pybind.cc 113.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cstdlib>
C
chengduoZH 已提交
18
#include <map>
S
sneaxiy 已提交
19
#include <memory>
C
chengduoZH 已提交
20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
23
#include <unordered_set>
C
chengduoZH 已提交
24 25
#include <utility>
#include <vector>
26

27
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
28 29
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
30
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
32
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
33
#include "paddle/fluid/framework/io/fs.h"
34
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
35
#include "paddle/fluid/framework/ir/pass_builder.h"
36
#include "paddle/fluid/framework/load_op_lib.h"
Y
Yi Wang 已提交
37 38 39
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
40
#include "paddle/fluid/framework/op_info.h"
41
#include "paddle/fluid/framework/op_registry.h"
42
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
43
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
45
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
46
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
48
#include "paddle/fluid/framework/selected_rows.h"
49
#include "paddle/fluid/framework/tensor_util.h"
50
#include "paddle/fluid/framework/trainer.h"
51
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
52
#include "paddle/fluid/framework/version.h"
H
hong 已提交
53
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
54
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
55
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
56
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
57
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
58
#include "paddle/fluid/operators/py_func_op.h"
59
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
60
#include "paddle/fluid/platform/cpu_info.h"
61
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
62
#include "paddle/fluid/platform/enforce.h"
63
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
64
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
65 66
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
67 68 69
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
hutuxian 已提交
70
#include "paddle/fluid/pybind/box_helper_py.h"
71
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
72
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
73
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
74
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
75
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
76
#include "paddle/fluid/pybind/generator_py.h"
77
#include "paddle/fluid/pybind/global_value_getter_setter.h"
78
#include "paddle/fluid/pybind/gloo_context_py.h"
79
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
80
#include "paddle/fluid/pybind/heter_wrapper_py.h"
81
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
82
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
83
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
84
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
85
#include "paddle/fluid/pybind/pybind_boost_headers.h"
86

87
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
88
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
89
#endif
90
#include "paddle/fluid/framework/data_type.h"
91 92
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
93
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
94
#include "paddle/fluid/pybind/tensor_py.h"
95
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
96
#ifdef PADDLE_WITH_CUDA
97
#ifdef PADDLE_WITH_NCCL
Y
Yi Wang 已提交
98
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
99
#endif
Y
Yi Wang 已提交
100 101
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
102 103
#endif

104 105 106 107
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_info.h"
#endif

Y
Yanghello 已提交
108 109 110 111
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
112
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
113 114 115
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
116 117
#include "pybind11/stl.h"

118
DECLARE_bool(use_mkldnn);
119

Q
Qiao Longfei 已提交
120 121
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
122 123 124
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
125

126
namespace paddle {
127
namespace pybind {
128
bool IsCompiledWithCUDA() {
129
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
130 131 132 133 134 135
  return false;
#else
  return true;
#endif
}

136 137 138 139 140 141 142 143
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

144 145 146 147 148 149 150 151
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

152 153 154 155 156 157 158 159 160 161 162
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

163
bool IsCompiledWithBrpc() {
164
#ifndef PADDLE_WITH_DISTRIBUTE
165 166
  return false;
#endif
167 168 169 170 171 172

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
173 174
}

Y
update  
Yancey1989 已提交
175
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
176
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
177 178 179 180 181 182
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
183 184 185 186 187 188 189 190 191 192
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
215 216 217
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
231 232
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
233 234
    }
    vec_res.emplace_back(
235
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
236 237 238 239 240 241 242 243 244 245 246 247
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
248 249
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
250 251 252 253 254 255 256 257 258 259 260 261
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
262 263 264
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
265 266 267 268
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
269 270
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
271 272 273 274
  }
  return vec_res;
}

275 276 277 278 279 280 281 282
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
283 284
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
285 286 287 288 289 290 291 292 293 294 295 296 297
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
298 299 300
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
301 302 303 304 305
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
306 307 308 309 310
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
311 312
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
313 314 315
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
316 317 318 319 320 321 322 323 324
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
325 326
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
327 328 329 330 331
  }

  return;
}

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

356 357 358 359 360 361
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
362 363 364
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
365
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
366

367 368
  AssertStaticGraphAndDygraphGradMakerNoDiff();

369
  m.doc() = "C++ core of PaddlePaddle";
370

371 372 373 374
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

375
  BindException(&m);
Y
Yu Yang 已提交
376

377 378
  m.def("set_num_threads", &platform::SetNumThreads);

379 380 381 382
#ifdef PADDLE_WITH_CUDA
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

6
633WHU 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
    Tensor tensor;

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#ifdef PADDLE_WITH_CUDA
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });

H
hong 已提交
401 402 403 404 405 406 407 408 409
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
410
           const Scope &scope, const Executor *executor) {
H
hong 已提交
411
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
412
          CreateVariableIfNotExit(vec_var_list, scope, executor);
H
hong 已提交
413 414 415
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

416 417 418 419 420 421
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

H
hong 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
6
633WHU 已提交
441

442 443 444 445 446 447
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
448 449
  });

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
475 476 477 478 479 480
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
481
  m.def(
S
sneaxiy 已提交
482
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
483 484 485 486
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
487 488 489
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
506 507 508
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
509
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
510

511
  m.def("_set_fuse_parameter_group_size",
512
        &paddle::framework::ir::SetFuseParameterGroupsSize);
513
  m.def("_set_fuse_parameter_memory_size",
514
        &paddle::framework::ir::SetFuseParameterMemorySize);
515

S
sneaxiy 已提交
516 517 518
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

519 520
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

521 522 523
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

524
  BindImperative(&m);
525

526
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
527
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
528 529
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
530
      .def("_get_dims",
531
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
532
      .def("_set_dims",
Q
qijun 已提交
533
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
534
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
535
           })
Y
yuyang18 已提交
536
      .def("_set_layout",
D
dzhwinter 已提交
537 538 539
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
540
      .def("_alloc_float",
D
dzhwinter 已提交
541
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
542
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
543
           })
544 545 546 547
      .def("_alloc_float",
           [](Tensor &self, paddle::platform::XPUPlace &place) {
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
548
      .def("_alloc_float",
Y
Yu Yang 已提交
549
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
550
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
551
           })
552 553 554 555
      .def("_alloc_double",
           [](Tensor &self, paddle::platform::CPUPlace &place) {
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
556
      .def("_alloc_int",
Y
Yu Yang 已提交
557
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
558
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
559
           })
560 561 562 563
      .def("_alloc_int",
           [](Tensor &self, paddle::platform::XPUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
564
      .def("_alloc_int",
D
dzhwinter 已提交
565
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
566
             self.mutable_data<int>(place);
Q
qijun 已提交
567
           })
Y
yuyang18 已提交
568
      .def("_alloc_int",
C
chengduoZH 已提交
569 570 571
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
572
      .def("_alloc_float",
C
chengduoZH 已提交
573 574 575
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
576 577 578 579 580
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
581 582 583 584 585
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::XPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
586 587 588 589 590 591 592 593 594 595
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
596
      .def("_clear", &Tensor::clear)
597
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
598
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
599 600
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
601
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
602
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
603
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
604 605
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
606 607 608 609
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
610
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace): The place where the 
L
Leo Chen 已提交
611
          LoDTensor is to be set.
612 613
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
627

L
Leo Chen 已提交
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); }, R"DOC(
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
      .def("_to_dlpack",
           [](Tensor &self) {
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
667 668 669 670
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
671
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
672
      .def("_dtype", [](Tensor &self) { return self.type(); })
673 674
      .def("_layout",
           [](Tensor &self) { return DataLayoutToString(self.layout()); })
675
      .def("_share_data_with", &Tensor::ShareDataWith)
676 677 678 679 680 681
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
682

L
Leo Chen 已提交
683
  // TODO(cql): add reference: en_user_guide_lod_tensor
X
Xin Pan 已提交
684
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
759 760 761 762 763 764 765

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
766 767

        )DOC")
768
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
769 770 771 772 773 774 775 776 777
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
778 779
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
780 781 782 783
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
784 785
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
786
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
787
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
788 789
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
790 791 792
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
793
      .def("set_lod",
794
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
795
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
796
             LoD new_lod;
797 798
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
799 800
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
801 802
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
803
             self.set_lod(new_lod);
S
sneaxiy 已提交
804 805 806 807 808
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
809 810 811 812
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
813 814 815 816 817 818 819 820 821 822

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
823
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
824
           )DOC")
825 826 827 828 829 830 831 832 833 834 835
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
836 837
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
838 839 840 841 842
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
843
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
844 845
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
846
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
847

L
Leo Chen 已提交
848
           For example, if recursive_sequence_lengths=[[2, 3]], which means
849
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
850
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
851 852

           Args:
L
Leo Chen 已提交
853 854 855 856
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
857 858 859 860 861 862 863 864 865 866

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
867 868
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
869
           )DOC")
870 871 872 873 874 875 876 877
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
878 879 880 881 882
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
883 884
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
885 886 887 888 889 890 891 892 893 894
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
895
           )DOC")
G
gongweibao 已提交
896
      // Set above comments of set_lod.
897 898 899 900 901 902 903 904
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
905 906
           },
           R"DOC(
L
Leo Chen 已提交
907 908
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
909 910

           Returns:
L
Leo Chen 已提交
911
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
912 913 914 915 916 917 918 919 920 921 922

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
923 924 925 926 927 928 929 930
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
931
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
932 933

           Returns:
L
Leo Chen 已提交
934
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
935 936 937 938 939 940 941 942 943 944 945

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
946 947 948 949 950 951 952
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
953
           )DOC")
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
972
#ifdef _WIN32
973
      });
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1024

Q
qijun 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1036 1037
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1038 1039
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1040 1041 1042 1043 1044 1045 1046 1047 1048
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1049
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1050
      .def("rows", [](SelectedRows &self) {
1051 1052 1053 1054 1055
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1056
      });
Q
qijun 已提交
1057

1058
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1059 1060 1061

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1062
      .def(py::init<>())
1063
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1064
      .def("set_int",
1065 1066
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1067 1068 1069 1070 1071 1072 1073
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1074
      .def("get_tensor",
1075 1076
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1077 1078
           },
           py::return_value_policy::reference)
1079 1080 1081 1082
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1083 1084 1085
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1086 1087 1088 1089 1090
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1091 1092 1093
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1094 1095 1096
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1097
#if (defined(PADDLE_WITH_NCCL))
D
Dong Zhihong 已提交
1098 1099 1100 1101 1102
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1103
#endif
Y
Refine  
Yu Yang 已提交
1104 1105
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1106 1107 1108 1109
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1110 1111
             return self.GetMutable<framework::ReaderHolder>();
           },
1112 1113 1114 1115 1116
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1117

S
sneaxiy 已提交
1118
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1119

S
sneaxiy 已提交
1120
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1134
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1135 1136 1137 1138 1139 1140
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1141 1142
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1143
      .def("var",
1144
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1145
             return self.Var(name);
Y
Yu Yang 已提交
1146
           },
S
sneaxiy 已提交
1147 1148
           py::arg("name"),
           R"DOC(
1149
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1150

1151
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1152
           current scope, the variable would be created. Otherwise,
1153
           return the existing variable.
S
sneaxiy 已提交
1154 1155

           Args:
1156 1157
               name (str): the variable name.

S
sneaxiy 已提交
1158
           Returns:
1159
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1160 1161 1162 1163
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1164
           Find variable named :code:`name` in the current scope or
1165
           its parent scope. Return None if not found. 
1166

S
sneaxiy 已提交
1167 1168
           Args:
               name (str): the variable name.
1169

S
sneaxiy 已提交
1170
           Returns:
1171
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1172
           )DOC",
1173
           py::return_value_policy::reference)
1174
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1175 1176 1177 1178 1179 1180
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1181
           py::return_value_policy::reference)
S
sneaxiy 已提交
1182 1183 1184
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1185 1186
           )DOC")
      .def("_kids", &Scope::kids);
1187

S
sneaxiy 已提交
1188 1189 1190 1191 1192 1193
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1194 1195
        R"DOC(
        Create a new scope.
1196

S
sneaxiy 已提交
1197 1198 1199
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1200 1201
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1202 1203
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1204 1205
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1206 1207 1208 1209
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1210 1211
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1212 1213
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1214 1215 1216
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1217 1218
    return ret_values;
  });
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
              res = op_checker->GetAttrsDefaultValuesMap();
            }
          }
          return res;
        });
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1248 1249 1250
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1251 1252 1253 1254 1255
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1256 1257 1258
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1273
  m.def("prune", [](const ProgramDesc &origin,
1274
                    const std::set<std::string> &feeded_var_names,
1275
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1276
    ProgramDesc prog_with_targets(origin);
1277

1278
    for (const auto &t : targets) {
1279
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1280
    }
1281
    proto::ProgramDesc pruned_desc;
1282 1283 1284 1285
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1286
  });
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1304 1305 1306 1307
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1308 1309 1310
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1311 1312
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1313

Q
qijun 已提交
1314
  // clang-format off
Y
Yu Yang 已提交
1315
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1316 1317
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1318
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1319 1320
                    return new paddle::platform::CPUDeviceContext();
                  })
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
Q
qijun 已提交
1333
      .def_static("create",
D
dzhwinter 已提交
1334
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1335
                      -> paddle::platform::DeviceContext* {
1336
#ifndef PADDLE_WITH_CUDA
1337 1338 1339 1340
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1341
#else
Q
qijun 已提交
1342
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1343
#endif
C
chengduoZH 已提交
1344 1345 1346 1347 1348
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
1349 1350 1351 1352
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1353 1354 1355 1356
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1357
// clang-format on
1358
#if defined(PADDLE_WITH_NCCL)
D
Dong Zhihong 已提交
1359 1360
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1361
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1362 1363 1364 1365 1366

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1367
    The memory of CUDAPlace with different dev_id is not accessible.
1368 1369 1370 1371 1372 1373 1374 1375
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1376 1377 1378 1379

    Examples:
        .. code-block:: python

1380 1381 1382
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1383

1384
        )DOC")
S
sneaxiy 已提交
1385 1386 1387
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1412 1413
             new (&self) platform::CUDAPlace(dev_id);
#else
1414 1415 1416 1417 1418 1419 1420 1421 1422
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1423 1424
#endif
           })
1425
#ifdef PADDLE_WITH_CUDA
1426 1427
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1428 1429 1430 1431
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1432
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1433 1434
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1435 1436 1437
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1438
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1439
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1440

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1486
#ifdef PADDLE_WITH_XPU
1487 1488 1489 1490 1491 1492 1493
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1494 1495 1496
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1497
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1498
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1499 1500 1501
#ifdef PADDLE_WITH_XPU
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
#endif
1502
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1503
    CPUPlace is a descriptor of a device.
1504
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1505 1506 1507 1508

    Examples:
        .. code-block:: python

1509 1510
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1511

1512
        )DOC")
1513
      .def(py::init<>())
S
sneaxiy 已提交
1514 1515
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1516
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1517 1518 1519 1520
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1521
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1522
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1523

1524
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1525 1526 1527 1528 1529 1530
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1531 1532 1533 1534

    Examples:
        .. code-block:: python

1535 1536
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1537

1538
        )DOC")
S
sneaxiy 已提交
1539
      .def("__init__",
S
sneaxiy 已提交
1540
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
1541
#ifndef PADDLE_WITH_CUDA
1542 1543 1544
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1545
#endif
S
sneaxiy 已提交
1546
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1547
           })
S
sneaxiy 已提交
1548 1549 1550 1551
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1552 1553
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1554 1555 1556 1557
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1558
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1559 1560
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
1561 1562
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1563 1564 1565 1566
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1567
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
S
sneaxiy 已提交
1568
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1569 1570
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1571 1572
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1573 1574
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
S
sneaxiy 已提交
1575 1576 1577 1578
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1579 1580
      .def("gpu_device_id",
           [](platform::Place &self) {
1581
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1582
           })
1583 1584 1585 1586
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
S
sneaxiy 已提交
1587 1588
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1589 1590 1591 1592
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1593 1594 1595 1596
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1597
      .def("set_place",
D
dzhwinter 已提交
1598
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1599
             self = gpu_place;
C
chengduoZH 已提交
1600
           })
1601 1602 1603 1604 1605 1606 1607
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1608

Y
Yu Yang 已提交
1609
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1610 1611 1612 1613 1614
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
1615 1616 1617 1618 1619 1620 1621
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
C
chengduo 已提交
1622 1623
            return OpRegistry::CreateOp(desc);
          })
1624
      .def("run",
1625
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1626
              const platform::CPUPlace &place) { self.Run(scope, place); })
1627 1628 1629
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::XPUPlace &place) { self.Run(scope, place); })
D
dzhwinter 已提交
1630 1631
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1632
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1633 1634 1635 1636 1637
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1638 1639 1640 1641 1642 1643 1644
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1645 1646
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1647
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1648
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1649 1650 1651 1652
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1653

1654 1655 1656
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1657 1658 1659 1660 1661 1662 1663 1664 1665
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1666
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1667
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1668
      .def("close", &Executor::Close)
1669 1670
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1671 1672
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1673 1674 1675 1676
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1677
             pybind11::gil_scoped_release release;
1678 1679 1680 1681 1682 1683 1684
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1685 1686 1687
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1688
              std::map<std::string, FetchType *> *fetch_targets,
1689 1690 1691 1692 1693 1694 1695 1696
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1697
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1698 1699 1700 1701 1702 1703 1704
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1715
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1716 1717
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1718
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1719 1720
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1721
      });
S
sneaxiy 已提交
1722

D
dzhwinter 已提交
1723
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1724
  m.def("init_glog", framework::InitGLOG);
1725
  m.def("load_op_library", framework::LoadOpLib);
1726
  m.def("init_devices", []() { framework::InitDevices(); });
1727

1728
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1729
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1730
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1731
  m.def("supports_bfloat16", SupportsBfloat16);
1732
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1733
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1734 1735 1736
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
1756 1757 1758 1759 1760 1761 1762
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
1763 1764 1765 1766 1767 1768 1769 1770 1771
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

1772 1773 1774 1775 1776 1777
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1778

1779
  m.def("set_feed_variable", framework::SetFeedVariable);
1780 1781 1782 1783 1784
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1785
            return py::cast(BOOST_GET(LoDTensor, var));
1786
          } else {
1787
            return py::cast(BOOST_GET(LoDTensorArray, var));
1788 1789
          }
        });
1790
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1791

X
Xin Pan 已提交
1792 1793
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1794 1795 1796 1797 1798
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
1799
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
1800

Y
Yu Yang 已提交
1801 1802 1803 1804 1805 1806 1807 1808 1809
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1810
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
1811
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1812 1813 1814

    Examples:
        .. code-block:: python
1815

Z
Zeng Jinle 已提交
1816 1817 1818 1819
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1820 1821
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1822 1823 1824 1825 1826 1827
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
1828 1829 1830 1831
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1832 1833 1834
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1835 1836 1837 1838 1839 1840
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1841 1842
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
1843 1844 1845 1846 1847 1848
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1871

1872 1873 1874 1875 1876 1877 1878 1879
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
1880
                 auto &data = BOOST_GET(LoDTensor, self[i]);
1881 1882
                 res[i] = py::cast(std::move(data));
               } else {
1883
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
1899
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
1900 1901 1902 1903 1904 1905 1906 1907
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
1908
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
1909 1910 1911 1912 1913 1914 1915 1916 1917
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
1918 1919
        )DOC")
      .def("_move_to_list",
1920
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
1921 1922 1923 1924
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
1925
                 if (data_is_lod_tensor(self[i][j])) {
1926
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
1927 1928
                   tmp[j] = py::cast(std::move(var));
                 } else {
1929
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
1930 1931 1932 1933 1934 1935
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
1936 1937 1938 1939 1940 1941 1942 1943 1944
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
1945
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1946
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1947
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1948

P
peizhilin 已提交
1949
#ifndef _WIN32
D
dangqingqing 已提交
1950 1951 1952
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1953
#endif
P
peizhilin 已提交
1954
#endif
Y
Yu Yang 已提交
1955

1956 1957 1958 1959 1960 1961
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

1962 1963 1964 1965
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1966
      .value("kAll", platform::ProfilerState::kAll)
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

1978
  m.def("set_tracer_option", platform::SetTracerOption);
1979 1980
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1981
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1982
  m.def("reset_profiler", platform::ResetProfiler);
1983
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1984 1985 1986
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1987

1988 1989
  m.def("size_of_dtype", framework::SizeOfType);

1990 1991 1992
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

1993 1994
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1995
      .def("has", &ir::Pass::Has)
1996 1997 1998
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1999
           })
2000
      .def(
2001
          "set",
2002 2003 2004
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2005 2006
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2007 2008
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2023 2024
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2025
        self.Apply(graph.get());
F
flame 已提交
2026
      });
2027

X
fix  
Xin Pan 已提交
2028 2029
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2044
  // -- python binds for parallel executor.
X
Xin Pan 已提交
2045

Y
yuyang18 已提交
2046
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2047 2048 2049 2050
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2051 2052 2053
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2054 2055 2056
    Examples:
        .. code-block:: python

2057 2058 2059 2060 2061 2062 2063 2064 2065
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2066

2067 2068
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2069

2070
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2071 2072
          sgd_optimizer.minimize(avg_loss)

2073
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2074 2075
          exec_strategy.num_threads = 4

2076 2077 2078
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2079 2080
        )DOC");

2081 2082 2083 2084 2085
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);

Y
yuyang18 已提交
2086
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2087 2088 2089 2090 2091
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2092
          },
2093 2094
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2095 2096 2097 2098 2099 2100 2101
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2115
      .def_property(
2116 2117 2118 2119 2120 2121
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2122 2123 2124 2125 2126
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2127 2128 2129
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2130 2131
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2132 2133 2134 2135 2136 2137 2138
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2139 2140 2141 2142
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2143
                because the temp variable's shape maybe the same between two iterations.
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2154

2155 2156 2157 2158 2159 2160 2161
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2162
              )DOC")
Q
Qiao Longfei 已提交
2163 2164 2165 2166 2167 2168 2169 2170 2171
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2184
              )DOC")
2185 2186 2187 2188 2189 2190 2191 2192
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2193 2194 2195 2196 2197
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2198

Y
yuyang18 已提交
2199
  exec_strategy.def_property(
Y
yuyang18 已提交
2200 2201 2202 2203 2204 2205 2206
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2207 2208
      });

C
chengduo 已提交
2209 2210 2211 2212
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2213 2214 2215
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2216 2217 2218
    Examples:
        .. code-block:: python

2219
            import os
2220 2221 2222 2223
            import paddle
            import paddle.static as static

            paddle.enable_static()
2224

2225 2226
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2227

2228 2229 2230 2231
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2232

2233
            build_strategy = static.BuildStrategy()
2234 2235
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2236 2237
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2238
            program = program.with_data_parallel(loss_name=loss.name,
2239 2240
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2241
)DOC");
Y
yuyang18 已提交
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2258 2259 2260 2261
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2262
            self.reduce_ = strategy;
C
chengduo 已提交
2263
          },
2264
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2265 2266
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2267
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2268 2269
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2270
                Default is 'AllReduce'.
F
flame 已提交
2271 2272 2273 2274

                Examples:
                    .. code-block:: python

2275 2276 2277 2278 2279 2280 2281
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2282
                  )DOC")
Y
yuyang18 已提交
2283 2284 2285 2286 2287
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2288 2289 2290 2291
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2292
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2293
          },
2294
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2295
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2296 2297
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2298
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2299 2300 2301 2302

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2303 2304
                        import numpy
                        import os
2305 2306 2307 2308
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2309 2310

                        use_cuda = True
2311 2312
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2313 2314

                        # NOTE: If you use CPU to run the program, you need
2315
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2316 2317 2318 2319 2320 2321
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2322
                            places = static.cpu_places()
C
chengduo 已提交
2323
                        else:
2324
                            places = static.cuda_places()
C
chengduo 已提交
2325

2326 2327 2328 2329
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2330

2331
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2332

2333
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2334
                        build_strategy.gradient_scale_strategy = \
2335 2336 2337
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2338
                                          loss_name=loss.name, build_strategy=build_strategy,
2339
                                          places=places)
C
chengduo 已提交
2340 2341 2342 2343 2344 2345

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2346 2347
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2348
                   )DOC")
Y
yuyang18 已提交
2349 2350 2351 2352
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2353 2354 2355 2356
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2357
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2358
          },
2359
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2360
                writing the SSA Graph to file in the form of graphviz.
2361
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2362 2363 2364 2365

                Examples:
                    .. code-block:: python

2366 2367 2368 2369
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2370

2371 2372
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2373
                    )DOC")
S
sneaxiy 已提交
2374 2375 2376 2377 2378 2379
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2380 2381 2382 2383
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2384 2385
            self.enable_sequential_execution_ = b;
          },
2386 2387
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2388 2389 2390 2391

                Examples:
                    .. code-block:: python

2392 2393 2394 2395 2396 2397
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2398 2399
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2400 2401 2402 2403 2404 2405
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2406 2407 2408 2409
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2410 2411
            self.remove_unnecessary_lock_ = b;
          },
2412 2413
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2414 2415 2416 2417

                Examples:
                    .. code-block:: python

2418 2419 2420 2421 2422 2423
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2424 2425
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2426 2427 2428 2429
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2430
#ifdef WIN32
2431
            PADDLE_THROW(platform::errors::Unavailable(
2432
                "Distribution mode is not supported on Windows platform."));
2433
#endif
2434 2435
            self.num_trainers_ = num_trainers;
          })
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2448 2449 2450 2451 2452 2453
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2454
      .def_property("use_hierarchical_allreduce",
2455 2456 2457 2458 2459 2460
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2461
      .def_property("hierarchical_allreduce_inter_nranks",
2462 2463 2464 2465 2466 2467 2468
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2469 2470 2471 2472 2473 2474
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2475 2476 2477 2478
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2479 2480
            self.fuse_elewise_add_act_ops_ = b;
          },
2481
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2482
                to fuse elementwise_add_op and activation_op,
2483
                it may make the execution faster. Default is False.
F
flame 已提交
2484 2485 2486 2487

                Examples:
                    .. code-block:: python

2488 2489 2490 2491 2492 2493
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2494 2495
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2496 2497 2498 2499
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2500
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2501
                              platform::errors::PreconditionNotMet(
2502 2503
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2504 2505 2506 2507 2508 2509 2510 2511 2512
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2513 2514 2515 2516 2517 2518
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2519 2520
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
2546 2547 2548 2549
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2550
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2551
                              platform::errors::PreconditionNotMet(
2552 2553
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

2564 2565 2566 2567 2568 2569
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
2570 2571
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2572 2573 2574 2575 2576 2577
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2578 2579 2580 2581
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2582 2583
            self.fuse_relu_depthwise_conv_ = b;
          },
2584
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2585 2586 2587
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2588
                Default is False.
F
flame 已提交
2589 2590 2591 2592

                Examples:
                    .. code-block:: python

2593 2594 2595 2596 2597 2598
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2599 2600
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2601 2602 2603 2604 2605 2606
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
2607 2608 2609 2610
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2611 2612
                      self.fuse_broadcast_ops_ = b;
                    },
2613
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2614 2615 2616 2617
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2618 2619 2620 2621 2622
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

2623 2624 2625 2626 2627 2628
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
2629 2630
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2631 2632
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2633 2634
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2635 2636
                    },
                    [](BuildStrategy &self, bool b) {
2637 2638 2639 2640
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2641 2642
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2643 2644 2645 2646
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2647 2648 2649 2650
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2651 2652
            self.sync_batch_norm_ = b;
          },
2653
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2654 2655 2656
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2657 2658
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2659 2660 2661 2662

                Examples:
                    .. code-block:: python

2663 2664 2665 2666 2667 2668
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2669 2670
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2671 2672
      .def_property(
          "memory_optimize",
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2687 2688 2689
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "BuildStrategy.memory_optimize must be set to None, False or "
                  "True"));
2690 2691
            }
          },
2692
          R"DOC((bool, optional): memory opitimize aims to save total memory
2693
                consumption, set to True to enable it.
2694

2695 2696 2697
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
2712 2713 2714
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2715 2716 2717
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
2718
              PADDLE_THROW(platform::errors::Unavailable(
2719
                  "Distribution mode is not supported on Windows platform."));
2720 2721 2722 2723 2724
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2725 2726 2727
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2728
      .def_property(
D
dzhwinter 已提交
2729 2730 2731
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
2732 2733 2734 2735
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
2736 2737
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2738 2739 2740 2741
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2742
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2743 2744 2745 2746 2747 2748 2749
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2750 2751 2752 2753
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2754 2755 2756 2757 2758 2759 2760 2761 2762
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
2763
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
2764
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
2765 2766 2767 2768 2769
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
2770 2771

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
2772
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
2773
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
2774
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
2775 2776 2777 2778
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
2779 2780 2781 2782 2783
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
2784 2785 2786
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
2787 2788 2789 2790
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
2791 2792
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
2793 2794 2795 2796 2797 2798 2799 2800
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
2801
               return py::cast(
2802
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
2803 2804
             } else {
               return py::cast(std::move(
2805
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
2806
             }
2807 2808
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
2809

D
dongdaxiang 已提交
2810
  BindFleetWrapper(&m);
T
Thunderbrook 已提交
2811

T
Thunderbrook 已提交
2812 2813
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
2814 2815 2816
#endif
#if (defined PADDLE_WITH_NCCL) && (defined PADDLE_WITH_PSLIB)
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2817
#endif
2818
  BindGlooWrapper(&m);
H
hutuxian 已提交
2819
  BindBoxHelper(&m);
H
hutuxian 已提交
2820 2821 2822
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2823
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
2824
  BindNCCLWrapper(&m);
2825 2826 2827
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2828
#endif
F
flame 已提交
2829 2830
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
2831
  BindInferenceApi(&m);
2832
  BindCompatible(&m);
2833
  BindDataset(&m);
Y
yaoxuefeng 已提交
2834
  BindGenerator(&m);
2835 2836 2837 2838
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
#endif
Y
Yanghello 已提交
2839 2840 2841
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2842

T
tangwei12 已提交
2843
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2844 2845
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2846
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2847 2848
  BindDistCommunicator(&m);
  BindHeterClient(&m);
2849
#endif
L
Luo Tao 已提交
2850
}
2851
}  // namespace pybind
2852
}  // namespace paddle