 579 580

            else:
                raise ValueError(
581
                    f"only valid string values are 'fro', found {p}"
582
                )
myq406450149's avatar
myq406450149 已提交
583
        elif isinstance(p, (int, float)):
584 585 586 587 588 589 590 591
            return vector_norm(
                x,
                axis=axis,
                porder=p,
                keepdim=keepdim,
                asvector=False,
                name=name,
            )
592 593
        else:
            raise ValueError(
594 595 596 597 598
                "unspport p for p-order vector norm. except float, found {}".format(
                    p
                )
            )
    # calculate matrix norm, where axis is list with two integers
599 600
    elif isinstance(axis, list) and len(axis) == 2:
        if p == "fro":
myq406450149's avatar
myq406450149 已提交
601 602 603
            return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
        elif p == np.inf or p == -np.inf:
            return inf_norm(x, porder=p, axis=axis, keepdim=keepdim, name=name)
myq406450149's avatar
myq406450149 已提交
604 605
        elif p == 0:
            raise ValueError(
I
iLeGend 已提交
606
                "just support axis type int or list (length of list <=1) if p = 0, found {}".format(
607 608 609
                    axis
                )
            )
610
        else:
611 612 613
            return p_matrix_norm(
                x, porder=p, axis=axis, keepdim=keepdim, name=name
            )
614 615
    else:
        raise ValueError(
616 617 618 619
            "except axis type int or list (length of list <=2), found {}".format(
                axis
            )
        )
620 621


622
def dist(x, y, p=2, name=None):
623
    r"""
S
swtkiwi 已提交
624

625
    Returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure
626
    of distance. The shapes of x and y must be broadcastable. The definition is as follows, for
627
    details, please refer to the `Introduction to Tensor <../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor>`_:
Z
Zhang Ting 已提交
628

629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
    - Each input has at least one dimension.
    - Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.

    Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be
    obtained as follows:

    1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the
    tensor with fewer dimensions.

    For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the
    dimension of y.

    x (4-D Tensor):  8 x 1 x 6 x 1

    y (4-D Tensor):  1 x 7 x 1 x 5

    2. Determine the size of each dimension of the output z: choose the maximum value from the
    two input dimensions.

    z (4-D Tensor):  8 x 7 x 6 x 5

    If the number of dimensions of the two inputs are the same, the size of the output can be
    directly determined in step 2. When p takes different values, the norm formula is as follows:
Z
Zhang Ting 已提交
652 653 654 655 656 657 658

    When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.

    .. math::

        ||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p}

Z
Zhong Hui 已提交
659
    When p = inf, the inf-norm of z is the maximum element of the absolute value of z.
Z
Zhang Ting 已提交
660 661 662 663 664

    .. math::

        ||z||_\infty=\max_i |z_i|

Z
Zhong Hui 已提交
665
    When p = -inf, the negative-inf-norm of z is the minimum element of the absolute value of z.
Z
Zhang Ting 已提交
666 667 668 669 670 671 672 673 674 675 676 677

    .. math::

        ||z||_{-\infty}=\min_i |z_i|

    Otherwise, the p-norm of z follows the formula,

    .. math::

        ||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}}

    Args:
678 679
        x (Tensor): 1-D to 6-D Tensor, its data type is float16, float32 or float64.
        y (Tensor): 1-D to 6-D Tensor, its data type is float16, float32 or float64.
Z
Zhang Ting 已提交
680
        p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2.
681 682
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Z
Zhang Ting 已提交
683 684

    Returns:
685
        Tensor: Tensor that is the p-norm of (x - y).
Z
Zhang Ting 已提交
686 687 688 689 690 691

    Examples:
        .. code-block:: python

            import paddle

692 693
            x = paddle.to_tensor([[3, 3],[3, 3]], dtype="float32")
            y = paddle.to_tensor([[3, 3],[3, 1]], dtype="float32")
694 695
            out = paddle.dist(x, y, 0)
            print(out) # out = [1.]
Z
Zhang Ting 已提交
696

697 698
            out = paddle.dist(x, y, 2)
            print(out) # out = [2.]
Z
Zhang Ting 已提交
699

700 701
            out = paddle.dist(x, y, float("inf"))
            print(out) # out = [2.]
Z
Zhang Ting 已提交
702

703 704
            out = paddle.dist(x, y, float("-inf"))
            print(out) # out = [0.]
Z
Zhang Ting 已提交
705
    """
H
hong 已提交
706
    if in_dygraph_mode():
707
        return _C_ops.dist(x, y, p)
H
hong 已提交
708

709 710 711 712 713 714
    check_variable_and_dtype(
        x, 'dtype', ['float16', 'float32', 'float64'], 'dist'
    )
    check_variable_and_dtype(
        y, 'dtype', ['float16', 'float32', 'float64'], 'dist'
    )
Z
Zhang Ting 已提交
715 716 717 718 719 720 721
    check_type(p, 'p', (float, int), 'dist')
    helper = LayerHelper("dist", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": [x], "Y": [y]}
    outputs = {'Out': [out]}
    attrs = {"p": float(p)}
722 723 724
    helper.append_op(
        type='dist', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
Z
Zhang Ting 已提交
725
    return out
L
liuwei1031 已提交
726 727


728 729 730 731 732 733
def cond(x, p=None, name=None):
    """

    Computes the condition number of a matrix or batches of matrices with respect to a matrix norm ``p``.

    Args:
734 735
        x (Tensor): The input tensor could be tensor of shape ``(*, m, n)`` where ``*`` is zero or more batch dimensions
            for ``p`` in ``(2, -2)``, or of shape ``(*, n, n)`` where every matrix is invertible for any supported ``p``.
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
            And the input data type could be ``float32`` or ``float64``.
        p (float|string, optional): Order of the norm. Supported values are `fro`, `nuc`, `1`, `-1`, `2`, `-2`,
            `inf`, `-inf`. Default value is `None`, meaning that the order of the norm is `2`.
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: computing results of condition number, its data type is the same as input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])

            # compute conditional number when p is None
            out = paddle.linalg.cond(x)
754 755
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.41421342])
756 757 758

            # compute conditional number when order of the norm is 'fro'
            out_fro = paddle.linalg.cond(x, p='fro')
759 760
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [3.16227770])
761 762 763

            # compute conditional number when order of the norm is 'nuc'
            out_nuc = paddle.linalg.cond(x, p='nuc')
764 765
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [9.24263859])
766 767 768

            # compute conditional number when order of the norm is 1
            out_1 = paddle.linalg.cond(x, p=1)
769 770
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2.])
771 772 773

            # compute conditional number when order of the norm is -1
            out_minus_1 = paddle.linalg.cond(x, p=-1)
774 775
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.])
776 777 778

            # compute conditional number when order of the norm is 2
            out_2 = paddle.linalg.cond(x, p=2)
779 780
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.41421342])
781 782 783

            # compute conditional number when order of the norm is -1
            out_minus_2 = paddle.linalg.cond(x, p=-2)
784 785
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.70710683])
786 787

            # compute conditional number when order of the norm is inf
788 789 790
            out_inf = paddle.linalg.cond(x, p=float("inf"))
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2.])
791 792

            # compute conditional number when order of the norm is -inf
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
            out_minus_inf = paddle.linalg.cond(x, p=-float("inf"))
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.])

            a = paddle.randn([2, 4, 4])
            # Tensor(shape=[2, 4, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[-0.06784091, -0.07095790,  1.31792855, -0.58959651],
            #          [ 0.20818676, -0.85640615, -0.89998871, -1.47439921],
            #          [-0.49132481,  0.42250812, -0.77383220, -2.19794774],
            #          [-0.33551720, -1.70003879, -1.09795380, -0.63737559]],

            #         [[ 1.12026262, -0.16119350, -1.21157813,  2.74383283],
            #          [-0.15999718,  0.18798758, -0.69392562,  1.35720372],
            #          [-0.53013402, -2.26304483,  1.40843511, -1.02288902],
            #          [ 0.69533503,  2.05261683, -0.02251151, -1.43127477]]])

809
            a_cond_fro = paddle.linalg.cond(a, p='fro')
810 811 812 813 814 815 816 817 818 819 820 821
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [8.86691189 , 75.23817444])

            b = paddle.randn([2, 3, 4])
            # Tensor(shape=[2, 3, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[-0.43754861,  1.80796063, -0.78729683, -1.82264030],
            #          [-0.27670753,  0.06620564,  0.29072434, -0.31155765],
            #          [ 0.34123746, -0.05444612,  0.05001324, -1.46877074]],

            #         [[-0.64331555, -1.51103854, -1.26277697, -0.68024760],
            #          [ 2.59375715, -1.06665540,  0.96575671, -0.73330832],
            #          [-0.47064447, -0.23945692, -0.95150250, -1.07125998]]])
822
            b_cond_2 = paddle.linalg.cond(b, p=2)
823 824
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [6.64228773, 3.89068866])
825 826 827

    """

828
    def mat_norm(input, porder=1.0, axis=None):
829 830 831 832 833
        """
        NOTE:
            Calculate the matrix norm of a square matrix or batches of square matrices,
            when porder is in (1, -1, inf, -inf)
        """
834 835
        if in_dygraph_mode():
            abs_out = _C_ops.abs(input)
836
            sum_out = _C_ops.sum(abs_out, axis, None, False)
837 838

            if porder == 1 or porder == np.inf:
839
                return _C_ops.max(sum_out, [-1], False)
840
            if porder == -1 or porder == -np.inf:
841
                return _C_ops.min(sum_out, [-1], False)
842
        else:
843 844
            reduce_all = True if axis is None or axis == [] else False
            axis = axis if axis is not None and axis != [] else [0]
845 846
            block = LayerHelper('norm', **locals())
            abs_out = block.create_variable_for_type_inference(
847 848
                dtype=block.input_dtype()
            )
849
            sum_out = block.create_variable_for_type_inference(
850 851
                dtype=block.input_dtype()
            )
852
            out = block.create_variable_for_type_inference(
853 854 855 856 857 858 859 860 861 862 863
                dtype=block.input_dtype()
            )
            block.append_op(
                type='abs', inputs={'X': input}, outputs={'Out': abs_out}
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': abs_out},
                outputs={'Out': sum_out},
                attrs={
                    'dim': axis,
864
                    'keep_dim': False,
865 866 867
                    'reduce_all': reduce_all,
                },
            )
868
            if porder == 1 or porder == np.inf:
869 870 871 872 873 874
                block.append_op(
                    type='reduce_max',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
875
                        'keep_dim': False,
876 877 878
                        'reduce_all': reduce_all,
                    },
                )
879
            if porder == -1 or porder == -np.inf:
880 881 882 883 884 885
                block.append_op(
                    type='reduce_min',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
886
                        'keep_dim': False,
887 888 889
                        'reduce_all': reduce_all,
                    },
                )
890
            return out
891 892 893 894 895 896

    def fro_norm(input, porder=2, axis=[-1]):
        """
        NOTE:
            Calculate the frobenius norm of a square matrix or batches of square matrices.
        """
897
        if in_dygraph_mode():
898
            pow_out = _C_ops.pow(input, porder)
899 900
            sum_out_1 = _C_ops.sum(pow_out, axis, None, False)
            sum_out_2 = _C_ops.sum(sum_out_1, axis, None, False)
901
            return _C_ops.pow(sum_out_2, float(1.0 / porder))
902
        else:
903
            reduce_all = True if axis is None or axis == [] else False
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
            block = LayerHelper('norm', **locals())
            pow_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            sum_out_1 = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            sum_out_2 = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            block.append_op(
                type='pow',
                inputs={'X': input},
                outputs={'Out': pow_out},
                attrs={'factor': porder},
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': pow_out},
                outputs={'Out': sum_out_1},
                attrs={
                    'dim': axis,
                    'keep_dim': False,
                    'reduce_all': reduce_all,
                },
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': sum_out_1},
                outputs={'Out': sum_out_2},
                attrs={
                    'dim': axis,
                    'keep_dim': False,
                    'reduce_all': reduce_all,
                },
            )
            block.append_op(
                type='pow',
                inputs={'X': sum_out_2},
                outputs={'Out': out},
                attrs={'factor': float(1.0 / porder)},
            )
            return out
950 951 952 953 954 955 956 957 958

    def svd_norm(input, porder, axis=[-1]):
        """
        NOTE:
            Calculate the matrix norm, which is related to singular values, of a matrix
            or batches of matrices, including nuclear norm, 2-norm and (-2)-norm.
        """
        u, s, vh = svd(input, full_matrices=False)

959
        if in_dygraph_mode():
960
            if porder == "nuc":
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
                return _C_ops.sum(s, axis, None, False)
            max_out = _C_ops.max(s, axis, False)
            min_out = _C_ops.min(s, axis, False)
            if porder == 2:
                return _C_ops.divide(max_out, min_out)
            if porder == -2:
                return _C_ops.divide(min_out, max_out)
        else:
            reduce_all = True if axis is None or axis == [] else False
            block = LayerHelper('norm', **locals())
            out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            if porder == "nuc":
                block.append_op(
                    type='reduce_sum',
                    inputs={'X': s},
                    outputs={'Out': out},
                    attrs={
                        'dim': axis,
                        'keep_dim': False,
                        'reduce_all': reduce_all,
                    },
984
                )
985 986 987 988 989 990 991
                return out
            max_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            min_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
992
            block.append_op(
993
                type='reduce_max',
994
                inputs={'X': s},
995
                outputs={'Out': max_out},
996 997
                attrs={
                    'dim': axis,
998
                    'keep_dim': False,
999 1000 1001 1002
                    'reduce_all': reduce_all,
                },
            )
            block.append_op(
1003 1004 1005 1006 1007 1008 1009 1010
                type='reduce_min',
                inputs={'X': s},
                outputs={'Out': min_out},
                attrs={
                    'dim': axis,
                    'keep_dim': False,
                    'reduce_all': reduce_all,
                },
1011
            )
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
            if porder == 2:
                block.append_op(
                    type='elementwise_div',
                    inputs={'X': max_out, 'Y': min_out},
                    outputs={'Out': out},
                    attrs={'aixs': axis, 'use_mkldnn': False},
                )
                return out
            if porder == -2:
                block.append_op(
                    type='elementwise_div',
                    inputs={'X': min_out, 'Y': max_out},
                    outputs={'Out': out},
                    attrs={'aixs': axis, 'use_mkldnn': False},
                )
                return out
1028 1029

    def empty_tensor(input, shape):
1030
        if in_dygraph_mode():
1031
            return input.reshape(shape)
1032 1033 1034
        raise ValueError(
            "only support x is nonempty tensor in static graph mode"
        )
1035 1036 1037

    x_shape = list(x.shape)
    if not len(x_shape) >= 2:
1038
        raise ValueError(
1039
            "input should be a matrix or batches of matrices, "
1040
            + f"but the dimention of received input is {len(x_shape)}"
1041
        )
1042
    if p is None:
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
        p = 2
    x_size = 0 if (0 in x_shape) else 1
    if p in ("fro", "nuc", 1, -1, np.inf, -np.inf):
        if x_shape[len(x_shape) - 1] == x_shape[len(x_shape) - 2]:
            if x_size == 0:
                return empty_tensor(x, x_shape[:-2])
            x_inv = x.inverse()
            if p == "fro":
                return fro_norm(x) * fro_norm(x_inv)
            if p == "nuc":
                return svd_norm(x, p) * svd_norm(x_inv, p)
            if p in (1, -1):
1055
                return mat_norm(x, porder=p, axis=[-2]) * mat_norm(
1056 1057
                    x_inv, porder=p, axis=[-2]
                )
1058
            if p in (np.inf, -np.inf):
1059
                return mat_norm(x, porder=p, axis=[-1]) * mat_norm(
1060 1061
                    x_inv, porder=p, axis=[-1]
                )
1062
        else:
1063
            raise ValueError(
1064
                f"only support p is {p} when input is a "
1065 1066
                + "square matrix or batches of square matrices"
            )
1067 1068 1069 1070 1071 1072
    elif p in (2, -2):
        if x_size == 0:
            return empty_tensor(x, x_shape[:-2])
        return svd_norm(x, porder=p)
    else:
        raise ValueError(
1073
            f"unsupported {p} for p, only supporting ('fro', 'nuc', "
1074 1075
            + "1, -1, 2, -2, inf, -inf) or none"
        )
1076 1077


L
liuwei1031 已提交
1078 1079 1080
def dot(x, y, name=None):
    """
    This operator calculates inner product for vectors.
1081

1082
    Note:
1083 1084
       Support 1-d and 2-d Tensor. When it is 2d, the first dimension of this matrix
       is the batch dimension, which means that the vectors of multiple batches are dotted.
L
liuwei1031 已提交
1085 1086

    Parameters:
S
ShenLiang 已提交
1087 1088
        x(Tensor): 1-D or 2-D ``Tensor``. Its dtype should be ``float32``, ``float64``, ``int32``, ``int64``
        y(Tensor): 1-D or 2-D ``Tensor``. Its dtype soulde be ``float32``, ``float64``, ``int32``, ``int64``
L
liuwei1031 已提交
1089 1090
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

1091
    Returns:
1092
        Tensor: the calculated result Tensor.
1093

L
liuwei1031 已提交
1094 1095 1096 1097 1098
    Examples:

    .. code-block:: python

        import paddle
1099

1100 1101 1102 1103 1104 1105 1106 1107 1108
        # 1-D Tensor * 1-D Tensor
        x = paddle.to_tensor([1, 2, 3])
        y = paddle.to_tensor([4, 5, 6])
        z = paddle.dot(x, y)
        print(z)  # [32]

        # 2-D Tensor * 2-D Tensor
        x = paddle.to_tensor([[1, 2, 3], [2, 4, 6]])
        y = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
1109
        z = paddle.dot(x, y)
1110
        print(z)  # [[32], [64]]
L
liuwei1031 已提交
1111 1112

    """
1113 1114
    if in_dygraph_mode():
        return _C_ops.dot(x, y)
1115 1116
    else:
        op_type = 'dot'
1117

1118 1119
        assert x is not None, f'x cannot be None in {op_type}'
        assert y is not None, f'y cannot be None in {op_type}'
L
liuwei1031 已提交
1120

1121
        check_variable_and_dtype(
1122 1123 1124 1125
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            op_type,
1126 1127
        )
        check_variable_and_dtype(
1128 1129 1130 1131
            y,
            'y',
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            op_type,
1132
        )
L
liuwei1031 已提交
1133

1134 1135 1136 1137 1138 1139 1140 1141 1142
        helper = LayerHelper(op_type, **locals())
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False
            )
        helper.append_op(
            type="dot", inputs={'X': x, 'Y': y}, attrs={}, outputs={"Out": out}
1143
        )
1144
        return out
1145 1146


Z
zhiboniu 已提交
1147 1148 1149 1150 1151
def cov(x, rowvar=True, ddof=True, fweights=None, aweights=None, name=None):
    """
    Estimate the covariance matrix of the input variables, given data and weights.

    A covariance matrix is a square matrix, indicate the covariance of each pair variables in the input matrix.
1152
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the covariance matrix
Z
zhiboniu 已提交
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
    element Cij is the covariance of xi and xj. The element Cii is the variance of xi itself.

    Parameters:
        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True
        ddof(Bool, optional): If ddof=True will return the unbiased estimate, and ddof=False will return the simple average. Default: True
        fweights(Tensor, optional): 1-D Tensor of integer frequency weights; The number of times each observation vector should be repeated. Default: None
        aweights(Tensor, optional): 1-D Tensor of observation vector weights. How important of the observation vector, larger data means this element is more important. Default: None
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

    Returns:
        Tensor: The covariance matrix Tensor of the variables.

    Examples:

    .. code-block:: python

        import paddle

        xt = paddle.rand((3,4))
        paddle.linalg.cov(xt)

        '''
        Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            [[0.07918842, 0.06127326, 0.01493049],
                [0.06127326, 0.06166256, 0.00302668],
                [0.01493049, 0.00302668, 0.01632146]])
        '''
    """
    op_type = 'cov'
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in cov, but received "
1186 1187
            "length of Input(input) is %s." % len(x.shape)
        )
Z
zhiboniu 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cov')
    nx = x
    if len(x.shape) == 1:
        nx = x.reshape((1, -1))
    if not rowvar and nx.shape[0] != 1:
        nx = nx.t()
    w = None
    observation_num = nx.shape[1]
    if fweights is not None:
        w = fweights.astype(nx.dtype)
        if len(w.shape) > 1:
            raise ValueError(
                "Input(fweights) only support N-D (N<=1) tensor in cov, but received "
1201 1202
                "shape of Input(input) is %s." % len(fweights.shape)
            )
Z
zhiboniu 已提交
1203 1204 1205
        if fweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(fweights) should equal to x's dim[1]: {}, but received "
1206 1207 1208 1209
                "size of Input(fweights) is {}.".format(
                    observation_num, fweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1210 1211 1212
        if fweights.min() < 0:
            raise ValueError(
                "The value of Input(fweights) cannot be negtive, but received "
1213 1214
                "min of Input(fweights) is {}.".format(fweights.min())
            )
Z
zhiboniu 已提交
1215 1216 1217 1218 1219 1220 1221 1222
        if not paddle.all(fweights == paddle.round(fweights.astype('float64'))):
            raise ValueError("Input(fweights) must be integer ")

    if aweights is not None:
        aw = aweights.astype(nx.dtype)
        if len(aw.shape) > 1:
            raise ValueError(
                "Input(aweights) only support N-D (N<=1) tensor in cov, but received "
1223 1224 1225 1226 1227
                "length of Input(input) is %s." % len(aweights.shape)
            )
        check_variable_and_dtype(
            aweights, 'dtype', ['float32', 'float64'], 'cov'
        )
Z
zhiboniu 已提交
1228 1229 1230
        if aweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(aweights) should equal to x's dim[1]: {}, but received "
1231 1232 1233 1234
                "size of Input(aweights) is {}.".format(
                    observation_num, aweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1235 1236 1237
        if aweights.min() < 0:
            raise ValueError(
                "The value of Input(aweights) cannot be negtive, but received "
1238 1239
                "min of Input(aweights) is {}.".format(aweights.min())
            )
Z
zhiboniu 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
        if w is not None:
            w = w * aw
        else:
            w = aw

    w_sum = paddle.to_tensor(observation_num, dtype=nx.dtype)
    if fweights is not None or aweights is not None:
        w_sum = w.sum()
        if w_sum.item() == 0:
            raise ValueError("The sum of weights is zero, can't be normalized.")

    if w is not None:
        nx_w = nx * w
        avg = (nx_w).sum(axis=1) / w_sum
    else:
        avg = nx.sum(axis=1) / w_sum
        nx_w = nx

1258
    if w is not None and aweights is not None and ddof:
Z
zhiboniu 已提交
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
        norm_factor = w_sum - (w * aweights).sum() / w_sum
    else:
        norm_factor = w_sum - ddof
    if norm_factor <= 0:
        norm_factor = paddle.to_tensor(0, dtype=nx.dtype)
    nx = nx - avg.unsqueeze(1)
    xxt = paddle.mm(nx, nx_w.t().conj())
    cov = paddle.divide(xxt, norm_factor).squeeze()
    return cov


1270 1271
def t(input, name=None):
    """
1272 1273
    Transpose <=2-D tensor.
    0-D and 1-D tensors are returned as it is and 2-D tensor is equal to
1274
    the paddle.transpose function which perm dimensions set 0 and 1.
1275

1276
    Args:
1277
        input (Tensor): The input Tensor. It is a N-D (N<=2) Tensor of data types float32, float64, int32, int64.
1278
        name(str, optional): The default value is None.  Normally there is no need for
1279 1280
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
1281
        Tensor: A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.
1282

1283
    Examples:
1284

1285 1286 1287
        .. code-block:: python
           :name: code-example
             import paddle
1288

1289
             # Example 1 (0-D tensor)
1290 1291
             x = paddle.to_tensor([0.79])
             paddle.t(x) # [0.79]
1292

1293
             # Example 2 (1-D tensor)
1294 1295 1296
             x = paddle.to_tensor([0.79, 0.84, 0.32])
             paddle.t(x) # [0.79000002, 0.83999997, 0.31999999]
             paddle.t(x).shape # [3]
1297 1298

             # Example 3 (2-D tensor)
1299 1300 1301 1302 1303 1304 1305 1306
             x = paddle.to_tensor([[0.79, 0.84, 0.32],
                                  [0.64, 0.14, 0.57]])
             x.shape # [2, 3]
             paddle.t(x)
             # [[0.79000002, 0.63999999],
             #  [0.83999997, 0.14000000],
             #  [0.31999999, 0.56999999]]
             paddle.t(x).shape # [3, 2]
1307

1308 1309 1310 1311 1312
    """
    if len(input.shape) > 2:
        raise ValueError(
            "Input(input) only support N-D (N<=2) tensor, but received "
            "length of Input(input) is %s. Perhaps you can use paddle."
1313 1314
            "tensor.transpose() instead." % len(input.shape)
        )
1315
    if in_dygraph_mode():
1316
        if len(input.shape) <= 1:
1317 1318 1319
            return input
        # 2-D tensor
        perm = [1, 0]
1320
        out = _C_ops.transpose(input, perm)
1321
        return out
1322 1323 1324 1325 1326 1327 1328
    else:
        check_variable_and_dtype(
            input,
            'input',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'transpose',
        )
1329

1330 1331 1332
        helper = LayerHelper('t', **locals())
        out = helper.create_variable_for_type_inference(input.dtype)
        input_shape = helper.create_variable_for_type_inference(input.dtype)
1333
        if len(input.shape) <= 1:
1334 1335 1336 1337 1338 1339 1340 1341
            out = input
        else:
            helper.append_op(
                type='transpose2',
                inputs={'X': [input]},
                outputs={'Out': [out], 'XShape': [input_shape]},
                attrs={'axis': [1, 0]},
            )
1342 1343
        return out

1344

W
wanghuancoder 已提交
1345
def cross(x, y, axis=9, name=None):
1346
    """
1347
    Computes the cross product between two tensors along an axis.
1348

1349 1350
    Inputs must have the same shape, and the length of their axes should be equal to 3.
    If `axis` is not given, it defaults to the first axis found with the length 3.
1351

1352
    Args:
1353 1354
        x (Tensor): The first input tensor, the data type is float16, float32, float64, int32, int64.
        y (Tensor): The second input tensor, the data type is float16, float32, float64, int32, int64.
W
wanghuancoder 已提交
1355
        axis (int, optional): The axis along which to compute the cross product. It defaults to be 9 which indicates using the first axis found with the length 3.
1356
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1357 1358

    Returns:
1359
        Tensor. A Tensor with same data type as `x`.
1360

1361 1362
    Examples:
        .. code-block:: python
1363

1364
            import paddle
1365

Z
Zhou Wei 已提交
1366 1367 1368 1369 1370 1371
            x = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [2.0, 2.0, 2.0],
                                  [3.0, 3.0, 3.0]])
            y = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0]])
1372

1373 1374 1375 1376 1377 1378 1379 1380 1381
            z1 = paddle.cross(x, y)
            # [[-1. -1. -1.]
            #  [ 2.  2.  2.]
            #  [-1. -1. -1.]]

            z2 = paddle.cross(x, y, axis=1)
            # [[0. 0. 0.]
            #  [0. 0. 0.]
            #  [0. 0. 0.]]
1382
    """
J
Jiabin Yang 已提交
1383
    if in_dygraph_mode():
1384
        axis = K_DEFAULT_DIM if axis is None else axis
1385
        return _C_ops.cross(x, y, axis)
J
Jiabin Yang 已提交
1386
    else:
1387 1388 1389
        check_variable_and_dtype(
            x,
            'x',
1390
            ['float16', 'uint16', 'float32', 'float64', "int32", "int64"],
1391 1392 1393 1394 1395
            'cross',
        )
        check_variable_and_dtype(
            y,
            'y',
1396
            ['float16', 'uint16', 'float32', 'float64', "int32", "int64"],
1397 1398
            'cross',
        )
1399 1400
        helper = LayerHelper("cross", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
1401
        attrs = {}
1402
        attrs['dim'] = axis
J
Jiabin Yang 已提交
1403

1404 1405 1406 1407 1408 1409 1410
        helper.append_op(
            type='cross',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
1411 1412


1413
def cholesky(x, upper=False, name=None):
1414
    r"""
G
Guo Sheng 已提交
1415
    Computes the Cholesky decomposition of one symmetric positive-definite
1416 1417
    matrix or batches of symmetric positive-definite matrice.

G
Guo Sheng 已提交
1418 1419 1420 1421 1422 1423
    If `upper` is `True`, the decomposition has the form :math:`A = U^{T}U` ,
    and the returned matrix :math:`U` is upper-triangular. Otherwise, the
    decomposition has the form  :math:`A = LL^{T}` , and the returned matrix
    :math:`L` is lower-triangular.

    Args:
1424
        x (Tensor): The input tensor. Its shape should be `[*, M, M]`,
G
Guo Sheng 已提交
1425 1426 1427 1428 1429
            where * is zero or more batch dimensions, and matrices on the
            inner-most 2 dimensions all should be symmetric positive-definite.
            Its data type should be float32 or float64.
        upper (bool): The flag indicating whether to return upper or lower
            triangular matrices. Default: False.
1430 1431
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
G
Guo Sheng 已提交
1432 1433

    Returns:
1434 1435
        Tensor, A Tensor with same shape and data type as `x`. It represents
        triangular matrices generated by Cholesky decomposition.
1436

G
Guo Sheng 已提交
1437 1438 1439 1440 1441
    Examples:
        .. code-block:: python

            import paddle

1442 1443 1444 1445
            a = paddle.rand([3, 3], dtype="float32")
            a_t = paddle.transpose(a, [1, 0])
            x = paddle.matmul(a, a_t) + 1e-03

1446
            out = paddle.linalg.cholesky(x, upper=False)
1447
            print(out)
G
Guo Sheng 已提交
1448
    """
H
hong 已提交
1449
    if in_dygraph_mode():
1450
        return _C_ops.cholesky(x, upper)
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cholesky')
        check_type(upper, 'upper', bool, 'cholesky')
        helper = LayerHelper('cholesky', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='cholesky',
            inputs={'X': [x]},
            outputs={'Out': out},
            attrs={'upper': upper},
        )
        return out
G
Guo Sheng 已提交
1463 1464


1465 1466 1467 1468
def matrix_rank(x, tol=None, hermitian=False, name=None):
    r"""
    Computes the rank of a matrix.

1469
    The rank of a matrix is the number of singular values that are greater than the specified `tol` threshold when hermitian=False,
1470
    or the number of eigenvalues in absolute value that are greater than the specified `tol` threshold when hermitian=True.
1471 1472

    Args:
1473 1474 1475 1476
        x (Tensor): The input tensor. Its shape should be `[..., m, n]`, where `...` is zero or more batch dimensions. If `x` is a batch
            of matrices then the output has the same batch dimensions. The data type of `x` should be float32 or float64.
        tol (float,Tensor,optional): the tolerance value. Default: None. If `tol` is not specified, and `sigma` is the largest
            singular value (or eigenvalues in absolute value), and `eps` is the epsilon value for the dtype of `x`, then `tol` is computed
1477
            with formula `tol=sigma * max(m,n) * eps`. Note that if `x` is a batch of matrices, `tol` is computed this way for every batch.
1478 1479
        hermitian (bool,optional): indicates whether `x` is Hermitian. Default: False. When hermitian=True, `x` is assumed to be Hermitian,
            enabling a more efficient method for finding eigenvalues, but `x` is not checked inside the function. Instead, We just use
1480
            the lower triangular of the matrix to compute.
1481 1482 1483 1484
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Rank of tensor x.
1485

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
    Examples:
        .. code-block:: python

            import paddle

            a = paddle.eye(10)
            b = paddle.linalg.matrix_rank(a)
            print(b)
            # b = [10]

            c = paddle.ones(shape=[3, 4, 5, 5])
            d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)
            print(d)
            # d = [[1, 1, 1, 1],
            #      [1, 1, 1, 1],
            #      [1, 1, 1, 1]]
1502

1503
    """
1504 1505 1506 1507 1508 1509 1510
    if in_dygraph_mode():
        if isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            use_default_tol = False
1511 1512 1513
            return _C_ops.matrix_rank_tol(
                x, tol_tensor, use_default_tol, hermitian
            )
1514

1515 1516 1517 1518 1519 1520
        if tol is None:
            tol_attr = 0.0
            use_default_tol = True
        else:
            tol_attr = float(tol)
            use_default_tol = False
Z
zhangyuqin1998 已提交
1521
        return _C_ops.matrix_rank(x, tol_attr, use_default_tol, hermitian)
1522 1523 1524 1525 1526
    else:
        inputs = {}
        attrs = {}
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'matrix_rank')
        inputs['X'] = x
1527
        if tol is None:
1528
            attrs['use_default_tol'] = True
1529
        elif isinstance(tol, Variable):
1530
            attrs['use_default_tol'] = False
1531
            if tol.dtype != x.dtype:
1532
                inputs['TolTensor'] = cast(tol, x.dtype)
1533
            else:
1534
                inputs['TolTensor'] = tol
1535
        else:
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
            check_type(tol, 'tol', float, 'matrix_rank')
            attrs['use_default_tol'] = False
            attrs['tol'] = tol
        check_type(hermitian, 'hermitian', bool, 'matrix_rank')
        attrs['hermitian'] = hermitian

        helper = LayerHelper('matrix_rank', **locals())
        out = helper.create_variable_for_type_inference(dtype='int32')
        helper.append_op(
            type='matrix_rank', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return out
1548 1549


1550 1551 1552 1553 1554 1555 1556 1557 1558
def bmm(x, y, name=None):
    """
    Applies batched matrix multiplication to two tensors.

    Both of the two input tensors must be three-dementional and share the same batch size.

    if x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor.

    Args:
Y
yaoxuefeng 已提交
1559 1560
        x (Tensor): The input Tensor.
        y (Tensor): The input Tensor.
1561 1562 1563 1564
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
Y
yaoxuefeng 已提交
1565
        Tensor: The product Tensor.
1566 1567

    Examples:
S
sunzhongkai588 已提交
1568 1569 1570
        .. code-block:: python

            import paddle
Y
yaoxuefeng 已提交
1571

S
sunzhongkai588 已提交
1572 1573 1574 1575 1576 1577 1578 1579 1580
            # In imperative mode:
            # size x: (2, 2, 3) and y: (2, 3, 2)
            x = paddle.to_tensor([[[1.0, 1.0, 1.0],
                                [2.0, 2.0, 2.0]],
                                [[3.0, 3.0, 3.0],
                                [4.0, 4.0, 4.0]]])
            y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],
                                [[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])
            out = paddle.bmm(x, y)
1581 1582 1583 1584 1585 1586
            # Tensor(shape=[2, 2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[[6. , 6. ],
            #          [12., 12.]],

            #         [[45., 45.],
            #          [60., 60.]]])
1587

1588
    """
1589
    if in_dygraph_mode():
1590
        return _C_ops.bmm(x, y)
1591
    else:
W
Weilong Wu 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
        x_shape = x.shape
        y_shape = y.shape
        if not len(x_shape) == len(y_shape) == 3:
            raise ValueError(
                "x and y should be 3-dimensional. But received x's dimention: {}, y's dimention: {}".format(
                    x_shape, y_shape
                )
            )
        if x_shape[2] != y_shape[1]:
            raise ValueError(
                "x's width must be equal with y's height. But received x's shape: {}, y's shape: {}".format(
                    x_shape, y_shape
                )
            )
        if x_shape[0] != y_shape[0]:
            raise ValueError(
                "x's batch (shape[0]) must be equal with y's batch (shape[0]). But received x's shape: {}, y's shape: {}".format(
                    x_shape, y_shape
                )
            )
1612 1613 1614 1615 1616 1617
        helper = LayerHelper('bmm', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='bmm', inputs={'X': x, 'Y': y}, outputs={'Out': out}
        )
        return out
Q
Qi Li 已提交
1618 1619


1620
def histogram(input, bins=100, min=0, max=0, name=None):
Q
Qi Li 已提交
1621
    """
1622
    Computes the histogram of a tensor. The elements are sorted into equal width bins between min and max.
Q
Qi Li 已提交
1623 1624 1625
    If min and max are both zero, the minimum and maximum values of the data are used.

    Args:
1626
        input (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor
Q
Qi Li 已提交
1627
            should be float32, float64, int32, int64.
1628 1629 1630 1631
        bins (int, optional): number of histogram bins.
        min (int, optional): lower end of the range (inclusive).
        max (int, optional): upper end of the range (inclusive).
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Q
Qi Li 已提交
1632 1633

    Returns:
1634
        Tensor: data type is int64, shape is (nbins,).
Q
Qi Li 已提交
1635

1636
    Examples:
Q
Qi Li 已提交
1637
        .. code-block:: python
1638

Q
Qi Li 已提交
1639
            import paddle
1640

1641
            inputs = paddle.to_tensor([1, 2, 1])
1642 1643
            result = paddle.histogram(inputs, bins=4, min=0, max=3)
            print(result) # [0, 2, 1, 0]
Q
Qi Li 已提交
1644
    """
H
hong 已提交
1645
    if in_dygraph_mode():
1646
        return _C_ops.histogram(input, bins, min, max)
1647 1648 1649 1650
    else:
        helper = LayerHelper('histogram', **locals())
        check_variable_and_dtype(
            input, 'X', ['int32', 'int64', 'float32', 'float64'], 'histogram'
1651
        )
1652 1653 1654 1655 1656 1657 1658 1659
        out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
        helper.append_op(
            type='histogram',
            inputs={'X': input},
            outputs={'Out': out},
            attrs={'bins': bins, 'min': min, 'max': max},
        )
        return out
S
smallv0221 已提交
1660 1661 1662 1663


def bincount(x, weights=None, minlength=0, name=None):
    """
1664
    Computes frequency of each value in the input tensor.
S
smallv0221 已提交
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691

    Args:
        x (Tensor): A Tensor with non-negative integer. Should be 1-D tensor.
        weights (Tensor, optional): Weight for each value in the input tensor. Should have the same shape as input. Default is None.
        minlength (int, optional): Minimum number of bins. Should be non-negative integer. Default is 0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor of frequency.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1, 2, 1, 4, 5])
            result1 = paddle.bincount(x)
            print(result1) # [0, 2, 1, 0, 1, 1]

            w = paddle.to_tensor([2.1, 0.4, 0.1, 0.5, 0.5])
            result2 = paddle.bincount(x, weights=w)
            print(result2) # [0., 2.19999981, 0.40000001, 0., 0.50000000, 0.50000000]
    """
    if x.dtype not in [paddle.int32, paddle.int64]:
        raise TypeError("Elements in Input(x) should all be integers")

1692 1693
    if in_dygraph_mode():
        return _C_ops.bincount(x, weights, minlength)
1694 1695
    else:
        helper = LayerHelper('bincount', **locals())
S
smallv0221 已提交
1696

1697
        check_variable_and_dtype(x, 'X', ['int32', 'int64'], 'bincount')
S
smallv0221 已提交
1698

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
        if weights is not None:
            check_variable_and_dtype(
                weights,
                'Weights',
                ['int32', 'int64', 'float32', 'float64'],
                'bincount',
            )
            out = helper.create_variable_for_type_inference(dtype=weights.dtype)
        else:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='bincount',
            inputs={'X': x, 'Weights': weights},
            outputs={'Out': out},
            attrs={'minlength': minlength},
1714
        )
1715
        return out
1716 1717 1718 1719 1720 1721 1722


def mv(x, vec, name=None):
    """
    Performs a matrix-vector product of the matrix x and the vector vec.

    Args:
F
furnace 已提交
1723
        x (Tensor): A tensor with shape :math:`[M, N]` , The data type of the input Tensor x
1724
            should be one of float32, float64.
F
furnace 已提交
1725
        vec (Tensor): A tensor with shape :math:`[N]` , The data type of the input Tensor x
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
            should be one of float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor which is producted by x and vec.

    Examples:
        .. code-block:: python

            # x: [M, N], vec: [N]
            # paddle.mv(x, vec)  # out: [M]

            import paddle

1741 1742
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1]]).astype("float64")
            vec = paddle.to_tensor([3, 5, 1]).astype("float64")
1743
            out = paddle.mv(x, vec)
1744 1745 1746
            print(out)
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [14., 10.])
1747
    """
J
Jiabin Yang 已提交
1748
    if in_dygraph_mode():
1749
        return _C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1750
    else:
1751

1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
        def __check_input(x, vec):
            var_names = {'x': x, 'vec': vec}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float32', 'float64'], 'mv'
                )
            x_shape = list(x.shape)
            vec_shape = list(vec.shape)
            if len(x_shape) != 2:
                raise ValueError(
                    "x should be 2-dimensional. But received x's dimention: {}".format(
                        x_shape
1764
                    )
1765 1766 1767 1768 1769
                )
            if len(vec_shape) != 1:
                raise ValueError(
                    "vec should be 1-dimensional. But received vec's dimention: {}".format(
                        vec_shape
1770
                    )
1771
                )
J
Jiabin Yang 已提交
1772

1773
        __check_input(x, vec)
J
Jiabin Yang 已提交
1774

1775 1776 1777 1778 1779 1780
        helper = LayerHelper('mv', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='mv', inputs={'X': x, 'Vec': vec}, outputs={'Out': out}
        )
        return out
1781 1782


1783
def det(x, name=None):
H
huangxu96 已提交
1784
    """
1785

H
huangxu96 已提交
1786
    Calculates determinant value of a square matrix or batches of square matrices.
1787

H
huangxu96 已提交
1788
    Args:
1789
        x (Tensor): the input matrix of size `(n, n)` or the
1790 1791
            batch of matrices of size `(*, n, n)` where `*` is one or more
            batch dimensions.
1792 1793
        name(str, optional): Name of the output. Default is None. It's used
            to print debug info for developers. Details: :ref:`api_guide_Name`
1794

H
huangxu96 已提交
1795
    Returns:
1796
        Tensor, the determinant value of a square matrix or batches of square matrices.
H
huangxu96 已提交
1797

1798
    Examples:
H
huangxu96 已提交
1799 1800
        .. code-block:: python

1801
            import paddle
H
huangxu96 已提交
1802

1803
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1804

1805
            A = paddle.linalg.det(x)
H
huangxu96 已提交
1806

1807
            print(A)
1808

1809
            # [ 0.02547996,  2.52317095, -6.15900707])
H
huangxu96 已提交
1810

1811

H
huangxu96 已提交
1812
    """
C
chentianyu03 已提交
1813
    if in_dygraph_mode():
1814
        return _C_ops.det(x)
1815
    else:
1816
        check_dtype(x.dtype, 'Input', ['float16', 'float32', 'float64'], 'det')
C
chentianyu03 已提交
1817

1818 1819 1820 1821 1822
        input_shape = list(x.shape)
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "but received Input x's dimensional: %s.\n" % len(input_shape)
        )
H
huangxu96 已提交
1823

1824 1825
        assert (
            input_shape[-1] == input_shape[-2]
1826
        ), "Expect squared input," "but received {} by {} matrix.\n".format(
1827 1828 1829 1830 1831
            input_shape[-2],
            input_shape[-1],
        )
        helper = LayerHelper('determinant', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
huangxu96 已提交
1832

1833 1834 1835 1836
        helper.append_op(
            type='determinant', inputs={'Input': [x]}, outputs={'Out': [out]}
        )
        return out
H
huangxu96 已提交
1837 1838


1839
def slogdet(x, name=None):
H
huangxu96 已提交
1840
    """
1841

H
huangxu96 已提交
1842
    Calculates the sign and natural logarithm of the absolute value of a square matrix's or batches square matrices' determinant.
1843
    The determinant can be computed with ``sign * exp`` (logabsdet)
1844

H
huangxu96 已提交
1845 1846 1847
    Supports input of float, double

    Note that for matrices that have zero determinant, this returns ``(0, -inf)``
1848

H
huangxu96 已提交
1849 1850 1851 1852 1853
    Args:
        x (Tensor): the batch of matrices of size :math:`(*, n, n)`
            where math:`*` is one or more batch dimensions.

    Returns:
1854
        y (Tensor), A tensor containing the sign of the determinant and the natural logarithm
H
huangxu96 已提交
1855 1856
        of the absolute value of determinant, respectively.

1857
    Examples:
1858
        .. code-block:: python
H
huangxu96 已提交
1859

1860
            import paddle
H
huangxu96 已提交
1861

1862
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1863

1864
            A = paddle.linalg.slogdet(x)
H
huangxu96 已提交
1865

1866
            print(A)
1867

1868 1869
            # [[ 1.        ,  1.        , -1.        ],
            # [-0.98610914, -0.43010661, -0.10872950]])
H
huangxu96 已提交
1870 1871

    """
1872
    if in_dygraph_mode():
1873
        return _C_ops.slogdet(x)
1874 1875
    else:
        check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'slogdet')
1876

1877 1878 1879 1880 1881
        input_shape = list(x.shape)
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "but received Input x's dimensional: %s.\n" % len(input_shape)
        )
H
huangxu96 已提交
1882

1883 1884
        assert (
            input_shape[-1] == input_shape[-2]
1885
        ), "Expect squared input," "but received {} by {} matrix.\n".format(
1886 1887 1888 1889 1890
            input_shape[-2],
            input_shape[-1],
        )
        helper = LayerHelper('slogdeterminant', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
huangxu96 已提交
1891

1892 1893 1894 1895 1896 1897
        helper.append_op(
            type='slogdeterminant',
            inputs={'Input': [x]},
            outputs={'Out': [out]},
        )
        return out
H
huangxu96 已提交
1898 1899


1900 1901
def svd(x, full_matrices=False, name=None):
    r"""
1902 1903 1904 1905 1906
    Computes the singular value decomposition of one matrix or a batch of regular matrices.

    Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:

    .. math::
1907 1908
        X = U * diag(S) * VT

1909 1910
    Args:
        x (Tensor): The input tensor. Its shape should be `[..., N, M]`,
1911
            where `...` is zero or more batch dimensions. N and M can be arbitraty
1912 1913
            positive number. Note that if x is sigular matrices, the grad is numerical
            instable. The data type of x should be float32 or float64.
Z
Zman 已提交
1914
        full_matrices (bool, optional): A flag to control the behavor of svd.
1915
            If full_matrices = True, svd op will compute full U and V matrics,
1916
            which means shape of U is `[..., N, N]`, shape of V is `[..., M, M]`. K = min(M, N).
1917
            If full_matrices = False, svd op will use a economic method to store U and V.
1918
            which means shape of U is `[..., N, K]`, shape of V is `[..., M, K]`. K = min(M, N).
Z
Zman 已提交
1919
            Default value is False.
1920
        name (str, optional): Name for the operation (optional, default is None).
1921
            For more information, please refer to :ref:`api_guide_Name`.
1922 1923

    Returns:
Z
Zman 已提交
1924 1925 1926 1927 1928
        - U (Tensor), is the singular value decomposition result U.
        - S (Tensor), is the singular value decomposition result S.
        - VH (Tensor), VH is the conjugate transpose of V, which is the singular value decomposition result V.

        Tuple of 3 tensors(U, S, VH): VH is the conjugate transpose of V. S is the singlar value vectors of matrics with shape `[..., K]`
1929

1930 1931 1932 1933
    Examples:
        .. code-block:: python

            import paddle
1934 1935 1936

            x = paddle.to_tensor([[1.0, 2.0], [1.0, 3.0], [4.0, 6.0]]).astype('float64')
            x = x.reshape([3, 2])
1937
            u, s, vh = paddle.linalg.svd(x)
1938 1939 1940 1941 1942
            print (u)
            #U = [[ 0.27364809, -0.21695147  ],
            #      [ 0.37892198, -0.87112408 ],
            #      [ 0.8840446 ,  0.44053933 ]]

1943
            print (s)
1944
            #S = [8.14753743, 0.78589688]
1945
            print (vh)
1946 1947
            #VT= [[ 0.51411221,  0.85772294],
            #     [ 0.85772294, -0.51411221]]
1948

1949
            # one can verify : U * S * VT == X
1950
            #                  U * UH == I
1951
            #                  V * VH == I
1952
    """
1953

1954
    if in_dygraph_mode():
1955
        return _C_ops.svd(x, full_matrices)
1956 1957 1958 1959 1960 1961 1962
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'svd')
        check_type(full_matrices, 'full_matrices', bool, 'svd')
        helper = LayerHelper('svd', **locals())
        u = helper.create_variable_for_type_inference(dtype=x.dtype)
        vh = helper.create_variable_for_type_inference(dtype=x.dtype)
        s = helper.create_variable_for_type_inference(dtype=x.dtype)
1963
        attrs = {}
1964 1965 1966 1967 1968 1969 1970 1971
        attrs['full_matrices'] = full_matrices
        helper.append_op(
            type='svd',
            inputs={'X': [x]},
            outputs={'U': u, 'VH': vh, 'S': s},
            attrs=attrs,
        )
        return u, s, vh
1972 1973


1974 1975
def matrix_power(x, n, name=None):
    r"""
1976

1977
    Computes the n-th power of a square matrix or a batch of square matrices.
1978

1979 1980 1981 1982 1983
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`n` be
    an exponent, the equation should be:

    .. math::
        Out = X ^ {n}
1984

1985 1986
    Specifically,

1987
    - If `n > 0`, it returns the matrix or a batch of matrices raised to the power of `n`.
1988

1989 1990
    - If `n = 0`, it returns the identity matrix or a batch of identity matrices.

1991
    - If `n < 0`, it returns the inverse of each matrix (if invertible) raised to the power of `abs(n)`.
1992 1993 1994 1995 1996 1997

    Args:
        x (Tensor): A square matrix or a batch of square matrices to be raised
            to power `n`. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        n (int): The exponent. It can be any positive, negative integer or zero.
1998
        name (str, optional): Name for the operation (optional, default is None).
1999 2000 2001
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2002 2003
        - Tensor, The n-th power of the matrix (or the batch of matrices) `x`. Its
          data type should be the same as that of `x`.
2004 2005 2006 2007 2008 2009 2010 2011 2012

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3],
                                  [1, 4, 9],
                                  [1, 8, 27]], dtype='float64')
2013
            print(paddle.linalg.matrix_power(x, 2))
2014 2015 2016 2017
            # [[6.  , 34. , 102.],
            #  [14. , 90. , 282.],
            #  [36. , 250., 804.]]

2018
            print(paddle.linalg.matrix_power(x, 0))
2019 2020 2021 2022
            # [[1., 0., 0.],
            #  [0., 1., 0.],
            #  [0., 0., 1.]]

2023
            print(paddle.linalg.matrix_power(x, -2))
2024 2025 2026 2027
            # [[ 12.91666667, -12.75000000,  2.83333333 ],
            #  [-7.66666667 ,  8.         , -1.83333333 ],
            #  [ 1.80555556 , -1.91666667 ,  0.44444444 ]]
    """
H
hong 已提交
2028
    if in_dygraph_mode():
2029
        return _C_ops.matrix_power(x, n)
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
    else:
        check_variable_and_dtype(
            x, 'dtype', ['float32', 'float64'], 'matrix_power'
        )
        check_type(n, 'n', int, 'matrix_power')
        helper = LayerHelper('matrix_power', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='matrix_power',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'n': n},
        )
        return out
2044 2045


2046 2047 2048 2049 2050 2051 2052
def qr(x, mode="reduced", name=None):
    r"""
    Computes the QR decomposition of one matrix or batches of matrice (backward is unsupported now).

    Args:
        x (Tensor): The input tensor. Its shape should be `[..., M, N]`,
            where ... is zero or more batch dimensions. M and N can be arbitrary
2053 2054
            positive number. The data type of x should be float32 or float64.
        mode (str, optional): A flag to control the behavior of qr, the default is "reduced".
2055
            Suppose x's shape is `[..., M, N]` and denoting `K = min(M, N)`:
2056
            If mode = "reduced", qr op will return reduced Q and R matrices,
2057
            which means Q's shape is `[..., M, K]` and R's shape is `[..., K, N]`.
2058
            If mode = "complete", qr op will return complete Q and R matrices,
2059 2060 2061 2062 2063
            which means Q's shape is `[..., M, M]` and R's shape is `[..., M, N]`.
            If mode = "r", qr op will only return reduced R matrix, which means
            R's shape is `[..., K, N]`.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2064

2065
    Returns:
2066
        If mode = "reduced" or mode = "complete", qr will return a two tensor-tuple, which represents Q and R.
2067
        If mode = "r", qr will return a tensor which represents R.
2068 2069

    Examples:
2070 2071
        .. code-block:: python

2072
            import paddle
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            q, r = paddle.linalg.qr(x)
            print (q)
            print (r)

            # Q = [[-0.16903085,  0.89708523],
            #      [-0.50709255,  0.27602622],
            #      [-0.84515425, -0.34503278]])

            # R = [[-5.91607978, -7.43735744],
            #      [ 0.        ,  0.82807867]])
2085 2086

            # one can verify : X = Q * R ;
2087
    """
Y
Yulong Ao 已提交
2088
    if in_dygraph_mode():
2089
        q, r = _C_ops.qr(x, mode)
Y
Yulong Ao 已提交
2090 2091 2092 2093
        if mode == "r":
            return r
        else:
            return q, r
2094 2095 2096 2097 2098 2099
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'qr')
        check_type(mode, 'mode', str, 'qr')
        helper = LayerHelper('qr', **locals())
        q = helper.create_variable_for_type_inference(dtype=x.dtype)
        r = helper.create_variable_for_type_inference(dtype=x.dtype)
2100
        attrs = {}
2101 2102 2103 2104
        attrs['mode'] = mode
        helper.append_op(
            type='qr', inputs={'X': [x]}, outputs={'Q': q, 'R': r}, attrs=attrs
        )
2105 2106 2107 2108 2109 2110
        if mode == "r":
            return r
        else:
            return q, r


2111 2112
def lu(x, pivot=True, get_infos=False, name=None):
    r"""
2113
    Computes the LU factorization of an N-D(N>=2) matrix x.
2114

2115
    Returns the LU factorization(inplace x) and Pivots. low triangular matrix L and
2116 2117 2118 2119
    upper triangular matrix U are combined to a single LU matrix.

    Pivoting is done if pivot is set to True.
    P mat can be get by pivots:
2120 2121 2122 2123 2124 2125

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
        return ones
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136

    Args:

        X (Tensor): the tensor to factor of N-dimensions(N>=2).

        pivot (bool, optional): controls whether pivoting is done. Default: True.

        get_infos (bool, optional): if set to True, returns an info IntTensor. Default: False.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2137

2138
    Returns:
2139
        factorization (Tensor), LU matrix, the factorization of input X.
2140

2141 2142 2143
        pivots (IntTensor), the pivots of size(∗(N-2), min(m,n)). `pivots` stores all the
        intermediate transpositions of rows. The final permutation `perm` could be
        reconstructed by this, details refer to upper example.
2144

2145 2146 2147
        infos (IntTensor, optional), if `get_infos` is `True`, this is a tensor of size (∗(N-2))
        where non-zero values indicate whether factorization for the matrix or each minibatch
        has succeeded or failed.
2148

2149 2150

    Examples:
2151 2152
        .. code-block:: python

2153
            import paddle
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2169

2170 2171 2172 2173 2174 2175
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2176
            # [1., 0., 0.]]),
2177 2178 2179 2180
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2181
            # [0.60000000, 0.50000000]]),
2182 2183 2184 2185 2186
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2187 2188

            # one can verify : X = P @ L @ U ;
2189
    """
L
Lin Manhui 已提交
2190 2191

    if in_dygraph_mode():
2192
        lu, p, info = _C_ops.lu(x, pivot)
L
Lin Manhui 已提交
2193 2194 2195 2196 2197 2198
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu')
        helper = LayerHelper('lu', **locals())
        lu = helper.create_variable_for_type_inference(dtype=x.dtype)
        p = helper.create_variable_for_type_inference(dtype='int')
        info = helper.create_variable_for_type_inference(dtype='int')
2199
        attrs = {}
L
Lin Manhui 已提交
2200
        attrs['pivot'] = pivot
2201 2202 2203 2204 2205 2206
        helper.append_op(
            type='lu',
            inputs={'X': x},
            outputs={'Out': lu, 'Pivots': p, 'Infos': info},
            attrs=attrs,
        )
2207 2208 2209 2210 2211 2212 2213 2214
    if get_infos:
        return lu, p, info
    else:
        return lu, p


def lu_unpack(x, y, unpack_ludata=True, unpack_pivots=True, name=None):
    r"""
2215
    Unpack L U and P to single matrix tensor .
2216 2217 2218
    unpack L and U matrix from LU, unpack permutation matrix P from Pivtos .

    P mat can be get by pivots:
2219 2220 2221 2222 2223

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236


    Args:
        x (Tensor): The LU tensor get from paddle.linalg.lu, which is combined by L and U.

        y (Tensor): Pivots get from paddle.linalg.lu.

        unpack_ludata (bool,optional): whether to unpack L and U from x. Default: True.

        unpack_pivots (bool, optional): whether to unpack permutation matrix P from Pivtos. Default: True.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2237

2238
    Returns:
2239
        P (Tensor), Permutation matrix P of lu factorization.
2240

2241
        L (Tensor), The lower triangular matrix tensor of lu factorization.
2242

2243
        U (Tensor), The upper triangular matrix tensor of lu factorization.
2244

2245 2246

    Examples:
2247 2248
        .. code-block:: python

2249
            import paddle
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2265

2266 2267 2268 2269 2270 2271
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2272
            # [1., 0., 0.]]),
2273 2274 2275 2276
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2277
            # [0.60000000, 0.50000000]]),
2278 2279 2280 2281 2282
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2283
            # one can verify : X = P @ L @ U ;
2284 2285
    """

2286
    if in_dygraph_mode():
2287
        P, L, U = _C_ops.lu_unpack(x, y, unpack_ludata, unpack_pivots)
2288
        return P, L, U
2289 2290 2291
    else:
        check_variable_and_dtype(
            x, 'dtype', ['float32', 'float64'], 'lu_unpack'
2292
        )
2293 2294 2295 2296
        helper = LayerHelper('lu_unpack', **locals())
        p = helper.create_variable_for_type_inference(dtype=x.dtype)
        l = helper.create_variable_for_type_inference(dtype=x.dtype)
        u = helper.create_variable_for_type_inference(dtype=x.dtype)
2297

2298
        attrs = {}
2299 2300 2301 2302 2303 2304 2305 2306 2307
        attrs['unpack_ludata'] = unpack_ludata
        attrs['unpack_pivots'] = unpack_pivots
        helper.append_op(
            type='lu_unpack',
            inputs={'X': x, 'Pivots': y},
            outputs={'Pmat': p, 'L': l, 'U': u},
            attrs=attrs,
        )
        return p, l, u
2308 2309


L
Lijunhui 已提交
2310 2311
def eig(x, name=None):
    """
2312
    Performs the eigenvalue decomposition of a square matrix or a batch of square matrices.
L
Lijunhui 已提交
2313

2314 2315 2316 2317 2318 2319
    Note:
        - If the matrix is a Hermitian or a real symmetric matrix, please use :ref:`paddle.linalg.eigh` instead, which is much faster.
        - If only eigenvalues is needed, please use :ref:`paddle.linalg.eigvals` instead.
        - If the matrix is of any shape, please use :ref:`paddle.linalg.svd`.
        - This API is only supported on CPU device.
        - The output datatype is always complex for both real and complex input.
L
Lijunhui 已提交
2320 2321 2322 2323

    Args:
        x (Tensor): A tensor with shape math:`[*, N, N]`, The data type of the x should be one of ``float32``,
            ``float64``, ``compplex64`` or ``complex128``.
2324
        name (str, optional): The default value is `None`. Normally there is no need for user to set
L
Lijunhui 已提交
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Eigenvalues(Tensors): A tensor with shape math:`[*, N]` refers to the eigen values.
        Eigenvectors(Tensors): A tensor with shape math:`[*, N, N]` refers to the eigen vectors.

    Examples:
        .. code-block:: python

            import paddle

            paddle.device.set_device("cpu")

2338
            x = paddle.to_tensor([[1.6707249, 7.2249975, 6.5045543],
L
Lijunhui 已提交
2339
                               [9.956216,  8.749598,  6.066444 ],
2340
                               [4.4251957, 1.7983172, 0.370647 ]])
L
Lijunhui 已提交
2341
            w, v = paddle.linalg.eig(x)
2342
            print(v)
L
Lijunhui 已提交
2343 2344 2345 2346 2347 2348 2349 2350
            # Tensor(shape=[3, 3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [[(-0.5061363550800655+0j) , (-0.7971760990842826+0j) ,
            #         (0.18518077798279986+0j)],
            #        [(-0.8308237755993192+0j) ,  (0.3463813401919749+0j) ,
            #         (-0.6837005269141947+0j) ],
            #        [(-0.23142567697893396+0j),  (0.4944999840400175+0j) ,
            #         (0.7058765252952796+0j) ]])

2351
            print(w)
L
Lijunhui 已提交
2352 2353 2354 2355
            # Tensor(shape=[3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [ (16.50471283351188+0j)  , (-5.5034820550763515+0j) ,
            #         (-0.21026087843552282+0j)])
    """
2356

2357
    if in_dygraph_mode():
2358
        return _C_ops.eig(x)
2359 2360 2361 2362 2363
    else:
        check_variable_and_dtype(
            x, 'X', ['float32', 'float64', 'complex64', 'complex128'], 'eig'
        )
        helper = LayerHelper('eig', **locals())
L
Lijunhui 已提交
2364

2365 2366
        w = helper.create_variable_for_type_inference(x.dtype)
        v = helper.create_variable_for_type_inference(x.dtype)
L
Lijunhui 已提交
2367

2368 2369 2370
        inputs = {'X': x}
        outputs = {'Eigenvalues': w, 'Eigenvectors': v}
        helper.append_op(type='eig', inputs=inputs, outputs=outputs)
L
Lijunhui 已提交
2371

2372
        return w, v
L
Lijunhui 已提交
2373 2374


2375 2376 2377
def eigvals(x, name=None):
    """
    Compute the eigenvalues of one or more general matrices.
2378 2379 2380

    Warning:
        The gradient kernel of this operator does not yet developed.
2381 2382 2383 2384
        If you need back propagation through this operator, please replace it with paddle.linalg.eig.

    Args:
        x (Tensor): A square matrix or a batch of square matrices whose eigenvalues will be computed.
2385
            Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions.
2386
            Its data type should be float32, float64, complex64, or complex128.
2387
        name (str, optional): Name for the operation (optional, default is None).
2388
            For more information, please refer to :ref:`api_guide_Name`.
2389

2390
    Returns:
2391 2392
        Tensor, A tensor containing the unsorted eigenvalues which has the same batch
        dimensions with `x`. The eigenvalues are complex-valued even when `x` is real.
2393 2394 2395 2396 2397

    Examples:
        .. code-block:: python

            import paddle
2398

2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
            paddle.set_device("cpu")
            paddle.seed(1234)

            x = paddle.rand(shape=[3, 3], dtype='float64')
            # [[0.02773777, 0.93004224, 0.06911496],
            #  [0.24831591, 0.45733623, 0.07717843],
            #  [0.48016702, 0.14235102, 0.42620817]])

            print(paddle.linalg.eigvals(x))
            # [(-0.27078833542132674+0j), (0.29962280156230725+0j), (0.8824477020120244+0j)] #complex128
    """

    x_shape = list(x.shape)
    if len(x_shape) < 2:
        raise ValueError(
2414 2415 2416 2417
            "The dimension of Input(x) should be at least 2, but received x's dimention = {}, x's shape = {}".format(
                len(x_shape), x_shape
            )
        )
2418 2419 2420

    if x_shape[-1] != x_shape[-2]:
        raise ValueError(
2421 2422 2423 2424
            "The last two dimensions of Input(x) should be equal, but received x's shape = {}".format(
                x_shape
            )
        )
2425

R
Ruibiao Chen 已提交
2426
    if in_dygraph_mode():
2427
        return _C_ops.eigvals(x)
2428
    else:
2429 2430 2431 2432 2433 2434
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'eigvals',
        )
2435 2436 2437 2438
        helper = LayerHelper('eigvals', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='eigvals', inputs={'X': x}, outputs={'Out': out})
        return out
2439 2440


2441 2442 2443 2444
def multi_dot(x, name=None):
    """
    Multi_dot is an operator that calculates multiple matrix multiplications.

2445
    Supports inputs of float16(only GPU support), float32 and float64 dtypes. This function does not
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
    support batched inputs.

    The input tensor in [x] must be 2-D except for the first and last can be 1-D.
    If the first tensor is a 1-D vector of shape(n, ) it is treated as row vector
    of shape(1, n), similarly if the last tensor is a 1D vector of shape(n, ), it
    is treated as a column vector of shape(n, 1).

    If the first and last tensor are 2-D matrix, then the output is also 2-D matrix,
    otherwise the output is a 1-D vector.

    Multi_dot will select the lowest cost multiplication order for calculation. The
    cost of multiplying two matrices with shapes (a, b) and (b, c) is a * b * c.
    Given matrices A, B, C with shapes (20, 5), (5, 100), (100, 10) respectively,
    we can calculate the cost of different multiplication orders as follows:
    - Cost((AB)C) = 20x5x100 + 20x100x10 = 30000
    - Cost(A(BC)) = 5x100x10 + 20x5x10 = 6000

    In this case, multiplying B and C first, then multiply A, which is 5 times faster
    than sequential calculation.

    Args:
        x ([Tensor]): The input tensors which is a list Tensor.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Tensor: The output Tensor.


    Examples:

    .. code-block:: python

        import paddle

        # A * B
2482 2483
        A = paddle.rand([3, 4])
        B = paddle.rand([4, 5])
2484
        out = paddle.linalg.multi_dot([A, B])
2485
        print(out.shape)
2486 2487 2488
        # [3, 5]

        # A * B * C
2489 2490 2491
        A = paddle.rand([10, 5])
        B = paddle.rand([5, 8])
        C = paddle.rand([8, 7])
2492
        out = paddle.linalg.multi_dot([A, B, C])
2493
        print(out.shape)
2494 2495 2496
        # [10, 7]

    """
2497
    if in_dygraph_mode():
2498
        return _C_ops.multi_dot(x)
2499 2500 2501 2502 2503 2504
    else:
        check_type(x, 'x', (list, tuple), 'multi_dot')
        for id, item in enumerate(x):
            check_variable_and_dtype(
                item,
                'x[' + str(id) + ']',
2505
                ['float16', 'float32', 'float64', 'uint16'],
2506 2507 2508 2509 2510 2511
                'multi_dot',
            )
            if item.dtype != x[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type."
                )
2512

2513 2514 2515 2516 2517
        helper = LayerHelper('multi_dot', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='multi_dot', inputs={"X": x}, outputs={"Out": out}
2518
        )
2519
        return out
2520 2521 2522 2523


def eigh(x, UPLO='L', name=None):
    """
2524
    Compute the eigenvalues and eigenvectors of a
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[*, N, N]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): (string, default 'L'), 'L' represents the lower triangular matrix,
                        "'U' represents the upper triangular matrix.".
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2536 2537 2538 2539
        - out_value(Tensor):  A Tensor with shape [*, N] and data type of float32 and float64.
            The eigenvalues of eigh op.
        - out_vector(Tensor): A Tensor with shape [*, N, N] and data type of float32,float64,
            complex64 and complex128. The eigenvectors of eigh op.
2540 2541 2542 2543 2544 2545

    Examples:
        .. code-block:: python

            import paddle

2546
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
2547
            out_value, out_vector = paddle.linalg.eigh(x, UPLO='L')
2548 2549 2550 2551 2552 2553 2554
            print(out_value)
            #[0.17157288, 5.82842712]
            print(out_vector)
            #[(-0.9238795325112867+0j), (-0.3826834323650898+0j)],
            #[ 0.3826834323650898j    , -0.9238795325112867j    ]]

    """
H
hong 已提交
2555
    if in_dygraph_mode():
2556
        return _C_ops.eigh(x, UPLO)
2557
    else:
H
hong 已提交
2558

2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
        def __check_input(x, UPLO):
            x_shape = list(x.shape)
            if len(x.shape) < 2:
                raise ValueError(
                    "Input(input) only support >=2 tensor, but received "
                    "length of Input(input) is %s." % len(x.shape)
                )
            if x_shape[-1] != x_shape[-2]:
                raise ValueError(
                    "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                        x_shape
                    )
                )
            if UPLO != 'L' and UPLO != 'U':
                raise ValueError(
2574
                    f"UPLO must be L or U. But received UPLO is: {UPLO}"
2575
                )
2576

2577
        __check_input(x, UPLO)
2578

2579 2580 2581 2582 2583 2584 2585
        helper = LayerHelper('eigh', **locals())
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'eigh',
        )
2586

2587 2588
        out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
        out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)
2589

2590 2591 2592 2593 2594 2595 2596
        helper.append_op(
            type='eigh',
            inputs={'X': x},
            outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
            attrs={'UPLO': UPLO},
        )
        return out_value, out_vector
A
andyjpaddle 已提交
2597 2598 2599 2600


def pinv(x, rcond=1e-15, hermitian=False, name=None):
    r"""
2601
    Calculate pseudo inverse via SVD(singular value decomposition)
A
andyjpaddle 已提交
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
    of one matrix or batches of regular matrix.

    .. math::

        if hermitian == False:
            x = u * s * vt  (SVD)
            out = v * 1/s * ut
        else:
            x = u * s * ut  (eigh)
            out = u * 1/s * u.conj().transpose(-2,-1)
2612

A
andyjpaddle 已提交
2613 2614 2615
    If x is hermitian or symmetric matrix, svd will be replaced with eigh.

    Args:
2616 2617 2618
        x(Tensor): The input tensor. Its shape should be (*, m, n)
            where * is zero or more batch dimensions. m and n can be
            arbitraty positive number. The data type of x should be
A
andyjpaddle 已提交
2619 2620 2621 2622
            float32 or float64 or complex64 or complex128. When data
            type is complex64 or cpmplex128, hermitian should be set
            True.

2623
        rcond(Tensor, optional): the tolerance value to determine
2624
            when is a singular value zero. Default:1e-15.
2625 2626

        hermitian(bool, optional): indicates whether x is Hermitian
A
andyjpaddle 已提交
2627
            if complex or symmetric if real. Default: False.
2628 2629

        name(str|None): A name for this layer(optional). If set None,
A
andyjpaddle 已提交
2630
            the layer will be named automatically.
2631

A
andyjpaddle 已提交
2632
    Returns:
2633
        Tensor: The tensor with same data type with x. it represents
A
andyjpaddle 已提交
2634
        pseudo inverse of x. Its shape should be (*, n, m).
2635

A
andyjpaddle 已提交
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(15).reshape((3, 5)).astype('float64')
            input = paddle.to_tensor(x)
            out = paddle.linalg.pinv(input)
            print(input)
            print(out)

            # input:
            # [[0. , 1. , 2. , 3. , 4. ],
            # [5. , 6. , 7. , 8. , 9. ],
            # [10., 11., 12., 13., 14.]]

            # out:
            # [[-0.22666667, -0.06666667,  0.09333333],
            # [-0.12333333, -0.03333333,  0.05666667],
            # [-0.02000000,  0.00000000,  0.02000000],
            # [ 0.08333333,  0.03333333, -0.01666667],
            # [ 0.18666667,  0.06666667, -0.05333333]]

            # one can verify : x * out * x = x ;
            # or              out * x * out = x ;
    """
2662 2663 2664
    if in_dygraph_mode():
        if not hermitian:
            # combine svd and matmul op
2665 2666
            u, s, vt = _C_ops.svd(x, False)
            max_singular_val = _C_ops.max(s, [-1], True)
2667 2668 2669 2670
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)
A
andyjpaddle 已提交
2671

2672 2673 2674 2675 2676 2677
            condition = s > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2678
            st = _C_ops.unsqueeze(singular, [-2])
2679 2680 2681

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2682
            v = _C_ops.transpose(vt, perm)
2683 2684

            out_1 = v * st
2685
            out_2 = _C_ops.matmul(out_1, u, False, True)
2686 2687 2688
            return out_2
        else:
            # combine eigh and matmul op
2689
            s, u = _C_ops.eigh(x, 'UPLO')
2690
            s_abs = paddle.abs(s)
2691
            max_singular_val = _C_ops.max(s_abs, [-1], True)
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2703
            st = _C_ops.unsqueeze(singular, [-2])
2704 2705

            out_1 = u * st
2706 2707
            u_conj = _C_ops.conj(u)
            out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2708
            return out_2
A
andyjpaddle 已提交
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
    else:
        if not hermitian:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pinv')

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(dtype)
            vt = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='svd',
                inputs={'X': [x]},
2721
                outputs={'U': u, 'VH': vt, 'S': s},
2722 2723
                attrs={'full_matrices': False},
            )
A
andyjpaddle 已提交
2724 2725

            max_singular_val = helper.create_variable_for_type_inference(dtype)
2726 2727 2728 2729 2730 2731
            helper.append_op(
                type='reduce_max',
                inputs={'X': s},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
2732

2733
            rcond = full(shape=[1], fill_value=rcond, dtype=dtype)
A
andyjpaddle 已提交
2734 2735
            cutoff = rcond * max_singular_val
            y = float('inf')
2736
            y = full(shape=[1], fill_value=y, dtype=dtype)
A
andyjpaddle 已提交
2737 2738

            condition = s > cutoff
2739 2740 2741 2742 2743
            cond_int = cast(condition, dtype)
            cond_not_int = cast(logical_not(condition), dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2744 2745 2746

            st = helper.create_variable_for_type_inference(dtype=dtype)
            st_shape = helper.create_variable_for_type_inference(dtype=dtype)
2747 2748 2749 2750 2751 2752
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
2753 2754 2755 2756 2757

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
            v = helper.create_variable_for_type_inference(dtype)
            v_shape = helper.create_variable_for_type_inference(dtype)
2758 2759 2760 2761 2762 2763
            helper.append_op(
                type='transpose2',
                inputs={'X': [vt]},
                outputs={'Out': [v], 'XShape': [v_shape]},
                attrs={'axis': perm},
            )
A
andyjpaddle 已提交
2764 2765

            out_1 = helper.create_variable_for_type_inference(dtype)
2766 2767 2768 2769 2770 2771
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': v, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
2772 2773 2774 2775 2776
            out_1 = helper.append_activation(out_1)

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2777
                inputs={'X': out_1, 'Y': u},
A
andyjpaddle 已提交
2778
                outputs={'Out': out_2},
2779
                attrs={'trans_x': False, 'trans_y': True},
2780
            )
A
andyjpaddle 已提交
2781 2782 2783 2784 2785
            return out_2
        else:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(
2786 2787 2788 2789 2790
                x,
                'dtype',
                ['float32', 'float64', 'complex64', 'complex128'],
                'pinv',
            )
A
andyjpaddle 已提交
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800

            if dtype == paddle.complex128:
                s_type = 'float64'
            elif dtype == paddle.complex64:
                s_type = 'float32'
            else:
                s_type = dtype

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(s_type)
2801 2802 2803 2804 2805 2806
            helper.append_op(
                type='eigh',
                inputs={'X': x},
                outputs={'Eigenvalues': s, 'Eigenvectors': u},
                attrs={'UPLO': 'L'},
            )
A
andyjpaddle 已提交
2807
            s_abs = helper.create_variable_for_type_inference(s_type)
2808 2809 2810
            helper.append_op(
                type='abs', inputs={'X': s}, outputs={'Out': s_abs}
            )
A
andyjpaddle 已提交
2811
            max_singular_val = helper.create_variable_for_type_inference(s_type)
2812 2813 2814 2815 2816 2817
            helper.append_op(
                type='reduce_max',
                inputs={'X': s_abs},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
2818

2819
            rcond = full(shape=[1], fill_value=rcond, dtype=s_type)
A
andyjpaddle 已提交
2820 2821
            cutoff = rcond * max_singular_val
            y = float('inf')
2822
            y = full(shape=[1], fill_value=y, dtype=s_type)
A
andyjpaddle 已提交
2823 2824

            condition = s_abs > cutoff
2825 2826 2827 2828 2829
            cond_int = cast(condition, s_type)
            cond_not_int = cast(logical_not(condition), s_type)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2830 2831 2832

            st = helper.create_variable_for_type_inference(dtype=s_type)
            st_shape = helper.create_variable_for_type_inference(dtype=s_type)
2833 2834 2835 2836 2837 2838
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
2839 2840

            out_1 = helper.create_variable_for_type_inference(dtype)
2841 2842 2843 2844 2845 2846
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': u, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
2847 2848 2849
            out_1 = helper.append_activation(out_1)

            u_conj = helper.create_variable_for_type_inference(dtype)
2850 2851 2852
            helper.append_op(
                type='conj', inputs={'X': u}, outputs={'Out': [u_conj]}
            )
A
andyjpaddle 已提交
2853 2854 2855 2856

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2857
                inputs={'X': out_1, 'Y': u_conj},
A
andyjpaddle 已提交
2858
                outputs={'Out': out_2},
2859
                attrs={'trans_x': False, 'trans_y': True},
2860
            )
A
andyjpaddle 已提交
2861
            return out_2
W
Weilong Wu 已提交
2862 2863 2864 2865


def solve(x, y, name=None):
    r"""
2866

W
Weilong Wu 已提交
2867
    Computes the solution of a square system of linear equations with a unique solution for input 'X' and 'Y'.
2868
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`Y` be
W
Weilong Wu 已提交
2869
    a vector/matrix or a batch of vectors/matrices, the equation should be:
2870

W
Weilong Wu 已提交
2871 2872
    .. math::
        Out = X^-1 * Y
2873 2874

    Specifically, this system of linear equations has one solution if and only if input 'X' is invertible.
2875

W
Weilong Wu 已提交
2876
    Args:
2877
        x (Tensor): A square matrix or a batch of square matrices. Its shape should be ``[*, M, M]``, where ``*`` is zero or
W
Weilong Wu 已提交
2878
            more batch dimensions. Its data type should be float32 or float64.
2879
        y (Tensor): A vector/matrix or a batch of vectors/matrices. Its shape should be ``[*, M, K]``, where ``*`` is zero or
W
Weilong Wu 已提交
2880
            more batch dimensions. Its data type should be float32 or float64.
2881
        name(str, optional): Name for the operation (optional, default is None).
W
Weilong Wu 已提交
2882
            For more information, please refer to :ref:`api_guide_Name`.
2883

W
Weilong Wu 已提交
2884
    Returns:
2885
        Tensor: The solution of a square system of linear equations with a unique solution for input 'x' and 'y'.
W
Weilong Wu 已提交
2886
        Its data type should be the same as that of `x`.
2887

W
Weilong Wu 已提交
2888
    Examples:
2889

2890
        .. code-block:: python
2891

2892 2893 2894
            # a square system of linear equations:
            # 2*X0 + X1 = 9
            # X0 + 2*X1 = 8
2895

2896 2897 2898 2899 2900
            import paddle

            x = paddle.to_tensor([[3, 1],[1, 2]], dtype="float64")
            y = paddle.to_tensor([9, 8], dtype="float64")
            out = paddle.linalg.solve(x, y)
2901

2902 2903
            print(out)
            # [2., 3.])
W
Weilong Wu 已提交
2904
    """
2905
    if in_dygraph_mode():
2906
        return _C_ops.solve(x, y)
2907 2908 2909 2910 2911 2912
    else:
        inputs = {"X": [x], "Y": [y]}
        helper = LayerHelper("solve", **locals())
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'solve')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'solve')
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2913

2914 2915 2916 2917
        helper.append_op(
            type="solve", inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
        return out
2918 2919


2920 2921 2922
def triangular_solve(
    x, y, upper=True, transpose=False, unitriangular=False, name=None
):
2923
    r"""
2924 2925
    Computes the solution of a system of equations with a triangular coefficient.  `x` is coefficient matrix
    `y` is multiple right-hand sides of equations.
2926

2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs is also
    batches.

    Equations can be described as:

    .. math::
        x * Out = y

    Solution of Equations is:

    .. math::
        Out = x ^ {-1} * y
2939 2940 2941 2942

    Args:
        x (Tensor): The input triangular coefficient matrix. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
2943
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
2944
            zero or more batch dimensions. Its data type should be float32 or float64.
2945
        upper (bool, optional): Whether to solve the upper-triangular system of equations (default) or the lower-triangular
2946 2947
            system of equations. Default: True.
        transpose (bool, optional): whether `x` should be transposed before calculation. Default: False.
2948
        unitriangular (bool, optional): whether `x` is unit triangular. If True, the diagonal elements of `x` are assumed
2949 2950 2951 2952 2953 2954 2955 2956
            to be 1 and not referenced from `x` . Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type should be the same as that of `x`.

    Examples:
2957
        .. code-block:: python
2958

2959 2960 2961 2962
            # a square system of linear equations:
            # x1 +   x2  +   x3 = 0
            #      2*x2  +   x3 = -9
            #               -x3 = 5
2963

2964 2965 2966 2967 2968 2969
            import paddle
            x = paddle.to_tensor([[1, 1, 1],
                                  [0, 2, 1],
                                  [0, 0,-1]], dtype="float64")
            y = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.triangular_solve(x, y, upper=True)
2970

2971 2972
            print(out)
            # [7, -2, -5]
2973
    """
H
hong 已提交
2974
    if in_dygraph_mode():
2975
        return _C_ops.triangular_solve(x, y, upper, transpose, unitriangular)
2976 2977 2978 2979 2980
    else:
        inputs = {"X": [x], "Y": [y]}
        helper = LayerHelper("triangular_solve", **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'triangular_solve'
2981
        )
2982 2983 2984 2985
        check_variable_and_dtype(
            y, 'y', ['float32', 'float64'], 'triangular_solve'
        )
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2986

2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
        helper.append_op(
            type='triangular_solve',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs={
                'upper': upper,
                'transpose': transpose,
                'unitriangular': unitriangular,
            },
        )
        return out
2998 2999


Z
zhiboniu 已提交
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
def cholesky_solve(x, y, upper=False, name=None):
    r"""
    Solves a linear system of equations A @ X = B, given A's Cholesky factor matrix u and  matrix B.

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
        x (Tensor): The input matrix which is upper or lower triangular Cholesky factor of square matrix A. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
3010
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
Z
zhiboniu 已提交
3011 3012 3013 3014 3015 3016 3017 3018 3019
            zero or more batch dimensions. Its data type should be float32 or float64.
        upper (bool, optional): whether to consider the Cholesky factor as a lower or upper triangular matrix. Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type is the same as that of `x`.

    Examples:
3020
        .. code-block:: python
Z
zhiboniu 已提交
3021

3022
            import paddle
Z
zhiboniu 已提交
3023

3024 3025 3026 3027 3028
            u = paddle.to_tensor([[1, 1, 1],
                                    [0, 2, 1],
                                    [0, 0,-1]], dtype="float64")
            b = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.cholesky_solve(b, u, upper=True)
Z
zhiboniu 已提交
3029

3030 3031
            print(out)
            # [-2.5, -7, 9.5]
Z
zhiboniu 已提交
3032
    """
H
hong 已提交
3033
    if in_dygraph_mode():
3034
        return _C_ops.cholesky_solve(x, y, upper)
3035 3036 3037 3038 3039 3040 3041 3042 3043
    else:
        helper = LayerHelper("cholesky_solve", **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'cholesky_solve'
        )
        check_variable_and_dtype(
            y, 'y', ['float32', 'float64'], 'cholesky_solve'
        )
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
hong 已提交
3044

3045 3046 3047 3048 3049 3050 3051
        helper.append_op(
            type='cholesky_solve',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs={'upper': upper},
        )
        return out
Z
zhiboniu 已提交
3052 3053


3054 3055
def eigvalsh(x, UPLO='L', name=None):
    """
3056
    Computes the eigenvalues of a
3057 3058 3059
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
3060
        x (Tensor): A tensor with shape :math:`[*, M, M]` , where * is zero or greater batch dimension. The data type of the input Tensor x
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): Lower triangular part of a (‘L’, default) or the upper triangular part (‘U’).
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor eigenvalues in ascending order.

    Examples:
        .. code-block:: python

            import paddle

3074
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
3075 3076
            out_value = paddle.eigvalsh(x, UPLO='L')
            print(out_value)
3077 3078
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [0.17157286, 5.82842731])
3079
    """
3080
    if in_dygraph_mode():
3081
        values, _ = _C_ops.eigvalsh(x, UPLO, x.stop_gradient)
3082
        return values
3083
    else:
3084

3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
        def __check_input(x, UPLO):
            x_shape = list(x.shape)
            if len(x.shape) < 2:
                raise ValueError(
                    "Input(input) only support >=2 tensor, but received "
                    "length of Input(input) is %s." % len(x.shape)
                )
            if x_shape[-1] != x_shape[-2]:
                raise ValueError(
                    "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                        x_shape
                    )
                )
            if UPLO != 'L' and UPLO != 'U':
                raise ValueError(
3100
                    f"UPLO must be L or U. But received UPLO is: {UPLO}"
3101
                )
3102

3103
        __check_input(x, UPLO)
3104

3105 3106 3107 3108 3109 3110 3111
        helper = LayerHelper('eigvalsh', **locals())
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'eigvalsh',
        )
3112

3113 3114
        out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
        out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)
3115

3116 3117 3118 3119 3120 3121 3122 3123
        is_test = x.stop_gradient
        helper.append_op(
            type='eigvalsh',
            inputs={'X': x},
            outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
            attrs={'UPLO': UPLO, 'is_test': is_test},
        )
        return out_value
3124 3125


3126 3127 3128 3129 3130 3131 3132 3133
def lstsq(x, y, rcond=None, driver=None, name=None):
    """
    Computes a solution to
    the least squares problem of a system of linear equations.

    Args:
        x (Tensor): A tensor with shape ``(*, M, N)`` , the data type of the input Tensor ``x``
            should be one of float32, float64.
3134
        y (Tensor): A tensor with shape ``(*, M, K)`` , the data type of the input Tensor ``y``
3135
            should be one of float32, float64.
3136 3137
        rcond(float, optional): The default value is None. A float pointing number used to determine
            the effective rank of ``x``. If ``rcond`` is None, it will be set to max(M, N) times the
3138
            machine precision of x_dtype.
3139 3140 3141
        driver(str, optional): The default value is None. The name of LAPACK method to be used. For
            CPU inputs the valid values are ‘gels’, ‘gelsy’, ‘gelsd, ‘gelss’. For CUDA input, the only
            valid driver is ‘gels’. If ``driver`` is None, ‘gelsy’ is used for CPU inputs and ‘gels’
3142
            for CUDA inputs.
3143
        name(str, optional): The default value is None. Normally there is no need for user to set
3144 3145 3146
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3147 3148 3149 3150 3151 3152 3153
        Tuple: A tuple of 4 Tensors which is (``solution``, ``residuals``, ``rank``, ``singular_values``).
        ``solution`` is a tensor with shape ``(*, N, K)``, meaning the least squares solution. ``residuals``
        is a tensor with shape ``(*, K)``, meaning the squared residuals of the solutions, which is computed
        when M > N and every matrix in ``x`` is full-rank, otherwise return an empty tensor. ``rank`` is a tensor
        with shape ``(*)``, meaning the ranks of the matrices in ``x``, which is computed when ``driver`` in
        (‘gelsy’, ‘gelsd’, ‘gelss’), otherwise return an empty tensor. ``singular_values`` is a tensor with
        shape ``(*, min(M, N))``, meaning singular values of the matrices in ``x``, which is computed when
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
        ``driver`` in (‘gelsd’, ‘gelss’), otherwise return an empty tensor.

    Examples:
        .. code-block:: python

            import paddle

            paddle.set_device("cpu")
            x = paddle.to_tensor([[1, 3], [3, 2], [5, 6.]])
            y = paddle.to_tensor([[3, 4, 6], [5, 3, 4], [1, 2, 1.]])
            results = paddle.linalg.lstsq(x, y, driver="gelsd")
            print(results[0])
            # [[ 0.78350395, -0.22165027, -0.62371236],
            # [-0.11340097,  0.78866047,  1.14948535]]
            print(results[1])
            # [19.81443405, 10.43814468, 30.56185532])
            print(results[2])
            # 2
            print(results[3])
            # [9.03455734, 1.54167950]

            x = paddle.to_tensor([[10, 2, 3], [3, 10, 5], [5, 6, 12.]])
            y = paddle.to_tensor([[4, 2, 9], [2, 0, 3], [2, 5, 3.]])
            results = paddle.linalg.lstsq(x, y, driver="gels")
            print(results[0])
            # [[ 0.39386186,  0.10230173,  0.93606132],
            # [ 0.10741687, -0.29028133,  0.11892585],
            # [-0.05115091,  0.51918161, -0.19948854]]
            print(results[1])
            # []
    """
    device = paddle.get_device()
3186 3187 3188
    if device == "cpu":
        if driver not in (None, "gels", "gelss", "gelsd", "gelsy"):
            raise ValueError(
3189 3190 3191 3192
                "Only support valid driver is 'gels', 'gelss', 'gelsd', 'gelsy' or None for CPU inputs. But got {}".format(
                    driver
                )
            )
3193 3194 3195 3196
        driver = "gelsy" if driver is None else driver
    elif "gpu" in device:
        if driver not in (None, "gels"):
            raise ValueError(
3197 3198 3199 3200
                "Only support valid driver is 'gels' or None for CUDA inputs. But got {}".format(
                    driver
                )
            )
3201 3202 3203 3204
        driver = "gels" if driver is None else driver
    else:
        raise RuntimeError("Only support lstsq api for CPU or CUDA device.")

3205
    if not (x.dtype == y.dtype and x.dtype in (paddle.float32, paddle.float64)):
3206 3207 3208 3209
        raise ValueError(
            "Only support x and y have the same dtype such as 'float32' and 'float64'."
        )

3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
    if x.ndim < 2:
        raise ValueError(
            f"The shape of x should be (*, M, N), but received ndim is [{x.ndim} < 2]"
        )

    if y.ndim < 2:
        raise ValueError(
            f"The shape of y should be (*, M, K), but received ndim is [{y.ndim} < 2]"
        )

    if x.shape[-2] != y.shape[-2]:
        raise ValueError(
            f"x with shape (*, M = {x.shape[-2]}, N) and y with shape (*, M = {y.shape[-2]}, K) should have same M."
        )

3225 3226 3227 3228 3229 3230
    if rcond is None:
        if x.dtype == paddle.float32:
            rcond = 1e-7 * max(x.shape[-2], x.shape[-1])
        elif x.dtype == paddle.float64:
            rcond = 1e-15 * max(x.shape[-2], x.shape[-1])

3231 3232 3233 3234
    if in_dygraph_mode():
        solution, residuals, rank, singular_values = _C_ops.lstsq(
            x, y, rcond, driver
        )
3235 3236 3237 3238 3239 3240 3241
        if driver == "gels":
            rank = paddle.empty(shape=[0], dtype=paddle.int32)
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)
        elif driver == "gelsy":
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)

        return solution, residuals, rank, singular_values
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
    else:
        helper = LayerHelper('lstsq', **locals())
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'lstsq',
        )
        check_variable_and_dtype(
            y,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'lstsq',
        )
3256

3257 3258 3259 3260 3261 3262
        solution = helper.create_variable_for_type_inference(dtype=x.dtype)
        residuals = helper.create_variable_for_type_inference(dtype=x.dtype)
        rank = helper.create_variable_for_type_inference(dtype=paddle.int32)
        singular_values = helper.create_variable_for_type_inference(
            dtype=x.dtype
        )
3263

3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
        helper.append_op(
            type='lstsq',
            inputs={'X': x, 'Y': y},
            outputs={
                'Solution': solution,
                'Residuals': residuals,
                'Rank': rank,
                'SingularValues': singular_values,
            },
            attrs={'rcond': rcond, 'driver': driver},
        )
3275

3276 3277 3278 3279 3280 3281 3282 3283 3284
        if driver == "gels":
            rank = paddle.static.data(name='rank', shape=[0])
            singular_values = paddle.static.data(
                name='singular_values', shape=[0]
            )
        elif driver == "gelsy":
            singular_values = paddle.static.data(
                name='singular_values', shape=[0]
            )
3285

3286
        return solution, residuals, rank, singular_values
3287 3288 3289 3290


def corrcoef(x, rowvar=True, name=None):
    """
3291

3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
    A correlation coefficient matrix indicate the correlation of each pair variables in the input matrix.
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the correlation coefficient matrix
    element Rij is the correlation of xi and xj. The element Rii is the covariance of xi itself.

    The relationship between the correlation coefficient matrix `R` and the
    covariance matrix `C`, is

    .. math:: R_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } }

    The values of `R` are between -1 and 1.

    Parameters:

        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True.
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`.

    Returns:

        The correlation coefficient matrix of the variables.

    Examples:
        .. code-block:: python
3315

3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
            import paddle

            xt = paddle.rand((3,4))
            print(paddle.linalg.corrcoef(xt))

            # Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            # [[ 1.        , -0.73702252,  0.66228950],
            # [-0.73702258,  1.        , -0.77104872],
            # [ 0.66228974, -0.77104825,  1.        ]])

    """
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in corrcoef, but received "
3330 3331
            "length of Input(input) is %s." % len(x.shape)
        )
3332 3333 3334
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'corrcoef')

    c = cov(x, rowvar)
3335
    if c.ndim == 0:
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
        # scalar covariance
        # nan if incorrect value (nan, inf, 0), 1 otherwise
        return c / c

    d = paddle.diag(c)

    if paddle.is_complex(d):
        d = d.real()
    stddev = paddle.sqrt(d)
    c /= stddev[:, None]
    c /= stddev[None, :]

    # Clip to [-1, 1].  This does not guarantee
    if paddle.is_complex(c):
3350 3351 3352
        return paddle.complex(
            paddle.clip(c.real(), -1, 1), paddle.clip(c.imag(), -1, 1)
        )
3353 3354 3355 3356
    else:
        c = paddle.clip(c, -1, 1)

    return c