提交 bde90be7 编写于 作者: Y Yu Yang

Read/Write a Tensor Python

Basically following
http://pybind11.readthedocs.io/en/stable/advanced/pycpp/numpy.html

* Use buffer protocol to return a view of Tensor. It can be cast to
  numpy array in Python.
* Set a numpy array to a tensor.
上级 1480720f
......@@ -17,6 +17,7 @@ limitations under the License. */
#include <cstdint>
#include <cstring>
#include <memory>
#include <typeindex>
#include "paddle/framework/ddim.h"
#include "paddle/framework/enforce.h"
#include "paddle/memory/memory.h"
......@@ -127,6 +128,10 @@ class Tensor {
DDim dims() const { return dims_; }
platform::Place place() const { return holder_->place(); }
std::type_index type() const { return holder_->type(); }
private:
// Placeholder hides type T, so it doesn't appear as a template
// parameter of Variable.
......@@ -135,6 +140,7 @@ class Tensor {
virtual void* ptr() const = 0;
virtual platform::Place place() const = 0;
virtual size_t size() const = 0;
virtual std::type_index type() const = 0;
};
template <typename T, typename PlaceType>
......@@ -159,7 +165,8 @@ class Tensor {
virtual void* ptr() const { return static_cast<void*>(ptr_.get()); }
virtual size_t size() const { return size_; }
virtual platform::Place place() const { return place_; }
virtual paddle::platform::Place place() const { return place_; }
virtual std::type_index type() const { return std::type_index(typeid(T)); }
std::unique_ptr<T, Deleter<PlaceType>> ptr_;
platform::Place place_; // record the place of ptr_.
......
......@@ -15,6 +15,7 @@ limitations under the License. */
#include <Python.h>
#include <paddle/framework/op_registry.h>
#include <paddle/framework/scope.h>
#include <pybind11/numpy.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <fstream>
......@@ -25,9 +26,143 @@ namespace pd = paddle::framework;
USE_OP(add_two);
struct PlaceDebugString : public boost::static_visitor<std::string> {
std::string operator()(const paddle::platform::GPUPlace& place) const {
return "GPU(" + std::to_string(place.device) + ")";
}
std::string operator()(const paddle::platform::CPUPlace& place) const {
return "CPU";
}
};
template <typename T>
struct TensorToPyBuffer {
pd::Tensor& self_;
explicit TensorToPyBuffer(pd::Tensor& self) : self_(self) {}
bool CanCast() const { return std::type_index(typeid(T)) == self_.type(); }
py::buffer_info Cast() const {
auto dim_vec = pd::vectorize(self_.dims());
std::vector<size_t> dims_outside;
std::vector<size_t> strides;
dims_outside.resize(dim_vec.size());
strides.resize(dim_vec.size());
size_t prod = 1;
for (size_t i = dim_vec.size(); i != 0; --i) {
dims_outside[i - 1] = (size_t)dim_vec[i - 1];
strides[i - 1] = sizeof(float) * prod;
prod *= dims_outside[i - 1];
}
return py::buffer_info(self_.mutable_data<T>(self_.place()),
sizeof(T),
py::format_descriptor<T>::format(),
(size_t)pd::arity(self_.dims()),
dims_outside,
strides);
}
};
template <bool less, size_t I, typename... ARGS>
struct CastToPyBufferImpl;
template <size_t I, typename... ARGS>
struct CastToPyBufferImpl<false, I, ARGS...> {
py::buffer_info operator()(pd::Tensor& tensor) {
PADDLE_THROW("This type of tensor cannot be expose to Python");
return py::buffer_info();
}
};
template <size_t I, typename... ARGS>
struct CastToPyBufferImpl<true, I, ARGS...> {
using CUR_TYPE = typename std::tuple_element<I, std::tuple<ARGS...>>::type;
py::buffer_info operator()(pd::Tensor& tensor) {
TensorToPyBuffer<CUR_TYPE> cast_object(tensor);
if (cast_object.CanCast()) {
return cast_object.Cast();
} else {
constexpr bool less = I + 1 < std::tuple_size<std::tuple<ARGS...>>::value;
return CastToPyBufferImpl<less, I + 1, ARGS...>()(tensor);
}
}
};
template <typename T>
std::ostream& operator<<(std::ostream& os, const std::vector<T>& vec) {
for (size_t i = 0; i < vec.size(); ++i) {
os << vec[i];
if (i + 1 != vec.size()) {
os << ", ";
}
}
return os;
}
py::buffer_info CastToPyBuffer(pd::Tensor& tensor) {
auto buffer_info = CastToPyBufferImpl<true, 0, float, int>()(tensor);
return buffer_info;
}
template <typename T>
void PyTensorSet(
pd::Tensor& self,
py::array_t<T, py::array::c_style | py::array::forcecast> array) {
std::vector<int> dims;
dims.reserve(array.ndim());
for (size_t i = 0; i < array.ndim(); ++i) {
dims.push_back((int)array.shape()[i]);
}
self.set_dims(pd::make_ddim(dims));
auto* dst = self.mutable_data<T>(paddle::platform::CPUPlace());
std::memcpy(dst, array.data(), sizeof(T) * array.size());
}
PYBIND11_PLUGIN(core) {
py::module m("core", "C++ core of Paddle Paddle");
py::class_<paddle::platform::Place>(
m, "Place", R"DOC(Device Place Class.)DOC")
.def("__str__",
[](const paddle::platform::Place& self) {
return boost::apply_visitor(PlaceDebugString(), self);
})
.def("is_gpu",
[](const paddle::platform::Place& self) {
return paddle::platform::is_gpu_place(self);
})
.def("is_cpu", [](const paddle::platform::Place& self) {
return paddle::platform::is_cpu_place(self);
});
py::class_<pd::Tensor>(m, "Tensor", py::buffer_protocol())
.def("get_place", &pd::Tensor::place)
.def_buffer([](pd::Tensor& self) -> py::buffer_info {
PADDLE_ENFORCE(paddle::platform::is_cpu_place(self.place()),
"Only CPU tensor can cast to numpy array");
return CastToPyBuffer(self);
})
.def("get_dims",
[](const pd::Tensor& self) { return pd::vectorize(self.dims()); })
.def("set_dims",
[](pd::Tensor& self, const std::vector<int>& dim) {
self.set_dims(pd::make_ddim(dim));
})
.def("alloc_float",
[](pd::Tensor& self) {
self.mutable_data<float>(paddle::platform::CPUPlace());
})
.def("alloc_int",
[](pd::Tensor& self) {
self.mutable_data<int>(paddle::platform::CPUPlace());
})
.def("set", PyTensorSet<float>)
.def("set", PyTensorSet<int>);
py::class_<pd::Variable>(m, "Variable", R"DOC(Variable Class.
All parameter, weight, gradient are variables in Paddle.
......@@ -38,7 +173,12 @@ All parameter, weight, gradient are variables in Paddle.
*var.GetMutable<int>() = val;
})
.def("get_int",
[](const pd::Variable& var) -> int { return var.Get<int>(); });
[](const pd::Variable& var) -> int { return var.Get<int>(); })
.def("get_tensor",
[](pd::Variable& self) -> pd::Tensor* {
return self.GetMutable<pd::Tensor>();
},
py::return_value_policy::reference);
py::class_<pd::Scope, std::shared_ptr<pd::Scope>>(m, "Scope")
.def(py::init<const std::shared_ptr<pd::Scope>&>())
......
import paddle.v2.framework.core as core
import unittest
import numpy
class TestScope(unittest.TestCase):
def test_int_tensor(self):
scope = core.Scope(None)
var = scope.create_var("test_tensor")
tensor = var.get_tensor()
tensor.set_dims([1000, 784])
tensor.alloc_int()
tensor_array = numpy.array(tensor)
self.assertEqual((1000, 784), tensor_array.shape)
tensor_array[3, 9] = 1
tensor_array[19, 11] = 2
tensor.set(tensor_array)
tensor_array_2 = numpy.array(tensor)
self.assertEqual(1.0, tensor_array_2[3, 9])
self.assertEqual(2.0, tensor_array_2[19, 11])
def test_float_tensor(self):
scope = core.Scope(None)
var = scope.create_var("test_tensor")
tensor = var.get_tensor()
tensor.set_dims([1000, 784])
tensor.alloc_float()
tensor_array = numpy.array(tensor)
self.assertEqual((1000, 784), tensor_array.shape)
tensor_array[3, 9] = 1.0
tensor_array[19, 11] = 2.0
tensor.set(tensor_array)
tensor_array_2 = numpy.array(tensor)
self.assertAlmostEqual(1.0, tensor_array_2[3, 9])
self.assertAlmostEqual(2.0, tensor_array_2[19, 11])
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册