pybind.cc 107.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cstdlib>
C
chengduoZH 已提交
18
#include <map>
S
sneaxiy 已提交
19
#include <memory>
C
chengduoZH 已提交
20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
23
#include <unordered_set>
C
chengduoZH 已提交
24 25
#include <utility>
#include <vector>
26

Y
Yi Wang 已提交
27 28
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
29
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yi Wang 已提交
30
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
31
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
32
#include "paddle/fluid/framework/io/fs.h"
33
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
34
#include "paddle/fluid/framework/ir/pass_builder.h"
35
#include "paddle/fluid/framework/load_op_lib.h"
Y
Yi Wang 已提交
36 37 38
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
39
#include "paddle/fluid/framework/op_compatible_info.h"
S
sneaxiy 已提交
40
#include "paddle/fluid/framework/op_info.h"
41
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
42
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
43
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
44
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
45
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
46
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
47
#include "paddle/fluid/framework/selected_rows.h"
48
#include "paddle/fluid/framework/trainer.h"
49
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
50
#include "paddle/fluid/framework/version.h"
H
hong 已提交
51
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
52
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
53
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
54
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
55
#include "paddle/fluid/operators/py_func_op.h"
56
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
57
#include "paddle/fluid/platform/cpu_info.h"
58
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
59
#include "paddle/fluid/platform/enforce.h"
60
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
61
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
62 63
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
H
hutuxian 已提交
64
#include "paddle/fluid/pybind/box_helper_py.h"
65
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
66
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
67
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
68
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
69
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
70
#include "paddle/fluid/pybind/generator_py.h"
71
#include "paddle/fluid/pybind/global_value_getter_setter.h"
72
#include "paddle/fluid/pybind/gloo_context_py.h"
73
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
74
#include "paddle/fluid/pybind/heter_wrapper_py.h"
75
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
76
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
77
#include "paddle/fluid/pybind/ir.h"
78
#include "paddle/fluid/pybind/pybind_boost_headers.h"
79

80
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
81
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
82
#endif
83
#include "paddle/fluid/framework/data_type.h"
84 85
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
86
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
87
#include "paddle/fluid/pybind/tensor_py.h"
88
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
89
#ifdef PADDLE_WITH_CUDA
90
#ifdef PADDLE_WITH_NCCL
Y
Yi Wang 已提交
91
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
92
#endif
Y
Yi Wang 已提交
93 94
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
95 96
#endif

97 98 99 100
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_info.h"
#endif

101 102 103 104
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/communicator_py.h"
#endif

Y
Yanghello 已提交
105 106 107 108
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

M
minqiyang 已提交
109 110
#include "pybind11/stl.h"

111
DECLARE_bool(use_mkldnn);
112

Q
Qiao Longfei 已提交
113 114
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
115 116 117
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
118

119
namespace paddle {
120
namespace pybind {
121
bool IsCompiledWithCUDA() {
122
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
123 124 125 126 127 128
  return false;
#else
  return true;
#endif
}

129 130 131 132 133 134 135 136
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

137 138 139 140 141 142 143 144
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

145
bool IsCompiledWithBrpc() {
146
#ifndef PADDLE_WITH_DISTRIBUTE
147 148
  return false;
#endif
149 150 151 152 153 154

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
155 156
}

Y
update  
Yancey1989 已提交
157
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
158
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
159 160 161 162 163 164
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
165 166 167 168 169 170 171 172 173 174
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
197 198 199
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
213 214
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
215 216
    }
    vec_res.emplace_back(
217
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
218 219 220 221 222 223 224 225 226 227 228 229
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
230 231
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
232 233 234 235 236 237 238 239 240 241 242 243
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
244 245 246
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
247 248 249 250
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
251 252
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
253 254 255 256
  }
  return vec_res;
}

257 258 259 260 261 262 263 264
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
265 266
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
267 268 269 270 271 272 273 274 275 276 277 278 279
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
280 281 282
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
283 284 285 286 287
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
288 289 290 291 292
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
293 294
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
295 296 297
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
298 299 300 301 302 303 304 305 306
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
307 308
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
309 310 311 312 313
  }

  return;
}

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

338 339 340 341 342 343
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
344 345 346
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
347
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
348

349 350
  AssertStaticGraphAndDygraphGradMakerNoDiff();

351
  m.doc() = "C++ core of PaddlePaddle";
352

353 354 355 356
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

357
  BindException(&m);
Y
Yu Yang 已提交
358

359 360
  m.def("set_num_threads", &platform::SetNumThreads);

361 362 363 364
#ifdef PADDLE_WITH_CUDA
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

6
633WHU 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
    Tensor tensor;

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#ifdef PADDLE_WITH_CUDA
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });

H
hong 已提交
383 384 385 386 387 388 389 390 391
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
392
           const Scope &scope, const Executor *executor) {
H
hong 已提交
393
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
394
          CreateVariableIfNotExit(vec_var_list, scope, executor);
H
hong 已提交
395 396 397
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

398 399 400 401 402 403
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

H
hong 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
6
633WHU 已提交
423

424 425 426 427 428 429
  m.def("save_op_compatible_info", [](framework::ProgramDesc &desc) {
    framework::OpCompatibleMap op_compatible_map;
    op_compatible_map.InitOpCompatibleMap();
    return op_compatible_map.ConvertToProto(desc.OpCompatibleMap());
  });

S
sneaxiy 已提交
430
  m.def(
S
sneaxiy 已提交
431
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
432 433 434 435
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
436 437 438
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
455 456 457
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
458
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
459

460
  m.def("_set_fuse_parameter_group_size",
461
        &paddle::framework::ir::SetFuseParameterGroupsSize);
462
  m.def("_set_fuse_parameter_memory_size",
463
        &paddle::framework::ir::SetFuseParameterMemorySize);
464

S
sneaxiy 已提交
465 466 467
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

468 469
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

470
  BindImperative(&m);
471

472
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
473
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
474 475
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
476
      .def("_get_dims",
477
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
478
      .def("_set_dims",
Q
qijun 已提交
479
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
480
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
481
           })
Y
yuyang18 已提交
482
      .def("_set_layout",
D
dzhwinter 已提交
483 484 485
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
486
      .def("_alloc_float",
D
dzhwinter 已提交
487
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
488
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
489
           })
490 491 492 493
      .def("_alloc_float",
           [](Tensor &self, paddle::platform::XPUPlace &place) {
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
494
      .def("_alloc_float",
Y
Yu Yang 已提交
495
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
496
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
497
           })
498 499 500 501
      .def("_alloc_double",
           [](Tensor &self, paddle::platform::CPUPlace &place) {
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
502
      .def("_alloc_int",
Y
Yu Yang 已提交
503
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
504
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
505
           })
506 507 508 509
      .def("_alloc_int",
           [](Tensor &self, paddle::platform::XPUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
510
      .def("_alloc_int",
D
dzhwinter 已提交
511
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
512
             self.mutable_data<int>(place);
Q
qijun 已提交
513
           })
Y
yuyang18 已提交
514
      .def("_alloc_int",
C
chengduoZH 已提交
515 516 517
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
518
      .def("_alloc_float",
C
chengduoZH 已提交
519 520 521
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
522 523 524 525 526
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
527 528 529 530 531
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::XPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
532 533 534 535 536 537 538 539 540 541
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
542
      .def("_clear", &Tensor::clear)
543
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
544
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
545 546
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
547
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
548
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
549
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
550 551
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
552 553 554 555
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
556
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace): The place where the 
L
Leo Chen 已提交
557
          LoDTensor is to be set.
558 559
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
573

L
Leo Chen 已提交
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); }, R"DOC(
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
      .def("_to_dlpack",
           [](Tensor &self) {
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
613 614 615 616
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
617
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
618
      .def("_dtype", [](Tensor &self) { return self.type(); })
619
      .def("_share_data_with", &Tensor::ShareDataWith)
620 621 622 623 624 625
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
626

L
Leo Chen 已提交
627
  // TODO(cql): add reference: en_user_guide_lod_tensor
X
Xin Pan 已提交
628
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
703 704 705 706 707 708 709

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
710 711

        )DOC")
712
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
713 714 715 716 717 718 719 720 721
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
722 723
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
724 725 726 727
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
728 729
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
730
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
731
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
732 733
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
734 735 736
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
737
      .def("set_lod",
738
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
739
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
740
             LoD new_lod;
741 742
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
743 744
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
745 746
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
747
             self.set_lod(new_lod);
S
sneaxiy 已提交
748 749 750 751 752
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
753 754 755 756
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
757 758 759 760 761 762 763 764 765 766

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
767
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
768
           )DOC")
769 770 771 772 773 774 775 776 777 778 779
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
780 781
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
782 783 784 785 786
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
787
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
788 789
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
790
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
791

L
Leo Chen 已提交
792
           For example, if recursive_sequence_lengths=[[2, 3]], which means
793
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
794
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
795 796

           Args:
L
Leo Chen 已提交
797 798 799 800
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
801 802 803 804 805 806 807 808 809 810

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
811 812
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
813
           )DOC")
814 815 816 817 818 819 820 821
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
822 823 824 825 826
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
827 828
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
829 830 831 832 833 834 835 836 837 838
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
839
           )DOC")
G
gongweibao 已提交
840
      // Set above comments of set_lod.
841 842 843 844 845 846 847 848
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
849 850
           },
           R"DOC(
L
Leo Chen 已提交
851 852
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
853 854

           Returns:
L
Leo Chen 已提交
855
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
856 857 858 859 860 861 862 863 864 865 866

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
867 868 869 870 871 872 873 874
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
875
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
876 877

           Returns:
L
Leo Chen 已提交
878
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
879 880 881 882 883 884 885 886 887 888 889

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
890 891 892 893 894 895 896
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
897
           )DOC")
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
916
#ifdef _WIN32
917
      });
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
968

Q
qijun 已提交
969 970 971 972 973 974 975 976 977 978 979
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
980 981
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
982 983
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
984 985 986 987 988 989 990 991 992
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
993
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
994
      .def("rows", [](SelectedRows &self) {
995 996 997 998 999
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1000
      });
Q
qijun 已提交
1001

1002
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1003 1004 1005

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1006
      .def(py::init<>())
1007
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1008
      .def("set_int",
1009 1010
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1011 1012 1013 1014 1015 1016 1017
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1018
      .def("get_tensor",
1019 1020
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1021 1022
           },
           py::return_value_policy::reference)
1023 1024 1025 1026
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1027 1028 1029
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1030 1031 1032 1033 1034
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1035 1036 1037
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1038 1039 1040
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1041
#if (defined(PADDLE_WITH_NCCL))
D
Dong Zhihong 已提交
1042 1043 1044 1045 1046
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1047
#endif
Y
Refine  
Yu Yang 已提交
1048 1049
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1050 1051 1052 1053
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1054 1055
             return self.GetMutable<framework::ReaderHolder>();
           },
1056 1057 1058 1059 1060
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1061

S
sneaxiy 已提交
1062
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1063

S
sneaxiy 已提交
1064
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1078
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1079 1080 1081 1082 1083 1084
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1085 1086
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1087
      .def("var",
1088
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1089
             return self.Var(name);
Y
Yu Yang 已提交
1090
           },
S
sneaxiy 已提交
1091 1092
           py::arg("name"),
           R"DOC(
1093
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1094

1095
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1096
           current scope, the variable would be created. Otherwise,
1097
           return the existing variable.
S
sneaxiy 已提交
1098 1099

           Args:
1100 1101
               name (str): the variable name.

S
sneaxiy 已提交
1102
           Returns:
1103
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1104 1105 1106 1107
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1108
           Find variable named :code:`name` in the current scope or
1109
           its parent scope. Return None if not found. 
1110

S
sneaxiy 已提交
1111 1112
           Args:
               name (str): the variable name.
1113

S
sneaxiy 已提交
1114
           Returns:
1115
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1116
           )DOC",
1117
           py::return_value_policy::reference)
1118
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1119 1120 1121 1122 1123 1124
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1125
           py::return_value_policy::reference)
S
sneaxiy 已提交
1126 1127 1128
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1129 1130
           )DOC")
      .def("_kids", &Scope::kids);
1131

S
sneaxiy 已提交
1132 1133 1134 1135 1136 1137
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1138 1139
        R"DOC(
        Create a new scope.
1140

S
sneaxiy 已提交
1141 1142 1143
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1144 1145
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1146 1147
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1148 1149
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1150 1151 1152 1153
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1154 1155
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1156 1157
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1158 1159 1160
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1161 1162
    return ret_values;
  });
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
              res = op_checker->GetAttrsDefaultValuesMap();
            }
          }
          return res;
        });
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1192 1193 1194
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1195 1196 1197 1198 1199
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1200 1201 1202
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1217
  m.def("prune", [](const ProgramDesc &origin,
1218
                    const std::set<std::string> &feeded_var_names,
1219
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1220
    ProgramDesc prog_with_targets(origin);
1221

1222
    for (const auto &t : targets) {
1223
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1224
    }
1225
    proto::ProgramDesc pruned_desc;
1226 1227 1228 1229
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1230
  });
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1248 1249 1250 1251
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1252 1253 1254
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1255 1256
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
1257
  // clang-format off
Y
Yu Yang 已提交
1258
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1259 1260
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1261
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1262 1263
                    return new paddle::platform::CPUDeviceContext();
                  })
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
Q
qijun 已提交
1276
      .def_static("create",
D
dzhwinter 已提交
1277
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1278
                      -> paddle::platform::DeviceContext* {
1279
#ifndef PADDLE_WITH_CUDA
1280 1281 1282 1283
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1284
#else
Q
qijun 已提交
1285
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1286
#endif
C
chengduoZH 已提交
1287 1288 1289 1290 1291
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
1292 1293 1294 1295
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1296 1297 1298 1299
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1300
// clang-format on
1301
#if defined(PADDLE_WITH_NCCL)
D
Dong Zhihong 已提交
1302 1303
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1304
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1305 1306 1307 1308 1309 1310 1311 1312
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1313
    The memory of CUDAPlace with different dev_id is not accessible.
1314 1315 1316 1317 1318 1319 1320 1321
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1322 1323 1324 1325

    Examples:
        .. code-block:: python

1326
          import paddle.fluid as fluid
L
lujun 已提交
1327 1328
          gpu_place = fluid.CUDAPlace(0)

1329
        )DOC")
S
sneaxiy 已提交
1330 1331 1332
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1357 1358
             new (&self) platform::CUDAPlace(dev_id);
#else
1359 1360 1361 1362 1363 1364 1365 1366 1367
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1368 1369
#endif
           })
1370
#ifdef PADDLE_WITH_CUDA
1371 1372
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1373 1374 1375 1376
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1377
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1378 1379
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1380 1381 1382
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
D
dzhwinter 已提交
1383
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1384

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
      .def("__str__", string::to_string<const platform::XPUPlace &>);

1439
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1440 1441
    CPUPlace is a descriptor of a device.
    It represents a CPU device allocated or to be allocated with Tensor or LoDTensor.
L
lujun 已提交
1442 1443 1444 1445

    Examples:
        .. code-block:: python

1446
          import paddle.fluid as fluid
1447
          cpu_place = fluid.CPUPlace()
L
lujun 已提交
1448

1449
        )DOC")
1450
      .def(py::init<>())
S
sneaxiy 已提交
1451 1452
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1453
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1454 1455 1456 1457
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1458
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1459

1460
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1461 1462 1463 1464 1465 1466
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1467 1468 1469 1470

    Examples:
        .. code-block:: python

1471
          import paddle.fluid as fluid
L
lujun 已提交
1472 1473
          place = fluid.CUDAPinnedPlace()

1474
        )DOC")
S
sneaxiy 已提交
1475
      .def("__init__",
S
sneaxiy 已提交
1476
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
1477
#ifndef PADDLE_WITH_CUDA
1478 1479 1480
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1481
#endif
S
sneaxiy 已提交
1482
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1483
           })
S
sneaxiy 已提交
1484 1485 1486 1487
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1488 1489
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1490 1491 1492 1493
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
1494 1495
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
1496 1497
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1498 1499 1500 1501
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1502
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
S
sneaxiy 已提交
1503
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1504 1505
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1506 1507
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1508 1509
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
S
sneaxiy 已提交
1510 1511 1512 1513
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1514 1515
      .def("gpu_device_id",
           [](platform::Place &self) {
1516
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1517
           })
1518 1519 1520 1521
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
S
sneaxiy 已提交
1522 1523
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1524 1525 1526 1527
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1528 1529 1530 1531
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1532
      .def("set_place",
D
dzhwinter 已提交
1533
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1534
             self = gpu_place;
C
chengduoZH 已提交
1535 1536
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
1537 1538
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
1539
      });
Y
Yu Yang 已提交
1540

Y
Yu Yang 已提交
1541
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1542 1543 1544 1545 1546
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
1547 1548 1549 1550 1551 1552 1553
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
C
chengduo 已提交
1554 1555
            return OpRegistry::CreateOp(desc);
          })
1556
      .def("run",
1557
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1558
              const platform::CPUPlace &place) { self.Run(scope, place); })
1559 1560 1561
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::XPUPlace &place) { self.Run(scope, place); })
D
dzhwinter 已提交
1562 1563
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1564
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1565 1566 1567 1568 1569
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1570 1571 1572 1573 1574 1575 1576
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1577 1578
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1579
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1580
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1581 1582 1583 1584
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1585

1586 1587 1588
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1589 1590 1591 1592 1593 1594 1595 1596 1597
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1598
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1599
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1600
      .def("close", &Executor::Close)
1601 1602
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1603 1604
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1605 1606 1607 1608
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1609
             pybind11::gil_scoped_release release;
1610 1611 1612 1613 1614 1615 1616
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1617 1618 1619
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1620
              std::map<std::string, FetchType *> *fetch_targets,
1621 1622 1623 1624 1625 1626 1627 1628
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1629
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1630 1631 1632 1633 1634 1635 1636
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1647
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1648 1649
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1650
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1651 1652
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1653
      });
S
sneaxiy 已提交
1654

D
dzhwinter 已提交
1655
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1656
  m.def("init_glog", framework::InitGLOG);
1657
  m.def("load_op_library", framework::LoadOpLib);
X
Xin Pan 已提交
1658 1659
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
1660

1661
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1662
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1663
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1664
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1665
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1666 1667 1668
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
1688 1689 1690 1691 1692 1693 1694
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
1695 1696 1697 1698 1699 1700 1701 1702 1703
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

1704 1705 1706 1707 1708 1709
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1710

1711
  m.def("set_feed_variable", framework::SetFeedVariable);
1712 1713 1714 1715 1716
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1717
            return py::cast(BOOST_GET(LoDTensor, var));
1718
          } else {
1719
            return py::cast(BOOST_GET(LoDTensorArray, var));
1720 1721
          }
        });
1722
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1723

X
Xin Pan 已提交
1724 1725
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1726 1727 1728 1729 1730
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
1731
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
1732

Y
Yu Yang 已提交
1733 1734 1735 1736 1737 1738 1739 1740 1741
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1742
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
1743
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1744 1745 1746

    Examples:
        .. code-block:: python
1747

Z
Zeng Jinle 已提交
1748 1749 1750 1751
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1752 1753
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1754 1755 1756 1757 1758 1759
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
1760 1761 1762 1763
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1764 1765 1766
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1767 1768 1769 1770 1771 1772
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1773 1774
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
1775 1776 1777 1778 1779 1780
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1803

1804 1805 1806 1807 1808 1809 1810 1811
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
1812
                 auto &data = BOOST_GET(LoDTensor, self[i]);
1813 1814
                 res[i] = py::cast(std::move(data));
               } else {
1815
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
1831
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
1832 1833 1834 1835 1836 1837 1838 1839
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
1840
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
1841 1842 1843 1844 1845 1846 1847 1848 1849
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
1850 1851
        )DOC")
      .def("_move_to_list",
1852
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
1853 1854 1855 1856
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
1857
                 if (data_is_lod_tensor(self[i][j])) {
1858
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
1859 1860
                   tmp[j] = py::cast(std::move(var));
                 } else {
1861
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
1862 1863 1864 1865 1866 1867
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
1868 1869 1870 1871 1872 1873 1874 1875 1876
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
1877
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1878
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1879
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1880

P
peizhilin 已提交
1881
#ifndef _WIN32
D
dangqingqing 已提交
1882 1883 1884
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1885
#endif
P
peizhilin 已提交
1886
#endif
Y
Yu Yang 已提交
1887

1888 1889 1890 1891 1892 1893
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

1894 1895 1896 1897
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1898
      .value("kAll", platform::ProfilerState::kAll)
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

1910
  m.def("set_tracer_option", platform::SetTracerOption);
1911 1912
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1913
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1914
  m.def("reset_profiler", platform::ResetProfiler);
1915
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1916 1917 1918
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1919

1920 1921
  m.def("size_of_dtype", framework::SizeOfType);

1922 1923 1924
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

1925 1926
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1927
      .def("has", &ir::Pass::Has)
1928 1929 1930
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1931
           })
1932
      .def(
1933
          "set",
1934 1935 1936
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1937 1938
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
1939 1940
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
1955 1956
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1957
        self.Apply(graph.get());
F
flame 已提交
1958
      });
1959

X
fix  
Xin Pan 已提交
1960 1961
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1976
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1977

Y
yuyang18 已提交
1978
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1979 1980 1981 1982
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1983 1984 1985
    Examples:
        .. code-block:: python

1986
          import paddle.fluid as fluid
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
          x = fluid.layers.data(name='x', shape=[13], dtype='float32')
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.fc(input=x, size=1, act=None)

          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
          avg_loss = fluid.layers.mean(cost)

          sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
          sgd_optimizer.minimize(avg_loss)

C
chengduo 已提交
1997 1998 1999
          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

2000 2001
          train_exe = fluid.ParallelExecutor(use_cuda=False,
                                             loss_name=avg_loss.name,
C
chengduo 已提交
2002 2003
                                             exec_strategy=exec_strategy)

C
chengduo 已提交
2004 2005
        )DOC");

Y
yuyang18 已提交
2006
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2007 2008 2009 2010 2011
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
2022
      .def_property(
2023 2024 2025 2026
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
2027 2028 2029 2030
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
2031 2032 2033 2034 2035
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2036 2037 2038
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2039 2040
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2041 2042 2043 2044 2045 2046 2047
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2048 2049 2050 2051
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2052 2053
                because the temp variable's shape maybe the same between two iterations.
                Default 1.
C
chengduo 已提交
2054 2055 2056 2057 2058 2059

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
2060
              )DOC")
Q
Qiao Longfei 已提交
2061 2062 2063 2064 2065 2066 2067 2068 2069
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2070
                user call exe.run() in python
Q
Qiao Longfei 已提交
2071
              )DOC")
2072 2073 2074 2075 2076 2077 2078 2079
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2080 2081 2082 2083 2084
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2085

Y
yuyang18 已提交
2086
  exec_strategy.def_property(
Y
yuyang18 已提交
2087 2088 2089 2090 2091 2092 2093
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2094 2095
      });

C
chengduo 已提交
2096 2097 2098 2099
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
2100 2101 2102
    Examples:
        .. code-block:: python

2103 2104
            import os
            import numpy as np
F
flame 已提交
2105
            import paddle.fluid as fluid
2106 2107 2108 2109 2110 2111 2112 2113 2114

            os.environ["CPU_NUM"] = '2'
            places = fluid.cpu_places()

            data = fluid.layers.data(name="x", shape=[1], dtype="float32")
            hidden = fluid.layers.fc(input=data, size=10)
            loss = fluid.layers.mean(hidden)
            fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

F
flame 已提交
2115
            build_strategy = fluid.BuildStrategy()
2116 2117
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
F
flame 已提交
2118
            build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
2119 2120 2121 2122
            program = fluid.compiler.CompiledProgram(fluid.default_main_program())
            program = program.with_data_parallel(loss_name=loss.name,
                                                 build_strategy=build_strategy,
                                                 places=places)
C
chengduo 已提交
2123
)DOC");
Y
yuyang18 已提交
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2140 2141 2142 2143
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2144
            self.reduce_ = strategy;
C
chengduo 已提交
2145
          },
2146
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2147 2148
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2149
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2150 2151
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2152
                Default is 'AllReduce'.
F
flame 已提交
2153 2154 2155 2156 2157 2158 2159 2160

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
                  )DOC")
Y
yuyang18 已提交
2161 2162 2163 2164 2165
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2166 2167 2168 2169
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2170
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2171
          },
2172 2173
          R"DOC((fluid.BuildStrategy.GradientScaleStrategy, optional): there are three
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2174 2175
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2176
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2177 2178 2179 2180 2181

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
C
chengduo 已提交
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
                        import paddle.fluid.compiler as compiler
                        import numpy
                        import os

                        use_cuda = True
                        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
                        exe = fluid.Executor(place)

                        # NOTE: If you use CPU to run the program, you need
                        # to specify the CPU_NUM, otherwise, fluid will use
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
                            places = fluid.cpu_places()
                        else:
                            places = places = fluid.cuda_places()

                        data = fluid.layers.data(name='X', shape=[1], dtype='float32')
                        hidden = fluid.layers.fc(input=data, size=10)
                        loss = fluid.layers.mean(hidden)
                        fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                        fluid.default_startup_program().random_seed=1
                        exe.run(fluid.default_startup_program())

F
flame 已提交
2210
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
                        build_strategy.gradient_scale_strategy = \
                                 fluid.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = compiler.CompiledProgram(
                                 fluid.default_main_program()).with_data_parallel(
                                          loss_name=loss.name, build_strategy=build_strategy,
                                          places = places)

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
                                             feed={"X": x, loss_grad_name : loss_grad},
                                             fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2225
                   )DOC")
Y
yuyang18 已提交
2226 2227 2228 2229
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2230 2231 2232 2233
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2234
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2235
          },
2236
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2237
                writing the SSA Graph to file in the form of graphviz.
2238
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2239 2240 2241 2242 2243 2244

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
2245 2246
                        build_strategy.debug_graphviz_path = "./graph"

F
flame 已提交
2247
                    )DOC")
S
sneaxiy 已提交
2248 2249 2250 2251 2252 2253
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2254 2255 2256 2257
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2258 2259
            self.enable_sequential_execution_ = b;
          },
2260 2261
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2262 2263 2264 2265 2266 2267 2268 2269

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2270 2271 2272 2273 2274 2275
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2276 2277 2278 2279
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2280 2281
            self.remove_unnecessary_lock_ = b;
          },
2282 2283
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2284 2285 2286 2287 2288 2289 2290 2291

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2292 2293 2294 2295
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2296
#ifdef WIN32
2297
            PADDLE_THROW(platform::errors::Unavailable(
2298
                "Distribution mode is not supported on Windows platform."));
2299
#endif
2300 2301
            self.num_trainers_ = num_trainers;
          })
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2314 2315 2316 2317 2318 2319
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2320
      .def_property("use_hierarchical_allreduce",
2321 2322 2323 2324 2325 2326
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2327
      .def_property("hierarchical_allreduce_inter_nranks",
2328 2329 2330 2331 2332 2333 2334
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2335 2336 2337 2338 2339 2340
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2341 2342 2343 2344
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2345 2346
            self.fuse_elewise_add_act_ops_ = b;
          },
2347
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2348
                to fuse elementwise_add_op and activation_op,
2349
                it may make the execution faster. Default is False.
F
flame 已提交
2350 2351 2352 2353 2354 2355 2356 2357

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2358 2359 2360 2361
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2362
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2363
                              platform::errors::PreconditionNotMet(
2364 2365
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
2379 2380 2381 2382
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2383
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2384
                              platform::errors::PreconditionNotMet(
2385 2386
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2401 2402 2403 2404 2405 2406
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2407 2408 2409 2410
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2411 2412
            self.fuse_relu_depthwise_conv_ = b;
          },
2413
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2414 2415 2416
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2417
                Default is False.
F
flame 已提交
2418 2419 2420 2421 2422 2423 2424 2425

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2426 2427 2428 2429 2430 2431
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
2432 2433 2434 2435
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2436 2437
                      self.fuse_broadcast_ops_ = b;
                    },
2438
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2439 2440 2441 2442
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2443 2444 2445 2446 2447 2448 2449 2450 2451
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

                              import paddle.fluid as fluid
                              build_strategy = fluid.BuildStrategy()
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2452 2453
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2454 2455
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2456 2457
                    },
                    [](BuildStrategy &self, bool b) {
2458 2459 2460 2461
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2462 2463
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2464 2465 2466 2467
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2468 2469 2470 2471
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2472 2473
            self.sync_batch_norm_ = b;
          },
2474
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2475 2476 2477
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2478 2479
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2480 2481 2482 2483 2484 2485 2486 2487

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2488 2489
      .def_property(
          "memory_optimize",
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2504 2505 2506
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "BuildStrategy.memory_optimize must be set to None, False or "
                  "True"));
2507 2508
            }
          },
2509
          R"DOC((bool, optional): memory opitimize aims to save total memory
2510
                consumption, set to True to enable it.
2511

2512 2513 2514
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2515
                True means enabling and False means disabling. Default is None.)DOC")
2516 2517 2518
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2519 2520 2521
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
2522
              PADDLE_THROW(platform::errors::Unavailable(
2523
                  "Distribution mode is not supported on Windows platform."));
2524 2525 2526 2527 2528
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2529 2530 2531
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2532
      .def_property(
D
dzhwinter 已提交
2533 2534 2535
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
2536 2537 2538 2539
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
2540 2541
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2542 2543 2544 2545
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2546
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2547 2548 2549 2550 2551 2552 2553
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2554 2555 2556 2557
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2558 2559 2560 2561 2562 2563 2564 2565 2566
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
2567
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
2568
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
2569 2570 2571 2572 2573
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
2574 2575

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
2576
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
2577
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
2578
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
2579 2580 2581 2582
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
2583 2584 2585 2586 2587
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
2588 2589 2590
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
2591 2592 2593 2594
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
2595 2596
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
2597 2598 2599 2600 2601 2602 2603 2604
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
2605
               return py::cast(
2606
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
2607 2608
             } else {
               return py::cast(std::move(
2609
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
2610
             }
2611 2612
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
2613

D
dongdaxiang 已提交
2614
  BindFleetWrapper(&m);
T
Thunderbrook 已提交
2615 2616 2617
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
#endif
2618
  BindGlooWrapper(&m);
H
hutuxian 已提交
2619
  BindBoxHelper(&m);
H
hutuxian 已提交
2620 2621 2622
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2623
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
2624
  BindNCCLWrapper(&m);
2625 2626 2627
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2628
#endif
F
flame 已提交
2629 2630
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
2631
  BindInferenceApi(&m);
2632
  BindCompatible(&m);
2633
  BindDataset(&m);
Y
yaoxuefeng 已提交
2634
  BindGenerator(&m);
Y
Yanghello 已提交
2635 2636 2637
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
2638 2639
#ifdef PADDLE_WITH_DISTRIBUTE
  BindCommunicator(&m);
2640 2641
  BindCommunicatorContext(&m);
  BindLargeScaleKV(&m);
2642
#endif
L
Luo Tao 已提交
2643
}
2644
}  // namespace pybind
2645
}  // namespace paddle