pybind.cc 60.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

24
#include "paddle/fluid/framework/details/alloc_continuous_space_for_grad_pass.h"
Y
Yi Wang 已提交
25 26 27
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
28
#include "paddle/fluid/framework/garbage_collector.h"
29
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
30 31 32
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
33
#include "paddle/fluid/framework/op_info.h"
34
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
35
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
37
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
38
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
39
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
40
#include "paddle/fluid/framework/version.h"
41
#include "paddle/fluid/imperative/layer.h"
M
minqiyang 已提交
42
#include "paddle/fluid/imperative/profiler.h"
Y
Refine  
Yu Yang 已提交
43
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
44
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
D
dzhwinter 已提交
45
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
46
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
48
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
49
#include "paddle/fluid/platform/enforce.h"
50
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
51 52
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
53
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
54
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
55
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
56
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
57
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
58
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
59
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
60
#include "paddle/fluid/pybind/ir.h"
W
wopeizl 已提交
61
#ifndef _WIN32
D
dongdaxiang 已提交
62
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
63
#endif
64 65
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
66
#include "paddle/fluid/pybind/reader_py.h"
Y
Yu Yang 已提交
67
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
68
#include "paddle/fluid/pybind/tensor_py.h"
69
#include "paddle/fluid/string/to_string.h"
70

D
Dong Zhihong 已提交
71
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
72
#ifndef _WIN32
Y
Yi Wang 已提交
73
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
74
#endif
Y
Yi Wang 已提交
75 76
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
77 78
#endif

M
minqiyang 已提交
79 80
#include "pybind11/stl.h"

81 82 83 84
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
85 86 87
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

88
namespace paddle {
89
namespace pybind {
90
bool IsCompiledWithCUDA() {
91
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
92 93 94 95 96 97
  return false;
#else
  return true;
#endif
}

98 99 100 101 102 103 104 105
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

106 107 108 109 110 111 112 113
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

114
bool IsCompiledWithBrpc() {
115
#ifndef PADDLE_WITH_DISTRIBUTE
116 117
  return false;
#endif
118 119 120 121 122 123

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
124 125
}

Y
update  
Yancey1989 已提交
126
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
127
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
128 129 130 131 132 133
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
134 135 136 137 138 139 140 141 142 143
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

144
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
145 146 147
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
148
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
149

150
  m.doc() = "C++ core of PaddlePaddle";
151

152 153 154 155
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

156
  BindException(&m);
Y
Yu Yang 已提交
157

S
sneaxiy 已提交
158
  m.def(
S
sneaxiy 已提交
159
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
160 161 162 163
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
164 165 166
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

S
sneaxiy 已提交
167 168 169
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
170
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
171

172 173 174 175 176
  m.def("_set_fuse_parameter_group_size",
        &paddle::framework::details::SetFuseParameterGroupsSize);
  m.def("_set_fuse_parameter_memory_size",
        &paddle::framework::details::SetFuseParameterMemorySize);

S
sneaxiy 已提交
177 178 179
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

180 181 182 183 184 185 186
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

M
minqiyang 已提交
187
  m.def("start_imperative_gperf_profiler",
M
minqiyang 已提交
188 189
        []() { imperative::StartProfile(); });

M
minqiyang 已提交
190
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });
M
minqiyang 已提交
191

M
minqiyang 已提交
192
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
193 194 195 196 197 198 199 200
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>, const paddle::platform::CPUPlace,
                   bool, bool>())
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>,
                   const paddle::platform::CUDAPlace, bool, bool>())
201
      .def("_run_backward",
X
Xin Pan 已提交
202
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
203
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
204
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
205
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
206
      .def("_grad_ivar",
M
minqiyang 已提交
207
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
208
           py::return_value_policy::reference)
M
minqiyang 已提交
209
      .def("_copy_to",
P
Paddle CI 已提交
210
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
211 212 213 214 215
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
216
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
217
      .def("_copy_to",
P
Paddle CI 已提交
218
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
219 220 221 222 223
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
224
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
225
      .def("value", [](const imperative::VarBase &self) { return self.var_; },
M
minqiyang 已提交
226
           py::return_value_policy::reference)
227 228 229
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
      .def_property_readonly("shape", &imperative::VarBase::Shape)
M
minqiyang 已提交
230
      .def_property_readonly("dtype", &imperative::VarBase::DataType)
231 232 233 234
      .def_property("persistable", &imperative::VarBase::IsPersistable,
                    &imperative::VarBase::SetPersistable)
      .def_property("stop_gradient", &imperative::VarBase::IsStopGradient,
                    &imperative::VarBase::SetStopGradient);
235

236
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
237
      .def(py::init<const std::string &>())
238
      .def("register_backward_hooks",
239 240 241 242 243
           [](imperative::OpBase &self, const py::object &callable,
              bool front = false) {
             self.RegisterBackwardHooks(callable, front);
           },
           py::arg("callable"), py::arg("front") = false)
M
minqiyang 已提交
244 245 246 247 248 249 250 251 252 253
      .def_property("_trace_id",
                    [](const imperative::OpBase &self) {
                      pybind11::gil_scoped_release release;
                      return self.trace_id_;
                    },
                    [](imperative::OpBase &self, int trace_id) {
                      pybind11::gil_scoped_release release;
                      self.trace_id_ = trace_id;
                    },
                    py::return_value_policy::reference)
X
Xin Pan 已提交
254 255 256 257 258 259
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
260
          py::return_value_policy::reference)
X
polish  
Xin Pan 已提交
261
      .def_property_readonly("type", &imperative::OpBase::Type)
X
Xin Pan 已提交
262 263 264 265 266 267
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
268 269
          py::return_value_policy::reference);

X
Xin Pan 已提交
270
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
271
  layer.def(py::init<>())
X
Xin Pan 已提交
272 273 274
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
275
      });
X
Xin Pan 已提交
276

X
polish  
Xin Pan 已提交
277
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
278
      .def(py::init<>())
X
Xin Pan 已提交
279 280
      .def_static(
          "apply",
X
Xin Pan 已提交
281
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
282
              -> std::vector<imperative::VarBase *> {
283 284 285 286 287 288 289 290 291 292 293
                auto ret_vars = imperative::PyLayer::Apply(func_id, inputs);
                std::vector<imperative::VarBase *> outputs;
                outputs.reserve(ret_vars.size());
                for (size_t i = 0U; i != ret_vars.size(); ++i) {
                  framework::Variable *v = ret_vars[i];
                  // TODO(minqiyang): use unique_name generator to set a name
                  outputs.emplace_back(
                      new imperative::VarBase("", v, nullptr, true));
                }

                return outputs;
X
Xin Pan 已提交
294 295
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
296 297 298 299 300
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
301

302
  BindImperative(&m);
303

304 305 306
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
S
sneaxiy 已提交
307 308
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
309
      .def("_get_dims",
310
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
311
      .def("_set_dims",
Q
qijun 已提交
312
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
313
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
314
           })
Y
yuyang18 已提交
315
      .def("_set_layout",
D
dzhwinter 已提交
316 317 318
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
319
      .def("_alloc_float",
D
dzhwinter 已提交
320
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
321
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
322
           })
Y
yuyang18 已提交
323
      .def("_alloc_float",
Y
Yu Yang 已提交
324
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
325
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
326
           })
Y
yuyang18 已提交
327
      .def("_alloc_int",
Y
Yu Yang 已提交
328
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
329
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
330
           })
Y
yuyang18 已提交
331
      .def("_alloc_int",
D
dzhwinter 已提交
332
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
333
             self.mutable_data<int>(place);
Q
qijun 已提交
334
           })
Y
yuyang18 已提交
335
      .def("_alloc_int",
C
chengduoZH 已提交
336 337 338
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
339
      .def("_alloc_float",
C
chengduoZH 已提交
340 341 342
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
343 344
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
345
      .def("set", PyCPUTensorSetFromArray<double>)
346
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
347
      .def("set", PyCPUTensorSetFromArray<bool>)
348
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
349
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
350
      .def("set", PyCPUTensorSetFromArray<int8_t>)
351
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
352 353
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
354
      .def("set", PyCUDATensorSetFromArray<double>)
355
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
356
      .def("set", PyCUDATensorSetFromArray<bool>)
357
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
358
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
359
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
360 361 362 363 364 365
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
366
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
367
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
368
#endif
369
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
370 371 372 373
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
374
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
375 376
      .def("_dtype", [](Tensor &self) { return self.type(); })
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference);
Y
Yu Yang 已提交
377

X
Xin Pan 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
391
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
392
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
393
     columns, hence [5, 2].
X
Xin Pan 已提交
394 395 396

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
397 398
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
422 423
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
424 425 426 427 428 429 430 431 432 433 434 435 436 437
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
438
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
439 440 441 442 443
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
444
      .def("set_lod",
445
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
446
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
447
             LoD new_lod;
448 449
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
450 451
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
452
             self.set_lod(new_lod);
S
sneaxiy 已提交
453 454 455 456 457 458 459
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
           )DOC")
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
475 476 477 478
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
479
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
480 481
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
482 483

           Args:
484
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
S
sneaxiy 已提交
485
           )DOC")
486 487 488 489 490 491 492 493
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
494 495 496 497 498 499 500
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
           )DOC")
G
gongweibao 已提交
501
      // Set above comments of set_lod.
502 503 504 505 506 507 508 509
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
510 511 512 513 514
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
515
               out (List[List[int]): the sequence lengths.
S
sneaxiy 已提交
516 517 518 519 520 521 522 523 524 525 526 527
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
W
wopeizl 已提交
528 529 530 531 532 533 534
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
S
sneaxiy 已提交
535
           )DOC");
D
dangqingqing 已提交
536

Q
qijun 已提交
537 538 539 540 541 542 543 544 545 546 547
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
548 549
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
550 551
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
552 553 554 555 556 557 558 559 560
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
561
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
562
      .def("rows", [](SelectedRows &self) {
563 564 565 566 567
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
568
      });
Q
qijun 已提交
569

570
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
571 572 573

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
574
      .def(py::init<>())
575
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
576
      .def("set_int",
577 578
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
579 580 581 582 583 584 585
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
586
      .def("get_tensor",
587 588
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
589 590
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
591 592 593
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
594 595 596 597 598
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
599 600 601
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
602
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
603 604 605 606 607
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
608
#endif
Y
Refine  
Yu Yang 已提交
609 610 611 612 613
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
614
           py::return_value_policy::reference);
615

S
sneaxiy 已提交
616
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
617

S
sneaxiy 已提交
618 619 620 621
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
622

S
sneaxiy 已提交
623 624
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
625
      .def("push",
S
sneaxiy 已提交
626
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
627
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
628
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
629
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
630
           })
S
sneaxiy 已提交
631 632 633 634
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
635

S
sneaxiy 已提交
636
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
637 638
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
Q
Qiao Longfei 已提交
639
          VLOG(1) << "init_lod_tensor_blocking_queue";
Q
Qiao Longfei 已提交
640 641 642 643
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
644
        py::return_value_policy::copy);
S
sneaxiy 已提交
645

S
sneaxiy 已提交
646
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
666 667
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
668
      .def("var",
669
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
670
             return self.Var(name);
Y
Yu Yang 已提交
671
           },
S
sneaxiy 已提交
672 673
           py::arg("name"),
           R"DOC(
674
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
675

676
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
677
           current scope, the variable would be created. Otherwise,
678
           return the existing variable.
S
sneaxiy 已提交
679 680

           Args:
681 682
               name (str): the variable name.

S
sneaxiy 已提交
683
           Returns:
684
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
685 686 687 688
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
689
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
690
           its parent scope. Return None if not found.
691

S
sneaxiy 已提交
692 693
           Args:
               name (str): the variable name.
694

S
sneaxiy 已提交
695
           Returns:
696
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
697
           )DOC",
698
           py::return_value_policy::reference)
699
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
700 701 702 703 704 705
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
706
           py::return_value_policy::reference)
S
sneaxiy 已提交
707 708 709
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
710 711
           )DOC")
      .def("_kids", &Scope::kids);
712

S
sneaxiy 已提交
713 714 715 716 717 718
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
719 720
        R"DOC(
        Create a new scope.
721

S
sneaxiy 已提交
722 723 724
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
725 726
        py::return_value_policy::reference);

Y
Yu Yang 已提交
727 728
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
729 730
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
731 732 733 734 735 736 737 738 739 740
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
741 742
    return ret_values;
  });
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
759
  m.def("prune", [](const ProgramDesc &origin,
760
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
761
    ProgramDesc prog_with_targets(origin);
762
    for (const auto &t : targets) {
763
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
764
    }
765
    proto::ProgramDesc pruned_desc;
766
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
767
    return new ProgramDesc(pruned_desc);
768
  });
769 770 771 772
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
773 774 775
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
776 777
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
778
  // clang-format off
Y
Yu Yang 已提交
779
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
780 781
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
782
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
783 784 785
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
786
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
787
                      -> paddle::platform::DeviceContext* {
788
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
789
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
790
#else
Q
qijun 已提交
791
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
792
#endif
C
chengduoZH 已提交
793 794 795 796 797 798 799 800 801 802 803
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
804
// clang-format on
P
peizhilin 已提交
805
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
806 807
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
808 809 810 811 812
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
    CUDAPlace is a descriptor of a device. It represents a GPU, and each CUDAPlace
    has a dev_id to indicate the number of cards represented by the current CUDAPlace.
    The memory of CUDAPlace with different dev_id is not accessible.
        )DOC")
S
sneaxiy 已提交
813 814 815 816 817 818 819 820 821 822 823 824
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
S
sneaxiy 已提交
825 826 827 828 829 830
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
831
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
832

833 834 835 836
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
    CPUPlace is a descriptor of a device. It represents a CPU, and the memory
    CPUPlace can be accessed by CPU.
        )DOC")
837
      .def(py::init<>())
S
sneaxiy 已提交
838 839 840 841 842 843
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
844
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
845

846 847 848 849
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
    CUDAPinnedPlace is a descriptor of a device. The memory of CUDAPinnedPlace
    can be accessed by GPU and CPU.
        )DOC")
S
sneaxiy 已提交
850
      .def("__init__",
S
sneaxiy 已提交
851
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
852 853 854
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
855
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
856
           })
S
sneaxiy 已提交
857 858 859 860 861 862 863 864
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
865 866
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
867 868
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
869 870 871 872 873
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
874 875
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
876 877 878 879 880 881
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
882 883 884 885
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
886 887
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
888 889 890 891 892
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
893
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
894
             self = gpu_place;
C
chengduoZH 已提交
895 896
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
897 898
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
899
      });
Y
Yu Yang 已提交
900

Y
Yu Yang 已提交
901 902 903
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
904
                    proto::OpDesc desc;
Y
Yu Yang 已提交
905 906 907 908 909
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
910
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
911
                  })
912
      .def("run",
913
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
914 915 916
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
917
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
918 919 920 921 922
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
923 924 925 926 927 928 929
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
930 931
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
932
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
933
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
934 935 936 937
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
938

F
fengjiayi 已提交
939
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
940
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
941
      .def("close", &Executor::Close)
D
dongdaxiang 已提交
942
      .def("run_from_dataset", &Executor::RunFromDataset)
S
sneaxiy 已提交
943
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
944 945
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
946
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
947 948
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
949
      });
S
sneaxiy 已提交
950

D
dzhwinter 已提交
951
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
952
  m.def("init_glog", framework::InitGLOG);
953
  m.def("init_dgc", framework::InitDGC);
X
Xin Pan 已提交
954 955
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
956

957
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
958
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
959
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
960
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
961
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
962 963 964 965 966 967
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
968

969
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
970
  m.def("get_fetch_variable", framework::GetFetchVariable);
971
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
972

X
Xin Pan 已提交
973 974
  m.def("_is_program_version_supported", IsProgramVersionSupported);

975 976 977 978 979
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
980

Y
Yu Yang 已提交
981 982 983 984 985 986 987 988 989
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
990
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
991 992
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
993 994 995 996 997 998 999 1000 1001 1002
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1003 1004 1005 1006 1007 1008 1009
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
           py::arg("tensor"), "Append a LoDensor to LoDTensorArray.");
Y
Yu Yang 已提交
1010

D
dzhwinter 已提交
1011 1012 1013
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
1014
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1015
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1016
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1017

P
peizhilin 已提交
1018
#ifndef _WIN32
D
dangqingqing 已提交
1019 1020 1021
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1022
#endif
P
peizhilin 已提交
1023
#endif
Y
Yu Yang 已提交
1024

1025 1026 1027 1028
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1029
      .value("kAll", platform::ProfilerState::kAll)
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1043
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1044
  m.def("reset_profiler", platform::ResetProfiler);
1045
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1046 1047 1048
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1049

1050 1051
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1052
      .def("has", &ir::Pass::Has)
1053 1054 1055
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1056
           })
1057
      .def(
1058
          "set",
1059 1060 1061
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1062 1063
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
1064 1065
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1066
        self.Apply(graph.get());
F
flame 已提交
1067
      });
1068

X
fix  
Xin Pan 已提交
1069 1070
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1085
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1086

Y
yuyang18 已提交
1087
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1088 1089 1090 1091
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1103 1104 1105

        )DOC");

Y
yuyang18 已提交
1106
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1107 1108 1109 1110 1111
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1122
      .def_property(
1123 1124 1125 1126
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1127 1128 1129 1130
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1131 1132 1133 1134 1135
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1136 1137 1138 1139
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
1140 1141 1142 1143 1144 1145 1146
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1158
              )DOC")
Q
Qiao Longfei 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
                user call pe.run() in python
              )DOC")
1170 1171 1172 1173 1174
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1175

Y
yuyang18 已提交
1176
  exec_strategy.def_property(
Y
yuyang18 已提交
1177 1178 1179 1180 1181 1182 1183
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1184 1185
      });

C
chengduo 已提交
1186 1187 1188 1189
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1201
)DOC");
Y
yuyang18 已提交
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1218
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1219
            self.reduce_ = strategy;
C
chengduo 已提交
1220 1221 1222 1223 1224 1225 1226
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
1227 1228 1229 1230 1231
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1232
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1233
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1234 1235 1236 1237 1238 1239
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
1240 1241 1242 1243
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1244
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1245
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1246 1247 1248 1249
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
1250 1251 1252 1253 1254 1255
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1256
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1257 1258 1259 1260 1261 1262 1263 1264 1265
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1266
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1267 1268
            self.remove_unnecessary_lock_ = b;
          },
S
sneaxiy 已提交
1269
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.)DOC")
1270 1271 1272 1273 1274 1275
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1288 1289 1290 1291 1292 1293
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1294
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1295 1296 1297 1298 1299
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
                      Default False.)DOC")
      .def_property(
          "fuse_broadcast_ops",
          [](const BuildStrategy &self) { return self.fuse_broadcast_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_broadcast_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_broadcast_op indicates whether
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
                      for NCCLReduce operations for a period of time. Default False.)DOC")
C
chengduo 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_all_optimizer_ops_;
                    },
                    [](BuildStrategy &self, bool b) {
                      PADDLE_ENFORCE(!self.IsFinalized(),
                                     "BuildStrategy is finlaized.");
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.sync_batch_norm_ = b;
          },
          R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.

                Current implementation doesn't support FP16 training and CPU.
                And only synchronous on one machine, not all machines.

                Default False)DOC")
D
dzhwinter 已提交
1351 1352 1353
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; },
          R"DOC(The type is BOOL, memory opitimize aims to save total memory 
                consumption, set to True to enable it.
                
                Memory Optimize is our experimental feature, some variables 
                may be reused/removed by optimize strategy. If you need to
                fetch some variable values when using this feature, please
                set the persistable property of the variables to True.
                
                Default False)DOC")
1364 1365 1366 1367
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
Q
can run  
Qiao Longfei 已提交
1368 1369 1370
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
1371
      .def_property(
D
dzhwinter 已提交
1372 1373 1374
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
1375 1376 1377 1378
      .def_property(
          "fuse_all_reduce_ops",
          [](const BuildStrategy &self) { return self.fuse_all_reduce_ops_; },
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
1379 1380 1381 1382
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
1383 1384 1385 1386
      .def_property(
          "cache_expected_kernel",
          [](const BuildStrategy &self) { return self.cache_expected_kernel_; },
          [](BuildStrategy &self, bool b) { self.cache_expected_kernel_ = b; })
1387
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1388
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1389 1390 1391 1392 1393
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1394 1395

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
1396
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
1397
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
1398
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1399 1400 1401 1402
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1403 1404 1405 1406 1407
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1408 1409 1410 1411
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1412 1413 1414 1415 1416 1417
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1418

1419
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1420
  BindAsyncExecutor(&m);
D
dongdaxiang 已提交
1421
  BindFleetWrapper(&m);
W
wopeizl 已提交
1422
#ifndef _WIN32
D
dongdaxiang 已提交
1423
  BindNCCLWrapper(&m);
W
wopeizl 已提交
1424
#endif
F
flame 已提交
1425 1426
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1427
  BindInferenceApi(&m);
1428
  BindDataset(&m);
L
Luo Tao 已提交
1429
}
1430
}  // namespace pybind
1431
}  // namespace paddle