framework.py 267.3 KB
Newer Older
G
gouzil 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

import textwrap
Y
Yu Yang 已提交
16
import collections
X
Xin Pan 已提交
17
from collections import defaultdict
H
huzhiqiang 已提交
18
from collections.abc import Iterable
Q
qiaolongfei 已提交
19
import contextlib
20
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
21
import os
F
fengjiayi 已提交
22
import re
23
import traceback
24
import copy
25
from types import MethodType, FunctionType
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
R
risemeup1 已提交
32 33 34

from .proto import framework_pb2, data_feed_pb2

35
from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
39
import functools
40
from .variable_index import _getitem_impl_, _setitem_impl_
41
import threading
Y
Yu Yang 已提交
42

43
__all__ = [
44 45 46 47
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
48
    'name_scope',
J
jianghaicheng 已提交
49
    'ipu_shard_guard',
50
    'set_ipu_shard',
S
sneaxiy 已提交
51 52
    'cuda_places',
    'cpu_places',
53
    'xpu_places',
S
sneaxiy 已提交
54
    'cuda_pinned_places',
L
lujun 已提交
55
    'in_dygraph_mode',
56
    'is_compiled_with_cinn',
C
chengduo 已提交
57
    'is_compiled_with_cuda',
58
    'is_compiled_with_rocm',
59
    'is_compiled_with_xpu',
60
    'Variable',
61
    'require_version',
62
    'device_guard',
G
guofei 已提交
63 64
    'set_flags',
    'get_flags',
65
    '_stride_in_no_check_dy2st_diff',
66
]
Y
Yu Yang 已提交
67

Q
qiaolongfei 已提交
68 69 70 71
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
72 73
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
# use thread local to create thread save global variables.
class GlobalThreadLocal(threading.local):
    def __init__(self):
        """
        init the thread local data.
        TODO(xiongkun): how to access another thread local data ?
        """
        global _dygraph_tracer_
        self._in_declarative_mode_ = False
        self._functional_dygraph_context_manager = None
        self._dygraph_tracer_ = _dygraph_tracer_

    def __str__(self):
        strings = []
        strings.append(
            "_in_declarative_mode_:" + str(self._in_declarative_mode_)
        )
        strings.append(
            "_functional_dygraph_context_manager:"
            + str(self._functional_dygraph_context_manager)
        )
        strings.append("_dygraph_tracer_:" + str(self._dygraph_tracer_))
        return "\n".join(strings)

    def __setattr__(self, name, val):
        if name == '_dygraph_tracer_':
            global _dygraph_tracer_
            _dygraph_tracer_ = val
        self.__dict__[name] = val


L
lujun 已提交
106
_dygraph_tracer_ = None
107 108
global_var = GlobalThreadLocal()

109
_global_expected_place_ = None
110
_current_device = None
111
global_prog_seed = 0
112
_current_pipeline_stage = None
113
_current_cuda_graph_mode = None
114
_global_flags_ = core.globals()
W
wanghuancoder 已提交
115
_stride_in_no_check_dy2st_diff_mode = False
J
Jiabin Yang 已提交
116

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
# special_op_attrs, extra_op_attrs are prepared for printing warnings
# when turning on FLAGS_print_extra_attrs
special_op_attrs = {
    "elementwise_add": [{"axis": -1}],
    "elementwise_sub": [{"axis": -1}],
    "elementwise_mul": [{"axis": -1}],
    "elementwise_div": [{"axis": -1}],
    "elementwise_max": [{"axis": -1}],
    "elementwise_min": [{"axis": -1}],
    "elementwise_pow": [{"axis": -1}],
    "elementwise_mod": [{"axis": -1}],
    "elementwise_floordiv": [{"axis": -1}],
    "less_than": [{"axis": -1}],
    "less_equal": [{"axis": -1}],
    "greater_than": [{"axis": -1}],
    "greater_equal": [{"axis": -1}],
    "equal": [{"axis": -1}],
    "not_equal": [{"axis": -1}],
    "amax": [{"reduce_all": False}],
    "amin": [{"reduce_all": False}],
    "any": [{"reduce_all": False}],
    "frobenius_norm": [{"reduce_all": False}],
    "logsumexp": [{"reduce_all": False}],
    "reduce_max": [{"reduce_all": False}],
    "reduce_min": [{"reduce_all": False}],
    "reduce_mean": [{"reduce_all": False}],
    "reduce_prod": [{"reduce_all": False}],
    "reduce_sum": [{"reduce_all": False}],
}

extra_op_attrs = {
    "gather": ["overwrite"],
    "graph_reindex": ["flag_buffer_hashtable"],
    "graph_sample_neighbors": ["flag_perm_buffer"],
    "relu6": ["threshold"],
    "swish": ["beta"],
    "hsigmoid_loss": ["remote_prefetch"],
    "max_pool2d_with_index": ["global_pooling"],
    "uniform": ["diag_num"],
    "unique": ["is_sorted"],
}

K
Kim Yann 已提交
159
# FIXME(dev): We haven't fully verified eager mode on XPU et.al but
160 161 162 163
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


J
Jiabin Yang 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
185
            print(paddle.in_dynamic_mode())  # False, Now we are in static graph mode
J
Jiabin Yang 已提交
186 187 188 189 190

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
191
    return global_var._dygraph_tracer_ is not None
J
Jiabin Yang 已提交
192 193


194 195
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
196 197 198 199 200
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


@signature_safe_contextmanager
201
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
202 203 204 205
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
206
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
207
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
208
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
209
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
210
            which means no pipelining computation order and run Ops in terms of graph.
211

G
gouzil 已提交
212 213 214 215 216 217 218
    Note:
        Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
        duplicated index.
J
jianghaicheng 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


253 254 255 256
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

G
gouzil 已提交
257 258 259 260 261
    Note:
        Only when enable_manual_shard=True to set the index to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        Only when enable_pipelining=True to set stage to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        An index supports a corresponding None stage or a stage, and a stage only supports a new index or a duplicate index.

262 263 264 265 266
    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
267
            The sharded model will be computed from small to large. The default value is -1,
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):
        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

293
    from paddle.nn import Layer
294

295 296 297 298 299
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
300 301
                "Unsupported type. Only accept paddle.nn.Layer or function."
            )
302 303 304 305 306 307 308 309 310 311 312 313

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):
        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


314 315
def require_version(min_version, max_version=None):
    """
316 317 318
    Check if the installed version of PaddlePaddle is in [min_version, max_version],
    if the installed version is lower than ``min_version`` or higher than ``max_version``,
    an exception will be thrown, NO returns if the installed version is satisfied.
319

320 321 322 323
    Args:
        min_version (str): the minimum version required (like '1.4.0').
        max_version (str, optional): the max version required (like '1.6.0'), default is None,
            meaning any version equal or higher than ``min_version`` is acceptable.
324

325 326
    Returns:
        None.
327

328 329 330 331 332 333
    Raises:
        TypeError: if the type of ``min_version`` is not str.
        TypeError: if the type of ``max_version`` is not str or type(None).
        ValueError: if the value of ``min_version`` is not in version format.
        ValueError: if the value of ``max_version`` is not in version format or None.
        Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.
334

335 336
    Examples:
        .. code-block:: python
337

338
            import paddle.fluid as fluid
339

340 341
            # any version >= 0.1.0 is acceptable.
            fluid.require_version('0.1.0')
342

343 344 345
            # if 0.1.0 <= version <= 10.0.0, it is acceptable.
            fluid.require_version(min_version='0.1.0', max_version='10.0.0')
    """
346 347 348
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
349 350
            % (type(min_version))
        )
351 352 353 354

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
355 356
            % (type(max_version))
        )
357 358 359 360 361

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
362 363
            "like '1.5.2.0', but received %s" % min_version
        )
364 365 366 367 368 369

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
370 371
                "like '1.5.2.0', but received %s" % max_version
            )
372 373

    version_installed = [
374 375 376 377
        fluid_version.major,
        fluid_version.minor,
        fluid_version.patch,
        fluid_version.rc,
378 379 380 381
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
382
        for i in range(len(ver_a)):
383 384 385 386 387 388 389 390 391 392 393
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
394 395 396
                "please make sure the version is good with your code."
                % (min_version, max_version, fluid_version.full_version)
            )
397 398 399 400
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
401 402 403
                "please make sure the version is good with your code."
                % (min_version, fluid_version.full_version)
            )
404 405 406
        return

    min_version_split = min_version.split('.')
407 408 409
    min_version_to_check = (
        min_version_split + zero_version[len(min_version_split) :]
    )
410 411 412

    if max_version is not None:
        max_version_split = max_version.split('.')
413 414 415
        max_version_to_check = (
            max_version_split + zero_version[len(max_version_split) :]
        )
416

417 418 419 420
        if (
            version_cmp(version_installed, max_version_to_check) > 0
            or version_cmp(version_installed, min_version_to_check) < 0
        ):
421 422
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
423 424
                % (min_version, max_version, fluid_version.full_version)
            )
425 426 427 428 429
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
430 431
                % (min_version, fluid_version.full_version, min_version)
            )
432 433


434 435
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
436
        assert not in_dygraph_mode(), (
437 438
            "We don't support %s in dynamic graph mode" % func.__name__
        )
439 440 441 442 443 444 445
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
446
        assert in_dygraph_mode(), (
447 448 449
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
450 451 452 453 454
        return func(*args, **kwargs)

    return __impl__


455 456 457
def _non_static_only_(func):
    def __impl__(*args, **kwargs):
        from .dygraph.base import in_declarative_mode
458

459
        assert in_dygraph_mode() or in_declarative_mode(), (
460 461 462
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
463 464 465 466 467
        return func(*args, **kwargs)

    return __impl__


468 469
def _static_only_(func):
    def __impl__(*args, **kwargs):
470
        assert not in_dygraph_mode(), (
471 472 473
            "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode."
            % func.__name__
        )
474 475 476 477 478
        return func(*args, **kwargs)

    return __impl__


479 480 481 482 483
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


484
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
W
wanghuancoder 已提交
485 486
# used to make Variable and Tensor has same interfaces, like numpy. Since Tensor is not exposed in our
# official docments, logically, we want to keep Tensor and logically consistent. While, actually,
487 488
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
W
wanghuancoder 已提交
489
# TODO(zhiqiu): We should make Tensor consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
490
# same base class.
491 492 493
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
494 495
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
R
Ryan 已提交
496
            "  2. If you are using `@paddle.jit.to_static`, you can call `paddle.jit.enable_to_static(False)`. "
497
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
498 499
            % (func.__name__, func.__name__)
        )
500 501 502 503

    return __impl__


T
tangwei12 已提交
504 505
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
506 507 508 509 510 511 512 513 514
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
515 516
                DeprecationWarning,
            )
517 518 519 520 521 522 523
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


524 525
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
526
static_only = wrap_decorator(_static_only_)
527
fake_interface_only = wrap_decorator(_fake_interface_only_)
528
non_static_only = wrap_decorator(_non_static_only_)
529 530


L
lujun 已提交
531
def _dygraph_tracer():
532
    return global_var._dygraph_tracer_
533

W
Wu Yi 已提交
534

535 536 537 538
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
539
def _current_expected_place():
540 541 542
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
543 544 545 546 547
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
548
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
549 550 551 552 553
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
554 555 556 557 558 559
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
560
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
561 562 563 564 565
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
        elif len(core.get_all_custom_device_type()) > 0:
            dev_type = core.get_all_custom_device_type()[0]
            try:
                device_count = core.get_custom_device_count(dev_type)
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CustomPlace(
                    dev_type, _custom_device_ids(dev_type)[0]
                )
            else:
                warnings.warn(
                    "You are using CUSTOM_DEVICE version Paddle, but your custom device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
581 582 583 584 585 586 587
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
588 589
    if global_var._dygraph_tracer_ is not None:
        global_var._dygraph_tracer_._expected_place = place
590 591 592 593 594


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
595
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
596 597


S
sneaxiy 已提交
598
def _cpu_num():
599
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
600 601 602 603 604 605 606
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
607 608 609
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()
                )
            )
C
chengduo 已提交
610
        os.environ['CPU_NUM'] = str(1)
611
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
612 613 614 615 616 617 618 619
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
620
        device_ids = range(core.get_cuda_device_count())
C
chengduo 已提交
621
    return device_ids
S
sneaxiy 已提交
622 623


624 625 626 627 628
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
629
        device_ids = range(core.get_xpu_device_count())
630 631 632
    return device_ids


633 634 635 636 637 638 639 640 641
def _custom_device_ids(device_type):
    custom_devices_env = os.getenv("FLAGS_selected_" + device_type + "s")
    if custom_devices_env:
        device_ids = [int(s) for s in custom_devices_env.split(",")]
    else:
        device_ids = range(core.get_custom_device_count(device_type))
    return device_ids


642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


657 658 659 660 661 662 663
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
664

665 666 667 668 669 670
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

Z
Zman 已提交
671 672
    Returns:
        None
673 674 675 676 677 678 679 680 681 682

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


683 684 685 686
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

687 688
    Returns:
        Bool: `True` if CINN is currently available, otherwise `False`.
689 690 691 692 693 694 695 696 697 698

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
699 700 701 702
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

703 704
    Returns:
        Bool: `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
705 706 707 708

    Examples:
        .. code-block:: python

709
            import paddle
710
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
711 712 713 714
    """
    return core.is_compiled_with_cuda()


715 716 717 718
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

719 720
    Returns:
        Bool: `True` if ROCm is currently available, otherwise `False`.
721 722 723 724 725

    Examples:
        .. code-block:: python

            import paddle
726
            support_gpu = paddle.device.is_compiled_with_rocm()
727 728 729 730
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
731
def cuda_places(device_ids=None):
L
lujun 已提交
732
    """
733
    Note:
734 735 736
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
737
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
738 739

    If :code:`device_ids` is None, environment variable of
740
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
741
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
742
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
743
    If :code:`FLAGS_selected_gpus` is not set, all visible
744
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
745 746

    If :code:`device_ids` is not None, it should be the device
747
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
748
    the returned list would be
C
Chen Weihang 已提交
749
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
750

751
    Parameters:
752
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
753 754

    Returns:
C
Chen Weihang 已提交
755
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
756 757

    Examples:
758

L
lujun 已提交
759 760
        .. code-block:: python

C
Chen Weihang 已提交
761 762
            import paddle
            import paddle.static as static
T
tangwei12 已提交
763

764
            # required: gpu
765

C
Chen Weihang 已提交
766 767 768
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
769 770

    """
771
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
772
    if device_ids is None:
C
chengduo 已提交
773
        device_ids = _cuda_ids()
S
sneaxiy 已提交
774 775 776 777 778
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


779 780 781 782
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
783 784 785 786 787 788 789 790 791
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
792
        the returned list would be
S
sunzhongkai588 已提交
793
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
794

795 796 797 798 799 800
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
801

802 803
            # required: xpu

804 805
            import paddle
            import paddle.static as static
806

807 808 809
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
810
    assert core.is_compiled_with_xpu(), "Not compiled with XPU"
811 812 813 814 815 816 817
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
818
def cpu_places(device_count=None):
L
lujun 已提交
819
    """
C
Chen Weihang 已提交
820
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
821

S
add doc  
sneaxiy 已提交
822
    If :code:`device_count` is None, the device count would
823
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
824 825
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
826 827
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
828

829 830
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
831 832

    Returns:
C
Chen Weihang 已提交
833
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
834 835

    Examples:
836

L
lujun 已提交
837 838
        .. code-block:: python

C
Chen Weihang 已提交
839 840
            import paddle
            import paddle.static as static
T
tangwei12 已提交
841

C
Chen Weihang 已提交
842 843 844
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
845 846
    """

S
sneaxiy 已提交
847 848 849 850 851 852
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
853
    """
854
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
855 856

    If :code:`device_count` is None, the device count would
857
    be determined by environment variable :code:`CPU_NUM`.
858 859 860 861
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
862

863 864
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
865 866

    Returns:
867
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
868 869 870 871

    Examples:
        .. code-block:: python

872
            import paddle.fluid as fluid
L
lujun 已提交
873 874 875 876 877
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
878
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
879
    if device_count is None:
880 881
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
882 883


884
class NameScope:
885 886 887 888 889 890 891 892 893 894
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
895 896 897
            new_child = NameScope(
                prefix + "_%d" % len(self._children[prefix]), self
            )
898 899 900 901 902 903 904 905 906 907 908 909 910
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
911
@signature_safe_contextmanager
912 913
def name_scope(prefix=None):
    """
914

915
    Generate hierarchical name prefix for the operators in Static Graph.
916

917
    Note:
T
Tao Luo 已提交
918 919
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
920
        Don't use it in dygraph, since it will cause memory leak.
921 922

    Args:
T
Tao Luo 已提交
923
        prefix(str, optional): prefix. Default is none.
924 925

    Examples:
926

927
        .. code-block:: python
T
Tink_Y 已提交
928

929 930 931
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
932
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
933
             b = a + 1
934
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
935
                c = b * 1
936
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
937
                d = c / 1
938 939 940
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
941 942
                g = f - 1

943
          # Op are created in the default main program.
944
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
960 961
    """
    # TODO(panyx0718): Only [0-9a-z].
962
    # in dygraph we don't need namescope since it will cause mem leak
963
    if in_dygraph_mode():
L
Leo Chen 已提交
964 965
        yield
    else:
T
tianshuo78520a 已提交
966
        assert prefix, "namescope prefix can not be empty."
967 968
        global _name_scope
        _name_scope = _name_scope.child(prefix)
969 970 971 972
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
973 974 975 976 977 978 979 980 981 982 983 984


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
985 986
def generate_control_dev_var_name():
    import random
987

W
Wu Yi 已提交
988
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
989 990 991 992


def grad_var_name(var_name):
    """
993 994
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
995 996 997
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
998

999
def convert_np_dtype_to_dtype_(np_dtype):
1000
    """
1001
    Convert the data type in numpy to the data type in Paddle.
1002

1003
    Args:
1004 1005
        np_dtype (np.dtype|str): The data type in numpy or valid data type
            string.
1006

1007
    Returns:
1008
        core.VarDesc.VarType: The data type in Paddle.
1009 1010

    """
1011 1012
    # Convert the data type string to numpy data type.
    if isinstance(np_dtype, str) and np_dtype == "bfloat16":
1013 1014 1015
        dtype = np.uint16
    else:
        dtype = np.dtype(np_dtype)
1016

1017
    if dtype == np.float32:
1018
        return core.VarDesc.VarType.FP32
1019
    elif dtype == np.float64:
1020
        return core.VarDesc.VarType.FP64
1021
    elif dtype == np.float16:
1022
        return core.VarDesc.VarType.FP16
1023
    elif dtype == np.int32:
1024
        return core.VarDesc.VarType.INT32
1025
    elif dtype == np.int16:
1026
        return core.VarDesc.VarType.INT16
1027
    elif dtype == np.int64:
1028
        return core.VarDesc.VarType.INT64
1029
    elif dtype == np.bool_:
1030
        return core.VarDesc.VarType.BOOL
1031
    elif dtype == np.uint16:
1032 1033 1034
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1035 1036
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1037 1038
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1039 1040 1041 1042
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1043
    else:
M
minqiyang 已提交
1044
        raise ValueError("Not supported numpy dtype %s" % dtype)
1045 1046 1047


def dtype_is_floating(dtype):
1048 1049 1050
    """
    Check the data type is floating or not.
    Args:
1051
        dtype(np.dtype|core.VarDesc.VarType): data type.
1052 1053 1054 1055 1056
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1057
    if not isinstance(dtype, core.VarDesc.VarType):
1058 1059
        dtype = convert_np_dtype_to_dtype_(dtype)

1060
    return dtype in [
1061 1062 1063
        core.VarDesc.VarType.FP16,
        core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64,
1064
    ]
1065 1066


Y
Yang Yang(Tony) 已提交
1067
def _debug_string_(proto, throw_on_error=True):
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1079
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1080
    if not proto.IsInitialized(error_fields) and throw_on_error:
1081 1082
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
1083 1084 1085
                error_fields, proto
            )
        )
Y
Yu Yang 已提交
1086 1087 1088
    return proto.__str__()


1089
def _create_tensor(
1090 1091 1092 1093 1094
    type=core.VarDesc.VarType.LOD_TENSOR,
    name=None,
    shape=None,
    dtype=None,
    persistable=None,
1095
    **kwargs,
1096
):
1097 1098 1099 1100
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

W
wanghuancoder 已提交
1101 1102 1103 1104 1105 1106 1107 1108 1109
    eager_tensor = core.eager.Tensor(
        dtype if dtype else core.VarDesc.VarType.FP32,
        list(shape) if shape else [],
        name,
        type if type else core.VarDesc.VarType.LOD_TENSOR,
        True if persistable else False,
    )
    eager_tensor.retain_grads()
    return eager_tensor
1110 1111


1112 1113 1114 1115 1116 1117 1118
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
1119 1120
    if not vals:
        return False
1121 1122 1123
    return all(isinstance(v, expected_type) for v in vals)


1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
def wrap_as_scalar(number):
    """Wrap a number(either python scalar or numpy scalar) as core.Scalar if
    it is not a scalar.


    Args:
        number (Number): number

    Returns:
        Scalar: A Scalar that contains the value.
    """
    if isinstance(number, core.Scalar):
        return number
    if isinstance(number, (bool, int, float, complex)):
        return core.Scalar(number)
    if isinstance(number, np.number):
        # it is a numpy scalar
        return core.Scalar(number.item())
    else:
        raise TypeError("Cannot wrap {} as core.Scalar".format(number))


def wrap_as_scalars(array):
    """This function is used to convert flat list, or numpy array(not
    necesarily flat) to list of core.Scalar, which correspond to
    std::vector<paddle::experimental::Scalar> in operator runtime.

    Args:
        array (List | np.ndarray): array of numbers

    Returns:
        List: list of core.Scalar, of which each element is a Scalar containing
          the corresponding value.
    """
    if isinstance(array, np.ndarray):
        array = array.ravel().tolist()
    return [wrap_as_scalar(item) for item in array]


def extract_plain_list(array):
    """extract value from a list of core.Scalar.

    Args:
        array (list): Scalars

    Returns:
        list: values extracted from the scalars.
    """
    return [item.value() for item in array]


def canonicalize_attrs(attrs, op_proto):
    """This function is used to canonicalize attributes(as a string->any dict)
    according to the type specification in the OpProto. This is especially
    important for operators that has any attributes of type Scalar or Scalars.

    Though various frontends of phi kernels & paddle operators can wrap variables
    of concrete types into Scalars(a tagged union of several numeric types) or
    vector of Scalars. Paddle operator requires strict type matching.

    Args:
        attrs (Dict[str, Any]): attribute dict intended to pass to an operator.
        op_proto (OpProto): Proto (signature) of the operator.

    Returns:
        Dict[str, Any]: canonicalized attributes.
    """
    canonicalized_attrs = attrs.copy()  # shallow copy is enough here
    for attr in op_proto.attrs:
        attr_name = attr.name
        type_index = attr.type
        if (attr_name not in attrs) or (attrs[attr_name] is None):
            continue

        attr_val = attrs[attr_name]

        # VAR and VARS should be skipped
        if isinstance(attr_val, Variable):
            continue
        if isinstance(attr_val, list) and _all_is_type(attr_val, Variable):
            continue

        # wrap
        if type_index == core.AttrType.SCALAR:
            canonicalized_attrs[attr_name] = core.Scalar(attr_val)
        elif type_index == core.AttrType.SCALARS:
            # it should be a list (or a numpy array)
            if len(attr_val) > 0:
                attr_val = np.array(attr_val).ravel().tolist()
                attr_val = [core.Scalar(x) for x in attr_val]
                canonicalized_attrs[attr_name] = attr_val

    return canonicalized_attrs


1219 1220 1221 1222 1223
class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1224
            return issubclass(t, core.eager.Tensor)
1225 1226 1227 1228 1229 1230 1231 1232 1233
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1234
            return issubclass(t, EagerParamBase)
1235 1236 1237 1238
        else:
            return issubclass(t, Parameter)


1239
class Variable(metaclass=VariableMetaClass):
1240
    """
J
Jiabin Yang 已提交
1241

U
ustiniankw 已提交
1242 1243 1244 1245
    Notes:
        The constructor of Variable should not be invoked directly.

        In Static Graph Mode: Please use ** `Block.create_var` ** to create a Static variable which has no data until being feed.
1246

U
ustiniankw 已提交
1247
        In Dygraph Mode: Please use ** :ref:`api_fluid_dygraph_to_variable` ** to create a dygraph variable with real data.
J
Jiabin Yang 已提交
1248 1249

    In Fluid, every input and output of an OP is a variable. In most
1250
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1251 1252
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1253

1254
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1255
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1256

T
tianshuo78520a 已提交
1257
    Most of a Variable's member variables can be set to be None. It mean
1258
    it is not available or will be specified later.
1259

1260
    Examples:
1261 1262
        In Static Graph Mode:

1263
        .. code-block:: python
C
cyberslack_lee 已提交
1264
            :name: code-example-1
1265

1266
            import paddle.fluid as fluid
1267
            cur_program = fluid.Program()
1268 1269 1270 1271
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1272

1273
        In Dygraph  Mode:
1274 1275

        .. code-block:: python
C
cyberslack_lee 已提交
1276
            :name: code-example-2
1277 1278 1279 1280 1281 1282 1283

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1284 1285
    """

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
    def __init__(
        self,
        block,
        type=core.VarDesc.VarType.LOD_TENSOR,
        name=None,
        shape=None,
        dtype=None,
        lod_level=None,
        capacity=None,
        persistable=None,
        error_clip=None,
        stop_gradient=False,
        is_data=False,
        need_check_feed=False,
        belong_to_optimizer=False,
1301
        **kwargs,
1302
    ):
Y
Yu Yang 已提交
1303 1304
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1305
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1306

Y
Yu Yang 已提交
1307
        if dtype is not None:
1308
            if not isinstance(dtype, core.VarDesc.VarType):
1309
                dtype = convert_np_dtype_to_dtype_(dtype)
1310

S
Steffy-zxf 已提交
1311 1312 1313 1314
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1315 1316 1317
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1318 1319
        self.belong_to_optimizer = belong_to_optimizer

1320 1321 1322
        self.error_clip = error_clip

        is_new_var = False
1323
        self.desc = self.block.desc.find_var(name.encode())
1324

1325
        if self.desc is None:
1326
            self.desc = self.block.desc.var(name.encode())
1327
            is_new_var = True
1328

1329 1330 1331
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
1332 1333 1334 1335 1336
            raise ValueError(
                "Variable '{0}' has been created before. The "
                "previous type is {1}, the new type is {2}. They"
                " are not matched".format(self.name, self.desc.type(), type)
            )
1337

1338
        if shape is not None:
1339
            if is_new_var:
1340 1341 1342 1343 1344 1345
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1346 1347
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1348 1349
                        "matched.".format(self.name, old_shape, shape)
                    )
1350 1351 1352 1353 1354 1355
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
1356 1357 1358 1359 1360 1361
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous data type is {1}, the new "
                        "data type is {2}. They are not "
                        "matched.".format(self.name, old_dtype, dtype)
                    )
1362 1363 1364 1365 1366 1367

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
1368 1369 1370 1371 1372 1373
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous lod_level is {1}, the new "
                        "lod_level is {2}. They are not "
                        "matched".format(self.name, self.lod_level, lod_level)
                    )
1374 1375 1376 1377 1378 1379
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1380 1381
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1382
                        "persistable is {2}. They are not matched".format(
1383 1384 1385
                            self.name, self.persistable, persistable
                        )
                    )
1386

1387 1388
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1389

1390 1391 1392 1393 1394 1395 1396
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1397

1398 1399
        self.block.vars[name] = self
        self.op = None
1400
        self.stop_gradient = stop_gradient
1401
        self.is_data = is_data
W
wanghuancoder 已提交
1402
        self.is_view_var = False
Y
Yu Yang 已提交
1403

1404 1405
    def detach(self):
        """
U
ustiniankw 已提交
1406

1407
        Returns a new Variable, detached from the current graph.
1408 1409
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1410

1411
        Returns:
U
ustiniankw 已提交
1412
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable), The detached Variable.
1413 1414 1415 1416

        Examples:
            .. code-block:: python

1417
                import paddle
1418

1419 1420 1421 1422
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1423

1424 1425
                # create a detached Variable
                y = x.detach()
U
ustiniankw 已提交
1426

1427
        """
1428

1429 1430 1431 1432
        assert (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ), "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"
1433 1434 1435 1436 1437 1438

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
1439 1440
            stop_gradient=True,
        )
1441

1442 1443 1444
        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]}
        )
1445
        return output
1446

1447
    @fake_interface_only
1448
    def numpy(self):
1449
        """
J
Jiabin Yang 已提交
1450
        **Notes**:
T
tianshuo78520a 已提交
1451
            **This API is ONLY available in Dygraph mode**
1452

J
Jiabin Yang 已提交
1453
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1454 1455 1456 1457 1458

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1459
            ndarray: dtype is same as current Variable
1460 1461 1462 1463 1464 1465

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1466
                from paddle.fluid.dygraph import Linear
1467 1468 1469 1470
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1471
                    linear = Linear(32, 64)
1472
                    data = to_variable(data)
1473
                    x = linear(data)
1474 1475 1476
                    print(x.numpy())

        """
1477
        pass
1478

1479
    @non_static_only
1480
    def backward(self, retain_graph=False):
1481
        """
J
Jiabin Yang 已提交
1482
        **Notes**:
T
tianshuo78520a 已提交
1483
            **This API is ONLY available in Dygraph mode**
1484

1485
        Run backward of current Graph which starts from current Tensor.
1486

J
Jiabin Yang 已提交
1487
        Args:
1488 1489 1490 1491
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1492

J
Jiabin Yang 已提交
1493 1494
        Returns:
            NoneType: None
1495 1496 1497 1498 1499

        Examples:
            .. code-block:: python

                import numpy as np
1500 1501
                import paddle
                paddle.disable_static()
1502 1503

                x = np.ones([2, 2], np.float32)
1504 1505 1506 1507 1508 1509 1510
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1511 1512
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1513
                loss.backward()
1514 1515

        """
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
        from .backward import append_backward

        if retain_graph is True:
            raise AssertionError(
                "`retain_graph` == True is not supported in @to_static function."
                "please set retain_graph = False."
            )
        param_grad_list = append_backward(self)
        for param, param_grad in param_grad_list:
            # set grad to simulate dygraph loss.backward() in static mode.
            setattr(param, "grad", param_grad)
1527

1528
    @fake_interface_only
1529
    def gradient(self):
1530
        """
J
Jiabin Yang 已提交
1531
        **Notes**:
T
tianshuo78520a 已提交
1532
            **This API is ONLY available in Dygraph mode**
1533 1534 1535

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1536
        Returns:
1537
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1538 1539 1540 1541

        Examples:
            .. code-block:: python

1542
                import paddle
1543 1544 1545
                import paddle.fluid as fluid
                import numpy as np

1546
                # example1: return ndarray
1547 1548 1549 1550 1551 1552 1553
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1554
                    ret2 = paddle.add_n(inputs2)
1555
                    loss2 = paddle.sum(ret2)
1556
                    loss2.backward()
1557 1558
                    print(loss2.gradient())

1559 1560
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
1561 1562 1563 1564 1565
                    embedding = paddle.nn.Embedding(
                        20,
                        32,
                        weight_attr='emb.w',
                        sparse=True)
1566 1567 1568 1569 1570 1571 1572
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1573
        """
1574
        pass
1575

1576
    @fake_interface_only
1577
    def clear_gradient(self):
1578
        """
J
Jiabin Yang 已提交
1579
        **Notes**:
T
tianshuo78520a 已提交
1580
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1581 1582

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1583

J
Jiabin Yang 已提交
1584
        Clear  (set to ``0`` ) the Gradient of Current Variable
1585 1586 1587 1588 1589 1590

        Returns:  None

        Examples:
            .. code-block:: python

1591
                import paddle
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1602
                    ret2 = paddle.add_n(inputs2)
1603
                    loss2 = paddle.sum(ret2)
1604
                    loss2.backward()
1605 1606 1607 1608 1609
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1610
        pass
X
Xin Pan 已提交
1611

1612
    def register_hook(self, hook):
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
        import paddle

        def backward_hook_wrapper(dy):
            """call the backward hook in ."""
            return hook(np.array(dy))

        def forward_hook_wrapper(x):
            """do nothing but return a new variable."""
            return x

        paddle.static.py_func(
            func=forward_hook_wrapper,
            x=self,
            out=self,
            backward_func=backward_hook_wrapper,
            skip_vars_in_backward_input=[self],
        )
1630

1631
    def __str__(self):
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1648 1649
                import paddle
                import paddle.static as static
1650

1651 1652 1653
                paddle.enable_static()

                cur_program = static.Program()
1654 1655 1656 1657 1658 1659
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1660 1661
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1662 1663 1664 1665
        if (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ):
1666
            dtype_str = str(self.dtype).split('.')[1]
1667 1668 1669 1670 1671 1672 1673
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".format(
                name=self.name,
                type=type_str,
                shape=self.shape,
                dtype=dtype_str,
                stop_gradient=self.stop_gradient,
            )
1674
        else:
1675
            var_str = "{name} : {type})".format(name=self.name, type=type_str)
1676

1677
        if self.is_parameter:
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1688
        from paddle.distributed.auto_parallel.static.dist_context import (
1689 1690 1691
            get_default_distributed_context,
        )

1692
        dist_context = get_default_distributed_context()
1693 1694
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1695 1696 1697
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_tensor
            )
1698

1699
        return var_str
Y
Yang Yang(Tony) 已提交
1700

F
update  
fengjiayi 已提交
1701
    def to_string(self, throw_on_error, with_details=False):
1702 1703 1704
        """
        Get debug string.

J
Jiabin Yang 已提交
1705 1706 1707 1708 1709
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1710

1711 1712
        Returns:
            str: The debug string.
1713 1714 1715 1716 1717

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1718
                import paddle
1719

1720
                paddle.enable_static()
1721 1722 1723 1724 1725
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1726
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1727
                print("=============with detail===============")
1728
                print(new_variable.to_string(True, True))
1729
        """
1730
        assert isinstance(throw_on_error, bool) and isinstance(
1731 1732
            with_details, bool
        )
1733
        protostr = self.desc.serialize_to_string()
1734
        proto = framework_pb2.VarDesc.FromString(bytes(protostr))
F
update  
fengjiayi 已提交
1735 1736
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1737
            additional_attr = ("error_clip",)
F
update  
fengjiayi 已提交
1738
            for attr_name in additional_attr:
1739
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
1740

F
update  
fengjiayi 已提交
1741
        return res_str
1742 1743 1744

    __repr__ = __str__

1745 1746 1747
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
1748

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1772
    @property
1773
    def stop_gradient(self):
J
Jiabin Yang 已提交
1774 1775 1776
        """
        Indicating if we stop gradient from current Variable

1777
        **Notes: This Property has default value as** ``True`` **in** Dygraph **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``
J
Jiabin Yang 已提交
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1789 1790
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1791 1792 1793
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1794 1795
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1796 1797 1798 1799
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1800
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1801 1802
                assert (out1.gradient() == 0).all()
        """
1803
        return self.desc.stop_gradient()
1804

1805 1806
    @stop_gradient.setter
    def stop_gradient(self, s):
1807
        self.desc.set_stop_gradient(s)
1808

1809 1810
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1811 1812 1813 1814 1815 1816 1817 1818
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

1819
            **2. In** Dygraph **mode, this property should not be changed**
J
Jiabin Yang 已提交
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1832
        return self.desc.persistable()
1833

Y
Yu Yang 已提交
1834 1835
    @persistable.setter
    def persistable(self, p):
1836
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1837

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1863 1864
    @property
    def name(self):
J
Jiabin Yang 已提交
1865 1866 1867
        """
        Indicating name of current Variable

1868
        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** Dygraph **mode. This is how we achieve Parameter sharing**
J
Jiabin Yang 已提交
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1881
        return self.desc.name()
Y
Yu Yang 已提交
1882

1883 1884 1885 1886 1887 1888
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1889 1890
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1891

1892 1893 1894
        Examples:
          .. code-block:: python

1895
          import paddle
1896

1897
          x = paddle.static.data(name="x", shape=[-1, 23, 48], dtype='float32')
1898
          print(x.grad_name) # output is ``x@GRAD``
1899 1900 1901 1902

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1903 1904
    @name.setter
    def name(self, new_name):
1905
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1906

Y
Yu Yang 已提交
1907 1908
    @property
    def shape(self):
J
Jiabin Yang 已提交
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1926
        # convert to tuple, make it as same as numpy API.
1927
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1928 1929

    @property
F
fengjiayi 已提交
1930
    def dtype(self):
J
Jiabin Yang 已提交
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1947
        return self.desc.dtype()
Y
Yu Yang 已提交
1948 1949 1950

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1951 1952 1953 1954 1955 1956 1957 1958
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

1959
            **2. Don't support this property in** Dygraph **mode, it's value should be** ``0(int)``
J
Jiabin Yang 已提交
1960 1961 1962 1963

        Examples:
          .. code-block:: python

1964
            import paddle
J
Jiabin Yang 已提交
1965
            import paddle.fluid as fluid
1966 1967

            paddle.enable_static()
J
Jiabin Yang 已提交
1968 1969 1970 1971 1972 1973 1974
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1975 1976
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
1977 1978
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
1979
        return self.desc.lod_level()
Y
Yu Yang 已提交
1980

Y
Yu Yang 已提交
1981 1982
    @property
    def type(self):
J
Jiabin Yang 已提交
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1999
        return self.desc.type()
Y
Yu Yang 已提交
2000

2001 2002 2003
    @property
    def T(self):
        """
U
ustiniankw 已提交
2004

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
U
ustiniankw 已提交
2023

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
2036 2037
            stop_gradient=False,
        )
2038 2039 2040 2041 2042
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
2043 2044 2045 2046 2047 2048 2049 2050 2051
            stop_gradient=False,
        )

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': perm},
        )
2052 2053
        return out

2054 2055 2056
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
2057
        Variable. It remains in the current graph, that is, the cloned Variable
2058 2059 2060 2061
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
U
ustiniankw 已提交
2062
            Variable, The cloned Variable.
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
2082 2083
            stop_gradient=self.stop_gradient,
        )
2084

2085 2086 2087
        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]}
        )
2088 2089
        return output

W
Wu Yi 已提交
2090
    def _set_error_clip(self, error_clip):
2091
        """
U
ustiniankw 已提交
2092

2093 2094 2095 2096 2097 2098 2099
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
U
ustiniankw 已提交
2100

2101
        """
2102 2103
        self.error_clip = error_clip

2104 2105
    def _set_info(self, key, value):
        """
U
ustiniankw 已提交
2106

2107 2108 2109 2110 2111 2112
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

2113
        Returns:
2114
            None
U
ustiniankw 已提交
2115

2116 2117 2118 2119 2120 2121 2122
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
U
ustiniankw 已提交
2123

2124 2125 2126 2127 2128
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

2129
        Returns:
2130
            object
U
ustiniankw 已提交
2131

2132 2133 2134 2135 2136
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2137 2138
    def _slice_indices(self, slice, length):
        """
U
ustiniankw 已提交
2139

2140
        Reference implementation for the slice.indices method.
U
ustiniankw 已提交
2141

2142 2143 2144 2145 2146 2147 2148 2149
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2150
            raise ValueError("slice step can not be zero")
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2161 2162 2163
            start = (
                max(start + length, lower) if start < 0 else min(start, upper)
            )
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
2209 2210 2211
                if (index > 0 and index >= self.shape[index]) or (
                    index < 0 and (index + self.shape[index]) < 0
                ):
2212
                    raise IndexError("invalid index")
2213 2214 2215 2216 2217
                start = (
                    max(start + self.shape[index], 0)
                    if start < 0
                    else min(start, self.shape[index])
                )
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2231
    def _cloneVar(self, copy=False):
2232 2233
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2234
                name=unique_name.generate_with_ignorable_key(self.name),
2235 2236
                dtype=self.dtype,
            )
2237 2238 2239 2240
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2241
        new_var = self._cloneVar()
2242 2243 2244 2245 2246 2247
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes, 'starts': starts, 'ends': ends},
        )
2248 2249 2250
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2251
        new_var = self._cloneVar()
2252 2253 2254 2255 2256 2257 2258 2259
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={
                'axis': axis,
            },
        )
2260 2261 2262 2263 2264
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2265
                return self._cloneVar(True)
2266 2267 2268 2269 2270 2271 2272
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2273 2274 2275
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2276 2277 2278
                        start += step
                else:
                    while start > stop:
2279 2280 2281
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2282 2283 2284 2285
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2286
                return self._cloneVar(True)
2287
            index = int(item)
2288 2289 2290
            if (index > 0 and index >= self.shape[axis]) or (
                index < 0 and (index + self.shape[axis]) < 0
            ):
2291 2292 2293 2294 2295 2296
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2297
        return _getitem_impl_(self, item)
2298

2299
    def __setitem__(self, item, value):
2300 2301 2302 2303 2304 2305 2306 2307
        from .dygraph.base import in_declarative_mode

        if in_declarative_mode():
            return _setitem_impl_(self, item, value)
        else:
            raise RuntimeError(
                "In static mode, the __setitem__ (looks like: x[indices] = values) should not be used. Please use x = paddle.static.setitem(x, indices, values)"
            )
2308

2309 2310
    def get_value(self, scope=None):
        """
2311
        Get the value of variable in given scope.
2312 2313

        Args:
2314
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2315 2316 2317 2318
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
U
ustiniankw 已提交
2319
            Tensor, the value in given scope.
2320 2321 2322 2323 2324

        Examples:
            .. code-block:: python

                import paddle
2325
                import paddle.static as static
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2350 2351
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2352 2353
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
2354

2355 2356
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2357 2358 2359 2360
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2361 2362 2363 2364 2365

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
2366 2367 2368
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2369 2370 2371 2372 2373
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
U
ustiniankw 已提交
2374

2375
        Set the value to the tensor in given scope.
2376 2377 2378

        Args:
            value(Tensor/ndarray) : The value to be set.
2379
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2380 2381 2382 2383 2384
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
2385

2386 2387 2388 2389
        Examples:
            .. code-block:: python

                import paddle
2390
                import paddle.static as static
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
U
ustiniankw 已提交
2414

2415 2416 2417
        '''

        # The 'framework' is a low-level module, and 'executor'
2418
        # can not be imported at the begainning of this file.
2419 2420 2421 2422 2423
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2424 2425 2426 2427
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".format(
                    type(value)
                )
            )
2428 2429 2430

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2431 2432 2433 2434
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2435 2436 2437 2438 2439 2440

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
2441 2442 2443
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
2454 2455 2456 2457
                    "{} expected a shape {}, but the received shape is {}.".format(
                        self.name, list(t.shape()), list(value_shape)
                    )
                )
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2468 2469 2470 2471 2472 2473
        elif p.is_custom_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.CustomPlace(
                p.custom_device_type(), p.custom_device_id()
            )
2474 2475 2476 2477 2478 2479 2480
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2481 2482
    def size(self):
        """
U
ustiniankw 已提交
2483

2484
        Returns the number of elements for current Variable, which is a int64 Variable with shape [] .
2485 2486

        Returns:
U
ustiniankw 已提交
2487
            Variable, the number of elements for current Variable
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
U
ustiniankw 已提交
2501

2502 2503 2504 2505
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
2506 2507
            dtype=core.VarDesc.VarType.INT64,
        )
2508

2509 2510 2511
        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]}
        )
2512 2513
        return output

2514 2515
    def _set_attr(self, name, val):
        """
U
ustiniankw 已提交
2516

2517 2518 2519 2520 2521
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
U
ustiniankw 已提交
2522

2523 2524 2525 2526 2527
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
U
ustiniankw 已提交
2528

2529 2530 2531 2532 2533 2534
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2535 2536
            bool, True if has this attribute.

2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

2558
    def attr(self, name):
2559 2560 2561 2562 2563 2564 2565
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2566
            int|str|list, The attribute value. The return value
2567 2568 2569 2570 2571
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2572
    def dist_attr(self):
2573
        """
2574
        Get distributed attribute of this Variable.
2575
        """
2576
        return self.desc.dist_attr
2577

2578 2579
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2580
        """
2581
        Set distributed attribute of this Variable.
2582
        """
2583
        self.desc.dist_attr = dist_attr
2584

Y
Yu Yang 已提交
2585

F
fengjiayi 已提交
2586 2587 2588
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2589

2590 2591
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2592 2593 2594 2595
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2596
        op_proto = framework_pb2.OpProto.FromString(bytes(pbstr))
F
fengjiayi 已提交
2597 2598 2599 2600
        ret_values.append(op_proto)
    return ret_values


2601
class OpProtoHolder:
2602 2603 2604 2605
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2606 2607 2608 2609 2610 2611 2612 2613
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
2614 2615
            self.__class__, '_instance'
        ), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2616 2617 2618 2619 2620 2621
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2622 2623 2624 2625 2626 2627 2628 2629
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2630 2631
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2632 2633
        return self.op_proto_map[type]

2634 2635
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2636
        custom_op_names = []
2637 2638 2639
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2640 2641 2642
                custom_op_names.append(proto.type)

        return custom_op_names
2643

2644 2645 2646
    def has_op_proto(self, type):
        return type in self.op_proto_map

2647 2648 2649 2650
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2651
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2652
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2653
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
2654
            core.op_proto_and_checker_maker.kOpDeviceAttrName(),
2655 2656
        }

F
fengjiayi 已提交
2657

2658
class Operator:
2659
    """
2660 2661 2662 2663 2664 2665 2666
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2667
        type(str): The type of operator. Default None.
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2688
        Block.append_op or Block._prepend_op instead.
2689 2690 2691 2692

    Examples:
        .. code-block:: python

2693
            import paddle.fluid as fluid
2694
            cur_program = fluid.Program()
2695 2696 2697 2698 2699
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2700
    """
2701

2702
    OP_WITHOUT_KERNEL_SET = {
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
        'feed',
        'fetch',
        'recurrent',
        'go',
        'rnn_memory_helper_grad',
        'conditional_block',
        'while',
        'send',
        'recv',
        'listen_and_serv',
        'fl_listen_and_serv',
        'ncclInit',
        'select',
        'checkpoint_notify',
        'gen_bkcl_id',
        'c_gen_bkcl_id',
        'gen_nccl_id',
        'c_gen_nccl_id',
        'c_comm_init',
        'c_sync_calc_stream',
        'c_sync_comm_stream',
        'queue_generator',
        'dequeue',
        'enqueue',
        'heter_listen_and_serv',
        'c_wait_comm',
        'c_wait_compute',
        'copy_cross_scope',
2731
    }
2732

2733 2734 2735
    def __init__(
        self, block, desc, type=None, inputs=None, outputs=None, attrs=None
    ):
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

2746
        if in_dygraph_mode():
2747 2748
            if type is None:
                raise ValueError(
2749 2750
                    "`type` to initialized an Operator can not be None."
                )
J
Jiabin Yang 已提交
2751
            self._type = type
M
minqiyang 已提交
2752
            self.attrs = attrs if attrs else {}
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2763
            # attr for static graph mode cuda graph
2764 2765
            self._cuda_graph_attr = _current_cuda_graph_mode

2766 2767 2768
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2769
                op_attrs[
2770 2771
                    op_maker.kOpRoleAttrName()
                ] = self.block.program._op_role
2772 2773

            role_var_name = op_maker.kOpRoleVarAttrName()
2774 2775 2776 2777
            if (
                len(self.block.program._op_role_var) != 0
                and role_var_name not in op_attrs
            ):
2778
                op_attrs[role_var_name] = self.block.program._op_role_var
2779 2780 2781 2782 2783

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2784 2785 2786 2787 2788
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2789 2790 2791
                return
            if type is None:
                raise ValueError(
2792 2793
                    "`type` to initialized an Operator can not be None."
                )
2794 2795
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2796 2797 2798
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2799
                        '  File "{}", line {}, in {}'.format(
2800 2801 2802 2803 2804 2805
                            frame[0], frame[1], frame[2]
                        )
                    )
                    op_attrs[callstack_var_name].append(
                        '    {}'.format(frame[3])
                    )
2806 2807 2808 2809 2810 2811 2812

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2813 2814 2815 2816 2817 2818 2819 2820
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
2821 2822 2823
                    warnings.warn(
                        "The Op(%s) is not support to set device." % type
                    )
2824
                if 'force_cpu' in op_attrs:
2825
                    if (
2826 2827
                        type == 'less_than'
                        and op_attrs['force_cpu'] is not None
2828
                    ) or op_attrs['force_cpu'] != False:
2829 2830 2831
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
2832 2833
                            "used at the same time." % type
                        )
2834
            if _current_pipeline_stage is not None:
2835 2836 2837 2838 2839
                pipeline_attr_name = (
                    'pipeline_stage' + core.kAutoParallelSuffix()
                )
                self._update_desc_attr(
                    pipeline_attr_name, _current_pipeline_stage
2840
                )
2841

2842 2843 2844 2845 2846 2847 2848 2849 2850
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
2851 2852 2853
                    assert (
                        found or in_proto.dispensable
                    ), "Input {} not found".format(in_proto.name)
2854 2855
                    if found:
                        in_args = inputs[in_proto.name]
2856
                        if not isinstance(in_args, (list, tuple)):
2857 2858 2859 2860
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
2861 2862
                                % (in_proto.name, len(in_args))
                            )
2863
                        in_arg_names = []
2864
                        for index, arg in enumerate(in_args):
2865
                            if isinstance(arg, str):
2866
                                in_arg_names.append(arg)
2867
                            elif isinstance(arg, bytes):
2868
                                in_arg_names.append(arg.decode())
W
wanghuancoder 已提交
2869
                            elif isinstance(arg, (Variable, core.eager.Tensor)):
2870
                                in_arg_names.append(arg.name)
2871
                            else:
2872
                                raise TypeError(
2873 2874
                                    f"The type of '%{in_proto.name}' in operator {type} should be "
                                    f"one of [str, bytes, Variable]. but received : {arg}"
2875
                                )
2876 2877 2878 2879 2880 2881 2882 2883
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901

                    # FIXME: The outputs of primitive operator currently
                    # doesn't include intermediate output as it will be dropped
                    # in operator codegen, such as xshape output of reshape2.
                    # It will fixed when the operator codegen support
                    # intermediate output.
                    if core._is_bwd_prim_enabled():
                        if not (
                            (m.name in outputs)
                            or m.dispensable
                            or m.intermediate
                        ):
                            raise ValueError(
                                (
                                    "Incorrect setting for output(s) of "
                                    "operator \"%s\", should set: [%s]."
                                )
                                % (type, m.name)
2902
                            )
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
                    else:
                        if not ((m.name in outputs) or m.dispensable):
                            raise ValueError(
                                (
                                    "Incorrect setting for output(s) of "
                                    "operator \"%s\", should set: [%s]."
                                )
                                % (type, m.name)
                            )

2913 2914 2915 2916 2917 2918 2919 2920 2921
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
2922 2923
                            % (out_proto.name, len(out_args))
                        )
2924 2925
                    out_arg_names = []
                    for arg in out_args:
2926
                        if isinstance(arg, str):
2927 2928
                            out_arg_names.append(arg)
                        else:
2929
                            out_arg_names.append(arg.name)
2930
                        # TODO(minqiyang): could we remove variable's op in static graph mode?
2931
                        if not in_dygraph_mode():
2932
                            if isinstance(arg, str):
2933 2934 2935
                                block.var(arg).op = self
                            else:
                                arg.op = self
2936 2937
                    self.desc.set_output(out_proto.name, out_arg_names)

2938
            extra_attrs_map = core.get_op_extra_attrs(type)
2939 2940 2941 2942 2943
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
2944 2945 2946
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
2947 2948 2949
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
2950
                for attr_name in extra_attrs_map.keys():
2951 2952 2953 2954 2955
                    if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                        warnings.warn(
                            "op %s use extra_attr: %s" % (type, attr_name)
                        )

2956 2957 2958 2959 2960 2961
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
                        self._update_desc_attr(
                            attr_name, extra_attrs_map[attr_name]
                        )
2962 2963
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
2964

2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
                if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                    if type in extra_op_attrs:
                        attrs = extra_op_attrs.get(type, [])
                        for attr in attrs:
                            if attr in op_attrs.keys():
                                warnings.warn(
                                    "op %s use extra_attr: %s" % (type, attr)
                                )

                    if type in special_op_attrs:
                        attrs = special_op_attrs.get(type, [])
                        for attr in attrs:
                            a_name = list(attr.keys())[0]
                            default_value = list(attr.values())[0]
                            if (
                                a_name in op_attrs.keys()
                                and default_value != op_attrs[a_name]
                            ):
                                warnings.warn(
                                    "op %s's attr %s = %s is not the default value: %s"
                                    % (
                                        type,
                                        a_name,
                                        op_attrs[a_name],
                                        default_value,
                                    )
                                )

J
jianghaicheng 已提交
2993 2994
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
2995
                if global_ipu_index >= 0:
2996 2997 2998
                    self._update_desc_attr(
                        ipu_index_attr_name, global_ipu_index
                    )
2999
                if global_ipu_stage >= 0:
3000 3001 3002
                    self._update_desc_attr(
                        ipu_stage_attr_name, global_ipu_stage
                    )
J
jianghaicheng 已提交
3003

3004
            self.desc.check_attrs()
3005

3006 3007 3008 3009
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
3010
    def _has_kernel(self, op_type):
3011 3012
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
3013
    def to_string(self, throw_on_error):
3014
        """
3015 3016
        Get debug string.

3017
        Args:
3018 3019
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
3020

3021 3022
        Returns:
            str: The debug string.
3023 3024

        """
3025
        protostr = self.desc.serialize_to_string()
3026
        proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang(Tony) 已提交
3027 3028
        return _debug_string_(proto, throw_on_error)

3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3061
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3062 3063
            type(skip_op_callstack)
        )
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

3090 3091 3092
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
3093 3094 3095
                a = "{name} = Var['{value}']".format(
                    name=name, type=attr_type, value=attr_var_name
                )
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
3106 3107
                    name=name, type=attr_type, value=','.join(attr_var_names)
                )
3108 3109 3110 3111 3112
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3113 3114
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
3115 3116
                    name=name, type=attr_type, value=self._block_attr_id(name)
                )
3117 3118 3119 3120 3121 3122 3123
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
3124 3125
                    name=name, type=attr_type, value=self._blocks_attr_ids(name)
                )
3126 3127 3128 3129 3130
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3131
            # it is bytes of serialized protobuf
3132 3133 3134 3135 3136
            if (
                is_compiled_with_cinn()
                and self.type == 'cinn_launch'
                and name == 'compilation_key'
            ):
3137 3138
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3139 3140 3141 3142 3143 3144 3145 3146 3147
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3148 3149 3150
            a = "{name} = {value}".format(
                name=name, type=attr_type, value=value
            )
3151

3152 3153 3154 3155
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3156
        from paddle.distributed.auto_parallel.static.dist_context import (
3157 3158 3159
            get_default_distributed_context,
        )

3160
        dist_context = get_default_distributed_context()
3161 3162
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3163 3164 3165
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_op
            )
3166

3167
        if outputs_str != "{}":
3168 3169 3170 3171 3172 3173
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".format(
                outputs=outputs_str,
                op_type=self.type,
                inputs=inputs_str,
                attrs=attrs_str,
            )
3174
        else:
3175 3176 3177
            op_str = "{op_type}(inputs={inputs}, {attrs})".format(
                op_type=self.type, inputs=inputs_str, attrs=attrs_str
            )
3178 3179
        return op_str

Y
Yang Yang(Tony) 已提交
3180
    def __str__(self):
3181
        return self._to_readable_code()
3182 3183 3184

    __repr__ = __str__

F
fengjiayi 已提交
3185 3186
    @property
    def type(self):
3187
        return self.desc.type()
F
fengjiayi 已提交
3188 3189

    def input(self, name):
3190
        r"""
U
ustiniankw 已提交
3191

3192
        Get the input arguments according to the input parameter name.
3193

3194 3195
        Args:
            name(str): The input parameter name.
3196

3197
        Returns:
U
ustiniankw 已提交
3198
            list, return the list of argument names that associated with \
3199
                the specific parameter name.
U
ustiniankw 已提交
3200

3201
        """
F
fengjiayi 已提交
3202 3203
        return self.desc.input(name)

W
Wu Yi 已提交
3204
    def _rename_input(self, old_name, new_name):
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3215
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3216

W
Wu Yi 已提交
3217
    def _rename_output(self, old_name, new_name):
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3228
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3229

F
fengjiayi 已提交
3230 3231 3232 3233
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3234 3235 3236 3237 3238 3239 3240 3241
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3242
    def output(self, name):
3243
        r"""
3244
        Get output arguments by the output parameter name.
3245

3246 3247
        Args:
            name(str): The output parameter name.
3248

3249 3250 3251
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3252
        """
F
fengjiayi 已提交
3253 3254 3255 3256 3257 3258
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3259 3260 3261 3262 3263 3264
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
3265 3266
            "Can't find op itself in it's block. It could be a bug of Paddle."
        )
3267

F
fengjiayi 已提交
3268
    def has_attr(self, name):
3269
        """
3270 3271
        Whether this Operator has the attribute with name or not.

3272
        Args:
3273
            name(str): the attribute name.
3274

3275 3276
        Returns:
            bool: True if has this attribute.
3277 3278

        """
F
fengjiayi 已提交
3279 3280 3281
        return self.desc.has_attr(name)

    def attr_type(self, name):
3282
        """
3283
        Get the type of attribute by attribute's name.
3284

3285 3286
        Args:
            name(str): the attribute name.
3287

3288 3289
        Returns:
            core.AttrType: the attribute type.
3290
        """
3291
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3292

W
Wu Yi 已提交
3293
    def _set_attr(self, name, val):
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3304 3305
        self._update_desc_attr(name, val)

3306 3307 3308
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3320 3321 3322 3323 3324
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3325
            self.desc.set_block_attr(name, val.desc)
3326
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3327
            self.desc.set_blocks_attr(name, [v.desc for v in val])
3328 3329 3330
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
Q
Qiyang Min 已提交
3331 3332
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3333 3334 3335 3336 3337 3338 3339 3340 3341
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
3342 3343 3344 3345 3346 3347
        # if the required attribute is a SCALAR, pass as-is
        if type_index == core.AttrType.SCALAR:
            desc._set_scalar_attr(name, wrap_as_scalar(val))
        elif type_index == core.AttrType.SCALARS:
            desc._set_scalars_attr(name, wrap_as_scalars(val))
        elif type_index == core.AttrType.BOOL:
3348 3349 3350 3351 3352 3353 3354
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
3355 3356
        elif type_index == core.AttrType.FLOAT64:
            desc._set_float64_attr(name, val)
3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3374

F
fengjiayi 已提交
3375 3376
    @property
    def attr_names(self):
3377
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3378 3379

    def attr(self, name):
3380
        """
3381 3382
        Get the attribute by name.

3383
        Args:
3384
            name(str): the attribute name.
3385

3386 3387
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3388 3389
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3390
        return self.desc.attr(name)
Y
Yu Yang 已提交
3391

W
Wu Yi 已提交
3392
    def _block_attr_id(self, name):
3393
        """
G
gongweibao 已提交
3394
        Get the block attribute's id by name.
3395

3396 3397
        Args:
            name(str): the attribute name.
3398

3399 3400
        Returns:
            int: the block index.
3401
        """
W
Wu Yi 已提交
3402
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3403

W
Wu Yi 已提交
3404
    def _block_attr(self, name):
G
gongweibao 已提交
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3415
        id = self._block_attr_id(name)
3416
        assert id >= 0 and id < len(self.block.program.blocks)
G
gongweibao 已提交
3417 3418
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3419
    def _blocks_attr(self, name):
G
gongweibao 已提交
3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3430
        for i in self._blocks_attr_ids(name):
3431
            assert i >= 0 and i < len(self.block.program.blocks)
G
gongweibao 已提交
3432 3433 3434 3435
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3436
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3447
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3448

3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3460 3461 3462 3463 3464
        assert (
            attr_type == core.AttrType.VAR
        ), "Required type attr({}) is Variable, but received {}".format(
            name, attr_type
        )
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3479 3480 3481 3482 3483
        assert (
            attr_type == core.AttrType.VARS
        ), "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type
        )
3484 3485 3486 3487 3488 3489
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3490
    def all_attrs(self):
F
fengjiayi 已提交
3491
        """
3492 3493 3494
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3495
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3496 3497 3498 3499
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3500
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3501
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3502
                attr_map[n] = self._block_attr(n)
3503
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3504
                attr_map[n] = self._blocks_attr(n)
3505 3506 3507 3508 3509 3510
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3511

F
fengjiayi 已提交
3512 3513
        return attr_map

3514 3515 3516
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3517 3518 3519 3520

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3521 3522 3523
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3524 3525 3526 3527 3528 3529 3530 3531

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3532 3533
            return False

3534 3535 3536 3537 3538 3539
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3540
    @property
3541
    def dist_attr(self):
3542
        """
3543
        Get distributed attribute of this Variable.
3544
        """
3545
        return self.desc.dist_attr
3546

3547 3548
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3549
        """
3550
        Set distributed attribute of this Variable.
3551
        """
3552
        self.desc.dist_attr = dist_attr
3553

Y
Yu Yang 已提交
3554

W
wanghuancoder 已提交
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772
@signature_safe_contextmanager
def _stride_in_no_check_dy2st_diff():
    global _stride_in_no_check_dy2st_diff_mode
    _stride_in_no_check_dy2st_diff_mode = True
    try:
        yield
    finally:
        _stride_in_no_check_dy2st_diff_mode = False


def check_if_to_static_diff_with_dygraph(op_type, inplace_map, outputs):
    if outputs is not None:
        for k, v in outputs.items():
            if isinstance(v, Variable):
                if v.is_view_var and not (
                    op_type == "set_value"
                    and inplace_map.get("Input", None) == "Out"
                ):
                    raise ValueError(
                        'Sorry about what\'s happend. In to_static mode, %s\'s output variable %s is a viewed Tensor in dygraph. This will result in inconsistent calculation behavior between dynamic and static graphs. If you are sure it is safe, you can call with paddle.fluid.framework._stride_in_no_check_dy2st_diff() in your safe code block.'
                        % (op_type, k)
                    )
            elif isinstance(v, list):
                for var in v:
                    if isinstance(var, Variable):
                        if var.is_view_var and not (
                            op_type == "set_value"
                            and inplace_map.get("Input", None) == "Out"
                        ):
                            raise ValueError(
                                'Sorry about what\'s happend. In to_static mode, %s\'s output variable %s is a viewed Tensor in dygraph. This will result in inconsistent calculation behavior between dynamic and static graphs. If you are sure it is safe, you can call with paddle.fluid.framework._stride_in_no_check_dy2st_diff() in your safe code block.'
                                % (op_type, k)
                            )


def record_is_view_var(op_type, inputs, outputs):
    if op_type == "slice":
        if inputs is not None and isinstance(inputs["Input"], list):
            if hasattr(inputs["Input"][0], "is_view_var"):
                inputs["Input"][0].is_view_var = True
        else:
            if hasattr(inputs["Input"], "is_view_var"):
                inputs["Input"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "strided_slice":
        if inputs is not None and isinstance(inputs["Input"], list):
            if hasattr(inputs["Input"][0], "is_view_var"):
                inputs["Input"][0].is_view_var = True
        else:
            if hasattr(inputs["Input"], "is_view_var"):
                inputs["Input"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "index_select":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "split":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None:
            for out in outputs["Out"]:
                if hasattr(out, "is_view_var"):
                    out.is_view_var = True
    elif op_type == "unsqueeze" or op_type == "unsqueeze2":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "squeeze" or op_type == "squeeze2":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "transpose" or op_type == "transpose2":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "unbind":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "diagonal":
        if inputs is not None and isinstance(inputs["Input"], list):
            if hasattr(inputs["Input"][0], "is_view_var"):
                inputs["Input"][0].is_view_var = True
        else:
            if hasattr(inputs["Input"], "is_view_var"):
                inputs["Input"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "flatten":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "imag":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "real":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "reshape" or op_type == "reshape2":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "as_real":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True


3773
class Block:
3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3788
        use `Program._create_block()` to create a block.
3789 3790 3791 3792

    Examples:
        .. code-block:: python

3793 3794 3795
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3796 3797 3798 3799 3800 3801 3802 3803 3804
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3805
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3806
        self.desc = program.desc.block(idx)
3807
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3808
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3809 3810
        self.program = program

3811
    def __str__(self):
3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3846
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3847 3848
            type(skip_op_callstack)
        )
3849 3850 3851 3852 3853 3854 3855
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
3856 3857
                op._to_readable_code(skip_op_callstack)
            )
3858 3859
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3860

F
fengjiayi 已提交
3861 3862
    def to_string(self, throw_on_error, with_details=False):
        """
3863 3864
        Get debug string.

F
fengjiayi 已提交
3865 3866
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3867
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3868
            with_details(bool): more details about variables and parameters
3869 3870
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3871

3872 3873
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3874
        """
3875
        assert isinstance(throw_on_error, bool) and isinstance(
3876 3877
            with_details, bool
        )
F
fengjiayi 已提交
3878
        if with_details:
F
fengjiayi 已提交
3879
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3880
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
3881 3882 3883
                self.idx,
                self.parent_idx,
            )
3884
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3885
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
3886 3887
                    r"\n    \1", var.to_string(throw_on_error, with_details)
                )
F
fengjiayi 已提交
3888
            for op in self.ops:
F
fengjiayi 已提交
3889
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
3890 3891
                    r"\n    \1", op.to_string(throw_on_error)
                )
F
fengjiayi 已提交
3892 3893 3894
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3895
            proto = framework_pb2.BlockDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
3896 3897
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3898 3899 3900

    __repr__ = __str__

Y
Yu Yang 已提交
3901 3902
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3903
        return self.desc.parent
Y
Yu Yang 已提交
3904

Y
Yu Yang 已提交
3905 3906 3907 3908
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3909
    def _set_forward_block_idx(self, idx):
3910 3911 3912 3913 3914 3915 3916 3917 3918
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3919
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3920

3921 3922 3923 3924 3925 3926 3927 3928
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3929 3930
    @property
    def idx(self):
Y
Yu Yang 已提交
3931
        return self.desc.id
Y
Yu Yang 已提交
3932

Q
Qiao Longfei 已提交
3933
    def var(self, name):
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3947
        if not isinstance(name, str):
M
minqiyang 已提交
3948
            raise TypeError(
3949 3950 3951
                "var require string as parameter, but get %s instead."
                % (type(name))
            )
Y
Yu Yang 已提交
3952 3953
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3954
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3955
        return v
Q
Qiao Longfei 已提交
3956

X
Xin Pan 已提交
3957
    def _find_var_recursive(self, name):
3958 3959 3960 3961 3962 3963 3964
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3965
            Variable: the Variable with the giving name. Or None if not found.
3966
        """
Y
Yu Yang 已提交
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3991
        return None
Y
Yu Yang 已提交
3992

X
Xin Pan 已提交
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
4012

Q
Qiao Longfei 已提交
4013
    def all_parameters(self):
4014
        return list(self.iter_parameters())
4015

4016
    def iter_parameters(self):
4017 4018 4019 4020 4021
        return (
            item[1]
            for item in self.vars.items()
            if isinstance(item[1], Parameter)
        )
Q
Qiao Longfei 已提交
4022

Y
Yu Yang 已提交
4023
    def create_var(self, *args, **kwargs):
4024
        if in_dygraph_mode():
4025
            var = _create_tensor(*args, **kwargs)
L
Leo Chen 已提交
4026
        else:
4027 4028 4029
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
4030
        return var
Y
Yu Yang 已提交
4031

Q
Qiao Longfei 已提交
4032 4033 4034
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
4035
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
4036 4037
        """
        Rename variable in vars and ops' inputs and outputs
4038 4039

        Args:
4040 4041
            name(str|bytes): the name that need to be renamed.
            new_name(str|bytes): the name that need to rename to.
4042 4043 4044 4045 4046 4047 4048 4049

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
4050
        """
4051 4052
        # Ensure the type of name and new_name is str
        name = name.decode() if isinstance(name, bytes) else name
4053 4054 4055
        new_name = (
            new_name.decode() if isinstance(new_name, bytes) else new_name
        )
M
minqiyang 已提交
4056

T
typhoonzero 已提交
4057
        if not self.has_var(name):
4058
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
4059 4060
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
4061
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
4062 4063 4064 4065 4066 4067
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
4068
            var_type = "Variable"
T
wip  
typhoonzero 已提交
4069 4070 4071 4072
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
4073
        orig_var_type = v.type
4074
        self.desc._rename_var(name.encode(), new_name.encode())
W
Wu Yi 已提交
4075
        # NOTE: v is destroyed by C++ after calling _rename_var.
4076
        d = self.desc.find_var(new_name.encode())
T
typhoonzero 已提交
4077
        if var_type == "Parameter":
L
Leo Chen 已提交
4078
            if in_dygraph_mode():
4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
                var = EagerParamBase(
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
4090
            else:
姜永久 已提交
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
                var = Parameter(
                    self,
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
T
typhoonzero 已提交
4103
        elif var_type == "Variable":
4104 4105 4106 4107 4108 4109 4110
            var = Variable(
                self,
                type=orig_var_type,
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient,
            )
T
wip  
typhoonzero 已提交
4111

W
Wu Yi 已提交
4112
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
4113 4114 4115
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
4116
        self._sync_with_cpp()
4117
        return var
T
typhoonzero 已提交
4118

4119 4120 4121
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
4122
        self.desc._remove_var(name.encode())
4123 4124
        del self.vars[name]

Y
Yu Yang 已提交
4125 4126
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
4127
        param = None
L
Leo Chen 已提交
4128
        if in_dygraph_mode():
J
Jiabin Yang 已提交
4129
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
4130
        else:
姜永久 已提交
4131
            param = Parameter(global_block, *args, **kwargs)
4132 4133 4134
        # NOTE(Aurelius84): we deliver stop_gradient in append_op, so we
        # need recorde it state and reset it back after calling this API
        stop_gradient = param.stop_gradient
4135

4136
        if 'initializer' in kwargs:
4137 4138 4139 4140 4141

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
4142
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
4143
                        # are treated as initialization ops that cause error.
4144
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
4145 4146
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
4147 4148 4149
                            "c_broadcast",
                            "c_sync_comm_stream",
                            "coalesce_tensor",
4150
                        ]:
4151
                            continue
4152 4153 4154 4155 4156 4157 4158
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
4159 4160 4161 4162 4163 4164
                raise RuntimeError(
                    "param "
                    + param.name
                    + " is inited by multiple init ops "
                    + str(init_ops)
                )
4165
            elif init_ops_len == 1:
4166
                # TODO already inited, do nothing, should log a warning
4167 4168 4169
                pass
            else:
                initializer(param, self)
4170
        param.stop_gradient = stop_gradient
Q
Qiao Longfei 已提交
4171
        return param
Y
Yu Yang 已提交
4172

Y
Yu Yang 已提交
4173
    def append_op(self, *args, **kwargs):
4174 4175 4176 4177 4178 4179
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
W
wanghuancoder 已提交
4180
        inplace_map = kwargs.get("inplace_map", None)
4181
        op_type = kwargs.get("type", None)
4182
        if in_dygraph_mode():
4183
            attrs = kwargs.get("attrs", {})
4184 4185 4186
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
4187 4188 4189 4190 4191 4192
                "using `_C_ops` method." % type,
                DeprecationWarning,
            )
            op = Operator(
                block=self,
                desc=None,
4193
                type=op_type,
4194 4195 4196 4197
                inputs=None,
                outputs=None,
                attrs=attrs,
            )
4198

M
minqiyang 已提交
4199 4200
            # record ops in tracer rather than blocks
            #
4201
            # TODO(minqiyang): add op stop_gradient support in static graph mode too.
L
lujun 已提交
4202
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
4203

4204
            _dygraph_tracer().trace_op(
4205
                op_type,
4206 4207 4208 4209 4210 4211
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
                inplace_map,
            )
M
minqiyang 已提交
4212
        else:
4213
            from paddle.fluid.dygraph.base import param_guard
4214
            from paddle.utils import flatten
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228

            def pass_stop_gradient(ins, outs):
                """
                Set out.stop_gradient = True if all inputs stop_gradient is True.
                """
                need_reset = True
                for var in flatten(ins):
                    if getattr(var, 'stop_gradient', None) is False:
                        need_reset = False
                        break
                if need_reset:
                    for var in flatten(outs):
                        if isinstance(var, Variable):
                            var.stop_gradient = True
4229

4230
            op_desc = self.desc.append_op()
4231 4232
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
W
wanghuancoder 已提交
4233
            # NOTE(Aurelius84): In case of @to_static, all Tensor(s) should
4234 4235
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
4236 4237 4238 4239 4240 4241 4242 4243
            ignore_ops = {
                'conditional_block',
                'conditional_block_grad',
                'recurrent',
                'recurrent_grad',
                'while',
                'while_grad',
            }
W
wanghuancoder 已提交
4244 4245 4246 4247 4248 4249 4250 4251 4252
            from .dygraph.base import in_declarative_mode

            if (
                in_declarative_mode()
                and not _stride_in_no_check_dy2st_diff_mode
            ):
                check_if_to_static_diff_with_dygraph(
                    op_type, inplace_map, outputs
                )
4253 4254
            if op_type not in ignore_ops:
                pass_stop_gradient(inputs, outputs)
4255
            with param_guard(inputs), param_guard(outputs):
4256 4257 4258
                op = Operator(
                    block=self,
                    desc=op_desc,
4259
                    type=op_type,
4260 4261 4262 4263
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None),
                )
4264

M
minqiyang 已提交
4265
            self.ops.append(op)
W
wanghuancoder 已提交
4266 4267
            if in_declarative_mode():
                record_is_view_var(op_type, inputs, outputs)
M
minqiyang 已提交
4268

4269 4270
        return op

W
Wu Yi 已提交
4271
    def _insert_op(self, index, *args, **kwargs):
4272 4273 4274 4275 4276 4277 4278 4279 4280
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
4281
        self._sync_with_cpp()
F
fangshuixun007 已提交
4282
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
4283

4284 4285
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
4286
        Insert an Operator according to the giving arguments,
4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
4301 4302 4303 4304 4305 4306 4307 4308 4309
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
4310 4311
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
4312
        self.desc._remove_op(index, index + 1)
4313 4314
        del self.ops[index]

W
Wu Yi 已提交
4315
    def _slice_ops(self, start, end):
4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
4326
        return self.ops[start:end]
Y
Yancey1989 已提交
4327

W
Wu Yi 已提交
4328
    def _prepend_op(self, *args, **kwargs):
4329
        if in_dygraph_mode():
J
Jiabin Yang 已提交
4330 4331
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342
            op = Operator(
                self, None, type=type, inputs=None, outputs=None, attrs=attrs
            )

            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
            )
M
minqiyang 已提交
4343
        else:
4344
            op_desc = self.desc._prepend_op()
4345 4346 4347 4348 4349 4350 4351 4352
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None),
            )
M
minqiyang 已提交
4353
            self.ops.insert(0, op)
4354

Y
Yu Yang 已提交
4355 4356
        return op

W
Wu Yi 已提交
4357
    def _sync_with_cpp(self):
4358
        """
4359 4360
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
4361
        """
Q
Qiao Longfei 已提交
4362 4363 4364
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
4365 4366 4367 4368
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
4369 4370 4371 4372 4373 4374 4375 4376
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient,
                    )
4377
                else:
4378 4379 4380 4381 4382 4383
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient,
                    )
Q
Qiao Longfei 已提交
4384

4385
        # sync variables removed from c++ end
4386
        for var in list(self.vars.keys()):
4387
            if not self.desc.find_var(var.encode()):
4388 4389
                self.vars.pop(var)

Q
Qiao Longfei 已提交
4390
        # sync operators from cpp
4391 4392 4393 4394
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
4411 4412 4413 4414 4415

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
4416
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
4417 4418 4419 4420 4421 4422 4423

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

4424 4425 4426 4427 4428
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
4429 4430 4431 4432 4433 4434
                self.ops
            ) and ops_in_cpp_index < len(ops_in_cpp):
                if (
                    self.ops[ops_in_python_index].desc
                    != ops_in_cpp[ops_in_cpp_index]
                ):
4435 4436 4437 4438 4439
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4440 4441 4442 4443
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4444
    def _copy_param_info_from(self, other):
4445
        """
4446 4447
        Copy the information of parameters from the other block.

4448
        Args:
4449 4450 4451 4452 4453
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4454 4455 4456 4457 4458

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4459
            raise TypeError(
4460 4461
                "_copy_param_info_from should be invoked with Block"
            )
4462
        for p in other.iter_parameters():
4463 4464 4465
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4466 4467
                # if the Parameter is pruned, v may be None
                continue
4468
            assert isinstance(v, Variable)
4469
            new_p = None
L
Leo Chen 已提交
4470
            if in_dygraph_mode():
4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482
                new_p = EagerParamBase(
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4483
            else:
姜永久 已提交
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
                new_p = Parameter(
                    block=self,
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR
                    else None,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4499 4500
            self.vars[new_p.name] = new_p

4501
    def _clone_variable(self, var, force_persistable=True):
4502 4503
        """
        Clone a variable into current block.
4504

4505 4506
        Args:
            var: the variable to be cloned.
4507 4508 4509
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4510 4511

        Returns:
4512
            Variable: the new  variable cloned from 'var' in current block.
4513 4514
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4515 4516 4517
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4518 4519 4520
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
tangwei12 已提交
4521
        elif var.type == core.VarDesc.VarType.RAW:
4522 4523 4524
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
typhoonzero 已提交
4525 4526 4527 4528 4529 4530
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4531
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4532
                is_data=var.is_data,
4533 4534
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4535 4536 4537 4538 4539 4540 4541
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4542
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4543
                is_data=var.is_data,
4544 4545
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4546
        return ret_var
4547

Y
Yu Yang 已提交
4548

4549 4550 4551 4552
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4553
# of some old Python Variables(all old Python Operators) may have
4554
# been destructed.
4555 4556 4557
def _apply_pass(
    main_program, startup_program, pass_name, pass_attrs={}, pass_attr_types={}
):
4558 4559 4560 4561
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
4562 4563 4564 4565 4566 4567 4568
    attrs = core.apply_pass(
        tmp_main_program,
        tmp_startup_program,
        pass_name,
        pass_attrs,
        pass_attr_types,
    )
4569 4570 4571 4572 4573
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4574
class IrNode:
4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4586 4587 4588
        assert isinstance(
            node, core.Node
        ), 'node must be the instance of core.Node.'
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4670
    def remove_input_by_id(self, node_id):
4671 4672 4673 4674 4675 4676
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4677
        self.node.remove_input(node_id)
4678

4679
    def remove_input(self, node):
4680 4681 4682 4683
        """
        Remove a node from inputs.

        Args:
4684
            node(IrNode): the node being removed.
4685
        """
4686
        self.node.remove_input(node.node)
4687

4688
    def append_input(self, node):
4689 4690 4691 4692
        """
        Append a node in inputs.

        Args:
4693
            node(IrNode): the node being appended.
4694
        """
4695
        self.node.append_input(node.node)
4696 4697 4698 4699 4700 4701 4702 4703

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4704
    def remove_output_by_id(self, node_id):
4705 4706 4707 4708 4709 4710
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4711
        self.node.remove_output(node_id)
4712

4713
    def remove_output(self, node):
4714 4715 4716 4717
        """
        Remove a node from outputs.

        Args:
4718
            node(IrNode): the node being removed.
4719
        """
4720
        self.node.remove_output(node.node)
4721

4722
    def append_output(self, node):
4723 4724 4725 4726
        """
        Append a node in outputs.

        Args:
4727
            node(IrNode): the node being appended.
4728
        """
4729
        self.node.append_output(node.node)
4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4764 4765 4766
        assert (
            isinstance(node, core.Node) and node.is_var()
        ), 'node must be the instance of core.Node and it must be a variable node.'
4767
        super().__init__(node)
4768 4769 4770 4771 4772 4773 4774 4775 4776
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
4777 4778 4779
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4780 4781 4782 4783 4784 4785 4786 4787 4788
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
4789 4790 4791
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4792 4793
        return self.node.var().persistable()

4794 4795 4796 4797 4798 4799 4800
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
4801 4802 4803
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4804 4805 4806 4807 4808 4809 4810 4811 4812
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
4813 4814 4815
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4816 4817 4818 4819 4820 4821 4822 4823 4824
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
4825 4826 4827
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4828 4829
        return self.node.var().shape()

4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4863 4864 4865
        assert (
            isinstance(node, core.Node) and node.is_op()
        ), 'node must be the instance of core.Node and it must be a operator node.'
4866
        super().__init__(node)
4867 4868 4869 4870 4871 4872 4873 4874 4875 4876
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
4877 4878 4879
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4880 4881
        self.node.op()._rename_input(old_input_name, new_input_name)

4882 4883 4884 4885 4886 4887 4888 4889
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
4890 4891 4892
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4893 4894
        self.node.op()._rename_output(old_output_name, new_output_name)

4895 4896 4897 4898 4899 4900 4901 4902 4903 4904
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4905 4906 4907
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4920 4921 4922
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4923 4924 4925 4926 4927 4928 4929 4930 4931
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
4932 4933 4934
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4935 4936
        return self.node.op().set_type(new_type)

4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
4951 4952 4953
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4954
        desc = self.node.op()
4955 4956 4957 4958 4959
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4960
            desc.set_block_attr(name, val.desc)
4961
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4962
            desc.set_blocks_attr(name, [v.desc for v in val])
4963 4964 4965
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
4966 4967 4968 4969
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4970 4971 4972 4973 4974 4975 4976
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
4977 4978 4979
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4980 4981 4982 4983 4984 4985 4986 4987 4988
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
4989 4990 4991
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4992 4993
        return self.node.op().output_arg_names()

4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


5015
class IrGraph:
5016
    """
5017
    Python IrGraph. Beneath it is a core.Graph, which is used for
5018
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
5019 5020
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
5021 5022 5023 5024
    """

    def __init__(self, graph, for_test=False):
        """
5025 5026
        Construct an IrGraph using core.Graph.

5027 5028 5029 5030 5031
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
5032 5033
            graph, core.Graph
        ), 'graph must be the instance of core.Graph.'
5034 5035 5036
        self.graph = graph
        self._for_test = for_test

5037 5038 5039 5040
    def clone(self):
        """
        Create a new and duplicated IrGraph.

5041 5042 5043
        Warns:
            The method only clones the graph structure, not its attributes.

5044 5045 5046
        Returns:
            IrGraph: A new and duplicated graph.
        """
5047
        g = self.graph.clone()
5048 5049
        return IrGraph(g, self._for_test)

5050
    def is_test(self):
5051 5052 5053
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
5054 5055
        return self._for_test

W
WangZhen 已提交
5056
    def all_nodes(self):
5057 5058 5059
        """
        Return all nodes included in the graph as a set.
        """
5060
        return {IrNode(node) for node in self.graph.nodes()}
5061

5062
    def all_var_nodes(self):
5063 5064 5065
        """
        Return all variable nodes included in the graph as a set.
        """
5066
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
5067

5068
    def all_persistable_nodes(self):
5069 5070 5071
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
5072 5073
        persistable_nodes = set()
        for node in self.graph.nodes():
5074 5075 5076 5077 5078
            if (
                node.is_var()
                and node.var() is not None
                and node.var().persistable()
            ):
W
WangZhen 已提交
5079
                persistable_nodes.add(node)
5080
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
5081

5082
    def all_op_nodes(self):
5083 5084 5085
        """
        Return all operator nodes included in the graph as a set.
        """
5086
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
5087

5088 5089 5090 5091 5092 5093
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
5094
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
5095 5096 5097 5098 5099 5100 5101 5102 5103
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

5104
    def create_persistable_node(self, name, var_type, shape, var_dtype):
5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
5116
            IrVarNode: the created persistable variable node.
5117
        """
5118 5119 5120 5121 5122
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
5123
        return IrVarNode(self.graph.create_var_node(var_desc))
5124 5125

    def create_var_node(self, name, var_type, shape, var_dtype):
5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
5137
            IrVarNode: the created variable node.
5138 5139
        """

5140 5141 5142 5143
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
5144
        return IrVarNode(self.graph.create_var_node(var_desc))
5145

5146 5147 5148 5149 5150 5151
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

5152
    def create_var_node_from_desc(self, var_desc):
5153 5154 5155 5156 5157 5158 5159 5160
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
5161
            IrVarNode: the created variable node.
5162
        """
5163
        return IrVarNode(self.graph.create_var_node(var_desc))
5164 5165

    def create_op_node(self, op_type, attrs, inputs, outputs):
5166 5167 5168 5169 5170 5171 5172
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
5173
            outputs(dict): the outputs of the operator node.
5174 5175

        Returns:
5176
            IrOpNode: the created operator node.
5177
        """
5178 5179
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
5180
        for attr, value in attrs.items():
5181
            self._update_desc_attr(op_desc, attr, value)
5182
        for input_name, var_nodes in inputs.items():
5183 5184
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
5185 5186 5187
            op_desc.set_input(
                input_name, [var_node.name() for var_node in var_nodes]
            )
5188
        for output_name, var_nodes in outputs.items():
5189 5190
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
5191 5192 5193
            op_desc.set_output(
                output_name, [var_node.name() for var_node in var_nodes]
            )
5194
        return IrOpNode(self.graph.create_op_node(op_desc))
5195 5196

    def create_op_node_from_desc(self, op_desc):
5197 5198 5199 5200 5201 5202 5203
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
5204
            IrOpNode: the created operator node.
5205
        """
5206
        return IrOpNode(self.graph.create_op_node(op_desc))
5207 5208

    def update_input_link(self, old_input_node, new_input_node, op_node):
5209 5210 5211 5212
        """
        Update the input's link of a operator node.

        Args:
5213 5214 5215
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
5216
        """
5217 5218 5219 5220 5221
        assert (
            old_input_node.node in self.graph.nodes()
            and new_input_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
5222 5223 5224 5225
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
5226
        op_node.rename_input(old_input_node.name(), new_input_node.name())
5227

5228 5229 5230 5231 5232 5233 5234 5235 5236
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
5237 5238 5239 5240 5241
        assert (
            old_output_node.node in self.graph.nodes()
            and new_output_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
5242 5243 5244 5245 5246 5247
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

5248
    def link_to(self, node_in, node_out):
5249 5250 5251 5252
        """
        Connect two nodes.

        Args:
5253 5254
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
5255
        """
5256
        assert node_in.node in self.graph.nodes(), (
5257 5258
            'node_in(%s) must be in the graph nodes.' % node_in.node.name()
        )
5259
        assert node_out.node in self.graph.nodes(), (
5260 5261
            'node_out(%s) must be in the graph nodes.' % node_out.node.name()
        )
5262 5263
        node_in.append_output(node_out)
        node_out.append_input(node_in)
5264 5265

    def safe_remove_nodes(self, remove_nodes):
5266 5267 5268 5269 5270 5271 5272
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
5273
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
5274 5275 5276 5277
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
5278 5279
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
5280

Z
Zhen Wang 已提交
5281 5282 5283 5284 5285 5286 5287 5288
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5289
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
5290 5291 5292 5293
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5294
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
5295 5296 5297
                        ]
                    else:
                        var_nodes[each_var_name].append(
5298 5299
                            self._find_node_by_name(node.outputs, each_var_name)
                        )
Z
Zhen Wang 已提交
5300 5301
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
5302
    def has_circle(self):
5303 5304 5305 5306 5307 5308
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
5309 5310 5311
        return core.has_circle(self.graph)

    def graph_num(self):
5312 5313 5314 5315 5316 5317
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
5318 5319 5320
        return core.graph_num(self.graph)

    def topology_sort(self):
5321 5322 5323
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
5324
        Notes: the `graph` can not contain a circle.
5325 5326

        Returns:
Z
Zhen Wang 已提交
5327
            list(IrNode): nodes in topology order.
5328
        """
5329
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
5330
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
5331 5332

    def build_adjacency_list(self):
5333 5334 5335 5336
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
5337
            dict{IrNode: set(IrNode)}: the adjacency list.
5338
        """
5339 5340
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
5341
        for k, v in adj_list.items():
5342 5343
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
5344

5345 5346 5347 5348 5349 5350 5351 5352
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
5353
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
5354 5355 5356 5357 5358
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

5359 5360
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
5361 5362 5363 5364
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True,
            )
5365 5366
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
5367 5368 5369
                print(
                    'The {} is saved as the dot filetype.'.format(dot_file_path)
                )
5370

5371
        remove_ctr_vars = set()
5372
        if remove_ctr_var:
5373
            for node in self.all_var_nodes():
5374 5375 5376
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
5377 5378
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

5379 5380
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
5381 5382 5383 5384 5385 5386
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
5387 5388 5389 5390
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
5391 5392
        if not os.path.exists(save_path):
            os.makedirs(save_path)
5393 5394 5395 5396 5397 5398 5399
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
5400 5401 5402
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
5403
        WARN: When the graph includes backward operator nodes, the
5404 5405 5406 5407 5408 5409
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
5410
        convert_pass = core.get_pass('graph_to_program_pass')
5411 5412
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
5413 5414 5415 5416
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

5417 5418 5419 5420 5421 5422 5423 5424
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
5425
        assert target_node is not None, (
5426 5427
            "Cannot find the target node (%s)in the giving set." % node_name
        )
5428 5429
        return target_node

5430 5431 5432 5433
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
5434 5435 5436 5437 5438
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
5439
            desc.set_block_attr(name, val.desc)
5440
        elif isinstance(val, list) and val and _all_is_type(val, Block):
5441
            desc.set_blocks_attr(name, [v.desc for v in val])
5442 5443 5444
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5445 5446 5447 5448 5449
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


5450
class Program:
D
dzhwinter 已提交
5451
    """
5452
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
5453
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
5454
    it will contain nested block.
5455

J
Jiabin Yang 已提交
5456 5457 5458
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
5459

J
Jiabin Yang 已提交
5460
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
5461
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
5462 5463 5464 5465 5466 5467 5468
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
5469
    **Notes**:
5470 5471 5472
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5473 5474

    Returns:
J
Jiabin Yang 已提交
5475
        Program: An empty Program.
D
dzhwinter 已提交
5476 5477

    Examples:
5478 5479
        .. code-block:: python

5480 5481 5482 5483
            import paddle
            import paddle.static as static

            paddle.enable_static()
5484

5485 5486 5487 5488 5489
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5490
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5491 5492 5493

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5494 5495 5496

    """

5497 5498
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5499 5500
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5501 5502
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5503
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5504
        self.__op_role_var = []
T
tangwei12 已提交
5505

5506 5507
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5508
        self._is_distributed = False
5509
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5510
        self._is_chief = False
5511 5512 5513
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5514
        self._endpoints = []
5515 5516 5517
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5518
        self._trainers_endpoints = []
5519
        # the distributed lookup table names
T
tangwei12 已提交
5520
        self._distributed_lookup_table = None
5521 5522 5523

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5524 5525
        self._use_lamb = False

5526 5527 5528
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5529

5530 5531 5532
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5533
        self._program_config = None
5534

5535 5536
        self._pass_applied = None

H
hutuxian 已提交
5537 5538 5539
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5540 5541 5542
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5543 5544 5545
        # appending gradients times
        self._appending_grad_times = 0

5546 5547
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
5548 5549
            "__auto_checkpoint_program__"
        )
5550

5551 5552
        # compiled program, i.e. Graph
        self._graph = None
5553 5554
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5555

5556
    def _find_var_class_kwargs(self, new_desc):
5557 5558 5559 5560 5561 5562 5563 5564
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5565 5566 5567 5568
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5569
            if idx > (len(self.blocks) - 1):
5570
                self._create_block()
5571 5572 5573 5574 5575 5576 5577 5578 5579 5580
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
                    'shape': get_var_desc_attr_or_none(
                        new_var_desc,
                        "shape",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'dtype': get_var_desc_attr_or_none(
                        new_var_desc,
                        "dtype",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'lod_level': get_var_desc_attr_or_none(
                        new_var_desc,
                        "lod_level",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'error_clip': old_var.error_clip
                    if old_var is not None
                    else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None
                    else False,
                    'is_data': old_var.is_data
                    if old_var is not None
                    else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None
                    else False,
5622 5623 5624
                }

                if isinstance(old_var, Parameter):
5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641
                    kwargs.update(
                        {
                            'trainable': old_var.trainable,
                            'optimize_attr': old_var.optimize_attr,
                            'regularizer': old_var.regularizer,
                            'do_model_average': old_var.do_model_average,
                            'need_clip': old_var.need_clip,
                            'is_distributed': old_var.is_distributed,
                            'is_parameter': old_var.is_parameter,
                        }
                    )
                    block_new_vars.append(
                        {
                            'class': Parameter,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5642 5643
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
5644 5645 5646 5647 5648 5649
                    block_new_vars.append(
                        {
                            'class': Variable,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5650 5651 5652 5653 5654 5655 5656

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5657
        assert block_num == self.desc.num_blocks()
5658 5659

        # clear old blocks and desc
5660 5661 5662 5663 5664 5665 5666 5667 5668
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5669

5670
        del desc
5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5690 5691 5692 5693 5694 5695 5696 5697 5698 5699
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5700 5701
                import paddle
                import paddle.static as static
5702

5703 5704 5705
                paddle.enable_static()

                prog = static.default_main_program()
5706 5707 5708 5709 5710
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5711
                prog1 = static.default_main_program()
5712 5713 5714 5715 5716 5717 5718 5719
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5720
    @property
5721
    def _op_role(self):
Y
yuyang18 已提交
5722 5723 5724 5725 5726 5727 5728 5729
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5730
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5731 5732 5733 5734
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5735 5736
        return self._current_role

5737 5738
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5739 5740 5741
        self._current_role = role

    @property
5742
    def _op_role_var(self):
Y
yuyang18 已提交
5743
        """
5744
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5745

5746
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5747 5748 5749

        Notes: This is a very low-level API. Users should not use it directly.
        """
5750
        return self.__op_role_var
Y
yuyang18 已提交
5751

5752
    @signature_safe_contextmanager
5753 5754 5755 5756 5757
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5758 5759 5760 5761
        try:
            yield
        finally:
            self._current_role = tmp_role
5762

S
rename  
sneaxiy 已提交
5763
    @signature_safe_contextmanager
W
Wu Yi 已提交
5764
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5765 5766 5767 5768 5769 5770 5771
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5772
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5773 5774 5775

        Examples:

5776
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5777
            >>> p, g = backward(...)
W
Wu Yi 已提交
5778
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5779 5780
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5781
        tmp_role = self._current_role
5782
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5783

Y
yuyang18 已提交
5784 5785
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5786
        self.__op_role_var = [
5787 5788 5789
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5790 5791 5792 5793 5794
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5795

S
rename  
sneaxiy 已提交
5796
    @signature_safe_contextmanager
X
Xin Pan 已提交
5797
    def _lr_schedule_guard(self, is_with_opt=False):
5798 5799 5800 5801 5802 5803 5804
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5805 5806 5807 5808
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5809 5810 5811

        Examples:

5812
            >>> import paddle.fluid as fluid
5813 5814 5815 5816
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5817 5818

        tmp_role = self._current_role
5819
        tmp_var = self.__op_role_var
5820

5821 5822
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5823 5824
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5825
        # TODO(typhoonzero): how to set target learning rate var
5826
        self.__op_role_var = []
5827 5828 5829 5830 5831
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5832

5833
    def __str__(self):
Y
yuyang18 已提交
5834 5835 5836 5837 5838 5839 5840 5841 5842
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5863 5864
            import paddle
            import paddle.static as static
5865

5866 5867 5868
            paddle.enable_static()

            cur_program = static.Program()
5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5880
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5881 5882
            type(skip_op_callstack)
        )
5883 5884 5885
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5886
            program_str += '\n'
5887
        return program_str
Y
Yang Yang(Tony) 已提交
5888

F
fengjiayi 已提交
5889 5890 5891
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5892

J
Jiabin Yang 已提交
5893 5894 5895
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5896

J
Jiabin Yang 已提交
5897
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5898

H
haowang101779990 已提交
5899
        Returns:
J
Jiabin Yang 已提交
5900
            str: The debug string describe current Program.
Y
yuyang18 已提交
5901 5902

        Raises:
J
Jiabin Yang 已提交
5903
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5904

5905 5906 5907
        Examples:
            .. code-block:: python

5908 5909 5910 5911
                import paddle
                import paddle.static as static

                paddle.enable_static()
5912

5913 5914 5915
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5916
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5917
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5918
                print("program string without detail: {}".format(prog_string))
5919
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5920
        """
5921 5922 5923
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
5924 5925
            type(throw_on_error)
        )
5926 5927 5928
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
5929 5930
            type(with_details)
        )
5931

F
fengjiayi 已提交
5932 5933 5934 5935
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951
            protostr = self.desc.serialize_to_string()
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
            res_str += (
                "version {\n  "
                + textwrap.indent(
                    _debug_string_(proto.version, throw_on_error), "  "
                )
                + "}\n"
            )
            res_str += (
                "op_version_map {\n  "
                + textwrap.indent(
                    _debug_string_(proto.op_version_map, throw_on_error), "  "
                )
                + "}\n"
            )
F
fengjiayi 已提交
5952 5953
        else:
            protostr = self.desc.serialize_to_string()
5954
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
5955 5956
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5957

W
Wu Yi 已提交
5958
    def _get_desc(self):
Y
yuyang18 已提交
5959 5960 5961 5962 5963 5964 5965
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5966 5967
        return self.desc

X
version  
Xin Pan 已提交
5968 5969 5970
    def _version(self):
        return self.desc._version()

5971
    def clone(self, for_test=False):
Y
yuyang18 已提交
5972
        """
5973
        .. note:::
5974 5975
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
5976
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5977

5978
        Create a new Program with forward content of original one when ``for_test=True``.
5979
        Create a new Program as same as the original one when ``for_test=False``.
5980

5981
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5982 5983 5984
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5985

5986 5987
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5988 5989
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5990
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5991

C
cyberslack_lee 已提交
5992 5993 5994
        Examples:
            .. code-block:: python
                :name: code-example-1
L
Luo Tao 已提交
5995

C
cyberslack_lee 已提交
5996 5997
                import paddle
                import paddle.static as static
5998

C
cyberslack_lee 已提交
5999
                paddle.enable_static()
6000

C
cyberslack_lee 已提交
6001 6002 6003 6004 6005 6006 6007
                img = static.data(name='image', shape=[None, 784])
                pred = static.nn.fc(x=img, size=10, actvation='relu')
                loss = paddle.mean(pred)
                # Here we use clone before Momentum
                test_program = static.default_main_program().clone(for_test=True)
                optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
                optimizer.minimize(loss)
6008

J
Jiabin Yang 已提交
6009
        Args:
6010

6011 6012
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
6013

J
Jiabin Yang 已提交
6014
        Returns:
6015
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
6016

Y
yuyang18 已提交
6017 6018 6019

        Examples:

6020 6021 6022 6023 6024 6025 6026
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

6027
            .. code-block:: python
C
cyberslack_lee 已提交
6028
                :name: code-example-2
6029

6030
                import paddle
6031 6032

                def print_prog(prog):
6033
                    for name, value in sorted(prog.block(0).vars.items()):
6034 6035 6036 6037 6038
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
6039
                        for key, value in sorted(op.all_attrs().items()):
6040 6041 6042 6043
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


6044
            1. To clone a test program, the sample code is:
6045
                .. code-block:: python
C
cyberslack_lee 已提交
6046
                    :name: code-example-3
6047

6048 6049 6050 6051 6052 6053
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
6054 6055

                    def print_prog(prog):
6056
                        for name, value in sorted(prog.block(0).vars.items()):
6057 6058 6059 6060 6061
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
6062
                            for key, value in sorted(op.all_attrs().items()):
6063 6064 6065
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

6066 6067
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
6068 6069 6070

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
6071 6072 6073
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
6074
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
6075 6076
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
6077
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
6078 6079
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
6080
                            test_program = train_program.clone(for_test=True)
6081
                    print_prog(test_program)
J
Jiabin Yang 已提交
6082 6083 6084 6085

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

6086
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
6087 6088 6089 6090
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

6091 6092 6093
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
6094 6095 6096
                            sgd.minimize(avg_loss)


6097
            2. The clone method can be avoid if you create program for training and program for testing individually.
6098
                .. code-block:: python
C
cyberslack_lee 已提交
6099
                    :name: code-example-4
6100

6101 6102 6103 6104 6105 6106
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
6107 6108

                    def print_prog(prog):
6109
                        for name, value in sorted(prog.block(0).vars.items()):
6110 6111 6112 6113 6114
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
6115
                            for key, value in sorted(op.all_attrs().items()):
6116 6117
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
6118

6119
                    def network():
6120
                        img = static.data(name='image', shape=[None, 784])
6121
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
6122 6123
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
6124
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
6125 6126
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
6127 6128
                        return avg_loss

6129 6130 6131 6132 6133
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
6134
                            avg_loss = network()
6135
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
6136
                            sgd.minimize(avg_loss)
6137
                    # the test startup program is not used.
6138 6139
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
6140 6141
                            avg_loss = network()
                    print_prog(test_program_2)
6142

6143
            The two code snippets above will generate and print same programs.
6144
        """
6145

T
tangwei12 已提交
6146
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
6147 6148 6149
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

6150
        pruned_origin_block_id_map = None
6151
        if for_test:
6152 6153
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
6154 6155
                self.desc
            )
6156 6157
            forward_prog.blocks = [
                Block(forward_prog, i)
6158
                for i in range(forward_prog.desc.num_blocks())
6159 6160 6161
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
6162
        else:
6163
            p = Program()
G
gongweibao 已提交
6164 6165
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
6166
            p.desc = core.ProgramDesc(self.desc)
6167
            p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())]
G
gongweibao 已提交
6168 6169

            p._current_role = self._current_role
6170
            p.__op_role_var = self.__op_role_var
6171
            p._appending_grad_times = self._appending_grad_times
6172 6173
            if hasattr(self, 'lr_scheduler'):
                p.lr_scheduler = self.lr_scheduler
6174 6175
            if hasattr(self, '_pipeline_opt'):
                p._pipeline_opt = self._pipeline_opt
G
gongweibao 已提交
6176

T
tangwei12 已提交
6177
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
6178
            # its desc.
W
Wu Yi 已提交
6179
            p._sync_with_cpp()
6180

W
Wu Yi 已提交
6181
        p._copy_param_info_from(self)
6182
        p._copy_data_info_from(self, pruned_origin_block_id_map)
6183
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
6184
        return p
6185

6186
    def _prune(self, targets):
Y
yuyang18 已提交
6187 6188 6189 6190 6191 6192 6193 6194
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
6195
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
6196 6197 6198 6199
                need to be pruned

        Returns:
            Program:  A new, pruned program.
6200
        """
6201
        return self._prune_with_input([], targets)
6202 6203

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
6204
        """
6205
        Prune operators and variables which are not needed to generate
6206 6207
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
6208 6209 6210 6211 6212 6213 6214

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
6215
            targets(list|Variable|Operator): A list of variables, operators, or variable names
6216 6217 6218 6219 6220 6221
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
6222
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
6223 6224 6225
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

6226 6227
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
6228 6229
        if not isinstance(targets, list):
            targets = [targets]
6230 6231

        for var in feeded_var_names:
6232
            if not isinstance(var, str):
6233 6234
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
6235 6236
                    "str, but received %s." % type(var)
                )
6237

6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

6254 6255 6256 6257
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
6258
                    name = t.name
6259
                elif isinstance(t, str):
6260
                    name = str(t)
6261
                else:
6262 6263
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
6264 6265
                        "Variable or Operator, but received %s." % type(t)
                    )
6266 6267 6268 6269 6270 6271

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
6272 6273 6274
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
6275

6276 6277 6278 6279 6280 6281 6282 6283 6284
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
6285
                        # Skip optimize op except for optimize op in targets,
6286 6287 6288 6289 6290
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
6291

6292
                if target_op is not None:
6293 6294 6295
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
6296

6297
        res = Program()
6298
        res.desc, pruned_origin_block_id_map = core.prune(
6299 6300
            self.desc, set(feeded_var_names), targets_idx
        )
6301
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6302
        res._sync_with_cpp()
6303 6304 6305 6306 6307

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

6308 6309
        return res

X
Xin Pan 已提交
6310
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
6311
        """
F
fengjiayi 已提交
6312 6313 6314 6315 6316
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

6317
        3. change the :code:`is_test`
Y
yuyang18 已提交
6318 6319 6320
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

6321
        Args:
X
Xin Pan 已提交
6322 6323
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
6324

Y
yuyang18 已提交
6325 6326 6327 6328 6329 6330
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
6331
        res = Program()
6332
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
6333 6334 6335 6336

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
6337
        if prune_read_op:
6338
            while True:
6339 6340 6341 6342
                if (
                    read_op_idx >= root_block.op_size()
                    or root_block.op(read_op_idx).type() == 'read'
                ):
6343 6344 6345 6346 6347 6348
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
6349
                    root_block._remove_var(var.name().encode())
F
fengjiayi 已提交
6350 6351

        # change all `is_test` attributes to True
6352
        for i in range(res.desc.num_blocks()):
6353
            block = res.desc.block(i)
6354
            for j in range(block.op_size()):
6355 6356
                op = block.op(j)
                if op.has_attr('is_test'):
6357
                    op._set_bool_attr('is_test', True)
6358 6359 6360
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
6361
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6362
        res._sync_with_cpp()
6363 6364
        return res

6365
    def _remove_training_info(self, clip_extra=True):
6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

6380
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
6381 6382
        res._sync_with_cpp()

6383 6384
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
6385
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
6386

6387
        for i in range(res.desc.num_blocks()):
6388 6389 6390 6391
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
6392 6393
            if not clip_extra:
                continue
6394 6395 6396 6397
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
6398 6399 6400

                extra_attrs_map = core.get_op_extra_attrs(op.type())

6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
6414 6415 6416
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
6430
                # The extra output of op will be removed in the future
6431 6432
                for name in remove_output_list:
                    op.remove_output(name)
6433

6434 6435 6436 6437 6438 6439 6440
                op_quant_name = (
                    core.op_proto_and_checker_maker.kOpWithQuantAttrName()
                )
                quant = (
                    bool(op.attr(op_quant_name))
                    if op_quant_name in op.attr_names()
                    else False
6441 6442
                )
                quant_attrs = [
6443 6444 6445 6446 6447 6448 6449
                    op_quant_name,
                    "quantization_type",
                    "skip_quant",
                    "activation_bits",
                    "bit_length",
                    "quantize_weight_bits",
                    "weight_quant_scale",
6450
                ]
6451 6452
                for extra_attr_name in extra_attrs_map.keys():
                    op.remove_attr(extra_attr_name)
6453
                remove_attr_list = []
6454 6455 6456 6457 6458 6459
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
6460
                    if len(extra_attrs_map) > 0:
6461
                        if name in common_clipped_attrs_list:
6462
                            op.remove_attr(name)
6463
                        continue
6464 6465 6466 6467 6468 6469 6470 6471 6472 6473
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
6474 6475
        return res

6476 6477
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
6478
        """
6479
        .. note::
6480
            1. All information about parameters will be lost after serialization;
6481
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6482

6483 6484
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
6485

J
Jiabin Yang 已提交
6486
        Args:
Y
yuyang18 已提交
6487

J
Jiabin Yang 已提交
6488
            binary_str_type (str): the binary prootbuf string.
6489

J
Jiabin Yang 已提交
6490 6491
        Returns:
            Program: A deserialized Program.
6492 6493 6494 6495

        Examples:
            .. code-block:: python

6496 6497 6498 6499
                import paddle
                import paddle.static as static

                paddle.enable_static()
6500

6501 6502 6503 6504
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
6505

6506
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
6507

6508
                    z = paddle.matmul(x=x, y=y)
6509

6510 6511
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
6512

6513
                    print(static.default_main_program())
6514
                    print(prog_restored)
Y
yuyang18 已提交
6515
        """
6516 6517
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
6518
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
W
Wu Yi 已提交
6519
        p._sync_with_cpp()
6520
        return p
Y
Yu Yang 已提交
6521

6522
    @staticmethod
6523
    def _construct_from_desc(desc):
6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
6535
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
6536 6537 6538
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6539 6540
    @property
    def random_seed(self):
Y
yuyang18 已提交
6541
        """
J
Jiabin Yang 已提交
6542
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6543 6544
        the random seed from random device.

6545
        .. note::
6546
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6547 6548 6549

        Returns:
            int64: Random seed in current Program
6550

6551 6552 6553 6554

        Examples:
            .. code-block:: python

6555 6556 6557
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6558

6559 6560 6561
                paddle.enable_static()

                prog = static.default_main_program()
6562
                random_seed = prog.random_seed
6563
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6564 6565 6566
                print(random_seed)
                ## 0
                ## the default random seed is 0
6567

6568
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6569
                prog.random_seed = 1
6570
                z_var = F.dropout(x_var, 0.7)
6571

6572
                print(prog.random_seed)
6573 6574
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6575
        """
D
dzhwinter 已提交
6576 6577
        return self._seed

Q
qiaolongfei 已提交
6578 6579
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6580
        """
6581 6582
        The number of :ref:`api_guide_Block_en`  in this Program.

6583
        .. note::
6584
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6585 6586 6587

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6588

6589 6590 6591 6592

        Examples:
            .. code-block:: python

6593 6594 6595 6596
                import paddle
                import paddle.static as static

                paddle.enable_static()
6597

6598
                prog = static.default_main_program()
6599 6600
                num_blocks = prog.num_blocks
                print(num_blocks)
6601

6602 6603
                # print result:
                # 1
Y
yuyang18 已提交
6604
        """
Q
qiaolongfei 已提交
6605 6606
        return self.desc.num_blocks()

D
dzhwinter 已提交
6607 6608 6609
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6610 6611
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
6612 6613
                % type(seed)
            )
D
dzhwinter 已提交
6614 6615
        self._seed = seed

Y
Yu Yang 已提交
6616
    def __repr__(self):
6617
        return self.__str__()
6618

Y
Yu Yang 已提交
6619
    def global_block(self):
Y
yuyang18 已提交
6620
        """
6621 6622
        .. note::
            This API has no effect in Dygraph mode.
6623 6624 6625

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6626 6627
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6628

6629 6630 6631 6632

        Examples:
            .. code-block:: python

6633 6634 6635 6636
                import paddle
                import paddle.static as static

                paddle.enable_static()
6637

6638
                prog = static.default_main_program()
6639 6640
                gb_block = prog.global_block()
                print(gb_block)
6641

Y
yuyang18 已提交
6642
        """
Y
Yu Yang 已提交
6643 6644
        return self.blocks[0]

Q
Qiao Longfei 已提交
6645
    def block(self, index):
Y
yuyang18 已提交
6646
        """
6647 6648
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6649

6650 6651
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6652 6653
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6654

J
Jiabin Yang 已提交
6655 6656
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6657 6658 6659 6660

        Examples:
            .. code-block:: python

6661 6662 6663 6664
                import paddle
                import paddle.static as static

                paddle.enable_static()
6665

6666
                prog = static.default_main_program()
6667 6668
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6669
        """
Q
Qiao Longfei 已提交
6670 6671
        return self.blocks[index]

Y
Yu Yang 已提交
6672
    def current_block(self):
Y
yuyang18 已提交
6673
        """
6674 6675
        .. note::
            This API has no effect in Dygraph mode.
6676

J
Jiabin Yang 已提交
6677 6678
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6679

J
Jiabin Yang 已提交
6680 6681
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6682

6683 6684 6685
        Examples:
            .. code-block:: python

6686 6687 6688 6689
                import paddle
                import paddle.static as static

                paddle.enable_static()
6690

6691
                prog = static.default_main_program()
6692 6693
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6694
        """
Y
Yu Yang 已提交
6695 6696
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6697
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6698 6699 6700 6701 6702
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6703

Y
yuyang18 已提交
6704 6705 6706 6707 6708
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6709
        new_block_idx = len(self.blocks)
6710 6711 6712 6713 6714
        parent = (
            self.current_block()
            if parent_idx is None
            else self.block(parent_idx)
        )
F
update  
fengjiayi 已提交
6715
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6716 6717 6718 6719
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6720
    def _rollback(self):
Y
yuyang18 已提交
6721 6722 6723 6724 6725
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6726 6727
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6728
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6729 6730 6731 6732 6733 6734 6735 6736 6737 6738
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6739 6740 6741
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6742
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6743

W
Wu Yi 已提交
6744
    def _copy_param_info_from(self, other):
6745
        """
6746
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6747

Y
yuyang18 已提交
6748 6749 6750
        Notes: This is a very low level API. Users should not invoke it
        directly.

6751 6752 6753 6754 6755 6756 6757
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6758 6759
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6760 6761
                % type(other)
            )
6762

W
Wu Yi 已提交
6763
        self.global_block()._copy_param_info_from(other.global_block())
6764

6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6776 6777
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6778 6779
                % type(other)
            )
6780 6781
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6782
        self._parameters_on_pservers = other._parameters_on_pservers
6783
        self._endpoints = other._endpoints
6784
        self._ps_endpoint = other._ps_endpoint
6785 6786
        self._distributed_lookup_table = other._distributed_lookup_table

6787
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6788 6789
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6790

Y
yuyang18 已提交
6791 6792 6793
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6794 6795
        Args:
            other(Program): Other program
6796
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
6797 6798
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6799
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6800 6801 6802 6803 6804

        Returns:
            None
        """
        if not isinstance(other, Program):
6805 6806
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6807 6808
                % type(other)
            )
F
fengjiayi 已提交
6809

6810 6811
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
6812
                i: i for i in range(self.desc.num_blocks())
6813
            }
6814 6815 6816

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6817 6818
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6819
            for var in list(block.vars.values()):
6820 6821 6822 6823 6824 6825 6826
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6827

6828
    def list_vars(self):
Y
yuyang18 已提交
6829
        """
6830
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6831

J
Jiabin Yang 已提交
6832
        Returns:
6833
            iterable Tensors: The Generator will yield every Tensor in this program.
6834 6835 6836 6837

        Examples:
            .. code-block:: python

6838 6839
                import paddle
                import paddle.static as static
6840

6841 6842 6843 6844 6845
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6846 6847
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6848

6849 6850
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6851
        """
6852
        for each_block in self.blocks:
6853
            for each_var in list(each_block.vars.values()):
6854 6855
                yield each_var

6856 6857 6858 6859 6860 6861 6862 6863 6864 6865
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6866 6867 6868 6869
                import paddle
                import paddle.static as static

                paddle.enable_static()
6870

6871 6872
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6873
                hidden = static.nn.fc(x=data, size=10)
6874 6875
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6876 6877 6878 6879 6880 6881 6882

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6883 6884
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6885 6886 6887 6888 6889 6890 6891 6892 6893 6894
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6895 6896 6897 6898 6899 6900 6901 6902 6903
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
6904 6905 6906
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6907 6908
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
6909
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6937
        # can not be imported at the begainning of this file.
6938 6939
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
6940

6941 6942
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6943 6944 6945 6946
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".format(
                    type(scope)
                )
            )
6947 6948 6949 6950 6951

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6952 6953
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
6954 6955 6956
                    type(mode)
                )
            )
6957 6958 6959 6960 6961

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
6962 6963 6964 6965 6966
            if (
                var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
                or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
                or var.desc.type() == core.VarDesc.VarType.READER
            ):
6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):
            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6984 6985 6986 6987
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".format(
                        mode
                    )
                )
6988 6989 6990 6991 6992 6993 6994 6995

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
6996 6997 6998 6999
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".format(
                        var.name
                    )
                )
7000 7001 7002 7003 7004 7005
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
7006
        Set parameters and persistable buffers in state_dict to program.
7007
        An exception will throw if shape or dtype of the parameters is not match.
7008

7009 7010 7011 7012
        .. note::
            This function MUST called after run start_up_program

        Args:
7013
            state_dict(dict): the dict store parameters and persistable buffers.
7014 7015
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
7016
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
7017 7018
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
7019

7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
7049 7050 7051
                    type(state_dict)
                )
            )
7052 7053

        vars_dict = {var.name: var for var in self.list_vars()}
7054 7055 7056
        condition = (
            True if 'StructuredToParameterName@@' in state_dict else False
        )
7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
7068 7069
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
7070 7071
                except TypeError as err:
                    warnings.warn(
7072 7073
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
7074
            else:
7075
                warnings.warn(
7076 7077 7078 7079 7080 7081
                    (
                        "Skip loading for '{0}'. Because '{0}' not in the program.".format(
                            name
                        )
                    )
                )
7082

Y
Yu Yang 已提交
7083

7084
class Parameter(Variable, metaclass=ParameterMetaClass):
7085
    """
7086
    Parameter is derived from Variable. A parameter is a persistable
7087
    Variable, and will be updated by optimizers after each iteration.
7088
    The training of a neural network is essentially the updating of
7089 7090
    its parameters.

7091
    Relative to a general Variable, a Parameter has several its own
7092 7093
    member variables:

7094 7095 7096 7097 7098 7099 7100 7101 7102 7103
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
7104
        need_clip (bool): Whether the parameter gradient need to be cliped
7105
            in optimizer. Default is True.
7106 7107
    """

7108 7109 7110 7111 7112 7113
    def __init__(
        self,
        block,
        shape,
        dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
7114
        **kwargs,
7115
    ):
7116 7117 7118 7119 7120
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
7121 7122
        for each in shape:
            if each < 0:
7123 7124
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7125 7126 7127 7128 7129 7130 7131 7132 7133 7134
                    % list(shape)
                )

        Variable.__init__(
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
7135
            **kwargs,
7136
        )
Y
Yu Yang 已提交
7137 7138 7139 7140
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

7141 7142
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
7143
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
7144

7145 7146
        self.need_clip = kwargs.get('need_clip', True)

7147 7148
        self.is_distributed = False

7149 7150
        self.is_parameter = True

F
fengjiayi 已提交
7151
    def __str__(self):
7152
        return self._to_readable_code()
F
fengjiayi 已提交
7153

F
update  
fengjiayi 已提交
7154 7155 7156
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
7157

F
update  
fengjiayi 已提交
7158 7159 7160 7161 7162 7163 7164 7165
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

7166 7167 7168 7169
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
G
GGBond8488 已提交
7170
                import paddle
7171 7172

                prog = fluid.default_main_program()
G
GGBond8488 已提交
7173
                rlt = paddle.static.data("fake_data", shape=[-1,1,1], dtype='float32')
7174 7175
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
7176
        """
7177
        assert isinstance(throw_on_error, bool) and isinstance(
7178 7179
            with_details, bool
        )
F
update  
fengjiayi 已提交
7180 7181
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
7182 7183 7184 7185 7186 7187 7188
            additional_attr = (
                "trainable",
                "optimize_attr",
                "regularizer",
                "do_model_average",
                "need_clip",
            )
F
update  
fengjiayi 已提交
7189
            for attr_name in additional_attr:
7190
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
F
update  
fengjiayi 已提交
7191 7192
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
7193 7194 7195 7196
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
7197

W
wanghuancoder 已提交
7198
class EagerParamBase(core.eager.Tensor):
7199
    """
7200 7201
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
7219
        need_clip (bool): Whether the parameter gradient need to be cliped
7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7234 7235
                    % list(shape)
                )
7236 7237 7238 7239 7240 7241 7242

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

7243 7244 7245
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

7246
        super().__init__(
7247 7248 7249 7250 7251 7252
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
7267 7268 7269
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
7270 7271

    def set_init_func(self, obj):
7272
        self._init_func = obj
7273 7274 7275

    @dygraph_only
    def initialize(self):
7276 7277 7278
        assert (
            self._init_func is not None
        ), "Required self._init_func is not None, but received None."
7279
        self._init_func(self, None)
7280
        # clear function handle to release resource
7281
        self._init_func = None
7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7294 7295
                type(trainable),
            )
7296

7297 7298 7299 7300
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
7301 7302 7303
        assert (
            self._init_op_creator is not None
        ), "Required self._init_op_creator is not None, but received None."
7304
        self._init_op_creator(self, block)
7305

7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
7325
            tensor=super().__str__()
7326
        )
7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
7356 7357
        new_param._init_func = self._init_func
        new_param._init_op_creator = self._init_op_creator
7358 7359 7360 7361 7362 7363
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
7364 7365
        return new_param

7366 7367 7368
    __repr__ = __str__


Y
Yu Yang 已提交
7369
# program is a global instance.
Y
Yu Yang 已提交
7370 7371
_main_program_ = Program()
_startup_program_ = Program()
7372
_startup_program_._is_start_up_program_ = True
7373

7374

7375
def default_startup_program():
Y
Yu Yang 已提交
7376
    """
Y
yuyang18 已提交
7377 7378
    Get default/global startup program.

7379
    The :code:`paddle.nn` function will append the initialization operators into startup program.
7380
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
7381

7382 7383
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
7384

7385 7386
    Returns:
        Program: current default startup program.
7387

7388
    Returns type:
7389 7390 7391 7392

    Examples:
        .. code-block:: python

7393
            import paddle
7394

7395
            paddle.enable_static()
7396 7397 7398 7399
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
7400
    """
Y
Yu Yang 已提交
7401
    return _startup_program_
7402

7403

7404
def default_main_program():
Y
Yu Yang 已提交
7405
    """
7406
    This API can be used to get ``default main program`` which store the
7407
    descriptions of Ops and tensors.
T
tangwei12 已提交
7408

7409 7410
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
7411

7412
    The ``default main program`` is the default value for ``Program`` parameter in
7413
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7414
    :code:`default_main_program` when the program is not specified.
7415

7416
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7417

Y
Yu Yang 已提交
7418
    Returns:
7419
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7420 7421 7422 7423

    Examples:
        ..  code-block:: python

7424
            import paddle
7425

7426
            paddle.enable_static()
7427
            # Sample Network:
7428 7429 7430
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7431

7432 7433 7434
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7435
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7436
    """
Y
Yu Yang 已提交
7437
    return _main_program_
Y
Yu Yang 已提交
7438 7439 7440 7441 7442


def switch_main_program(program):
    """
    Switch the main program to a new program.
7443

Y
Yu Yang 已提交
7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7458
    Switch the startup program to a new program
Y
Yu Yang 已提交
7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7471
@signature_safe_contextmanager
Y
Yu Yang 已提交
7472 7473
def program_guard(main_program, startup_program=None):
    """
7474 7475
    :api_attr: Static Graph

7476 7477 7478
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7479

G
guofei 已提交
7480
    Args:
7481
        main_program(Program): New main program inside ``with`` statement.
7482 7483
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7484 7485 7486
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7487
    Examples:
C
cyberslack_lee 已提交
7488 7489
        .. code-block:: python
            :name: code-example-1
T
tangwei12 已提交
7490

C
cyberslack_lee 已提交
7491
            import paddle
Y
yuyang18 已提交
7492

C
cyberslack_lee 已提交
7493 7494 7495 7496 7497 7498
            paddle.enable_static()
            main_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(main_program, startup_program):
                data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
                hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7499 7500 7501

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7502

Y
Yu Yang 已提交
7503
    Examples:
C
cyberslack_lee 已提交
7504 7505
        .. code-block:: python
            :name: code-example-2
Y
yuyang18 已提交
7506

C
cyberslack_lee 已提交
7507
            import paddle
7508

C
cyberslack_lee 已提交
7509 7510 7511 7512 7513
            paddle.enable_static()
            main_program = paddle.static.Program()
            # does not care about startup program. Just pass a temporary value.
            with paddle.static.program_guard(main_program, paddle.static.Program()):
                data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7514

Y
Yu Yang 已提交
7515
    """
7516
    from .data_feeder import check_type
7517 7518 7519 7520

    check_type(
        main_program, 'main_program', Program, 'paddle.static.program_guard'
    )
Y
Yu Yang 已提交
7521 7522
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7523 7524 7525 7526 7527 7528
        check_type(
            startup_program,
            'startup_program',
            Program,
            'paddle.static.program_guard',
        )
7529 7530
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7531
        startup_program = switch_startup_program(startup_program)
7532 7533 7534 7535 7536 7537
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7538 7539


W
Wu Yi 已提交
7540
def _get_var(name, program=None):
X
xuwei06 已提交
7541
    """
Y
yuyang18 已提交
7542
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7543

X
xuwei06 已提交
7544 7545 7546
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7547
        If None, default_global_program() will be used.
X
xuwei06 已提交
7548 7549 7550 7551 7552 7553 7554

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7555
    assert isinstance(program, Program)
X
xuwei06 已提交
7556 7557

    return program.global_block().var(name)
7558 7559


7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572
@signature_safe_contextmanager
def dygraph_guard_if_declarative():
    from .dygraph.base import in_declarative_mode
    from .dygraph import Tracer

    if in_declarative_mode():
        # Under @paddle.jit.to_static decorator, we switch back dygraph mode temporarily.
        with _dygraph_guard(tracer=Tracer()):
            yield
    else:
        yield


S
rename  
sneaxiy 已提交
7573
@signature_safe_contextmanager
L
lujun 已提交
7574
def _dygraph_guard(tracer):
7575 7576 7577 7578
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = tracer
    if tracer is not None:
        core._switch_tracer(tracer)
M
minqiyang 已提交
7579

C
Charles-hit 已提交
7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591
    try:
        yield
    finally:
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer


@signature_safe_contextmanager
def _static_guard():
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = None
7592 7593 7594
    try:
        yield
    finally:
7595 7596 7597
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7598 7599


S
rename  
sneaxiy 已提交
7600
@signature_safe_contextmanager
L
lujun 已提交
7601
def _dygraph_place_guard(place):
7602 7603 7604
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7605 7606
    _set_dygraph_tracer_expected_place(place)

7607 7608 7609
    try:
        yield
    finally:
7610
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7611
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7612 7613


7614 7615 7616 7617 7618 7619 7620 7621 7622 7623
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7624

7625
    Note:
7626
        The API only supports static graph mode.
7627 7628 7629 7630

    A context manager that specifies the device on which the OP will be placed.

    Args:
7631
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
7632
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7633 7634 7635 7636 7637 7638 7639
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7640

7641
        .. code-block:: python
7642

7643
            # required: gpu
Z
Zhang Ting 已提交
7644
            import paddle
7645

Z
Zhang Ting 已提交
7646 7647 7648
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7649
            if support_gpu:
Z
Zhang Ting 已提交
7650
                place = paddle.CUDAPlace(0)
7651 7652

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7653 7654 7655
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7656

Z
Zhang Ting 已提交
7657
            with paddle.static.device_guard("cpu"):
7658
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7659 7660
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7661
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7662
                out = paddle.reshape(data1, shape=shape)
7663

Z
Zhang Ting 已提交
7664 7665
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7666 7667 7668
            result = exe.run(fetch_list=[out])
    """

7669 7670 7671 7672 7673
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7674 7675 7676 7677
    if (
        device not in ['cpu', 'gpu', 'xpu', '', None]
        and device not in core.get_all_custom_device_type()
    ):
7678
        raise ValueError(
7679
            "The Attr(device) should be 'cpu', 'xpu', 'gpu' or custom device, and it can also be empty string or None "
7680 7681
            "when there is no need to specify device. But received %s" % device
        )
7682 7683
    if index:
        device = ":".join([device, index])
7684
    pre_device = switch_device(device)
7685 7686 7687 7688
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7689 7690


7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
7703
        The API only supports static graph mode.
7704

7705
    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static graph mode.
7706 7707 7708 7709 7710

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
7711
    assert (
7712
        not in_dygraph_mode()
7713
    ), "cuda_graph_guard only works under static graph mode"
7714 7715
    assert (
        core.is_compiled_with_cuda()
7716 7717 7718 7719 7720 7721 7722 7723
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7724 7725 7726
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7727
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7728 7729 7730 7731 7732 7733 7734

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7735 7736
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7737 7738 7739 7740
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7741 7742
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7743 7744
        else:
            raise ValueError(
7745 7746
                "Flag %s cannot set its value through this function." % (key)
            )
G
guofei 已提交
7747 7748 7749 7750 7751


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7752
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7753 7754 7755 7756 7757 7758 7759 7760 7761 7762

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7763
            import paddle
G
guofei 已提交
7764 7765

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7766
            res = paddle.get_flags(flags)
G
guofei 已提交
7767 7768 7769 7770 7771 7772
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7773
            if _global_flags().is_public(key):
7774
                value = _global_flags()[key]
G
guofei 已提交
7775 7776 7777 7778
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
7779 7780 7781
                    'Flag %s cannot get its value through this function.'
                    % (key)
                )
G
guofei 已提交
7782
    elif isinstance(flags, str):
7783
        if _global_flags().is_public(flags):
7784
            value = _global_flags()[flags]
G
guofei 已提交
7785 7786 7787 7788
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
7789 7790
                'Flag %s cannot get its value through this function.' % (flags)
            )
G
guofei 已提交
7791 7792 7793
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7794 7795 7796 7797 7798 7799


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811
    if isinstance(
        place,
        (
            core.Place,
            core.XPUPlace,
            core.CPUPlace,
            core.CUDAPinnedPlace,
            core.CUDAPlace,
            core.IPUPlace,
            core.CustomPlace,
        ),
    ):
7812 7813 7814 7815
        return place

    if not isinstance(place, str):
        raise ValueError(
7816 7817
            "place only support string which is 'Place' and so on."
        )
7818 7819

    place = place.lower()
7820
    if place == "cpu":
7821
        return core.CPUPlace()
7822

7823
    if place == "device":
7824 7825
        return core.Place()

7826
    # GPU
7827 7828 7829 7830
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
7831
                "The device should not be {}, since PaddlePaddle is "
7832
                "not compiled with CUDA".format(avaliable_gpu_place.group())
7833
            )
7834 7835 7836 7837 7838 7839 7840 7841 7842
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7843 7844

    # XPU
7845 7846 7847 7848
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
7849
                "The device should not be {}, since PaddlePaddle is "
7850
                "not compiled with XPU".format(avaliable_xpu_place.group())
7851
            )
7852 7853 7854 7855
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7856

J
jianghaicheng 已提交
7857 7858 7859 7860 7861
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
7862
                "The device should not be {}, since PaddlePaddle is "
7863
                "not compiled with IPU".format(avaliable_ipu_place.group())
7864
            )
J
jianghaicheng 已提交
7865 7866 7867 7868 7869
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7870 7871 7872 7873 7874 7875 7876
    place_info_list = place.split(':', 1)
    device_type = place_info_list[0]
    if device_type in core.get_all_custom_device_type():
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.CustomPlace(device_type, device_id)

7877
    raise ValueError(
7878
        f"Paddle supports CPUPlace, CUDAPlace, CUDAPinnedPlace, XPUPlace, IPUPlace and CustomPlace, but received {place}."
7879
    )
7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891


def _get_paddle_place_list(places):
    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret