pybind.cc 65.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15
#include <algorithm>
16
#include <cstdlib>
C
chengduoZH 已提交
17
#include <map>
S
sneaxiy 已提交
18
#include <memory>
C
chengduoZH 已提交
19 20 21
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
22
#include <unordered_set>
C
chengduoZH 已提交
23 24
#include <utility>
#include <vector>
25

Y
Yi Wang 已提交
26 27 28
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
29
#include "paddle/fluid/framework/garbage_collector.h"
30
#include "paddle/fluid/framework/ir/alloc_continuous_space_for_grad_pass.h"
31
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
32 33 34
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/op_info.h"
36
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
37
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
38
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
39
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
40
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
41
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
42
#include "paddle/fluid/framework/version.h"
Y
Refine  
Yu Yang 已提交
43
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
44
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
D
dzhwinter 已提交
45
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
46
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
48
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
49
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
50
#include "paddle/fluid/platform/enforce.h"
51
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
52 53
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
54
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
55
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
56
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
58
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
59
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
60
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
61
#include "paddle/fluid/pybind/ir.h"
62

W
wopeizl 已提交
63
#ifndef _WIN32
D
dongdaxiang 已提交
64
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
65
#endif
66 67
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
68
#include "paddle/fluid/pybind/reader_py.h"
Y
Yu Yang 已提交
69
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
70
#include "paddle/fluid/pybind/tensor_py.h"
71
#include "paddle/fluid/string/to_string.h"
72

D
Dong Zhihong 已提交
73
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
74
#ifndef _WIN32
Y
Yi Wang 已提交
75
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
76
#endif
Y
Yi Wang 已提交
77 78
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
79 80
#endif

81 82 83 84
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/communicator_py.h"
#endif

M
minqiyang 已提交
85 86
#include "pybind11/stl.h"

87 88 89 90
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
91 92 93
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

94
namespace paddle {
95
namespace pybind {
96
bool IsCompiledWithCUDA() {
97
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
98 99 100 101 102 103
  return false;
#else
  return true;
#endif
}

104 105 106 107 108 109 110 111
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

112 113 114 115 116 117 118 119
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

120
bool IsCompiledWithBrpc() {
121
#ifndef PADDLE_WITH_DISTRIBUTE
122 123
  return false;
#endif
124 125 126 127 128 129

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
130 131
}

Y
update  
Yancey1989 已提交
132
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
133
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
134 135 136 137 138 139
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
140 141 142 143 144 145 146 147 148 149
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

150 151 152 153 154 155
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
156 157 158
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
159
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
160

161
  m.doc() = "C++ core of PaddlePaddle";
162

163 164 165 166
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

167
  BindException(&m);
Y
Yu Yang 已提交
168

169 170
  m.def("set_num_threads", &platform::SetNumThreads);

S
sneaxiy 已提交
171
  m.def(
S
sneaxiy 已提交
172
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
173 174 175 176
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
177 178 179
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

S
sneaxiy 已提交
180 181 182
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
183
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
184

185
  m.def("_set_fuse_parameter_group_size",
186
        &paddle::framework::ir::SetFuseParameterGroupsSize);
187
  m.def("_set_fuse_parameter_memory_size",
188
        &paddle::framework::ir::SetFuseParameterMemorySize);
189

S
sneaxiy 已提交
190 191 192
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

193 194 195 196 197 198 199
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

200
  BindImperative(&m);
201

202
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
203
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
204 205
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
206
      .def("_get_dims",
207
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
208
      .def("_set_dims",
Q
qijun 已提交
209
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
210
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
211
           })
Y
yuyang18 已提交
212
      .def("_set_layout",
D
dzhwinter 已提交
213 214 215
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
216
      .def("_alloc_float",
D
dzhwinter 已提交
217
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
218
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
219
           })
Y
yuyang18 已提交
220
      .def("_alloc_float",
Y
Yu Yang 已提交
221
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
222
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
223
           })
Y
yuyang18 已提交
224
      .def("_alloc_int",
Y
Yu Yang 已提交
225
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
226
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
227
           })
Y
yuyang18 已提交
228
      .def("_alloc_int",
D
dzhwinter 已提交
229
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
230
             self.mutable_data<int>(place);
Q
qijun 已提交
231
           })
Y
yuyang18 已提交
232
      .def("_alloc_int",
C
chengduoZH 已提交
233 234 235
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
236
      .def("_alloc_float",
C
chengduoZH 已提交
237 238 239
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Z
Zeng Jinle 已提交
240
      .def("_clear", &Tensor::clear)
Y
Yu Yang 已提交
241 242
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
243
      .def("set", PyCPUTensorSetFromArray<double>)
244
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
245
      .def("set", PyCPUTensorSetFromArray<bool>)
246
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
247
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
248
      .def("set", PyCPUTensorSetFromArray<int8_t>)
249
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
250 251
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
252
      .def("set", PyCUDATensorSetFromArray<double>)
253
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
254
      .def("set", PyCUDATensorSetFromArray<bool>)
255
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
256
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
257
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
258 259 260 261 262 263
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
264
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
265
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
266
#endif
267
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
268 269 270 271
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
272
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
273
      .def("_dtype", [](Tensor &self) { return self.type(); })
274 275 276 277 278 279
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
280

X
Xin Pan 已提交
281 282 283 284 285 286 287 288 289
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

290 291
    For example, a LoDTensor X can look like the example below. It contains
    2 sequences. The first has length 2 and the second has length 3, as
Z
Zeng Jinle 已提交
292
    described by x.lod.
X
Xin Pan 已提交
293

Z
Zeng Jinle 已提交
294 295 296
    The first tensor dimension 5=2+3 is calculated from LoD if it's available.
    It means the total number of sequence element. In X, each element has 2
    columns, hence [5, 2].
X
Xin Pan 已提交
297

Z
Zeng Jinle 已提交
298
    x.lod  = [[2, 3]]
299

Z
Zeng Jinle 已提交
300
    x.data = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]
X
Xin Pan 已提交
301

Z
Zeng Jinle 已提交
302
    x.shape = [5, 2]
X
Xin Pan 已提交
303

Z
Zeng Jinle 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
    LoD can have multiple levels (for example, a paragraph can have multiple
    sentences and a sentence can have multiple words). In the following
    LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
    first sequence length is 2 (has 2 sub-sequences), the second one's
    length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
    respectively. And the second sequence's 1 sub-sequence has length 3.

    y.lod = [[2 1], [2 2 3]]

    y.shape = [2+2+3, ...]

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
321 322 323 324 325 326 327 328 329 330 331 332

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.
        )DOC")
333
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
334 335 336 337 338 339 340 341 342 343 344 345 346 347
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
348
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
349 350 351 352 353
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
354
      .def("set_lod",
355
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
356
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
357
             LoD new_lod;
358 359
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
360 361
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
362
             self.set_lod(new_lod);
S
sneaxiy 已提交
363 364 365 366 367 368
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
Z
Zeng Jinle 已提交
369 370 371 372 373 374 375 376 377 378

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
S
sneaxiy 已提交
379
           )DOC")
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
395 396 397 398
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
399
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
400 401
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
402 403

           Args:
404
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
Z
Zeng Jinle 已提交
405 406 407 408 409 410 411 412 413 414

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
S
sneaxiy 已提交
415
           )DOC")
416 417 418 419 420 421 422 423
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
424 425 426 427 428 429
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
Z
Zeng Jinle 已提交
430 431 432 433 434 435 436 437 438 439 440

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
441
           )DOC")
G
gongweibao 已提交
442
      // Set above comments of set_lod.
443 444 445 446 447 448 449 450
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
451 452 453 454 455
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
456
               out (List[List[int]): the sequence lengths.
Z
Zeng Jinle 已提交
457 458 459 460 461 462 463 464 465 466 467

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
468 469 470 471 472 473 474 475 476 477 478 479
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
Z
Zeng Jinle 已提交
480 481 482 483 484 485 486 487 488 489 490

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
491 492 493 494 495 496 497
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
498 499 500 501 502 503
           )DOC")
      .def("__str__", [](const LoDTensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
D
dangqingqing 已提交
504

Q
qijun 已提交
505 506 507 508 509 510 511 512 513 514 515
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
516 517
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
518 519
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
520 521 522 523 524 525 526 527 528
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
529
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
530
      .def("rows", [](SelectedRows &self) {
531 532 533 534 535
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
536
      });
Q
qijun 已提交
537

538
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
539 540 541

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
542
      .def(py::init<>())
543
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
544
      .def("set_int",
545 546
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
547 548 549 550 551 552 553
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
554
      .def("get_tensor",
555 556
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
557 558
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
559 560 561
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
562 563 564 565 566
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
567 568 569
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
570
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
571 572 573 574 575
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
576
#endif
Y
Refine  
Yu Yang 已提交
577 578 579 580 581
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
582
           py::return_value_policy::reference);
583

S
sneaxiy 已提交
584
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
585

S
sneaxiy 已提交
586 587 588 589
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
590

S
sneaxiy 已提交
591 592
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
593
      .def("push",
S
sneaxiy 已提交
594
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
595
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
596
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
597
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
598
           })
S
sneaxiy 已提交
599 600 601 602
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
603

S
sneaxiy 已提交
604
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
605 606
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
Q
Qiao Longfei 已提交
607
          VLOG(1) << "init_lod_tensor_blocking_queue";
Q
Qiao Longfei 已提交
608 609 610 611
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
612
        py::return_value_policy::copy);
S
sneaxiy 已提交
613

S
sneaxiy 已提交
614
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

628
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
629 630 631 632 633 634
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
635 636
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
637
      .def("var",
638
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
639
             return self.Var(name);
Y
Yu Yang 已提交
640
           },
S
sneaxiy 已提交
641 642
           py::arg("name"),
           R"DOC(
643
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
644

645
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
646
           current scope, the variable would be created. Otherwise,
647
           return the existing variable.
S
sneaxiy 已提交
648 649

           Args:
650 651
               name (str): the variable name.

S
sneaxiy 已提交
652
           Returns:
653
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
654 655 656 657
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
658
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
659
           its parent scope. Return None if not found.
660

S
sneaxiy 已提交
661 662
           Args:
               name (str): the variable name.
663

S
sneaxiy 已提交
664
           Returns:
665
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
666
           )DOC",
667
           py::return_value_policy::reference)
668
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
669 670 671 672 673 674
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
675
           py::return_value_policy::reference)
S
sneaxiy 已提交
676 677 678
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
679 680
           )DOC")
      .def("_kids", &Scope::kids);
681

S
sneaxiy 已提交
682 683 684 685 686 687
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
688 689
        R"DOC(
        Create a new scope.
690

S
sneaxiy 已提交
691 692 693
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
694 695
        py::return_value_policy::reference);

Y
Yu Yang 已提交
696 697
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
698 699
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
700 701 702 703 704 705 706 707 708 709
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
710 711
    return ret_values;
  });
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
728
  m.def("prune", [](const ProgramDesc &origin,
729
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
730
    ProgramDesc prog_with_targets(origin);
731
    for (const auto &t : targets) {
732
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
733
    }
734
    proto::ProgramDesc pruned_desc;
735
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
736
    return new ProgramDesc(pruned_desc);
737
  });
738 739 740 741
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
742 743 744
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
745 746
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
747
  // clang-format off
Y
Yu Yang 已提交
748
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
749 750
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
751
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
752 753 754
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
755
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
756
                      -> paddle::platform::DeviceContext* {
757
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
758
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
759
#else
Q
qijun 已提交
760
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
761
#endif
C
chengduoZH 已提交
762 763 764 765 766 767 768 769 770 771 772
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
773
// clang-format on
P
peizhilin 已提交
774
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
775 776
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
777 778 779 780
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
    CUDAPlace is a descriptor of a device. It represents a GPU, and each CUDAPlace
    has a dev_id to indicate the number of cards represented by the current CUDAPlace.
    The memory of CUDAPlace with different dev_id is not accessible.
L
lujun 已提交
781 782 783 784

    Examples:
        .. code-block:: python

785
          import paddle.fluid as fluid
L
lujun 已提交
786 787
          gpu_place = fluid.CUDAPlace(0)

788
        )DOC")
S
sneaxiy 已提交
789 790 791
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
816 817
             new (&self) platform::CUDAPlace(dev_id);
#else
818 819 820 821 822 823 824 825 826
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
827 828
#endif
           })
S
sneaxiy 已提交
829 830 831 832 833 834
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
835
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
836

837 838 839
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
    CPUPlace is a descriptor of a device. It represents a CPU, and the memory
    CPUPlace can be accessed by CPU.
L
lujun 已提交
840 841 842 843

    Examples:
        .. code-block:: python

844
          import paddle.fluid as fluid
L
lujun 已提交
845 846
          cpu_place = fluid.CPUPlace()

847
        )DOC")
848
      .def(py::init<>())
S
sneaxiy 已提交
849 850 851 852 853 854
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
855
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
856

857 858 859
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
    CUDAPinnedPlace is a descriptor of a device. The memory of CUDAPinnedPlace
    can be accessed by GPU and CPU.
L
lujun 已提交
860 861 862 863

    Examples:
        .. code-block:: python

864
          import paddle.fluid as fluid
L
lujun 已提交
865 866
          place = fluid.CUDAPinnedPlace()

867
        )DOC")
S
sneaxiy 已提交
868
      .def("__init__",
S
sneaxiy 已提交
869
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
870 871 872
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
873
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
874
           })
S
sneaxiy 已提交
875 876 877 878 879 880 881 882
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
883 884
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
885 886
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
887 888 889 890 891
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
892 893
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
894 895 896 897 898 899
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
900 901 902 903
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
904 905
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
906 907 908 909 910
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
911
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
912
             self = gpu_place;
C
chengduoZH 已提交
913 914
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
915 916
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
917
      });
Y
Yu Yang 已提交
918

Y
Yu Yang 已提交
919 920 921
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
922
                    proto::OpDesc desc;
Y
Yu Yang 已提交
923 924 925 926 927
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
928
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
929
                  })
930
      .def("run",
931
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
932 933 934
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
935
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
936 937 938 939 940
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
941 942 943 944 945 946 947
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
948 949
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
950
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
951
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
952 953 954 955
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
956

957 958 959
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

F
fengjiayi 已提交
960
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
961
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
962
      .def("close", &Executor::Close)
963 964 965 966 967 968 969 970 971 972 973 974 975 976
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
              std::map<std::string, LoDTensor *> *fetch_targets,
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
G
guru4elephant 已提交
977 978 979 980 981 982 983 984
      .def("run_cached_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
985 986
      .def("prepare_ctx_cache", &Executor::PrepareCtxCache,
           py::call_guard<py::gil_scoped_release>())
987 988
      .def("create_variables", &Executor::CreateVariables,
           py::call_guard<py::gil_scoped_release>())
S
sneaxiy 已提交
989
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
990 991
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
992
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
993 994
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
995
      });
S
sneaxiy 已提交
996

D
dzhwinter 已提交
997
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
998
  m.def("init_glog", framework::InitGLOG);
999
  m.def("init_dgc", framework::InitDGC);
X
Xin Pan 已提交
1000 1001
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
1002

1003
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
1004
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1005
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1006
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1007
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1008 1009 1010 1011 1012 1013
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1014

1015
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
1016
  m.def("get_fetch_variable", framework::GetFetchVariable);
1017
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1018

X
Xin Pan 已提交
1019 1020
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1021 1022 1023 1024 1025
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
1026

Y
Yu Yang 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1036 1037 1038 1039 1040
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
    Array of LoDTensor.

    Examples:
        .. code-block:: python
1041

Z
Zeng Jinle 已提交
1042 1043 1044 1045
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1046 1047
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1058 1059 1060 1061 1062 1063
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
           )DOC");
Y
Yu Yang 已提交
1078

D
dzhwinter 已提交
1079 1080 1081
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
1082
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1083
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1084
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1085

P
peizhilin 已提交
1086
#ifndef _WIN32
D
dangqingqing 已提交
1087 1088 1089
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1090
#endif
P
peizhilin 已提交
1091
#endif
Y
Yu Yang 已提交
1092

1093 1094 1095 1096
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1097
      .value("kAll", platform::ProfilerState::kAll)
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1111
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1112
  m.def("reset_profiler", platform::ResetProfiler);
1113
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1114 1115 1116
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1117

1118 1119
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1120
      .def("has", &ir::Pass::Has)
1121 1122 1123
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1124
           })
1125
      .def(
1126
          "set",
1127 1128 1129
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1130 1131
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
1132 1133
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1134
        self.Apply(graph.get());
F
flame 已提交
1135
      });
1136

X
fix  
Xin Pan 已提交
1137 1138
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1153
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1154

Y
yuyang18 已提交
1155
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1156 1157 1158 1159
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1160 1161 1162
    Examples:
        .. code-block:: python

1163
          import paddle.fluid as fluid
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
          x = fluid.layers.data(name='x', shape=[13], dtype='float32')
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.fc(input=x, size=1, act=None)

          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
          avg_loss = fluid.layers.mean(cost)

          sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
          sgd_optimizer.minimize(avg_loss)

C
chengduo 已提交
1174 1175 1176
          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

1177 1178
          train_exe = fluid.ParallelExecutor(use_cuda=False,
                                             loss_name=avg_loss.name,
C
chengduo 已提交
1179 1180
                                             exec_strategy=exec_strategy)

C
chengduo 已提交
1181 1182
        )DOC");

Y
yuyang18 已提交
1183
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1184 1185 1186 1187 1188
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1199
      .def_property(
1200 1201 1202 1203
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1204 1205 1206 1207
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1208 1209 1210 1211 1212
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1213 1214 1215
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
1216 1217
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
1218 1219 1220 1221 1222 1223 1224
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1225 1226 1227 1228
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
1229 1230
                because the temp variable's shape maybe the same between two iterations.
                Default 1.
C
chengduo 已提交
1231 1232 1233 1234 1235 1236

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1237
              )DOC")
Q
Qiao Longfei 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
                user call pe.run() in python
              )DOC")
1249 1250 1251 1252 1253
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1254

Y
yuyang18 已提交
1255
  exec_strategy.def_property(
Y
yuyang18 已提交
1256 1257 1258 1259 1260 1261 1262
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1263 1264
      });

C
chengduo 已提交
1265 1266 1267 1268
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1269 1270 1271
    Examples:
        .. code-block:: python

F
flame 已提交
1272 1273 1274
            import paddle.fluid as fluid
            build_strategy = fluid.BuildStrategy()
            build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
C
chengduo 已提交
1275
)DOC");
Y
yuyang18 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1292
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1293
            self.reduce_ = strategy;
C
chengduo 已提交
1294 1295
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
F
flame 已提交
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
                'AllReduce' and 'Reduce'. If you want that all the parameters'
                optimization are done on all devices independently, you should choose 'AllReduce';
                if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                to different devices, and then broadcast the optimized parameter to other devices.
                In some models, `Reduce` is faster. Default 'AllReduce'.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
                  )DOC")
Y
yuyang18 已提交
1309 1310 1311 1312 1313
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1314
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1315
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1316 1317
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
F
flame 已提交
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
                ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                Default 'CoeffNumDevice'.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.gradient_scale_strategy = True
                   )DOC")
Y
yuyang18 已提交
1330 1331 1332 1333
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1334
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1335
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1336 1337
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
F
flame 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
                writing the SSA Graph to file in the form of graphviz.
                It is useful for debugging. Default ""

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.debug_graphviz_path = ""
                    )DOC")
S
sneaxiy 已提交
1348 1349 1350 1351 1352 1353
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1354
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1355 1356
            self.enable_sequential_execution_ = b;
          },
F
flame 已提交
1357 1358 1359 1360 1361 1362 1363 1364 1365
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
1366 1367 1368 1369 1370 1371
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1372
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1373 1374
            self.remove_unnecessary_lock_ = b;
          },
F
flame 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
1384 1385 1386 1387
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
1388 1389 1390
#ifdef WIN32
            PADDLE_THROW("Windows has NO support to distribute mode.");
#endif
1391 1392
            self.num_trainers_ = num_trainers;
          })
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
      .def_property("use_hierarchical_allreduce_",
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
      .def_property("hierarchical_allreduce_inter_nranks_",
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })
      .def_property("hierarchical_allreduce_exter_nranks_",
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_exter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_exter_nranks_ = nranks;
                    })

C
chengduo 已提交
1433 1434 1435 1436 1437 1438
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1439
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1440 1441 1442
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
F
flame 已提交
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
                to fuse elementwise_add_op and activation_op,
                it may make the execution faster. Default False

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
F
flame 已提交
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
                Default False.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
      .def_property(
          "fuse_broadcast_ops",
          [](const BuildStrategy &self) { return self.fuse_broadcast_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_broadcast_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_broadcast_op indicates whether
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
                      for NCCLReduce operations for a period of time. Default False.)DOC")
C
chengduo 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_all_optimizer_ops_;
                    },
                    [](BuildStrategy &self, bool b) {
                      PADDLE_ENFORCE(!self.IsFinalized(),
                                     "BuildStrategy is finlaized.");
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.sync_batch_norm_ = b;
          },
          R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.

                Current implementation doesn't support FP16 training and CPU.
                And only synchronous on one machine, not all machines.

F
flame 已提交
1511 1512 1513 1514 1515 1516 1517 1518 1519
                Default False

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
1520 1521 1522
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
1523
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; },
1524
          R"DOC(The type is BOOL, memory opitimize aims to save total memory
1525
                consumption, set to True to enable it.
1526 1527

                Memory Optimize is our experimental feature, some variables
1528 1529 1530
                may be reused/removed by optimize strategy. If you need to
                fetch some variable values when using this feature, please
                set the persistable property of the variables to True.
1531

1532
                Default False)DOC")
1533 1534 1535
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
1536 1537 1538 1539 1540 1541 1542 1543 1544
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
              PADDLE_THROW("Windows has NO support to distribute mode.");
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
1545 1546 1547
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
1548
      .def_property(
D
dzhwinter 已提交
1549 1550 1551
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
1552 1553 1554 1555 1556 1557 1558
      .def_property("_use_legacy_memory_optimize_strategy",
                    [](const BuildStrategy &self) {
                      return self.use_legacy_memory_optimize_strategy_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.use_legacy_memory_optimize_strategy_ = b;
                    })
C
chengduo 已提交
1559 1560 1561 1562
      .def_property(
          "fuse_all_reduce_ops",
          [](const BuildStrategy &self) { return self.fuse_all_reduce_ops_; },
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
1563 1564 1565 1566 1567 1568 1569
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
1570 1571 1572 1573
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
1574 1575 1576 1577 1578 1579 1580 1581 1582
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
1583
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1584
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1585 1586 1587 1588 1589
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1590 1591

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
1592
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
1593
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
1594
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1595 1596 1597 1598
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1599 1600 1601 1602 1603
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
1604 1605 1606
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
1607 1608 1609 1610
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1611 1612 1613 1614 1615 1616
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1617

1618
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1619
  BindAsyncExecutor(&m);
D
dongdaxiang 已提交
1620
  BindFleetWrapper(&m);
W
wopeizl 已提交
1621
#ifndef _WIN32
D
dongdaxiang 已提交
1622
  BindNCCLWrapper(&m);
W
wopeizl 已提交
1623
#endif
F
flame 已提交
1624 1625
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1626
  BindInferenceApi(&m);
1627
  BindDataset(&m);
1628 1629 1630
#ifdef PADDLE_WITH_DISTRIBUTE
  BindCommunicator(&m);
#endif
L
Luo Tao 已提交
1631
}
1632
}  // namespace pybind
1633
}  // namespace paddle