Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
697ba4b1
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
697ba4b1
编写于
6月 25, 2018
作者:
S
sneaxiy
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add Python array reader op
上级
2c12af76
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
664 addition
and
37 deletion
+664
-37
benchmark/fluid/args.py
benchmark/fluid/args.py
+10
-0
benchmark/fluid/fluid_benchmark.py
benchmark/fluid/fluid_benchmark.py
+73
-13
benchmark/fluid/models/machine_translation.py
benchmark/fluid/models/machine_translation.py
+1
-1
benchmark/fluid/models/mnist.py
benchmark/fluid/models/mnist.py
+24
-5
benchmark/fluid/models/resnet.py
benchmark/fluid/models/resnet.py
+18
-2
benchmark/fluid/models/stacked_dynamic_lstm.py
benchmark/fluid/models/stacked_dynamic_lstm.py
+1
-1
benchmark/fluid/models/vgg.py
benchmark/fluid/models/vgg.py
+22
-7
paddle/fluid/operators/reader/CMakeLists.txt
paddle/fluid/operators/reader/CMakeLists.txt
+1
-0
paddle/fluid/operators/reader/create_py_array_reader_op.cc
paddle/fluid/operators/reader/create_py_array_reader_op.cc
+80
-0
paddle/fluid/operators/reader/py_array_feed_queue.h
paddle/fluid/operators/reader/py_array_feed_queue.h
+207
-0
paddle/fluid/operators/reader/py_blocking_queue.h
paddle/fluid/operators/reader/py_blocking_queue.h
+125
-0
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+42
-4
paddle/fluid/pybind/tensor_py.h
paddle/fluid/pybind/tensor_py.h
+3
-3
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+57
-1
未找到文件。
benchmark/fluid/args.py
浏览文件 @
697ba4b1
...
...
@@ -122,5 +122,15 @@ def parse_args():
type
=
str
,
default
=
""
,
help
=
'Directory that contains all the training recordio files.'
)
parser
.
add_argument
(
'--use_py_reader_op'
,
action
=
'store_true'
,
help
=
'Whether to use Python reader op, omitted when use_reader_op is true'
)
parser
.
add_argument
(
'--feed_queue_capacity'
,
type
=
int
,
default
=
64
,
help
=
'Capacity of feed queue when use_py_reader_op is true'
)
args
=
parser
.
parse_args
()
return
args
benchmark/fluid/fluid_benchmark.py
浏览文件 @
697ba4b1
...
...
@@ -25,6 +25,9 @@ import paddle.fluid.profiler as profiler
import
paddle.fluid.transpiler.distribute_transpiler
as
distribute_transpiler
from
args
import
*
import
threading
feed_queue
=
None
def
append_nccl2_prepare
(
trainer_id
):
...
...
@@ -131,7 +134,7 @@ def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc,
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
not
args
.
use_reader_op
:
if
not
args
.
use_reader_op
and
not
args
.
use_py_reader_op
:
feed_var_list
=
[
var
for
var
in
train_prog
.
global_block
().
vars
.
itervalues
()
if
var
.
is_data
...
...
@@ -141,12 +144,12 @@ def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc,
iters
,
num_samples
,
start_time
=
0
,
0
,
time
.
time
()
for
pass_id
in
range
(
args
.
pass_num
):
train_losses
=
[]
if
not
args
.
use_reader_op
:
if
not
args
.
use_reader_op
and
not
args
.
use_py_reader_op
:
reader_generator
=
train_reader
()
batch_id
=
0
data
=
None
while
True
:
if
not
args
.
use_reader_op
:
if
not
args
.
use_reader_op
and
not
args
.
use_py_reader_op
:
data
=
next
(
reader_generator
,
None
)
if
data
==
None
:
break
...
...
@@ -156,7 +159,7 @@ def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc,
start_time
=
time
.
time
()
num_samples
=
0
if
args
.
use_reader_op
:
if
args
.
use_reader_op
or
args
.
use_py_reader_op
:
try
:
loss
=
exe
.
run
(
train_prog
,
fetch_list
=
[
avg_loss
])
except
fluid
.
core
.
EnforceNotMet
as
ex
:
...
...
@@ -170,7 +173,7 @@ def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc,
# FIXME(wuyi): For use_reader_op, if the current
# pass is not the last, the last batch of this pass
# is also equal to args.batch_size.
if
args
.
use_reader_op
:
if
args
.
use_reader_op
or
args
.
use_py_reader_op
:
num_samples
+=
args
.
batch_size
*
args
.
gpus
else
:
num_samples
+=
len
(
data
)
...
...
@@ -180,12 +183,13 @@ def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc,
print_train_time
(
start_time
,
time
.
time
(),
num_samples
)
print
(
"Pass: %d, Loss: %f"
%
(
pass_id
,
np
.
mean
(
train_losses
))),
# evaluation
if
not
args
.
no_test
and
batch_acc
and
not
args
.
use_reader_op
:
if
not
args
.
no_test
and
batch_acc
and
not
args
.
use_reader_op
and
not
args
.
use_py_reader_op
:
pass_test_acc
=
test
(
exe
,
infer_prog
,
test_reader
,
feeder
,
batch_acc
)
print
(
", Test Accuracy: %f"
%
pass_test_acc
)
print
(
"
\n
"
)
# TODO(wuyi): add warmup passes to get better perf data.
close_feed_queue
()
exit
(
0
)
...
...
@@ -195,7 +199,7 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
batch_acc
,
args
,
train_prog
,
startup_prog
,
nccl_id_var
,
num_trainers
,
trainer_id
):
place
=
core
.
CPUPlace
()
if
args
.
device
==
'CPU'
else
core
.
CUDAPlace
(
0
)
if
not
args
.
use_reader_op
:
if
not
args
.
use_reader_op
and
not
args
.
use_py_reader_op
:
feed_var_list
=
[
var
for
var
in
train_prog
.
global_block
().
vars
.
itervalues
()
if
var
.
is_data
...
...
@@ -238,12 +242,12 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
num_samples
=
0
iters
=
0
start_time
=
time
.
time
()
if
not
args
.
use_reader_op
:
if
not
args
.
use_reader_op
and
not
args
.
use_py_reader_op
:
reader_generator
=
train_reader
()
batch_id
=
0
data
=
None
while
True
:
if
not
args
.
use_reader_op
:
if
not
args
.
use_reader_op
and
not
args
.
use_py_reader_op
:
data
=
next
(
reader_generator
,
None
)
if
data
==
None
:
break
...
...
@@ -257,14 +261,14 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
if
iters
==
args
.
skip_batch_num
:
start_time
=
time
.
time
()
num_samples
=
0
if
args
.
use_fake_data
or
args
.
use_reader_op
:
if
args
.
use_fake_data
or
args
.
use_reader_op
or
args
.
use_py_reader_op
:
try
:
loss
,
=
exe
.
run
([
avg_loss
.
name
])
except
fluid
.
core
.
EnforceNotMet
as
ex
:
break
else
:
loss
,
=
exe
.
run
([
avg_loss
.
name
],
feed
=
feeder
.
feed
(
data
))
if
args
.
use_reader_op
:
if
args
.
use_reader_op
or
args
.
use_py_reader_op
:
num_samples
+=
args
.
batch_size
*
args
.
gpus
else
:
num_samples
+=
len
(
data
)
...
...
@@ -275,7 +279,7 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
batch_id
+=
1
print_train_time
(
start_time
,
time
.
time
(),
num_samples
)
if
not
args
.
no_test
and
batch_acc
and
not
args
.
use_reader_op
:
if
not
args
.
no_test
and
batch_acc
and
not
args
.
use_reader_op
and
not
args
.
use_py_reader_op
:
# we have not implement record io for test
# skip test when use args.use_reader_op
test_acc
=
test
(
startup_exe
,
infer_prog
,
test_reader
,
feeder
,
...
...
@@ -307,7 +311,46 @@ def print_paddle_envs():
print
(
'------------------------------------------------'
)
def
feed_data
(
feed_queue
,
train_reader
,
test_reader
,
dshapes
,
args
):
train_cnt
=
0
test_cnt
=
0
print_per_train_batch
=
1
train_data_generator
=
train_reader
()
start
=
time
.
time
()
while
True
:
next_data
=
next
(
train_data_generator
,
None
)
if
next_data
is
None
:
break
next_data
=
list
(
next_data
)
for
i
in
range
(
len
(
next_data
)):
if
not
isinstance
(
next_data
[
i
],
np
.
ndarray
):
next_data
[
i
]
=
np
.
array
(
next_data
[
i
])
next_data
[
i
]
=
next_data
[
i
].
reshape
([
-
1
]
+
dshapes
[
i
])
if
not
feed_queue
.
enqueue
(
next_data
):
break
train_cnt
+=
1
'''
if train_cnt % print_per_train_batch == 0:
end = time.time()
print('Feed queue size: %d, capacity: %d, speed: %.5fsec/batch'
% (feed_queue.size(), feed_queue.capacity(), (end-start)/print_per_train_batch))
start = end
'''
feed_queue
.
close
()
def
close_feed_queue
():
global
feed_queue
if
feed_queue
is
not
None
:
feed_queue
.
close
()
def
main
():
global
feed_queue
args
=
parse_args
()
print_arguments
(
args
)
print_paddle_envs
()
...
...
@@ -321,8 +364,23 @@ def main():
pr
=
cProfile
.
Profile
()
pr
.
enable
()
model_def
=
__import__
(
"models.%s"
%
args
.
model
,
fromlist
=
[
"models"
])
train_args
=
list
(
model_def
.
get_model
(
args
))
model
=
model_def
.
get_model
(
args
)
if
not
args
.
use_reader_op
and
args
.
use_py_reader_op
:
feed_queue
=
model
[
-
4
]
train_reader
=
model
[
-
3
]
test_reader
=
model
[
-
2
]
dshapes
=
model
[
-
1
]
feed_thread
=
threading
.
Thread
(
target
=
feed_data
,
args
=
(
feed_queue
,
train_reader
,
test_reader
,
dshapes
,
args
))
#feed_thread.setDaemon(True)
feed_thread
.
start
()
model
=
model
[:
-
4
]
train_args
=
list
(
model
)
train_args
.
append
(
args
)
# Run optimizer.minimize(avg_loss)
train_args
[
2
].
minimize
(
train_args
[
0
])
if
args
.
memory_optimize
:
...
...
@@ -338,6 +396,7 @@ def main():
train_args
.
extend
([
nccl_id_var
,
num_trainers
,
trainer_id
])
train_parallel
(
*
train_args
)
train
(
*
train_args
)
close_feed_queue
()
exit
(
0
)
# for other update methods, use default programs
...
...
@@ -362,3 +421,4 @@ def main():
if
__name__
==
"__main__"
:
main
()
close_feed_queue
()
benchmark/fluid/models/machine_translation.py
浏览文件 @
697ba4b1
...
...
@@ -182,7 +182,7 @@ def lodtensor_to_ndarray(lod_tensor):
def
get_model
(
args
):
if
args
.
use_reader_op
:
if
args
.
use_reader_op
or
args
.
use_py_reader_op
:
raise
Exception
(
"machine_translation do not support reader op for now."
)
embedding_dim
=
512
encoder_size
=
512
...
...
benchmark/fluid/models/mnist.py
浏览文件 @
697ba4b1
...
...
@@ -66,13 +66,14 @@ def cnn_model(data):
def
get_model
(
args
):
dshape
=
[
1
,
28
,
28
]
if
args
.
use_reader_op
:
filelist
=
[
os
.
path
.
join
(
args
.
data_path
,
f
)
for
f
in
os
.
listdir
(
args
.
data_path
)
]
data_file
=
fluid
.
layers
.
open_files
(
filenames
=
filelist
,
shapes
=
[[
-
1
,
1
,
28
,
28
]
,
(
-
1
,
1
)],
shapes
=
[[
-
1
]
+
dshape
,
(
-
1
,
1
)],
lod_levels
=
[
0
,
0
],
dtypes
=
[
"float32"
,
"int64"
],
thread_num
=
args
.
gpus
,
...
...
@@ -81,8 +82,18 @@ def get_model(args):
fluid
.
layers
.
batch
(
data_file
,
batch_size
=
args
.
batch_size
))
images
,
label
=
fluid
.
layers
.
read_file
(
data_file
)
elif
args
.
use_py_reader_op
:
data_file
,
feed_queue
=
fluid
.
layers
.
py_array_reader
(
capacity
=
args
.
feed_queue_capacity
,
shapes
=
[[
-
1
]
+
dshape
,
[
-
1
,
1
]],
lod_levels
=
[
0
,
0
],
dtypes
=
[
'float32'
,
'int64'
])
data_file
=
fluid
.
layers
.
double_buffer
(
fluid
.
layers
.
batch
(
data_file
,
batch_size
=
args
.
batch_size
))
images
,
label
=
fluid
.
layers
.
read_file
(
data_file
)
else
:
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
[
1
,
28
,
28
]
,
dtype
=
DTYPE
)
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
dshape
,
dtype
=
DTYPE
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
if
args
.
device
==
'CPU'
and
args
.
cpus
>
1
:
...
...
@@ -118,8 +129,16 @@ def get_model(args):
learning_rate
=
0.001
,
beta1
=
0.9
,
beta2
=
0.999
)
# Reader
underlying_train_reader
=
paddle
.
dataset
.
mnist
.
train
()
underlying_test_reader
=
paddle
.
dataset
.
mnist
.
test
()
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
()
,
batch_size
=
args
.
batch_size
*
args
.
gpus
)
underlying_train_reader
,
batch_size
=
args
.
batch_size
*
args
.
gpus
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
args
.
batch_size
)
return
avg_cost
,
inference_program
,
opt
,
train_reader
,
test_reader
,
batch_acc
underlying_test_reader
,
batch_size
=
args
.
batch_size
)
if
not
args
.
use_reader_op
and
args
.
use_py_reader_op
:
return
avg_cost
,
inference_program
,
opt
,
train_reader
,
test_reader
,
batch_acc
,
\
feed_queue
,
underlying_train_reader
,
underlying_test_reader
,
\
(
dshape
,
[
1
])
else
:
return
avg_cost
,
inference_program
,
opt
,
train_reader
,
test_reader
,
batch_acc
benchmark/fluid/models/resnet.py
浏览文件 @
697ba4b1
...
...
@@ -163,6 +163,16 @@ def get_model(args):
fluid
.
layers
.
batch
(
data_file
,
batch_size
=
args
.
batch_size
))
input
,
label
=
fluid
.
layers
.
read_file
(
data_file
)
elif
args
.
use_py_reader_op
:
data_file
,
feed_queue
=
fluid
.
layers
.
py_array_reader
(
capacity
=
args
.
feed_queue_capacity
,
shapes
=
[[
-
1
]
+
dshape
,
[
-
1
,
1
]],
lod_levels
=
[
0
,
0
],
dtypes
=
[
'float32'
,
'int64'
])
data_file
=
fluid
.
layers
.
double_buffer
(
fluid
.
layers
.
batch
(
data_file
,
batch_size
=
args
.
batch_size
))
input
,
label
=
fluid
.
layers
.
read_file
(
data_file
)
else
:
input
=
fluid
.
layers
.
data
(
name
=
'data'
,
shape
=
dshape
,
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
...
...
@@ -204,5 +214,11 @@ def get_model(args):
batched_test_reader
=
paddle
.
batch
(
train_reader
,
batch_size
=
args
.
batch_size
,
drop_last
=
True
)
return
avg_cost
,
inference_program
,
optimizer
,
batched_train_reader
,
\
batched_test_reader
,
batch_acc
if
not
args
.
use_reader_op
and
args
.
use_py_reader_op
:
return
avg_cost
,
inference_program
,
optimizer
,
batched_train_reader
,
\
batched_test_reader
,
batch_acc
,
\
feed_queue
,
train_reader
,
test_reader
,
\
(
dshape
,
[
1
])
else
:
return
avg_cost
,
inference_program
,
optimizer
,
batched_train_reader
,
\
batched_test_reader
,
batch_acc
benchmark/fluid/models/stacked_dynamic_lstm.py
浏览文件 @
697ba4b1
...
...
@@ -44,7 +44,7 @@ def crop_sentence(reader, crop_size):
def
get_model
(
args
):
if
args
.
use_reader_op
:
if
args
.
use_reader_op
or
args
.
use_py_reader_op
:
raise
Exception
(
"stacked_dynamic_lstm do not support reader op for now."
)
lstm_size
=
512
...
...
benchmark/fluid/models/vgg.py
浏览文件 @
697ba4b1
...
...
@@ -54,12 +54,16 @@ def vgg16_bn_drop(input):
def
get_model
(
args
):
if
args
.
data_set
==
"cifar10"
:
underlying_train_reader
=
paddle
.
dataset
.
cifar
.
train10
()
underlying_test_reader
=
paddle
.
dataset
.
cifar
.
test10
()
classdim
=
10
if
args
.
data_format
==
'NCHW'
:
data_shape
=
[
3
,
32
,
32
]
else
:
data_shape
=
[
32
,
32
,
3
]
else
:
underlying_train_reader
=
paddle
.
dataset
.
flowers
.
train
()
underlying_test_reader
=
paddle
.
dataset
.
flowers
.
test
()
classdim
=
102
if
args
.
data_format
==
'NCHW'
:
data_shape
=
[
3
,
224
,
224
]
...
...
@@ -81,6 +85,16 @@ def get_model(args):
fluid
.
layers
.
batch
(
data_file
,
batch_size
=
args
.
batch_size
))
images
,
label
=
fluid
.
layers
.
read_file
(
data_file
)
elif
args
.
use_py_reader_op
:
data_file
,
feed_queue
=
fluid
.
layers
.
py_array_reader
(
capacity
=
args
.
feed_queue_capacity
,
shapes
=
[[
-
1
]
+
data_shape
,
[
-
1
,
1
]],
lod_levels
=
[
0
,
0
],
dtypes
=
[
"float32"
,
"int64"
])
data_file
=
fluid
.
layers
.
double_buffer
(
fluid
.
layers
.
batch
(
data_file
,
batch_size
=
args
.
batch_size
))
images
,
label
=
fluid
.
layers
.
read_file
(
data_file
)
else
:
images
=
fluid
.
layers
.
data
(
name
=
'data'
,
shape
=
data_shape
,
dtype
=
'float32'
)
...
...
@@ -109,13 +123,14 @@ def get_model(args):
# data reader
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
cifar
.
train10
()
if
args
.
data_set
==
'cifar10'
else
paddle
.
dataset
.
flowers
.
train
(),
buf_size
=
5120
),
underlying_train_reader
,
buf_size
=
5120
),
batch_size
=
args
.
batch_size
*
args
.
gpus
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
cifar
.
test10
()
if
args
.
data_set
==
'cifar10'
else
paddle
.
dataset
.
flowers
.
test
(),
batch_size
=
args
.
batch_size
)
underlying_test_reader
,
batch_size
=
args
.
batch_size
)
return
avg_cost
,
inference_program
,
optimizer
,
train_reader
,
test_reader
,
batch_acc
if
not
args
.
use_reader_op
and
args
.
use_py_reader_op
:
return
avg_cost
,
inference_program
,
optimizer
,
train_reader
,
test_reader
,
batch_acc
,
\
feed_queue
,
underlying_train_reader
,
underlying_test_reader
,
\
(
data_shape
,
[
1
])
else
:
return
avg_cost
,
inference_program
,
optimizer
,
train_reader
,
test_reader
,
batch_acc
paddle/fluid/operators/reader/CMakeLists.txt
浏览文件 @
697ba4b1
...
...
@@ -24,6 +24,7 @@ reader_library(create_double_buffer_reader_op SRCS create_double_buffer_reader_o
reader_library
(
create_multi_pass_reader_op SRCS create_multi_pass_reader_op.cc
)
reader_library
(
create_threaded_reader_op SRCS create_threaded_reader_op.cc
)
reader_library
(
create_custom_reader_op SRCS create_custom_reader_op.cc
)
reader_library
(
create_py_array_reader_op SRCS create_py_array_reader_op.cc
)
cc_test
(
reader_blocking_queue_test SRCS reader_blocking_queue_test.cc
)
# Export local libraries to parent
...
...
paddle/fluid/operators/reader/create_py_array_reader_op.cc
0 → 100644
浏览文件 @
697ba4b1
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/reader/py_array_feed_queue.h"
namespace
paddle
{
namespace
operators
{
namespace
reader
{
class
PyArrayReader
:
public
framework
::
ReaderBase
{
public:
explicit
PyArrayReader
(
const
std
::
shared_ptr
<
PyArrayFeedQueue
>&
queue
)
{
PADDLE_ENFORCE
(
queue
!=
nullptr
,
"PyArrayFeedQueue must not be null"
);
queue_
=
queue
;
}
void
ReadNext
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
{
*
out
=
queue_
->
Dequeue
();
}
void
ReInit
()
override
{
// PADDLE_THROW("PyArrayReader does not support ReInit()");
}
private:
std
::
shared_ptr
<
PyArrayFeedQueue
>
queue_
;
};
class
CreatePyArrayReaderOp
:
public
framework
::
OperatorBase
{
public:
using
framework
::
OperatorBase
::
OperatorBase
;
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
const
std
::
string
&
feeder_name
=
Attr
<
std
::
string
>
(
"feeder_name"
);
auto
*
feeder_holder_var
=
scope
.
FindVar
(
feeder_name
);
PADDLE_ENFORCE
(
feeder_holder_var
!=
nullptr
,
"No PyArrayFeedQueue variable with name %s found"
,
feeder_name
);
auto
*
feeder_holder
=
feeder_holder_var
->
template
GetMutable
<
PyArrayFeedQueueHolder
>();
auto
*
out
=
scope
.
FindVar
(
Output
(
"Out"
))
->
template
GetMutable
<
framework
::
ReaderHolder
>();
out
->
Reset
(
new
PyArrayReader
(
feeder_holder
->
GetFeeder
()));
}
};
class
CreatePyArrayReaderOpMaker
:
public
FileReaderMakerBase
{
protected:
void
Apply
()
override
{
AddAttr
<
std
::
string
>
(
"feeder_name"
,
"Name of the `PyArrayFeedQueueHolder` variable"
);
AddComment
(
R"DOC(
Create PyArrayReader to accept Python data feeding.
)DOC"
);
}
};
}
// namespace reader
}
// namespace operators
}
// namespace paddle
namespace
reader
=
::
paddle
::
operators
::
reader
;
REGISTER_FILE_READER_OPERATOR
(
create_py_array_reader
,
reader
::
CreatePyArrayReaderOp
,
reader
::
CreatePyArrayReaderOpMaker
);
paddle/fluid/operators/reader/py_array_feed_queue.h
0 → 100644
浏览文件 @
697ba4b1
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <condition_variable> //NOLINT
#include <memory>
#include <mutex> // NOLINT
#include <vector>
#include "glog/logging.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/operators/reader/py_blocking_queue.h"
#include "paddle/fluid/operators/reader/reader_op_registry.h"
#include "paddle/fluid/pybind/tensor_py.h"
namespace
paddle
{
namespace
operators
{
namespace
reader
{
using
PyTuple
=
::
pybind11
::
tuple
;
using
PyArray
=
::
pybind11
::
array
;
template
<
typename
T
>
using
PyArrayT
=
::
pybind11
::
array_t
<
T
,
::
pybind11
::
array
::
c_style
|
::
pybind11
::
array
::
forcecast
>
;
class
PyArrayToTensorVisitor
:
public
boost
::
static_visitor
<
void
>
{
public:
#define PY_ARRAY_TO_TENSOR_WITH_TYPE(dtype, func_name) \
pybind::func_name(tensor_, static_cast<const PyArrayT<dtype>&>(py_array_), \
place)
#define PY_ARRAY_TO_TENSOR(func_name) \
if (IsType<size_t>()) { \
PY_ARRAY_TO_TENSOR_WITH_TYPE(size_t, func_name); \
} else if (IsType<int64_t>()) { \
PY_ARRAY_TO_TENSOR_WITH_TYPE(int64_t, func_name); \
} else if (IsType<int32_t>()) { \
PY_ARRAY_TO_TENSOR_WITH_TYPE(int32_t, func_name); \
} else if (IsType<int16_t>()) { \
PY_ARRAY_TO_TENSOR_WITH_TYPE(int16_t, func_name); \
} else if (IsType<uint8_t>()) { \
PY_ARRAY_TO_TENSOR_WITH_TYPE(uint8_t, func_name); \
} else if (IsType<float>()) { \
PY_ARRAY_TO_TENSOR_WITH_TYPE(float, func_name); \
} else if (IsType<double>()) { \
PY_ARRAY_TO_TENSOR_WITH_TYPE(double, func_name); \
} else { \
PADDLE_THROW("unsupported dtype of python array"); \
}
PyArrayToTensorVisitor
(
const
PyArray
&
py_array
,
framework
::
Tensor
*
tensor
)
:
py_array_
(
py_array
),
tensor_
(
tensor
)
{}
void
operator
()(
const
platform
::
CPUPlace
&
place
)
{
PY_ARRAY_TO_TENSOR
(
PyCPUTensorSetFromArray
);
}
void
operator
()(
const
platform
::
CUDAPlace
&
place
)
{
#ifdef PADDLE_WITH_CUDA
PY_ARRAY_TO_TENSOR
(
PyCUDATensorSetFromArray
);
#else
PADDLE_THROW
(
"CUDAPlace is not supported in CPU only version"
);
#endif
}
void
operator
()(
const
platform
::
CUDAPinnedPlace
&
place
)
{
#ifdef PADDLE_WITH_CUDA
PY_ARRAY_TO_TENSOR
(
PyCUDAPinnedTensorSetFromArray
);
#else
PADDLE_THROW
(
"CUDAPinnedPlace is not supported in CPU only version"
);
#endif
}
#undef PY_ARRAY_TO_TENSOR
#undef PY_ARRAY_TO_TENSOR_WITH_TYPE
private:
template
<
typename
T
>
inline
bool
IsType
()
const
{
return
::
pybind11
::
isinstance
<
PyArrayT
<
T
>>
(
py_array_
);
}
private:
const
PyArray
&
py_array_
;
framework
::
Tensor
*
tensor_
;
};
class
PyArrayFeedQueueHolder
;
// PyArrayFeedQueue must be thread-safe
class
PyArrayFeedQueue
{
friend
class
PyArrayFeedQueueHolder
;
private:
PyArrayFeedQueue
(
size_t
capacity
,
const
std
::
vector
<
framework
::
DDim
>&
dims
,
const
platform
::
Place
&
place
)
:
dims_
(
dims
),
place_
(
place
)
{
queue_
.
reset
(
new
PyBlockingQueue
<
std
::
vector
<
framework
::
LoDTensor
>>
(
capacity
));
}
public:
~
PyArrayFeedQueue
()
{
Close
();
}
bool
Enqueue
(
const
std
::
vector
<
PyArray
>&
py_array_vec
)
{
auto
lod_tensor_vec
=
PyArrayVecToLoDTensorVec
(
py_array_vec
);
VLOG
(
5
)
<<
"Enqueue at address "
<<
reinterpret_cast
<
void
*>
(
this
);
return
queue_
->
Send
(
std
::
move
(
lod_tensor_vec
));
}
bool
Enqueue
(
const
std
::
vector
<
framework
::
LoDTensor
>&
tensor_vec
)
{
VLOG
(
5
)
<<
"Enqueue at address "
<<
reinterpret_cast
<
void
*>
(
this
);
return
queue_
->
Send
(
tensor_vec
);
}
std
::
vector
<
framework
::
LoDTensor
>
Dequeue
()
{
VLOG
(
5
)
<<
"Dequeue at address "
<<
reinterpret_cast
<
void
*>
(
this
);
std
::
vector
<
framework
::
LoDTensor
>
ret
;
return
queue_
->
Receive
(
&
ret
)
?
ret
:
std
::
vector
<
framework
::
LoDTensor
>
();
}
inline
size_t
Size
()
const
{
return
queue_
->
Size
();
}
inline
size_t
Cap
()
const
{
return
queue_
->
Cap
();
}
inline
bool
IsClosed
()
const
{
return
queue_
->
IsClosed
();
}
inline
void
Close
()
{
queue_
->
Close
();
}
private:
std
::
vector
<
framework
::
LoDTensor
>
PyArrayVecToLoDTensorVec
(
const
std
::
vector
<
PyArray
>&
py_array_vec
)
{
PADDLE_ENFORCE
(
dims_
.
size
()
==
py_array_vec
.
size
(),
"expected input tensor number %d but found %d"
,
dims_
.
size
(),
py_array_vec
.
size
());
size_t
i
=
0
;
if
(
py_array_vec
.
size
()
>
1
)
{
size_t
dim0
=
py_array_vec
[
0
].
shape
()[
0
];
for
(
size_t
j
=
1
;
j
<
py_array_vec
.
size
();
++
j
)
{
PADDLE_ENFORCE
(
dim0
==
py_array_vec
[
j
].
shape
()[
0
],
"0-dim of the %d-th input tensor is %d, but 0-dim of "
"the 0-th input tensor is %d"
,
j
,
py_array_vec
[
j
].
shape
()[
0
],
dim0
);
}
}
std
::
vector
<
framework
::
LoDTensor
>
lod_tensor_vec
;
lod_tensor_vec
.
reserve
(
py_array_vec
.
size
());
std
::
for_each
(
py_array_vec
.
begin
(),
py_array_vec
.
end
(),
[
&
](
const
PyArray
&
py_array
)
{
for
(
int64_t
j
=
1
;
j
<
dims_
[
i
].
size
();
++
j
)
{
PADDLE_ENFORCE
(
dims_
[
i
][
j
]
==
static_cast
<
int64_t
>
(
py_array
.
shape
()[
j
]),
"expected %d-dim of %d-th input tensor is %d but found %d"
,
j
,
i
,
dims_
[
i
][
j
],
py_array
.
shape
()[
j
]);
}
lod_tensor_vec
.
emplace_back
(
framework
::
LoDTensor
());
PyArrayToTensorVisitor
visitor
(
py_array
,
&
(
lod_tensor_vec
.
back
()));
boost
::
apply_visitor
(
visitor
,
place_
);
++
i
;
});
return
lod_tensor_vec
;
}
std
::
unique_ptr
<
PyBlockingQueue
<
std
::
vector
<
framework
::
LoDTensor
>>>
queue_
;
std
::
vector
<
framework
::
DDim
>
dims_
;
platform
::
Place
place_
;
};
class
PyArrayFeedQueueHolder
{
public:
PyArrayFeedQueueHolder
()
{}
void
InitOnce
(
size_t
capacity
,
const
std
::
vector
<
framework
::
DDim
>&
dims
,
const
platform
::
Place
&
place
)
{
PADDLE_ENFORCE
(
feeder_
==
nullptr
,
"PyArrayFeedQueueHolder::InitOnce() can only be called once"
);
feeder_
.
reset
(
new
PyArrayFeedQueue
(
capacity
,
dims
,
place
));
}
std
::
shared_ptr
<
PyArrayFeedQueue
>
GetFeeder
()
{
return
feeder_
;
}
const
std
::
shared_ptr
<
PyArrayFeedQueue
>&
GetFeeder
()
const
{
return
feeder_
;
}
private:
std
::
shared_ptr
<
PyArrayFeedQueue
>
feeder_
;
};
}
// namespace reader
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/reader/py_blocking_queue.h
0 → 100644
浏览文件 @
697ba4b1
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <condition_variable> // NOLINT
#include <deque>
#include "Python.h"
#include "paddle/fluid/platform/enforce.h"
#include "pybind11/pybind11.h"
namespace
paddle
{
namespace
operators
{
namespace
reader
{
// PyBlockingQueue is designed for PyArrayFeedQueue
// PyBlockingQueue would release GIL of Python when
// the queue is full to avoid deadlock.
template
<
typename
T
>
class
PyBlockingQueue
{
public:
explicit
PyBlockingQueue
(
size_t
capacity
)
:
capacity_
(
capacity
),
closed_
(
false
)
{
PADDLE_ENFORCE_GT
(
capacity_
,
0
,
"The capacity of a reader::PyBlockingQueue must be greater than 0."
);
}
~
PyBlockingQueue
()
{
Close
();
}
bool
Send
(
const
T
&
elem
)
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
receive_cv_
.
notify_one
();
if
(
queue_
.
size
()
>=
capacity_
&&
(
!
closed_
))
{
pybind11
::
gil_scoped_release
release
;
send_cv_
.
wait
(
lock
,
[
&
]
{
return
queue_
.
size
()
<
capacity_
||
closed_
;
});
}
if
(
closed_
)
{
VLOG
(
5
)
<<
"WARNING: Sending an element to a closed reader::BlockingQueue."
;
return
false
;
}
PADDLE_ENFORCE_LT
(
queue_
.
size
(),
capacity_
);
queue_
.
push_back
(
elem
);
return
true
;
}
bool
Send
(
T
&&
elem
)
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
receive_cv_
.
notify_one
();
if
(
queue_
.
size
()
>=
capacity_
&&
(
!
closed_
))
{
pybind11
::
gil_scoped_release
release
;
send_cv_
.
wait
(
lock
,
[
&
]
{
return
queue_
.
size
()
<
capacity_
||
closed_
;
});
}
if
(
closed_
)
{
VLOG
(
5
)
<<
"WARNING: Sending an element to a closed reader::BlokcingQueue."
;
return
false
;
}
PADDLE_ENFORCE_LT
(
queue_
.
size
(),
capacity_
);
queue_
.
emplace_back
(
std
::
move
(
elem
));
return
true
;
}
bool
Receive
(
T
*
elem
)
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
send_cv_
.
notify_one
();
receive_cv_
.
wait
(
lock
,
[
&
]
{
return
!
queue_
.
empty
()
||
closed_
;
});
if
(
!
queue_
.
empty
())
{
PADDLE_ENFORCE_NOT_NULL
(
elem
);
*
elem
=
queue_
.
front
();
queue_
.
pop_front
();
return
true
;
}
else
{
PADDLE_ENFORCE
(
closed_
);
return
false
;
}
}
void
Close
()
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
closed_
=
true
;
send_cv_
.
notify_all
();
receive_cv_
.
notify_all
();
}
bool
IsClosed
()
const
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
return
closed_
;
}
size_t
Cap
()
const
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
return
capacity_
;
}
size_t
Size
()
const
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
return
queue_
.
size
();
}
private:
size_t
capacity_
;
bool
closed_
;
std
::
deque
<
T
>
queue_
;
mutable
std
::
mutex
mutex_
;
mutable
std
::
condition_variable
receive_cv_
;
mutable
std
::
condition_variable
send_cv_
;
};
}
// namespace reader
}
// namespace operators
}
// namespace paddle
paddle/fluid/pybind/pybind.cc
浏览文件 @
697ba4b1
...
...
@@ -34,6 +34,7 @@ limitations under the License. */
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/reader/py_array_feed_queue.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
...
...
@@ -297,6 +298,42 @@ All parameter, weight, gradient are variables in Paddle.
py
::
class_
<
framework
::
ReaderHolder
>
(
m
,
"Reader"
,
""
)
.
def
(
"reset"
,
&
framework
::
ReaderHolder
::
ReInit
);
using
PyArrayFeedQueue
=
::
paddle
::
operators
::
reader
::
PyArrayFeedQueue
;
using
PyArrayFeedQueueHolder
=
::
paddle
::
operators
::
reader
::
PyArrayFeedQueueHolder
;
using
PyArray
=
::
paddle
::
operators
::
reader
::
PyArray
;
py
::
class_
<
PyArrayFeedQueue
>
(
m
,
"PyArrayFeedQueue"
,
""
)
.
def
(
"enqueue"
,
[](
PyArrayFeedQueue
&
self
,
const
std
::
vector
<
PyArray
>
&
py_array_vec
)
{
return
self
.
Enqueue
(
py_array_vec
);
})
.
def
(
"enqueue"
,
[](
PyArrayFeedQueue
&
self
,
const
std
::
vector
<
framework
::
LoDTensor
>
&
lod_tensor_vec
)
{
return
self
.
Enqueue
(
lod_tensor_vec
);
})
.
def
(
"size"
,
[](
const
PyArrayFeedQueue
&
self
)
{
return
self
.
Size
();
})
.
def
(
"capacity"
,
[](
const
PyArrayFeedQueue
&
self
)
{
return
self
.
Cap
();
})
.
def
(
"close"
,
[](
PyArrayFeedQueue
&
self
)
{
return
self
.
Close
();
})
.
def
(
"is_closed"
,
[](
const
PyArrayFeedQueue
&
self
)
{
return
self
.
IsClosed
();
});
m
.
def
(
"init_py_array_feed_queue"
,
[](
Variable
&
var
,
size_t
capacity
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>
&
shapes
,
const
::
paddle
::
platform
::
Place
&
place
)
->
PyArrayFeedQueue
*
{
std
::
vector
<
DDim
>
dims
(
shapes
.
size
());
std
::
transform
(
shapes
.
begin
(),
shapes
.
end
(),
dims
.
begin
(),
[](
const
std
::
vector
<
int64_t
>
&
shape
)
{
return
make_ddim
(
shape
);
});
auto
*
holder
=
var
.
GetMutable
<
PyArrayFeedQueueHolder
>
();
holder
->
InitOnce
(
capacity
,
dims
,
place
);
return
holder
->
GetFeeder
().
get
();
},
py
::
return_value_policy
::
reference
);
py
::
class_
<
Scope
>
(
m
,
"Scope"
,
""
)
.
def
(
"var"
,
[](
Scope
&
self
,
const
std
::
string
&
name
)
->
Variable
*
{
...
...
@@ -463,10 +500,11 @@ All parameter, weight, gradient are variables in Paddle.
#ifdef PADDLE_WITH_DISTRIBUTE
.
def
(
"complete"
,
&
Executor
::
Complete
)
#endif
.
def
(
"run"
,
(
void
(
Executor
::*
)(
const
ProgramDesc
&
,
Scope
*
,
int
,
bool
,
bool
))
&
Executor
::
Run
);
.
def
(
"run"
,
[](
Executor
&
self
,
const
ProgramDesc
&
prog
,
Scope
*
scope
,
int
block_id
,
bool
create_local_scope
,
bool
create_vars
)
{
pybind11
::
gil_scoped_release
release
;
self
.
Run
(
prog
,
scope
,
block_id
,
create_local_scope
,
create_vars
);
});
m
.
def
(
"init_gflags"
,
framework
::
InitGflags
);
m
.
def
(
"init_glog"
,
framework
::
InitGLOG
);
m
.
def
(
"init_devices"
,
...
...
paddle/fluid/pybind/tensor_py.h
浏览文件 @
697ba4b1
...
...
@@ -146,7 +146,7 @@ void PyCPUTensorSetFromArray(
template
<
>
// This following specialization maps uint16_t in the parameter type to
// platform::float16.
void
PyCPUTensorSetFromArray
(
inline
void
PyCPUTensorSetFromArray
(
framework
::
Tensor
*
self
,
pybind11
::
array_t
<
uint16_t
,
pybind11
::
array
::
c_style
|
pybind11
::
array
::
forcecast
>
...
...
@@ -185,7 +185,7 @@ void PyCUDATensorSetFromArray(
template
<
>
// This following specialization maps uint16_t in the parameter type to
// platform::float16.
void
PyCUDATensorSetFromArray
(
inline
void
PyCUDATensorSetFromArray
(
framework
::
Tensor
*
self
,
pybind11
::
array_t
<
uint16_t
,
pybind11
::
array
::
c_style
|
pybind11
::
array
::
forcecast
>
...
...
@@ -224,7 +224,7 @@ void PyCUDAPinnedTensorSetFromArray(
template
<
>
// This following specialization maps uint16_t in the parameter type to
// platform::float16.
void
PyCUDAPinnedTensorSetFromArray
(
inline
void
PyCUDAPinnedTensorSetFromArray
(
framework
::
Tensor
*
self
,
pybind11
::
array_t
<
uint16_t
,
pybind11
::
array
::
c_style
|
pybind11
::
array
::
forcecast
>
...
...
python/paddle/fluid/layers/io.py
浏览文件 @
697ba4b1
...
...
@@ -24,7 +24,8 @@ from layer_function_generator import generate_layer_fn, templatedoc
__all__
=
[
'data'
,
'BlockGuardServ'
,
'ListenAndServ'
,
'Send'
,
'Recv'
,
'open_recordio_file'
,
'open_files'
,
'read_file'
,
'shuffle'
,
'batch'
,
'double_buffer'
,
'random_data_generator'
,
'Preprocessor'
,
'load'
'double_buffer'
,
'random_data_generator'
,
'py_array_reader'
,
'Preprocessor'
,
'load'
]
...
...
@@ -448,6 +449,61 @@ def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
return
monkey_patch_reader_methods
(
main_prog_var
)
# UNCHECK(zengjinle)
def
py_array_reader
(
capacity
,
shapes
,
lod_levels
,
dtypes
,
place
=
None
,
for_parallel
=
True
):
if
place
is
None
:
place
=
core
.
CPUPlace
()
if
not
isinstance
(
place
,
core
.
Place
):
new_place
=
core
.
Place
()
new_place
.
set_place
(
place
)
place
=
new_place
dtypes
=
[
convert_np_dtype_to_dtype_
(
dt
)
for
dt
in
dtypes
]
shape_concat
=
[]
ranks
=
[]
for
shape
in
shapes
:
shape_concat
.
extend
(
shape
)
ranks
.
append
(
len
(
shape
))
feeder_name
=
unique_name
(
'py_array_feed_queue'
)
var
=
global_scope
().
var
(
feeder_name
)
#feed_shapes = [shape[1:] for shape in shapes]
feed_queue
=
core
.
init_py_array_feed_queue
(
var
,
capacity
,
shapes
,
place
)
startup_blk
=
default_startup_program
().
current_block
()
startup_var
=
startup_blk
.
create_var
(
name
=
unique_name
(
'create_py_array_reader'
))
startup_blk
.
append_op
(
type
=
'create_py_array_reader'
,
outputs
=
{
'Out'
:
[
startup_var
]},
attrs
=
{
'shape_concat'
:
shape_concat
,
'lod_levels'
:
lod_levels
,
'ranks'
:
ranks
,
'feeder_name'
:
feeder_name
})
startup_var
.
desc
.
set_dtypes
(
dtypes
)
startup_var
.
persistable
=
True
main_prog_var
=
_copy_reader_var_
(
default_main_program
().
current_block
(),
startup_var
)
if
for_parallel
:
main_prog_var
=
parallel
(
reader
=
main_prog_var
)
return
monkey_patch_reader_methods
(
main_prog_var
),
feed_queue
def
open_files
(
filenames
,
shapes
,
lod_levels
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录