pybind.cc 110.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cstdlib>
C
chengduoZH 已提交
18
#include <map>
S
sneaxiy 已提交
19
#include <memory>
C
chengduoZH 已提交
20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
23
#include <unordered_set>
C
chengduoZH 已提交
24 25
#include <utility>
#include <vector>
26

27
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
28 29
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
30
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
32
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
33
#include "paddle/fluid/framework/io/fs.h"
34
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
35
#include "paddle/fluid/framework/ir/pass_builder.h"
36
#include "paddle/fluid/framework/load_op_lib.h"
Y
Yi Wang 已提交
37 38 39
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
40
#include "paddle/fluid/framework/op_info.h"
41
#include "paddle/fluid/framework/op_registry.h"
42
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
43
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
45
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
46
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
48
#include "paddle/fluid/framework/selected_rows.h"
49
#include "paddle/fluid/framework/tensor_util.h"
50
#include "paddle/fluid/framework/trainer.h"
51
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
52
#include "paddle/fluid/framework/version.h"
H
hong 已提交
53
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
54
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
55
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
56
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
57
#include "paddle/fluid/operators/py_func_op.h"
58
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
59
#include "paddle/fluid/platform/cpu_info.h"
60
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
61
#include "paddle/fluid/platform/enforce.h"
62
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
63
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
64 65
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
H
hutuxian 已提交
66
#include "paddle/fluid/pybind/box_helper_py.h"
67
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
68
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
69
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
70
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
71
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
72
#include "paddle/fluid/pybind/generator_py.h"
73
#include "paddle/fluid/pybind/global_value_getter_setter.h"
74
#include "paddle/fluid/pybind/gloo_context_py.h"
75
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
76
#include "paddle/fluid/pybind/heter_wrapper_py.h"
77
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
78
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
79
#include "paddle/fluid/pybind/ir.h"
80
#include "paddle/fluid/pybind/pybind_boost_headers.h"
81

82
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
83
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
84
#endif
85
#include "paddle/fluid/framework/data_type.h"
86 87
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
88
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
89
#include "paddle/fluid/pybind/tensor_py.h"
90
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
91
#ifdef PADDLE_WITH_CUDA
92
#ifdef PADDLE_WITH_NCCL
Y
Yi Wang 已提交
93
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
94
#endif
Y
Yi Wang 已提交
95 96
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
97 98
#endif

99 100 101 102
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_info.h"
#endif

103 104 105 106
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/communicator_py.h"
#endif

Y
Yanghello 已提交
107 108 109 110
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

M
minqiyang 已提交
111 112
#include "pybind11/stl.h"

113
DECLARE_bool(use_mkldnn);
114

Q
Qiao Longfei 已提交
115 116
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
117 118 119
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
120

121
namespace paddle {
122
namespace pybind {
123
bool IsCompiledWithCUDA() {
124
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
125 126 127 128 129 130
  return false;
#else
  return true;
#endif
}

131 132 133 134 135 136 137 138
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

139 140 141 142 143 144 145 146
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

147 148 149 150 151 152 153 154 155 156 157
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

158
bool IsCompiledWithBrpc() {
159
#ifndef PADDLE_WITH_DISTRIBUTE
160 161
  return false;
#endif
162 163 164 165 166 167

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
168 169
}

Y
update  
Yancey1989 已提交
170
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
171
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
172 173 174 175 176 177
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
178 179 180 181 182 183 184 185 186 187
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
210 211 212
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
226 227
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
228 229
    }
    vec_res.emplace_back(
230
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
231 232 233 234 235 236 237 238 239 240 241 242
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
243 244
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
245 246 247 248 249 250 251 252 253 254 255 256
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
257 258 259
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
260 261 262 263
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
264 265
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
266 267 268 269
  }
  return vec_res;
}

270 271 272 273 274 275 276 277
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
278 279
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
280 281 282 283 284 285 286 287 288 289 290 291 292
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
293 294 295
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
296 297 298 299 300
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
301 302 303 304 305
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
306 307
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
308 309 310
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
311 312 313 314 315 316 317 318 319
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
320 321
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
322 323 324 325 326
  }

  return;
}

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

351 352 353 354 355 356
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
357 358 359
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
360
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
361

362 363
  AssertStaticGraphAndDygraphGradMakerNoDiff();

364
  m.doc() = "C++ core of PaddlePaddle";
365

366 367 368 369
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

370
  BindException(&m);
Y
Yu Yang 已提交
371

372 373
  m.def("set_num_threads", &platform::SetNumThreads);

374 375 376 377
#ifdef PADDLE_WITH_CUDA
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

6
633WHU 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
    Tensor tensor;

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#ifdef PADDLE_WITH_CUDA
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });

H
hong 已提交
396 397 398 399 400 401 402 403 404
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
405
           const Scope &scope, const Executor *executor) {
H
hong 已提交
406
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
407
          CreateVariableIfNotExit(vec_var_list, scope, executor);
H
hong 已提交
408 409 410
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

411 412 413 414 415 416
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

H
hong 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
6
633WHU 已提交
436

437 438 439 440 441 442
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
443 444
  });

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

S
sneaxiy 已提交
470
  m.def(
S
sneaxiy 已提交
471
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
472 473 474 475
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
476 477 478
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
495 496 497
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
498
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
499

500
  m.def("_set_fuse_parameter_group_size",
501
        &paddle::framework::ir::SetFuseParameterGroupsSize);
502
  m.def("_set_fuse_parameter_memory_size",
503
        &paddle::framework::ir::SetFuseParameterMemorySize);
504

S
sneaxiy 已提交
505 506 507
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

508 509
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

510
  BindImperative(&m);
511

512
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
513
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
514 515
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
516
      .def("_get_dims",
517
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
518
      .def("_set_dims",
Q
qijun 已提交
519
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
520
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
521
           })
Y
yuyang18 已提交
522
      .def("_set_layout",
D
dzhwinter 已提交
523 524 525
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
526
      .def("_alloc_float",
D
dzhwinter 已提交
527
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
528
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
529
           })
530 531 532 533
      .def("_alloc_float",
           [](Tensor &self, paddle::platform::XPUPlace &place) {
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
534
      .def("_alloc_float",
Y
Yu Yang 已提交
535
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
536
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
537
           })
538 539 540 541
      .def("_alloc_double",
           [](Tensor &self, paddle::platform::CPUPlace &place) {
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
542
      .def("_alloc_int",
Y
Yu Yang 已提交
543
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
544
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
545
           })
546 547 548 549
      .def("_alloc_int",
           [](Tensor &self, paddle::platform::XPUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
550
      .def("_alloc_int",
D
dzhwinter 已提交
551
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
552
             self.mutable_data<int>(place);
Q
qijun 已提交
553
           })
Y
yuyang18 已提交
554
      .def("_alloc_int",
C
chengduoZH 已提交
555 556 557
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
558
      .def("_alloc_float",
C
chengduoZH 已提交
559 560 561
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
562 563 564 565 566
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
567 568 569 570 571
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::XPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
572 573 574 575 576 577 578 579 580 581
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
582
      .def("_clear", &Tensor::clear)
583
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
584
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
585 586
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
587
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
588
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
589
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
590 591
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
592 593 594 595
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
596
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace): The place where the 
L
Leo Chen 已提交
597
          LoDTensor is to be set.
598 599
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
613

L
Leo Chen 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); }, R"DOC(
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
      .def("_to_dlpack",
           [](Tensor &self) {
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
653 654 655 656
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
657
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
658
      .def("_dtype", [](Tensor &self) { return self.type(); })
659 660
      .def("_layout",
           [](Tensor &self) { return DataLayoutToString(self.layout()); })
661
      .def("_share_data_with", &Tensor::ShareDataWith)
662 663 664 665 666 667
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
668

L
Leo Chen 已提交
669
  // TODO(cql): add reference: en_user_guide_lod_tensor
X
Xin Pan 已提交
670
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
745 746 747 748 749 750 751

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
752 753

        )DOC")
754
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
755 756 757 758 759 760 761 762 763
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
764 765
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
766 767 768 769
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
770 771
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
772
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
773
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
774 775
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
776 777 778
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
779
      .def("set_lod",
780
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
781
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
782
             LoD new_lod;
783 784
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
785 786
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
787 788
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
789
             self.set_lod(new_lod);
S
sneaxiy 已提交
790 791 792 793 794
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
795 796 797 798
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
799 800 801 802 803 804 805 806 807 808

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
809
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
810
           )DOC")
811 812 813 814 815 816 817 818 819 820 821
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
822 823
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
824 825 826 827 828
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
829
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
830 831
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
832
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
833

L
Leo Chen 已提交
834
           For example, if recursive_sequence_lengths=[[2, 3]], which means
835
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
836
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
837 838

           Args:
L
Leo Chen 已提交
839 840 841 842
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
843 844 845 846 847 848 849 850 851 852

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
853 854
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
855
           )DOC")
856 857 858 859 860 861 862 863
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
864 865 866 867 868
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
869 870
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
871 872 873 874 875 876 877 878 879 880
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
881
           )DOC")
G
gongweibao 已提交
882
      // Set above comments of set_lod.
883 884 885 886 887 888 889 890
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
891 892
           },
           R"DOC(
L
Leo Chen 已提交
893 894
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
895 896

           Returns:
L
Leo Chen 已提交
897
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
898 899 900 901 902 903 904 905 906 907 908

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
909 910 911 912 913 914 915 916
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
917
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
918 919

           Returns:
L
Leo Chen 已提交
920
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
921 922 923 924 925 926 927 928 929 930 931

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
932 933 934 935 936 937 938
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
939
           )DOC")
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
958
#ifdef _WIN32
959
      });
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1010

Q
qijun 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1022 1023
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1024 1025
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1035
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1036
      .def("rows", [](SelectedRows &self) {
1037 1038 1039 1040 1041
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1042
      });
Q
qijun 已提交
1043

1044
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1045 1046 1047

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1048
      .def(py::init<>())
1049
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1050
      .def("set_int",
1051 1052
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1053 1054 1055 1056 1057 1058 1059
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1060
      .def("get_tensor",
1061 1062
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1063 1064
           },
           py::return_value_policy::reference)
1065 1066 1067 1068
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1069 1070 1071
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1072 1073 1074 1075 1076
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1077 1078 1079
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1080 1081 1082
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1083
#if (defined(PADDLE_WITH_NCCL))
D
Dong Zhihong 已提交
1084 1085 1086 1087 1088
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1089
#endif
Y
Refine  
Yu Yang 已提交
1090 1091
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1092 1093 1094 1095
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1096 1097
             return self.GetMutable<framework::ReaderHolder>();
           },
1098 1099 1100 1101 1102
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1103

S
sneaxiy 已提交
1104
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1105

S
sneaxiy 已提交
1106
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1120
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1121 1122 1123 1124 1125 1126
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1127 1128
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1129
      .def("var",
1130
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1131
             return self.Var(name);
Y
Yu Yang 已提交
1132
           },
S
sneaxiy 已提交
1133 1134
           py::arg("name"),
           R"DOC(
1135
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1136

1137
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1138
           current scope, the variable would be created. Otherwise,
1139
           return the existing variable.
S
sneaxiy 已提交
1140 1141

           Args:
1142 1143
               name (str): the variable name.

S
sneaxiy 已提交
1144
           Returns:
1145
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1146 1147 1148 1149
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1150
           Find variable named :code:`name` in the current scope or
1151
           its parent scope. Return None if not found. 
1152

S
sneaxiy 已提交
1153 1154
           Args:
               name (str): the variable name.
1155

S
sneaxiy 已提交
1156
           Returns:
1157
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1158
           )DOC",
1159
           py::return_value_policy::reference)
1160
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1161 1162 1163 1164 1165 1166
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1167
           py::return_value_policy::reference)
S
sneaxiy 已提交
1168 1169 1170
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1171 1172
           )DOC")
      .def("_kids", &Scope::kids);
1173

S
sneaxiy 已提交
1174 1175 1176 1177 1178 1179
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1180 1181
        R"DOC(
        Create a new scope.
1182

S
sneaxiy 已提交
1183 1184 1185
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1186 1187
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1188 1189
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1190 1191
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1192 1193 1194 1195
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1196 1197
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1198 1199
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1200 1201 1202
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1203 1204
    return ret_values;
  });
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
              res = op_checker->GetAttrsDefaultValuesMap();
            }
          }
          return res;
        });
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1234 1235 1236
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1237 1238 1239 1240 1241
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1242 1243 1244
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1259
  m.def("prune", [](const ProgramDesc &origin,
1260
                    const std::set<std::string> &feeded_var_names,
1261
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1262
    ProgramDesc prog_with_targets(origin);
1263

1264
    for (const auto &t : targets) {
1265
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1266
    }
1267
    proto::ProgramDesc pruned_desc;
1268 1269 1270 1271
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1272
  });
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1290 1291 1292 1293
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1294 1295 1296
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1297 1298
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
1299
  // clang-format off
Y
Yu Yang 已提交
1300
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1301 1302
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1303
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1304 1305
                    return new paddle::platform::CPUDeviceContext();
                  })
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
Q
qijun 已提交
1318
      .def_static("create",
D
dzhwinter 已提交
1319
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1320
                      -> paddle::platform::DeviceContext* {
1321
#ifndef PADDLE_WITH_CUDA
1322 1323 1324 1325
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1326
#else
Q
qijun 已提交
1327
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1328
#endif
C
chengduoZH 已提交
1329 1330 1331 1332 1333
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
1334 1335 1336 1337
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1338 1339 1340 1341
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1342
// clang-format on
1343
#if defined(PADDLE_WITH_NCCL)
D
Dong Zhihong 已提交
1344 1345
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1346
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1347 1348 1349 1350 1351

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1352
    The memory of CUDAPlace with different dev_id is not accessible.
1353 1354 1355 1356 1357 1358 1359 1360
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1361 1362 1363 1364

    Examples:
        .. code-block:: python

1365 1366 1367 1368
          import paddle

          place = paddle.CUDAPlace(0)
          paddle.disable_static(place)
L
lujun 已提交
1369

1370
        )DOC")
S
sneaxiy 已提交
1371 1372 1373
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1398 1399
             new (&self) platform::CUDAPlace(dev_id);
#else
1400 1401 1402 1403 1404 1405 1406 1407 1408
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1409 1410
#endif
           })
1411
#ifdef PADDLE_WITH_CUDA
1412 1413
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1414 1415 1416 1417
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1418
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1419 1420
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1421 1422 1423
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
D
dzhwinter 已提交
1424
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1425

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
      .def("__str__", string::to_string<const platform::XPUPlace &>);

1480
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1481
    CPUPlace is a descriptor of a device.
1482
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1483 1484 1485 1486

    Examples:
        .. code-block:: python

1487 1488
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1489

1490
        )DOC")
1491
      .def(py::init<>())
S
sneaxiy 已提交
1492 1493
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1494
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1495 1496 1497 1498
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1499
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1500

1501
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1502 1503 1504 1505 1506 1507
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1508 1509 1510 1511

    Examples:
        .. code-block:: python

1512 1513
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1514

1515
        )DOC")
S
sneaxiy 已提交
1516
      .def("__init__",
S
sneaxiy 已提交
1517
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
1518
#ifndef PADDLE_WITH_CUDA
1519 1520 1521
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1522
#endif
S
sneaxiy 已提交
1523
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1524
           })
S
sneaxiy 已提交
1525 1526 1527 1528
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1529 1530
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1531 1532 1533 1534
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
1535 1536
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
1537 1538
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1539 1540 1541 1542
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1543
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
S
sneaxiy 已提交
1544
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1545 1546
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1547 1548
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1549 1550
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
S
sneaxiy 已提交
1551 1552 1553 1554
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1555 1556
      .def("gpu_device_id",
           [](platform::Place &self) {
1557
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1558
           })
1559 1560 1561 1562
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
S
sneaxiy 已提交
1563 1564
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1565 1566 1567 1568
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1569 1570 1571 1572
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1573
      .def("set_place",
D
dzhwinter 已提交
1574
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1575
             self = gpu_place;
C
chengduoZH 已提交
1576 1577
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
1578 1579
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
1580
      });
Y
Yu Yang 已提交
1581

Y
Yu Yang 已提交
1582
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1583 1584 1585 1586 1587
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
1588 1589 1590 1591 1592 1593 1594
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
C
chengduo 已提交
1595 1596
            return OpRegistry::CreateOp(desc);
          })
1597
      .def("run",
1598
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1599
              const platform::CPUPlace &place) { self.Run(scope, place); })
1600 1601 1602
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::XPUPlace &place) { self.Run(scope, place); })
D
dzhwinter 已提交
1603 1604
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1605
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1606 1607 1608 1609 1610
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1611 1612 1613 1614 1615 1616 1617
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1618 1619
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1620
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1621
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1622 1623 1624 1625
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1626

1627 1628 1629
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1630 1631 1632 1633 1634 1635 1636 1637 1638
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1639
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1640
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1641
      .def("close", &Executor::Close)
1642 1643
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1644 1645
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1646 1647 1648 1649
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1650
             pybind11::gil_scoped_release release;
1651 1652 1653 1654 1655 1656 1657
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1658 1659 1660
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1661
              std::map<std::string, FetchType *> *fetch_targets,
1662 1663 1664 1665 1666 1667 1668 1669
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1670
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1671 1672 1673 1674 1675 1676 1677
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1688
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1689 1690
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1691
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1692 1693
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1694
      });
S
sneaxiy 已提交
1695

D
dzhwinter 已提交
1696
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1697
  m.def("init_glog", framework::InitGLOG);
1698
  m.def("load_op_library", framework::LoadOpLib);
X
Xin Pan 已提交
1699 1700
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
1701

1702
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1703
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1704
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1705
  m.def("supports_bfloat16", SupportsBfloat16);
1706
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1707
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1708 1709 1710
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
1730 1731 1732 1733 1734 1735 1736
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
1737 1738 1739 1740 1741 1742 1743 1744 1745
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

1746 1747 1748 1749 1750 1751
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1752

1753
  m.def("set_feed_variable", framework::SetFeedVariable);
1754 1755 1756 1757 1758
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1759
            return py::cast(BOOST_GET(LoDTensor, var));
1760
          } else {
1761
            return py::cast(BOOST_GET(LoDTensorArray, var));
1762 1763
          }
        });
1764
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1765

X
Xin Pan 已提交
1766 1767
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1768 1769 1770 1771 1772
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
1773
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
1774

Y
Yu Yang 已提交
1775 1776 1777 1778 1779 1780 1781 1782 1783
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1784
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
1785
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1786 1787 1788

    Examples:
        .. code-block:: python
1789

Z
Zeng Jinle 已提交
1790 1791 1792 1793
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1794 1795
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1796 1797 1798 1799 1800 1801
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
1802 1803 1804 1805
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1806 1807 1808
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1809 1810 1811 1812 1813 1814
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1815 1816
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
1817 1818 1819 1820 1821 1822
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1845

1846 1847 1848 1849 1850 1851 1852 1853
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
1854
                 auto &data = BOOST_GET(LoDTensor, self[i]);
1855 1856
                 res[i] = py::cast(std::move(data));
               } else {
1857
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
1873
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
1874 1875 1876 1877 1878 1879 1880 1881
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
1882
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
1883 1884 1885 1886 1887 1888 1889 1890 1891
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
1892 1893
        )DOC")
      .def("_move_to_list",
1894
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
1895 1896 1897 1898
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
1899
                 if (data_is_lod_tensor(self[i][j])) {
1900
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
1901 1902
                   tmp[j] = py::cast(std::move(var));
                 } else {
1903
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
1904 1905 1906 1907 1908 1909
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
1910 1911 1912 1913 1914 1915 1916 1917 1918
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
1919
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1920
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1921
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1922

P
peizhilin 已提交
1923
#ifndef _WIN32
D
dangqingqing 已提交
1924 1925 1926
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1927
#endif
P
peizhilin 已提交
1928
#endif
Y
Yu Yang 已提交
1929

1930 1931 1932 1933 1934 1935
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

1936 1937 1938 1939
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1940
      .value("kAll", platform::ProfilerState::kAll)
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

1952
  m.def("set_tracer_option", platform::SetTracerOption);
1953 1954
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1955
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1956
  m.def("reset_profiler", platform::ResetProfiler);
1957
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1958 1959 1960
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1961

1962 1963
  m.def("size_of_dtype", framework::SizeOfType);

1964 1965 1966
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

1967 1968
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1969
      .def("has", &ir::Pass::Has)
1970 1971 1972
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1973
           })
1974
      .def(
1975
          "set",
1976 1977 1978
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1979 1980
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
1981 1982
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
1997 1998
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1999
        self.Apply(graph.get());
F
flame 已提交
2000
      });
2001

X
fix  
Xin Pan 已提交
2002 2003
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2018
  // -- python binds for parallel executor.
X
Xin Pan 已提交
2019

Y
yuyang18 已提交
2020
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2021 2022 2023 2024
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2025 2026 2027
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2028 2029 2030
    Examples:
        .. code-block:: python

2031 2032 2033 2034 2035 2036 2037 2038 2039
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2040

2041 2042
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2043

2044
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2045 2046
          sgd_optimizer.minimize(avg_loss)

2047
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2048 2049
          exec_strategy.num_threads = 4

2050 2051 2052
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2053 2054
        )DOC");

Y
yuyang18 已提交
2055
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2056 2057 2058 2059 2060
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2061
          },
2062 2063
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2064 2065 2066 2067 2068 2069 2070
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2084
      .def_property(
2085 2086 2087 2088
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
2089 2090 2091 2092
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
2093 2094 2095 2096 2097
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2098 2099 2100
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2101 2102
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2103 2104 2105 2106 2107 2108 2109
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2110 2111 2112 2113
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2114
                because the temp variable's shape maybe the same between two iterations.
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2125

2126 2127 2128 2129 2130 2131 2132
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2133
              )DOC")
Q
Qiao Longfei 已提交
2134 2135 2136 2137 2138 2139 2140 2141 2142
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2155
              )DOC")
2156 2157 2158 2159 2160 2161 2162 2163
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2164 2165 2166 2167 2168
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2169

Y
yuyang18 已提交
2170
  exec_strategy.def_property(
Y
yuyang18 已提交
2171 2172 2173 2174 2175 2176 2177
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2178 2179
      });

C
chengduo 已提交
2180 2181 2182 2183
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2184 2185 2186
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2187 2188 2189
    Examples:
        .. code-block:: python

2190
            import os
2191 2192 2193 2194
            import paddle
            import paddle.static as static

            paddle.enable_static()
2195

2196 2197
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2198

2199 2200 2201 2202
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2203

2204
            build_strategy = static.BuildStrategy()
2205 2206
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2207 2208
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2209
            program = program.with_data_parallel(loss_name=loss.name,
2210 2211
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2212
)DOC");
Y
yuyang18 已提交
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2229 2230 2231 2232
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2233
            self.reduce_ = strategy;
C
chengduo 已提交
2234
          },
2235
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2236 2237
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2238
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2239 2240
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2241
                Default is 'AllReduce'.
F
flame 已提交
2242 2243 2244 2245

                Examples:
                    .. code-block:: python

2246 2247 2248 2249 2250 2251 2252
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2253
                  )DOC")
Y
yuyang18 已提交
2254 2255 2256 2257 2258
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2259 2260 2261 2262
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2263
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2264
          },
2265 2266
          R"DOC((fluid.BuildStrategy.GradientScaleStrategy, optional): there are three
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2267 2268
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2269
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2270 2271 2272 2273

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2274 2275
                        import numpy
                        import os
2276 2277 2278 2279
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2280 2281

                        use_cuda = True
2282 2283
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2284 2285

                        # NOTE: If you use CPU to run the program, you need
2286
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2287 2288 2289 2290 2291 2292
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2293
                            places = static.cpu_places()
C
chengduo 已提交
2294
                        else:
2295
                            places = static.cuda_places()
C
chengduo 已提交
2296

2297 2298 2299 2300
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2301

2302
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2303

2304
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2305
                        build_strategy.gradient_scale_strategy = \
2306 2307 2308
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2309
                                          loss_name=loss.name, build_strategy=build_strategy,
2310
                                          places=places)
C
chengduo 已提交
2311 2312 2313 2314 2315 2316

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2317 2318
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2319
                   )DOC")
Y
yuyang18 已提交
2320 2321 2322 2323
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2324 2325 2326 2327
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2328
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2329
          },
2330
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2331
                writing the SSA Graph to file in the form of graphviz.
2332
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2333 2334 2335 2336

                Examples:
                    .. code-block:: python

2337 2338 2339 2340
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2341

2342 2343
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2344
                    )DOC")
S
sneaxiy 已提交
2345 2346 2347 2348 2349 2350
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2351 2352 2353 2354
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2355 2356
            self.enable_sequential_execution_ = b;
          },
2357 2358
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2359 2360 2361 2362

                Examples:
                    .. code-block:: python

2363 2364 2365 2366 2367 2368
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2369 2370
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2371 2372 2373 2374 2375 2376
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2377 2378 2379 2380
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2381 2382
            self.remove_unnecessary_lock_ = b;
          },
2383 2384
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2385 2386 2387 2388

                Examples:
                    .. code-block:: python

2389 2390 2391 2392 2393 2394
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2395 2396
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2397 2398 2399 2400
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2401
#ifdef WIN32
2402
            PADDLE_THROW(platform::errors::Unavailable(
2403
                "Distribution mode is not supported on Windows platform."));
2404
#endif
2405 2406
            self.num_trainers_ = num_trainers;
          })
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2419 2420 2421 2422 2423 2424
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2425
      .def_property("use_hierarchical_allreduce",
2426 2427 2428 2429 2430 2431
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2432
      .def_property("hierarchical_allreduce_inter_nranks",
2433 2434 2435 2436 2437 2438 2439
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2440 2441 2442 2443 2444 2445
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2446 2447 2448 2449
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2450 2451
            self.fuse_elewise_add_act_ops_ = b;
          },
2452
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2453
                to fuse elementwise_add_op and activation_op,
2454
                it may make the execution faster. Default is False.
F
flame 已提交
2455 2456 2457 2458

                Examples:
                    .. code-block:: python

2459 2460 2461 2462 2463 2464
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2465 2466
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2467 2468 2469 2470
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2471
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2472
                              platform::errors::PreconditionNotMet(
2473 2474
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2475 2476 2477 2478 2479 2480 2481 2482 2483
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2484 2485 2486 2487 2488 2489
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2490 2491
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
2492 2493 2494 2495
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2496
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2497
                              platform::errors::PreconditionNotMet(
2498 2499
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

2510 2511 2512 2513 2514 2515
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
2516 2517
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2518 2519 2520 2521 2522 2523
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2524 2525 2526 2527
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2528 2529
            self.fuse_relu_depthwise_conv_ = b;
          },
2530
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2531 2532 2533
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2534
                Default is False.
F
flame 已提交
2535 2536 2537 2538

                Examples:
                    .. code-block:: python

2539 2540 2541 2542 2543 2544
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2545 2546
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2547 2548 2549 2550 2551 2552
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
2553 2554 2555 2556
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2557 2558
                      self.fuse_broadcast_ops_ = b;
                    },
2559
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2560 2561 2562 2563
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2564 2565 2566 2567 2568
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

2569 2570 2571 2572 2573 2574
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
2575 2576
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2577 2578
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2579 2580
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2581 2582
                    },
                    [](BuildStrategy &self, bool b) {
2583 2584 2585 2586
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2587 2588
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2589 2590 2591 2592
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2593 2594 2595 2596
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2597 2598
            self.sync_batch_norm_ = b;
          },
2599
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2600 2601 2602
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2603 2604
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2605 2606 2607 2608

                Examples:
                    .. code-block:: python

2609 2610 2611 2612 2613 2614
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2615 2616
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2617 2618
      .def_property(
          "memory_optimize",
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2633 2634 2635
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "BuildStrategy.memory_optimize must be set to None, False or "
                  "True"));
2636 2637
            }
          },
2638
          R"DOC((bool, optional): memory opitimize aims to save total memory
2639
                consumption, set to True to enable it.
2640

2641 2642 2643
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
2658 2659 2660
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2661 2662 2663
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
2664
              PADDLE_THROW(platform::errors::Unavailable(
2665
                  "Distribution mode is not supported on Windows platform."));
2666 2667 2668 2669 2670
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2671 2672 2673
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2674
      .def_property(
D
dzhwinter 已提交
2675 2676 2677
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
2678 2679 2680 2681
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
2682 2683
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2684 2685 2686 2687
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2688
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2689 2690 2691 2692 2693 2694 2695
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2696 2697 2698 2699
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2700 2701 2702 2703 2704 2705 2706 2707 2708
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
2709
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
2710
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
2711 2712 2713 2714 2715
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
2716 2717

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
2718
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
2719
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
2720
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
2721 2722 2723 2724
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
2725 2726 2727 2728 2729
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
2730 2731 2732
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
2733 2734 2735 2736
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
2737 2738
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
2739 2740 2741 2742 2743 2744 2745 2746
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
2747
               return py::cast(
2748
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
2749 2750
             } else {
               return py::cast(std::move(
2751
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
2752
             }
2753 2754
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
2755

D
dongdaxiang 已提交
2756
  BindFleetWrapper(&m);
T
Thunderbrook 已提交
2757 2758 2759
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
#endif
2760
  BindGlooWrapper(&m);
H
hutuxian 已提交
2761
  BindBoxHelper(&m);
H
hutuxian 已提交
2762 2763 2764
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2765
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
2766
  BindNCCLWrapper(&m);
2767 2768 2769
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2770
#endif
F
flame 已提交
2771 2772
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
2773
  BindInferenceApi(&m);
2774
  BindCompatible(&m);
2775
  BindDataset(&m);
Y
yaoxuefeng 已提交
2776
  BindGenerator(&m);
Y
Yanghello 已提交
2777 2778 2779
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
2780 2781
#ifdef PADDLE_WITH_DISTRIBUTE
  BindCommunicator(&m);
2782 2783
  BindCommunicatorContext(&m);
  BindLargeScaleKV(&m);
2784
#endif
L
Luo Tao 已提交
2785
}
2786
}  // namespace pybind
2787
}  // namespace paddle