framework.py 267.9 KB
Newer Older
G
gouzil 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

import textwrap
Y
Yu Yang 已提交
16
import collections
X
Xin Pan 已提交
17
from collections import defaultdict
H
huzhiqiang 已提交
18
from collections.abc import Iterable
Q
qiaolongfei 已提交
19
import contextlib
20
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
21
import os
F
fengjiayi 已提交
22
import re
23
import traceback
24
import copy
25
from types import MethodType, FunctionType
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
R
risemeup1 已提交
32 33 34

from .proto import framework_pb2, data_feed_pb2

35
from . import core
36
from . import unique_name
37
from .. import ir
38 39
import paddle.version as fluid_version
import warnings
40
import functools
41
from .variable_index import _getitem_static, _setitem_static, _setitem_impl_
42
import threading
Y
Yu Yang 已提交
43

44
__all__ = [
45 46 47 48
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
49
    'name_scope',
J
jianghaicheng 已提交
50
    'ipu_shard_guard',
51
    'set_ipu_shard',
S
sneaxiy 已提交
52 53
    'cuda_places',
    'cpu_places',
54
    'xpu_places',
S
sneaxiy 已提交
55
    'cuda_pinned_places',
L
lujun 已提交
56
    'in_dygraph_mode',
57
    'is_compiled_with_cinn',
C
chengduo 已提交
58
    'is_compiled_with_cuda',
59
    'is_compiled_with_rocm',
60
    'is_compiled_with_xpu',
61
    'Variable',
62
    'require_version',
63
    'device_guard',
G
guofei 已提交
64 65
    'set_flags',
    'get_flags',
66
    '_stride_in_no_check_dy2st_diff',
67
]
Y
Yu Yang 已提交
68

Q
qiaolongfei 已提交
69 70 71 72
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
73 74
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

75

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
# use thread local to create thread save global variables.
class GlobalThreadLocal(threading.local):
    def __init__(self):
        """
        init the thread local data.
        TODO(xiongkun): how to access another thread local data ?
        """
        global _dygraph_tracer_
        self._in_declarative_mode_ = False
        self._functional_dygraph_context_manager = None
        self._dygraph_tracer_ = _dygraph_tracer_

    def __str__(self):
        strings = []
        strings.append(
            "_in_declarative_mode_:" + str(self._in_declarative_mode_)
        )
        strings.append(
            "_functional_dygraph_context_manager:"
            + str(self._functional_dygraph_context_manager)
        )
        strings.append("_dygraph_tracer_:" + str(self._dygraph_tracer_))
        return "\n".join(strings)

    def __setattr__(self, name, val):
        if name == '_dygraph_tracer_':
            global _dygraph_tracer_
            _dygraph_tracer_ = val
        self.__dict__[name] = val


L
lujun 已提交
107
_dygraph_tracer_ = None
108 109
global_var = GlobalThreadLocal()

110
_global_expected_place_ = None
111
_current_device = None
112
global_prog_seed = 0
113
_current_pipeline_stage = None
114
_current_cuda_graph_mode = None
115
_global_flags_ = core.globals()
W
wanghuancoder 已提交
116
_stride_in_no_check_dy2st_diff_mode = False
J
Jiabin Yang 已提交
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
# special_op_attrs, extra_op_attrs are prepared for printing warnings
# when turning on FLAGS_print_extra_attrs
special_op_attrs = {
    "elementwise_add": [{"axis": -1}],
    "elementwise_sub": [{"axis": -1}],
    "elementwise_mul": [{"axis": -1}],
    "elementwise_div": [{"axis": -1}],
    "elementwise_max": [{"axis": -1}],
    "elementwise_min": [{"axis": -1}],
    "elementwise_pow": [{"axis": -1}],
    "elementwise_mod": [{"axis": -1}],
    "elementwise_floordiv": [{"axis": -1}],
    "less_than": [{"axis": -1}],
    "less_equal": [{"axis": -1}],
    "greater_than": [{"axis": -1}],
    "greater_equal": [{"axis": -1}],
    "equal": [{"axis": -1}],
    "not_equal": [{"axis": -1}],
    "amax": [{"reduce_all": False}],
    "amin": [{"reduce_all": False}],
    "any": [{"reduce_all": False}],
    "frobenius_norm": [{"reduce_all": False}],
    "logsumexp": [{"reduce_all": False}],
    "reduce_max": [{"reduce_all": False}],
    "reduce_min": [{"reduce_all": False}],
    "reduce_mean": [{"reduce_all": False}],
    "reduce_prod": [{"reduce_all": False}],
    "reduce_sum": [{"reduce_all": False}],
}

extra_op_attrs = {
    "gather": ["overwrite"],
    "graph_reindex": ["flag_buffer_hashtable"],
    "graph_sample_neighbors": ["flag_perm_buffer"],
    "relu6": ["threshold"],
    "swish": ["beta"],
    "hsigmoid_loss": ["remote_prefetch"],
    "max_pool2d_with_index": ["global_pooling"],
    "uniform": ["diag_num"],
    "unique": ["is_sorted"],
}

K
Kim Yann 已提交
160
# FIXME(dev): We haven't fully verified eager mode on XPU et.al but
161 162 163 164
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


J
Jiabin Yang 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
186
            print(paddle.in_dynamic_mode())  # False, Now we are in static graph mode
J
Jiabin Yang 已提交
187 188 189 190 191

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
192
    return global_var._dygraph_tracer_ is not None
J
Jiabin Yang 已提交
193 194


195 196
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
197 198 199 200 201
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


@signature_safe_contextmanager
202
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
203 204 205 206
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
207
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
208
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
209
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
210
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
211
            which means no pipelining computation order and run Ops in terms of graph.
212

G
gouzil 已提交
213 214 215 216 217 218 219
    Note:
        Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
        duplicated index.
J
jianghaicheng 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


254 255 256 257
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

G
gouzil 已提交
258 259 260 261 262
    Note:
        Only when enable_manual_shard=True to set the index to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        Only when enable_pipelining=True to set stage to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        An index supports a corresponding None stage or a stage, and a stage only supports a new index or a duplicate index.

263 264 265 266 267
    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
268
            The sharded model will be computed from small to large. The default value is -1,
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):
        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

294
    from paddle.nn import Layer
295

296 297 298 299 300
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
301 302
                "Unsupported type. Only accept paddle.nn.Layer or function."
            )
303 304 305 306 307 308 309 310 311 312 313 314

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):
        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


315 316
def require_version(min_version, max_version=None):
    """
317 318 319
    Check if the installed version of PaddlePaddle is in [min_version, max_version],
    if the installed version is lower than ``min_version`` or higher than ``max_version``,
    an exception will be thrown, NO returns if the installed version is satisfied.
320

321 322 323 324
    Args:
        min_version (str): the minimum version required (like '1.4.0').
        max_version (str, optional): the max version required (like '1.6.0'), default is None,
            meaning any version equal or higher than ``min_version`` is acceptable.
325

326 327
    Returns:
        None.
328

329 330 331 332 333 334
    Raises:
        TypeError: if the type of ``min_version`` is not str.
        TypeError: if the type of ``max_version`` is not str or type(None).
        ValueError: if the value of ``min_version`` is not in version format.
        ValueError: if the value of ``max_version`` is not in version format or None.
        Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.
335

336 337
    Examples:
        .. code-block:: python
338

339
            import paddle.fluid as fluid
340

341 342
            # any version >= 0.1.0 is acceptable.
            fluid.require_version('0.1.0')
343

344 345 346
            # if 0.1.0 <= version <= 10.0.0, it is acceptable.
            fluid.require_version(min_version='0.1.0', max_version='10.0.0')
    """
347 348 349
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
350 351
            % (type(min_version))
        )
352 353 354 355

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
356 357
            % (type(max_version))
        )
358 359 360 361 362

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
363 364
            "like '1.5.2.0', but received %s" % min_version
        )
365 366 367 368 369 370

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
371 372
                "like '1.5.2.0', but received %s" % max_version
            )
373 374

    version_installed = [
375 376 377 378
        fluid_version.major,
        fluid_version.minor,
        fluid_version.patch,
        fluid_version.rc,
379 380 381 382
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
383
        for i in range(len(ver_a)):
384 385 386 387 388 389 390 391 392 393 394
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
395 396 397
                "please make sure the version is good with your code."
                % (min_version, max_version, fluid_version.full_version)
            )
398 399 400 401
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
402 403 404
                "please make sure the version is good with your code."
                % (min_version, fluid_version.full_version)
            )
405 406 407
        return

    min_version_split = min_version.split('.')
408 409 410
    min_version_to_check = (
        min_version_split + zero_version[len(min_version_split) :]
    )
411 412 413

    if max_version is not None:
        max_version_split = max_version.split('.')
414 415 416
        max_version_to_check = (
            max_version_split + zero_version[len(max_version_split) :]
        )
417

418 419 420 421
        if (
            version_cmp(version_installed, max_version_to_check) > 0
            or version_cmp(version_installed, min_version_to_check) < 0
        ):
422 423
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
424 425
                % (min_version, max_version, fluid_version.full_version)
            )
426 427 428 429 430
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
431 432
                % (min_version, fluid_version.full_version, min_version)
            )
433 434


435 436
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
437
        assert not in_dygraph_mode(), (
438 439
            "We don't support %s in dynamic graph mode" % func.__name__
        )
440 441 442 443 444 445 446
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
447
        assert in_dygraph_mode(), (
448 449 450
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
451 452 453 454 455
        return func(*args, **kwargs)

    return __impl__


456 457 458
def _non_static_only_(func):
    def __impl__(*args, **kwargs):
        from .dygraph.base import in_declarative_mode
459

460
        assert in_dygraph_mode() or in_declarative_mode(), (
461 462 463
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
464 465 466 467 468
        return func(*args, **kwargs)

    return __impl__


469 470
def _static_only_(func):
    def __impl__(*args, **kwargs):
471
        assert not in_dygraph_mode(), (
472 473 474
            "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode."
            % func.__name__
        )
475 476 477 478 479
        return func(*args, **kwargs)

    return __impl__


480 481 482 483 484
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


485
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
W
wanghuancoder 已提交
486 487
# used to make Variable and Tensor has same interfaces, like numpy. Since Tensor is not exposed in our
# official docments, logically, we want to keep Tensor and logically consistent. While, actually,
488 489
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
W
wanghuancoder 已提交
490
# TODO(zhiqiu): We should make Tensor consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
491
# same base class.
492 493 494
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
495 496
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
R
Ryan 已提交
497
            "  2. If you are using `@paddle.jit.to_static`, you can call `paddle.jit.enable_to_static(False)`. "
498
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
499 500
            % (func.__name__, func.__name__)
        )
501 502 503 504

    return __impl__


T
tangwei12 已提交
505 506
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
507 508 509 510 511 512 513 514 515
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
516 517
                DeprecationWarning,
            )
518 519 520 521 522 523 524
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


525 526
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
527
static_only = wrap_decorator(_static_only_)
528
fake_interface_only = wrap_decorator(_fake_interface_only_)
529
non_static_only = wrap_decorator(_non_static_only_)
530 531


L
lujun 已提交
532
def _dygraph_tracer():
533
    return global_var._dygraph_tracer_
534

W
Wu Yi 已提交
535

536 537 538 539
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
540
def _current_expected_place():
541 542 543
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
544 545 546 547 548
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
549
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
550 551 552 553 554
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
555 556 557 558 559 560
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
561
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
562 563 564 565 566
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
        elif len(core.get_all_custom_device_type()) > 0:
            dev_type = core.get_all_custom_device_type()[0]
            try:
                device_count = core.get_custom_device_count(dev_type)
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CustomPlace(
                    dev_type, _custom_device_ids(dev_type)[0]
                )
            else:
                warnings.warn(
                    "You are using CUSTOM_DEVICE version Paddle, but your custom device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
582 583 584 585 586 587 588
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
589 590
    if global_var._dygraph_tracer_ is not None:
        global_var._dygraph_tracer_._expected_place = place
591 592 593 594 595


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
596
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
597 598


S
sneaxiy 已提交
599
def _cpu_num():
600
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
601 602 603 604 605 606 607
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
608 609 610
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()
                )
            )
C
chengduo 已提交
611
        os.environ['CPU_NUM'] = str(1)
612
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
613 614 615 616 617 618 619 620
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
621
        device_ids = range(core.get_cuda_device_count())
C
chengduo 已提交
622
    return device_ids
S
sneaxiy 已提交
623 624


625 626 627 628 629
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
630
        device_ids = range(core.get_xpu_device_count())
631 632 633
    return device_ids


634 635 636 637 638 639 640 641 642
def _custom_device_ids(device_type):
    custom_devices_env = os.getenv("FLAGS_selected_" + device_type + "s")
    if custom_devices_env:
        device_ids = [int(s) for s in custom_devices_env.split(",")]
    else:
        device_ids = range(core.get_custom_device_count(device_type))
    return device_ids


643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


658 659 660 661 662 663 664
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
665

666 667 668 669 670 671
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

Z
Zman 已提交
672 673
    Returns:
        None
674 675 676 677 678 679 680 681 682 683

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


684 685 686 687
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

688 689
    Returns:
        Bool: `True` if CINN is currently available, otherwise `False`.
690 691 692 693 694 695 696 697 698 699

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
700 701 702 703
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

704 705
    Returns:
        Bool: `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
706 707 708 709

    Examples:
        .. code-block:: python

710
            import paddle
711
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
712 713 714 715
    """
    return core.is_compiled_with_cuda()


716 717 718 719
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

720 721
    Returns:
        Bool: `True` if ROCm is currently available, otherwise `False`.
722 723 724 725 726

    Examples:
        .. code-block:: python

            import paddle
727
            support_gpu = paddle.device.is_compiled_with_rocm()
728 729 730 731
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
732
def cuda_places(device_ids=None):
L
lujun 已提交
733
    """
734
    Note:
735 736 737
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
738
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
739 740

    If :code:`device_ids` is None, environment variable of
741
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
742
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
743
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
744
    If :code:`FLAGS_selected_gpus` is not set, all visible
745
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
746 747

    If :code:`device_ids` is not None, it should be the device
748
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
749
    the returned list would be
C
Chen Weihang 已提交
750
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
751

752
    Parameters:
753
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
754 755

    Returns:
C
Chen Weihang 已提交
756
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
757 758

    Examples:
759

L
lujun 已提交
760 761
        .. code-block:: python

C
Chen Weihang 已提交
762 763
            import paddle
            import paddle.static as static
T
tangwei12 已提交
764

765
            # required: gpu
766

C
Chen Weihang 已提交
767 768 769
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
770 771

    """
772
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
773
    if device_ids is None:
C
chengduo 已提交
774
        device_ids = _cuda_ids()
S
sneaxiy 已提交
775 776 777 778 779
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


780 781 782 783
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
784 785 786 787 788 789 790 791 792
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
793
        the returned list would be
S
sunzhongkai588 已提交
794
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
795

796 797 798 799 800 801
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
802

803 804
            # required: xpu

805 806
            import paddle
            import paddle.static as static
807

808 809 810
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
811
    assert core.is_compiled_with_xpu(), "Not compiled with XPU"
812 813 814 815 816 817 818
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
819
def cpu_places(device_count=None):
L
lujun 已提交
820
    """
C
Chen Weihang 已提交
821
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
822

S
add doc  
sneaxiy 已提交
823
    If :code:`device_count` is None, the device count would
824
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
825 826
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
827 828
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
829

830 831
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
832 833

    Returns:
C
Chen Weihang 已提交
834
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
835 836

    Examples:
837

L
lujun 已提交
838 839
        .. code-block:: python

C
Chen Weihang 已提交
840 841
            import paddle
            import paddle.static as static
T
tangwei12 已提交
842

C
Chen Weihang 已提交
843 844 845
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
846 847
    """

S
sneaxiy 已提交
848 849 850 851 852 853
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
854
    """
855
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
856 857

    If :code:`device_count` is None, the device count would
858
    be determined by environment variable :code:`CPU_NUM`.
859 860 861 862
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
863

864 865
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
866 867

    Returns:
868
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
869 870 871 872

    Examples:
        .. code-block:: python

873
            import paddle.fluid as fluid
L
lujun 已提交
874 875 876 877 878
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
879
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
880
    if device_count is None:
881 882
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
883 884


885
class NameScope:
886 887 888 889 890 891 892 893 894 895
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
896 897 898
            new_child = NameScope(
                prefix + "_%d" % len(self._children[prefix]), self
            )
899 900 901 902 903 904 905 906 907 908 909 910 911
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
912
@signature_safe_contextmanager
913 914
def name_scope(prefix=None):
    """
915

916
    Generate hierarchical name prefix for the operators in Static Graph.
917

918
    Note:
T
Tao Luo 已提交
919 920
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
921
        Don't use it in dygraph, since it will cause memory leak.
922 923

    Args:
T
Tao Luo 已提交
924
        prefix(str, optional): prefix. Default is none.
925 926

    Examples:
927

928
        .. code-block:: python
T
Tink_Y 已提交
929

930 931 932
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
933
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
934
             b = a + 1
935
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
936
                c = b * 1
937
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
938
                d = c / 1
939 940 941
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
942 943
                g = f - 1

944
          # Op are created in the default main program.
945
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
961 962
    """
    # TODO(panyx0718): Only [0-9a-z].
963
    # in dygraph we don't need namescope since it will cause mem leak
964
    if in_dygraph_mode():
L
Leo Chen 已提交
965 966
        yield
    else:
T
tianshuo78520a 已提交
967
        assert prefix, "namescope prefix can not be empty."
968 969
        global _name_scope
        _name_scope = _name_scope.child(prefix)
970 971 972 973
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
974 975 976 977 978 979 980 981 982 983 984 985


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
986 987
def generate_control_dev_var_name():
    import random
988

W
Wu Yi 已提交
989
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
990 991 992 993


def grad_var_name(var_name):
    """
994 995
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
996 997 998
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
999

1000
def convert_np_dtype_to_dtype_(np_dtype):
1001
    """
1002
    Convert the data type in numpy to the data type in Paddle.
1003

1004
    Args:
1005 1006
        np_dtype (np.dtype|str): The data type in numpy or valid data type
            string.
1007

1008
    Returns:
1009
        core.VarDesc.VarType / core.DataType : The data type in Paddle.
1010 1011

    """
1012 1013
    # Convert the data type string to numpy data type.
    if isinstance(np_dtype, str) and np_dtype == "bfloat16":
1014 1015 1016
        dtype = np.uint16
    else:
        dtype = np.dtype(np_dtype)
1017

1018
    if ir.core._use_new_ir_api():
Y
YuanRisheng 已提交
1019 1020
        if dtype in ir.core.np_type_to_paddle_type.keys():
            return ir.core.np_type_to_paddle_type[dtype]
1021 1022
        else:
            raise ValueError("Not supported numpy dtype %s" % dtype)
1023
    else:
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
        if dtype == np.float32:
            return core.VarDesc.VarType.FP32
        elif dtype == np.float64:
            return core.VarDesc.VarType.FP64
        elif dtype == np.float16:
            return core.VarDesc.VarType.FP16
        elif dtype == np.int32:
            return core.VarDesc.VarType.INT32
        elif dtype == np.int16:
            return core.VarDesc.VarType.INT16
        elif dtype == np.int64:
            return core.VarDesc.VarType.INT64
        elif dtype == np.bool_:
            return core.VarDesc.VarType.BOOL
        elif dtype == np.uint16:
            # since there is still no support for bfloat16 in NumPy,
            # uint16 is used for casting bfloat16
            return core.VarDesc.VarType.BF16
        elif dtype == np.uint8:
            return core.VarDesc.VarType.UINT8
        elif dtype == np.int8:
            return core.VarDesc.VarType.INT8
        elif dtype == np.complex64:
            return core.VarDesc.VarType.COMPLEX64
        elif dtype == np.complex128:
            return core.VarDesc.VarType.COMPLEX128
        else:
            raise ValueError("Not supported numpy dtype %s" % dtype)
1052 1053 1054


def dtype_is_floating(dtype):
1055 1056 1057
    """
    Check the data type is floating or not.
    Args:
1058
        dtype(np.dtype|core.VarDesc.VarType): data type.
1059 1060 1061 1062 1063
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1064
    if not isinstance(dtype, core.VarDesc.VarType):
1065 1066
        dtype = convert_np_dtype_to_dtype_(dtype)

1067
    return dtype in [
1068 1069 1070
        core.VarDesc.VarType.FP16,
        core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64,
1071
    ]
1072 1073


Y
Yang Yang(Tony) 已提交
1074
def _debug_string_(proto, throw_on_error=True):
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1086
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1087
    if not proto.IsInitialized(error_fields) and throw_on_error:
1088 1089
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
1090 1091 1092
                error_fields, proto
            )
        )
Y
Yu Yang 已提交
1093 1094 1095
    return proto.__str__()


1096
def _create_tensor(
1097 1098 1099 1100 1101
    type=core.VarDesc.VarType.LOD_TENSOR,
    name=None,
    shape=None,
    dtype=None,
    persistable=None,
1102
    **kwargs,
1103
):
1104 1105 1106 1107
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

W
wanghuancoder 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116
    eager_tensor = core.eager.Tensor(
        dtype if dtype else core.VarDesc.VarType.FP32,
        list(shape) if shape else [],
        name,
        type if type else core.VarDesc.VarType.LOD_TENSOR,
        True if persistable else False,
    )
    eager_tensor.retain_grads()
    return eager_tensor
1117 1118


1119 1120 1121 1122 1123 1124 1125
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
1126 1127
    if not vals:
        return False
1128 1129 1130
    return all(isinstance(v, expected_type) for v in vals)


1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
def wrap_as_scalar(number):
    """Wrap a number(either python scalar or numpy scalar) as core.Scalar if
    it is not a scalar.


    Args:
        number (Number): number

    Returns:
        Scalar: A Scalar that contains the value.
    """
    if isinstance(number, core.Scalar):
        return number
    if isinstance(number, (bool, int, float, complex)):
        return core.Scalar(number)
    if isinstance(number, np.number):
        # it is a numpy scalar
        return core.Scalar(number.item())
    else:
        raise TypeError("Cannot wrap {} as core.Scalar".format(number))


def wrap_as_scalars(array):
    """This function is used to convert flat list, or numpy array(not
    necesarily flat) to list of core.Scalar, which correspond to
    std::vector<paddle::experimental::Scalar> in operator runtime.

    Args:
        array (List | np.ndarray): array of numbers

    Returns:
        List: list of core.Scalar, of which each element is a Scalar containing
          the corresponding value.
    """
    if isinstance(array, np.ndarray):
        array = array.ravel().tolist()
    return [wrap_as_scalar(item) for item in array]


def extract_plain_list(array):
    """extract value from a list of core.Scalar.

    Args:
        array (list): Scalars

    Returns:
        list: values extracted from the scalars.
    """
    return [item.value() for item in array]


def canonicalize_attrs(attrs, op_proto):
    """This function is used to canonicalize attributes(as a string->any dict)
    according to the type specification in the OpProto. This is especially
    important for operators that has any attributes of type Scalar or Scalars.

    Though various frontends of phi kernels & paddle operators can wrap variables
    of concrete types into Scalars(a tagged union of several numeric types) or
    vector of Scalars. Paddle operator requires strict type matching.

    Args:
        attrs (Dict[str, Any]): attribute dict intended to pass to an operator.
        op_proto (OpProto): Proto (signature) of the operator.

    Returns:
        Dict[str, Any]: canonicalized attributes.
    """
    canonicalized_attrs = attrs.copy()  # shallow copy is enough here
    for attr in op_proto.attrs:
        attr_name = attr.name
        type_index = attr.type
        if (attr_name not in attrs) or (attrs[attr_name] is None):
            continue

        attr_val = attrs[attr_name]

        # VAR and VARS should be skipped
        if isinstance(attr_val, Variable):
            continue
        if isinstance(attr_val, list) and _all_is_type(attr_val, Variable):
            continue

        # wrap
        if type_index == core.AttrType.SCALAR:
            canonicalized_attrs[attr_name] = core.Scalar(attr_val)
        elif type_index == core.AttrType.SCALARS:
            # it should be a list (or a numpy array)
            if len(attr_val) > 0:
                attr_val = np.array(attr_val).ravel().tolist()
                attr_val = [core.Scalar(x) for x in attr_val]
                canonicalized_attrs[attr_name] = attr_val

    return canonicalized_attrs


1226 1227 1228 1229 1230
class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1231
            return issubclass(t, core.eager.Tensor)
1232 1233 1234 1235 1236 1237 1238 1239 1240
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1241
            return issubclass(t, EagerParamBase)
1242 1243 1244 1245
        else:
            return issubclass(t, Parameter)


1246
class Variable(metaclass=VariableMetaClass):
1247
    """
J
Jiabin Yang 已提交
1248

U
ustiniankw 已提交
1249 1250 1251 1252
    Notes:
        The constructor of Variable should not be invoked directly.

        In Static Graph Mode: Please use ** `Block.create_var` ** to create a Static variable which has no data until being feed.
1253

U
ustiniankw 已提交
1254
        In Dygraph Mode: Please use ** :ref:`api_fluid_dygraph_to_variable` ** to create a dygraph variable with real data.
J
Jiabin Yang 已提交
1255 1256

    In Fluid, every input and output of an OP is a variable. In most
1257
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1258 1259
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1260

1261
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1262
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1263

T
tianshuo78520a 已提交
1264
    Most of a Variable's member variables can be set to be None. It mean
1265
    it is not available or will be specified later.
1266

1267
    Examples:
1268 1269
        In Static Graph Mode:

1270
        .. code-block:: python
C
cyberslack_lee 已提交
1271
            :name: code-example-1
1272

1273
            import paddle.fluid as fluid
1274
            cur_program = fluid.Program()
1275 1276 1277 1278
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1279

1280
        In Dygraph  Mode:
1281 1282

        .. code-block:: python
C
cyberslack_lee 已提交
1283
            :name: code-example-2
1284 1285 1286 1287 1288 1289 1290

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1291 1292
    """

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
    def __init__(
        self,
        block,
        type=core.VarDesc.VarType.LOD_TENSOR,
        name=None,
        shape=None,
        dtype=None,
        lod_level=None,
        capacity=None,
        persistable=None,
        error_clip=None,
        stop_gradient=False,
        is_data=False,
        need_check_feed=False,
        belong_to_optimizer=False,
1308
        **kwargs,
1309
    ):
Y
Yu Yang 已提交
1310 1311
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1312
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1313

Y
Yu Yang 已提交
1314
        if dtype is not None:
1315
            if not isinstance(dtype, core.VarDesc.VarType):
1316
                dtype = convert_np_dtype_to_dtype_(dtype)
1317

S
Steffy-zxf 已提交
1318 1319 1320 1321
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1322 1323 1324
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1325 1326
        self.belong_to_optimizer = belong_to_optimizer

1327 1328 1329
        self.error_clip = error_clip

        is_new_var = False
1330
        self.desc = self.block.desc.find_var(name.encode())
1331

1332
        if self.desc is None:
1333
            self.desc = self.block.desc.var(name.encode())
1334
            is_new_var = True
1335

1336 1337 1338
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
1339 1340 1341 1342 1343
            raise ValueError(
                "Variable '{0}' has been created before. The "
                "previous type is {1}, the new type is {2}. They"
                " are not matched".format(self.name, self.desc.type(), type)
            )
1344

1345
        if shape is not None:
1346
            if is_new_var:
1347 1348 1349 1350 1351 1352
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1353 1354
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1355 1356
                        "matched.".format(self.name, old_shape, shape)
                    )
1357 1358 1359 1360 1361 1362
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
1363 1364 1365 1366 1367 1368
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous data type is {1}, the new "
                        "data type is {2}. They are not "
                        "matched.".format(self.name, old_dtype, dtype)
                    )
1369 1370 1371 1372 1373 1374

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
1375 1376 1377 1378 1379 1380
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous lod_level is {1}, the new "
                        "lod_level is {2}. They are not "
                        "matched".format(self.name, self.lod_level, lod_level)
                    )
1381 1382 1383 1384 1385 1386
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1387 1388
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1389
                        "persistable is {2}. They are not matched".format(
1390 1391 1392
                            self.name, self.persistable, persistable
                        )
                    )
1393

1394 1395
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1396

1397 1398 1399 1400 1401 1402 1403
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1404

1405 1406
        self.block.vars[name] = self
        self.op = None
1407
        self.stop_gradient = stop_gradient
1408
        self.is_data = is_data
W
wanghuancoder 已提交
1409
        self.is_view_var = False
Y
Yu Yang 已提交
1410

1411 1412
    def detach(self):
        """
U
ustiniankw 已提交
1413

1414
        Returns a new Variable, detached from the current graph.
1415 1416
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1417

1418
        Returns:
U
ustiniankw 已提交
1419
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable), The detached Variable.
1420 1421 1422 1423

        Examples:
            .. code-block:: python

1424
                import paddle
1425

1426 1427 1428 1429
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1430

1431 1432
                # create a detached Variable
                y = x.detach()
U
ustiniankw 已提交
1433

1434
        """
1435

1436 1437 1438 1439
        assert (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ), "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"
1440 1441 1442 1443 1444 1445

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
1446 1447
            stop_gradient=True,
        )
1448

1449 1450 1451
        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]}
        )
1452
        return output
1453

1454
    @fake_interface_only
1455
    def numpy(self):
1456
        """
J
Jiabin Yang 已提交
1457
        **Notes**:
T
tianshuo78520a 已提交
1458
            **This API is ONLY available in Dygraph mode**
1459

J
Jiabin Yang 已提交
1460
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1461 1462 1463 1464 1465

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1466
            ndarray: dtype is same as current Variable
1467 1468 1469 1470 1471 1472

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1473
                from paddle.fluid.dygraph import Linear
1474 1475 1476 1477
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1478
                    linear = Linear(32, 64)
1479
                    data = to_variable(data)
1480
                    x = linear(data)
1481 1482 1483
                    print(x.numpy())

        """
1484
        pass
1485

1486
    @non_static_only
1487
    def backward(self, retain_graph=False):
1488
        """
J
Jiabin Yang 已提交
1489
        **Notes**:
T
tianshuo78520a 已提交
1490
            **This API is ONLY available in Dygraph mode**
1491

1492
        Run backward of current Graph which starts from current Tensor.
1493

J
Jiabin Yang 已提交
1494
        Args:
1495 1496 1497 1498
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1499

J
Jiabin Yang 已提交
1500 1501
        Returns:
            NoneType: None
1502 1503 1504 1505 1506

        Examples:
            .. code-block:: python

                import numpy as np
1507 1508
                import paddle
                paddle.disable_static()
1509 1510

                x = np.ones([2, 2], np.float32)
1511 1512 1513 1514 1515 1516 1517
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1518 1519
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1520
                loss.backward()
1521 1522

        """
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
        from .backward import append_backward

        if retain_graph is True:
            raise AssertionError(
                "`retain_graph` == True is not supported in @to_static function."
                "please set retain_graph = False."
            )
        param_grad_list = append_backward(self)
        for param, param_grad in param_grad_list:
            # set grad to simulate dygraph loss.backward() in static mode.
            setattr(param, "grad", param_grad)
1534

1535
    @fake_interface_only
1536
    def gradient(self):
1537
        """
J
Jiabin Yang 已提交
1538
        **Notes**:
T
tianshuo78520a 已提交
1539
            **This API is ONLY available in Dygraph mode**
1540 1541 1542

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1543
        Returns:
1544
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1545 1546 1547 1548

        Examples:
            .. code-block:: python

1549
                import paddle
1550 1551 1552
                import paddle.fluid as fluid
                import numpy as np

1553
                # example1: return ndarray
1554 1555 1556 1557 1558 1559 1560
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1561
                    ret2 = paddle.add_n(inputs2)
1562
                    loss2 = paddle.sum(ret2)
1563
                    loss2.backward()
1564 1565
                    print(loss2.gradient())

1566 1567
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
1568 1569 1570 1571 1572
                    embedding = paddle.nn.Embedding(
                        20,
                        32,
                        weight_attr='emb.w',
                        sparse=True)
1573 1574 1575 1576 1577 1578 1579
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1580
        """
1581
        pass
1582

1583
    @fake_interface_only
1584
    def clear_gradient(self):
1585
        """
J
Jiabin Yang 已提交
1586
        **Notes**:
T
tianshuo78520a 已提交
1587
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1588 1589

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1590

J
Jiabin Yang 已提交
1591
        Clear  (set to ``0`` ) the Gradient of Current Variable
1592 1593 1594 1595 1596 1597

        Returns:  None

        Examples:
            .. code-block:: python

1598
                import paddle
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1609
                    ret2 = paddle.add_n(inputs2)
1610
                    loss2 = paddle.sum(ret2)
1611
                    loss2.backward()
1612 1613 1614 1615 1616
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1617
        pass
X
Xin Pan 已提交
1618

1619
    def register_hook(self, hook):
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
        import paddle

        def backward_hook_wrapper(dy):
            """call the backward hook in ."""
            return hook(np.array(dy))

        def forward_hook_wrapper(x):
            """do nothing but return a new variable."""
            return x

        paddle.static.py_func(
            func=forward_hook_wrapper,
            x=self,
            out=self,
            backward_func=backward_hook_wrapper,
            skip_vars_in_backward_input=[self],
        )
1637

1638
    def __str__(self):
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1655 1656
                import paddle
                import paddle.static as static
1657

1658 1659 1660
                paddle.enable_static()

                cur_program = static.Program()
1661 1662 1663 1664 1665 1666
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1667 1668
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1669 1670 1671 1672
        if (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ):
1673
            dtype_str = str(self.dtype).split('.')[1]
1674 1675 1676 1677 1678 1679 1680
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".format(
                name=self.name,
                type=type_str,
                shape=self.shape,
                dtype=dtype_str,
                stop_gradient=self.stop_gradient,
            )
1681
        else:
1682
            var_str = "{name} : {type})".format(name=self.name, type=type_str)
1683

1684
        if self.is_parameter:
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1695
        from paddle.distributed.auto_parallel.static.dist_context import (
1696 1697 1698
            get_default_distributed_context,
        )

1699
        dist_context = get_default_distributed_context()
1700 1701
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1702 1703 1704
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_tensor
            )
1705

1706
        return var_str
Y
Yang Yang(Tony) 已提交
1707

F
update  
fengjiayi 已提交
1708
    def to_string(self, throw_on_error, with_details=False):
1709 1710 1711
        """
        Get debug string.

J
Jiabin Yang 已提交
1712 1713 1714 1715 1716
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1717

1718 1719
        Returns:
            str: The debug string.
1720 1721 1722 1723 1724

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1725
                import paddle
1726

1727
                paddle.enable_static()
1728 1729 1730 1731 1732
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1733
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1734
                print("=============with detail===============")
1735
                print(new_variable.to_string(True, True))
1736
        """
1737
        assert isinstance(throw_on_error, bool) and isinstance(
1738 1739
            with_details, bool
        )
1740
        protostr = self.desc.serialize_to_string()
1741
        proto = framework_pb2.VarDesc.FromString(bytes(protostr))
F
update  
fengjiayi 已提交
1742 1743
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1744
            additional_attr = ("error_clip",)
F
update  
fengjiayi 已提交
1745
            for attr_name in additional_attr:
1746
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
1747

F
update  
fengjiayi 已提交
1748
        return res_str
1749 1750 1751

    __repr__ = __str__

1752 1753 1754
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
1755

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1779
    @property
1780
    def stop_gradient(self):
J
Jiabin Yang 已提交
1781 1782 1783
        """
        Indicating if we stop gradient from current Variable

1784
        **Notes: This Property has default value as** ``True`` **in** Dygraph **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``
J
Jiabin Yang 已提交
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1796 1797
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1798 1799 1800
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1801 1802
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1803 1804 1805 1806
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1807
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1808 1809
                assert (out1.gradient() == 0).all()
        """
1810
        return self.desc.stop_gradient()
1811

1812 1813
    @stop_gradient.setter
    def stop_gradient(self, s):
1814
        self.desc.set_stop_gradient(s)
1815

1816 1817
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1818 1819 1820 1821 1822 1823 1824 1825
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

1826
            **2. In** Dygraph **mode, this property should not be changed**
J
Jiabin Yang 已提交
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1839
        return self.desc.persistable()
1840

Y
Yu Yang 已提交
1841 1842
    @persistable.setter
    def persistable(self, p):
1843
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1844

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1870 1871
    @property
    def name(self):
J
Jiabin Yang 已提交
1872 1873 1874
        """
        Indicating name of current Variable

1875
        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** Dygraph **mode. This is how we achieve Parameter sharing**
J
Jiabin Yang 已提交
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1888
        return self.desc.name()
Y
Yu Yang 已提交
1889

1890 1891 1892 1893 1894 1895
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1896 1897
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1898

1899 1900 1901
        Examples:
          .. code-block:: python

1902
          import paddle
1903

1904
          x = paddle.static.data(name="x", shape=[-1, 23, 48], dtype='float32')
1905
          print(x.grad_name) # output is ``x@GRAD``
1906 1907 1908 1909

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1910 1911
    @name.setter
    def name(self, new_name):
1912
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1913

Y
Yu Yang 已提交
1914 1915
    @property
    def shape(self):
J
Jiabin Yang 已提交
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1933
        # convert to tuple, make it as same as numpy API.
1934
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1935 1936

    @property
F
fengjiayi 已提交
1937
    def dtype(self):
J
Jiabin Yang 已提交
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1954
        return self.desc.dtype()
Y
Yu Yang 已提交
1955 1956 1957

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1958 1959 1960 1961 1962 1963 1964 1965
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

1966
            **2. Don't support this property in** Dygraph **mode, it's value should be** ``0(int)``
J
Jiabin Yang 已提交
1967 1968 1969 1970

        Examples:
          .. code-block:: python

1971
            import paddle
J
Jiabin Yang 已提交
1972
            import paddle.fluid as fluid
1973 1974

            paddle.enable_static()
J
Jiabin Yang 已提交
1975 1976 1977 1978 1979 1980 1981
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1982 1983
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
1984 1985
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
1986
        return self.desc.lod_level()
Y
Yu Yang 已提交
1987

Y
Yu Yang 已提交
1988 1989
    @property
    def type(self):
J
Jiabin Yang 已提交
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2006
        return self.desc.type()
Y
Yu Yang 已提交
2007

2008 2009 2010
    @property
    def T(self):
        """
U
ustiniankw 已提交
2011

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
U
ustiniankw 已提交
2030

2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
2043 2044
            stop_gradient=False,
        )
2045 2046 2047 2048 2049
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
2050 2051 2052 2053 2054 2055 2056 2057 2058
            stop_gradient=False,
        )

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': perm},
        )
2059 2060
        return out

2061 2062 2063
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
2064
        Variable. It remains in the current graph, that is, the cloned Variable
2065 2066 2067 2068
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
U
ustiniankw 已提交
2069
            Variable, The cloned Variable.
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
2089 2090
            stop_gradient=self.stop_gradient,
        )
2091

2092 2093 2094
        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]}
        )
2095 2096
        return output

W
Wu Yi 已提交
2097
    def _set_error_clip(self, error_clip):
2098
        """
U
ustiniankw 已提交
2099

2100 2101 2102 2103 2104 2105 2106
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
U
ustiniankw 已提交
2107

2108
        """
2109 2110
        self.error_clip = error_clip

2111 2112
    def _set_info(self, key, value):
        """
U
ustiniankw 已提交
2113

2114 2115 2116 2117 2118 2119
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

2120
        Returns:
2121
            None
U
ustiniankw 已提交
2122

2123 2124 2125 2126 2127 2128 2129
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
U
ustiniankw 已提交
2130

2131 2132 2133 2134 2135
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

2136
        Returns:
2137
            object
U
ustiniankw 已提交
2138

2139 2140 2141 2142 2143
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2144 2145
    def _slice_indices(self, slice, length):
        """
U
ustiniankw 已提交
2146

2147
        Reference implementation for the slice.indices method.
U
ustiniankw 已提交
2148

2149 2150 2151 2152 2153 2154 2155 2156
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2157
            raise ValueError("slice step can not be zero")
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2168 2169 2170
            start = (
                max(start + length, lower) if start < 0 else min(start, upper)
            )
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
2216 2217 2218
                if (index > 0 and index >= self.shape[index]) or (
                    index < 0 and (index + self.shape[index]) < 0
                ):
2219
                    raise IndexError("invalid index")
2220 2221 2222 2223 2224
                start = (
                    max(start + self.shape[index], 0)
                    if start < 0
                    else min(start, self.shape[index])
                )
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2238
    def _cloneVar(self, copy=False):
2239 2240
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2241
                name=unique_name.generate_with_ignorable_key(self.name),
2242 2243
                dtype=self.dtype,
            )
2244 2245 2246 2247
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2248
        new_var = self._cloneVar()
2249 2250 2251 2252 2253 2254
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes, 'starts': starts, 'ends': ends},
        )
2255 2256 2257
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2258
        new_var = self._cloneVar()
2259 2260 2261 2262 2263 2264 2265 2266
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={
                'axis': axis,
            },
        )
2267 2268 2269 2270 2271
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2272
                return self._cloneVar(True)
2273 2274 2275 2276 2277 2278 2279
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2280 2281 2282
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2283 2284 2285
                        start += step
                else:
                    while start > stop:
2286 2287 2288
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2289 2290 2291 2292
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2293
                return self._cloneVar(True)
2294
            index = int(item)
2295 2296 2297
            if (index > 0 and index >= self.shape[axis]) or (
                index < 0 and (index + self.shape[axis]) < 0
            ):
2298 2299 2300 2301 2302 2303
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2304
        return _getitem_static(self, item)
2305

2306
    def __setitem__(self, item, value):
2307 2308 2309
        from .dygraph.base import in_declarative_mode

        if in_declarative_mode():
2310 2311 2312 2313
            if is_compiled_with_xpu():
                # (NOTE): Currently, there is no index_put_xpu kernel.
                return _setitem_impl_(self, item, value)
            return _setitem_static(self, item, value)
2314 2315 2316 2317
        else:
            raise RuntimeError(
                "In static mode, the __setitem__ (looks like: x[indices] = values) should not be used. Please use x = paddle.static.setitem(x, indices, values)"
            )
2318

2319 2320
    def get_value(self, scope=None):
        """
2321
        Get the value of variable in given scope.
2322 2323

        Args:
2324
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2325 2326 2327 2328
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
U
ustiniankw 已提交
2329
            Tensor, the value in given scope.
2330 2331 2332 2333 2334

        Examples:
            .. code-block:: python

                import paddle
2335
                import paddle.static as static
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2360 2361
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2362 2363
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
2364

2365 2366
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2367 2368 2369 2370
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2371 2372 2373 2374 2375

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
2376 2377 2378
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2379 2380 2381 2382 2383
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
U
ustiniankw 已提交
2384

2385
        Set the value to the tensor in given scope.
2386 2387 2388

        Args:
            value(Tensor/ndarray) : The value to be set.
2389
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2390 2391 2392 2393 2394
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
2395

2396 2397 2398 2399
        Examples:
            .. code-block:: python

                import paddle
2400
                import paddle.static as static
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
U
ustiniankw 已提交
2424

2425 2426 2427
        '''

        # The 'framework' is a low-level module, and 'executor'
2428
        # can not be imported at the begainning of this file.
2429 2430 2431 2432 2433
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2434 2435 2436 2437
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".format(
                    type(value)
                )
            )
2438 2439 2440

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2441 2442 2443 2444
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2445 2446 2447 2448 2449 2450

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
2451 2452 2453
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
2464 2465 2466 2467
                    "{} expected a shape {}, but the received shape is {}.".format(
                        self.name, list(t.shape()), list(value_shape)
                    )
                )
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2478 2479 2480 2481 2482 2483
        elif p.is_custom_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.CustomPlace(
                p.custom_device_type(), p.custom_device_id()
            )
2484 2485 2486 2487 2488 2489 2490
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2491 2492
    def size(self):
        """
U
ustiniankw 已提交
2493

2494
        Returns the number of elements for current Variable, which is a int64 Variable with shape [] .
2495 2496

        Returns:
U
ustiniankw 已提交
2497
            Variable, the number of elements for current Variable
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
U
ustiniankw 已提交
2511

2512 2513 2514 2515
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
2516 2517
            dtype=core.VarDesc.VarType.INT64,
        )
2518

2519 2520 2521
        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]}
        )
2522 2523
        return output

2524 2525
    def _set_attr(self, name, val):
        """
U
ustiniankw 已提交
2526

2527 2528 2529 2530 2531
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
U
ustiniankw 已提交
2532

2533 2534 2535 2536 2537
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
U
ustiniankw 已提交
2538

2539 2540 2541 2542 2543 2544
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2545 2546
            bool, True if has this attribute.

2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

2568
    def attr(self, name):
2569 2570 2571 2572 2573 2574 2575
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2576
            int|str|list, The attribute value. The return value
2577 2578 2579 2580 2581
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2582
    def dist_attr(self):
2583
        """
2584
        Get distributed attribute of this Variable.
2585
        """
2586
        return self.desc.dist_attr
2587

2588 2589
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2590
        """
2591
        Set distributed attribute of this Variable.
2592
        """
2593
        self.desc.dist_attr = dist_attr
2594

Y
Yu Yang 已提交
2595

F
fengjiayi 已提交
2596 2597 2598
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2599

2600 2601
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2602 2603 2604 2605
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2606
        op_proto = framework_pb2.OpProto.FromString(bytes(pbstr))
F
fengjiayi 已提交
2607 2608 2609 2610
        ret_values.append(op_proto)
    return ret_values


2611
class OpProtoHolder:
2612 2613 2614 2615
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2616 2617 2618 2619 2620 2621 2622 2623
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
2624 2625
            self.__class__, '_instance'
        ), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2626 2627 2628 2629 2630 2631
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2632 2633 2634 2635 2636 2637 2638 2639
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2640 2641
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2642 2643
        return self.op_proto_map[type]

2644 2645
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2646
        custom_op_names = []
2647 2648 2649
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2650 2651 2652
                custom_op_names.append(proto.type)

        return custom_op_names
2653

2654 2655 2656
    def has_op_proto(self, type):
        return type in self.op_proto_map

2657 2658 2659 2660
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2661
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2662
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2663
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
2664
            core.op_proto_and_checker_maker.kOpDeviceAttrName(),
2665 2666
        }

F
fengjiayi 已提交
2667

2668
class Operator:
2669
    """
2670 2671 2672 2673 2674 2675 2676
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2677
        type(str): The type of operator. Default None.
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2698
        Block.append_op or Block._prepend_op instead.
2699 2700 2701 2702

    Examples:
        .. code-block:: python

2703
            import paddle.fluid as fluid
2704
            cur_program = fluid.Program()
2705 2706 2707 2708 2709
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2710
    """
2711

2712
    OP_WITHOUT_KERNEL_SET = {
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
        'feed',
        'fetch',
        'recurrent',
        'go',
        'rnn_memory_helper_grad',
        'conditional_block',
        'while',
        'send',
        'recv',
        'listen_and_serv',
        'fl_listen_and_serv',
        'ncclInit',
        'select',
        'checkpoint_notify',
        'gen_bkcl_id',
        'c_gen_bkcl_id',
        'gen_nccl_id',
        'c_gen_nccl_id',
        'c_comm_init',
        'c_sync_calc_stream',
        'c_sync_comm_stream',
        'queue_generator',
        'dequeue',
        'enqueue',
        'heter_listen_and_serv',
        'c_wait_comm',
        'c_wait_compute',
        'copy_cross_scope',
2741
    }
2742

2743 2744 2745
    def __init__(
        self, block, desc, type=None, inputs=None, outputs=None, attrs=None
    ):
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

2756
        if in_dygraph_mode():
2757 2758
            if type is None:
                raise ValueError(
2759 2760
                    "`type` to initialized an Operator can not be None."
                )
J
Jiabin Yang 已提交
2761
            self._type = type
M
minqiyang 已提交
2762
            self.attrs = attrs if attrs else {}
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2773
            # attr for static graph mode cuda graph
2774 2775
            self._cuda_graph_attr = _current_cuda_graph_mode

2776 2777 2778
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2779
                op_attrs[
2780 2781
                    op_maker.kOpRoleAttrName()
                ] = self.block.program._op_role
2782 2783

            role_var_name = op_maker.kOpRoleVarAttrName()
2784 2785 2786 2787
            if (
                len(self.block.program._op_role_var) != 0
                and role_var_name not in op_attrs
            ):
2788
                op_attrs[role_var_name] = self.block.program._op_role_var
2789 2790 2791 2792 2793

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2794 2795 2796 2797 2798
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2799 2800 2801
                return
            if type is None:
                raise ValueError(
2802 2803
                    "`type` to initialized an Operator can not be None."
                )
2804 2805
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2806 2807 2808
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2809
                        '  File "{}", line {}, in {}'.format(
2810 2811 2812 2813 2814 2815
                            frame[0], frame[1], frame[2]
                        )
                    )
                    op_attrs[callstack_var_name].append(
                        '    {}'.format(frame[3])
                    )
2816 2817 2818 2819 2820 2821 2822

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2823 2824 2825 2826 2827 2828 2829 2830
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
2831 2832 2833
                    warnings.warn(
                        "The Op(%s) is not support to set device." % type
                    )
2834
                if 'force_cpu' in op_attrs:
2835
                    if (
2836 2837
                        type == 'less_than'
                        and op_attrs['force_cpu'] is not None
2838
                    ) or op_attrs['force_cpu'] != False:
2839 2840 2841
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
2842 2843
                            "used at the same time." % type
                        )
2844
            if _current_pipeline_stage is not None:
2845 2846 2847 2848 2849
                pipeline_attr_name = (
                    'pipeline_stage' + core.kAutoParallelSuffix()
                )
                self._update_desc_attr(
                    pipeline_attr_name, _current_pipeline_stage
2850
                )
2851

2852 2853 2854 2855 2856 2857 2858 2859 2860
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
2861 2862 2863
                    assert (
                        found or in_proto.dispensable
                    ), "Input {} not found".format(in_proto.name)
2864 2865
                    if found:
                        in_args = inputs[in_proto.name]
2866
                        if not isinstance(in_args, (list, tuple)):
2867 2868 2869 2870
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
2871 2872
                                % (in_proto.name, len(in_args))
                            )
2873
                        in_arg_names = []
2874
                        for index, arg in enumerate(in_args):
2875
                            if isinstance(arg, str):
2876
                                in_arg_names.append(arg)
2877
                            elif isinstance(arg, bytes):
2878
                                in_arg_names.append(arg.decode())
W
wanghuancoder 已提交
2879
                            elif isinstance(arg, (Variable, core.eager.Tensor)):
2880
                                in_arg_names.append(arg.name)
2881
                            else:
2882
                                raise TypeError(
2883 2884
                                    f"The type of '%{in_proto.name}' in operator {type} should be "
                                    f"one of [str, bytes, Variable]. but received : {arg}"
2885
                                )
2886 2887 2888 2889 2890 2891 2892 2893
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911

                    # FIXME: The outputs of primitive operator currently
                    # doesn't include intermediate output as it will be dropped
                    # in operator codegen, such as xshape output of reshape2.
                    # It will fixed when the operator codegen support
                    # intermediate output.
                    if core._is_bwd_prim_enabled():
                        if not (
                            (m.name in outputs)
                            or m.dispensable
                            or m.intermediate
                        ):
                            raise ValueError(
                                (
                                    "Incorrect setting for output(s) of "
                                    "operator \"%s\", should set: [%s]."
                                )
                                % (type, m.name)
2912
                            )
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
                    else:
                        if not ((m.name in outputs) or m.dispensable):
                            raise ValueError(
                                (
                                    "Incorrect setting for output(s) of "
                                    "operator \"%s\", should set: [%s]."
                                )
                                % (type, m.name)
                            )

2923 2924 2925 2926 2927 2928 2929 2930 2931
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
2932 2933
                            % (out_proto.name, len(out_args))
                        )
2934 2935
                    out_arg_names = []
                    for arg in out_args:
2936
                        if isinstance(arg, str):
2937 2938
                            out_arg_names.append(arg)
                        else:
2939
                            out_arg_names.append(arg.name)
2940
                        # TODO(minqiyang): could we remove variable's op in static graph mode?
2941
                        if not in_dygraph_mode():
2942
                            if isinstance(arg, str):
2943 2944 2945
                                block.var(arg).op = self
                            else:
                                arg.op = self
2946 2947
                    self.desc.set_output(out_proto.name, out_arg_names)

2948
            extra_attrs_map = core.get_op_extra_attrs(type)
2949 2950 2951 2952 2953
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
2954 2955 2956
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
2957 2958 2959
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
2960
                for attr_name in extra_attrs_map.keys():
2961 2962 2963 2964 2965
                    if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                        warnings.warn(
                            "op %s use extra_attr: %s" % (type, attr_name)
                        )

2966 2967 2968 2969 2970 2971
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
                        self._update_desc_attr(
                            attr_name, extra_attrs_map[attr_name]
                        )
2972 2973
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
2974

2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
                if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                    if type in extra_op_attrs:
                        attrs = extra_op_attrs.get(type, [])
                        for attr in attrs:
                            if attr in op_attrs.keys():
                                warnings.warn(
                                    "op %s use extra_attr: %s" % (type, attr)
                                )

                    if type in special_op_attrs:
                        attrs = special_op_attrs.get(type, [])
                        for attr in attrs:
                            a_name = list(attr.keys())[0]
                            default_value = list(attr.values())[0]
                            if (
                                a_name in op_attrs.keys()
                                and default_value != op_attrs[a_name]
                            ):
                                warnings.warn(
                                    "op %s's attr %s = %s is not the default value: %s"
                                    % (
                                        type,
                                        a_name,
                                        op_attrs[a_name],
                                        default_value,
                                    )
                                )

J
jianghaicheng 已提交
3003 3004
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
3005
                if global_ipu_index >= 0:
3006 3007 3008
                    self._update_desc_attr(
                        ipu_index_attr_name, global_ipu_index
                    )
3009
                if global_ipu_stage >= 0:
3010 3011 3012
                    self._update_desc_attr(
                        ipu_stage_attr_name, global_ipu_stage
                    )
J
jianghaicheng 已提交
3013

3014
            self.desc.check_attrs()
3015

3016 3017 3018 3019
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
3020
    def _has_kernel(self, op_type):
3021 3022
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
3023
    def to_string(self, throw_on_error):
3024
        """
3025 3026
        Get debug string.

3027
        Args:
3028 3029
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
3030

3031 3032
        Returns:
            str: The debug string.
3033 3034

        """
3035
        protostr = self.desc.serialize_to_string()
3036
        proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang(Tony) 已提交
3037 3038
        return _debug_string_(proto, throw_on_error)

3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3071
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3072 3073
            type(skip_op_callstack)
        )
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

3100 3101 3102
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
3103 3104 3105
                a = "{name} = Var['{value}']".format(
                    name=name, type=attr_type, value=attr_var_name
                )
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
3116 3117
                    name=name, type=attr_type, value=','.join(attr_var_names)
                )
3118 3119 3120 3121 3122
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3123 3124
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
3125 3126
                    name=name, type=attr_type, value=self._block_attr_id(name)
                )
3127 3128 3129 3130 3131 3132 3133
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
3134 3135
                    name=name, type=attr_type, value=self._blocks_attr_ids(name)
                )
3136 3137 3138 3139 3140
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3141
            # it is bytes of serialized protobuf
3142 3143 3144 3145 3146
            if (
                is_compiled_with_cinn()
                and self.type == 'cinn_launch'
                and name == 'compilation_key'
            ):
3147 3148
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3149 3150 3151 3152 3153 3154 3155 3156 3157
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3158 3159 3160
            a = "{name} = {value}".format(
                name=name, type=attr_type, value=value
            )
3161

3162 3163 3164 3165
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3166
        from paddle.distributed.auto_parallel.static.dist_context import (
3167 3168 3169
            get_default_distributed_context,
        )

3170
        dist_context = get_default_distributed_context()
3171 3172
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3173 3174 3175
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_op
            )
3176

3177
        if outputs_str != "{}":
3178 3179 3180 3181 3182 3183
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".format(
                outputs=outputs_str,
                op_type=self.type,
                inputs=inputs_str,
                attrs=attrs_str,
            )
3184
        else:
3185 3186 3187
            op_str = "{op_type}(inputs={inputs}, {attrs})".format(
                op_type=self.type, inputs=inputs_str, attrs=attrs_str
            )
3188 3189
        return op_str

Y
Yang Yang(Tony) 已提交
3190
    def __str__(self):
3191
        return self._to_readable_code()
3192 3193 3194

    __repr__ = __str__

F
fengjiayi 已提交
3195 3196
    @property
    def type(self):
3197
        return self.desc.type()
F
fengjiayi 已提交
3198 3199

    def input(self, name):
3200
        r"""
U
ustiniankw 已提交
3201

3202
        Get the input arguments according to the input parameter name.
3203

3204 3205
        Args:
            name(str): The input parameter name.
3206

3207
        Returns:
U
ustiniankw 已提交
3208
            list, return the list of argument names that associated with \
3209
                the specific parameter name.
U
ustiniankw 已提交
3210

3211
        """
F
fengjiayi 已提交
3212 3213
        return self.desc.input(name)

W
Wu Yi 已提交
3214
    def _rename_input(self, old_name, new_name):
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3225
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3226

W
Wu Yi 已提交
3227
    def _rename_output(self, old_name, new_name):
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3238
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3239

F
fengjiayi 已提交
3240 3241 3242 3243
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3244 3245 3246 3247 3248 3249 3250 3251
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3252
    def output(self, name):
3253
        r"""
3254
        Get output arguments by the output parameter name.
3255

3256 3257
        Args:
            name(str): The output parameter name.
3258

3259 3260 3261
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3262
        """
F
fengjiayi 已提交
3263 3264 3265 3266 3267 3268
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3269 3270 3271 3272 3273 3274
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
3275 3276
            "Can't find op itself in it's block. It could be a bug of Paddle."
        )
3277

F
fengjiayi 已提交
3278
    def has_attr(self, name):
3279
        """
3280 3281
        Whether this Operator has the attribute with name or not.

3282
        Args:
3283
            name(str): the attribute name.
3284

3285 3286
        Returns:
            bool: True if has this attribute.
3287 3288

        """
F
fengjiayi 已提交
3289 3290 3291
        return self.desc.has_attr(name)

    def attr_type(self, name):
3292
        """
3293
        Get the type of attribute by attribute's name.
3294

3295 3296
        Args:
            name(str): the attribute name.
3297

3298 3299
        Returns:
            core.AttrType: the attribute type.
3300
        """
3301
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3302

W
Wu Yi 已提交
3303
    def _set_attr(self, name, val):
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3314 3315
        self._update_desc_attr(name, val)

3316 3317 3318
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3330 3331 3332 3333 3334
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3335
            self.desc.set_block_attr(name, val.desc)
3336
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3337
            self.desc.set_blocks_attr(name, [v.desc for v in val])
3338 3339 3340
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
Q
Qiyang Min 已提交
3341 3342
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3343 3344 3345 3346 3347 3348 3349 3350 3351
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
3352 3353 3354 3355 3356 3357
        # if the required attribute is a SCALAR, pass as-is
        if type_index == core.AttrType.SCALAR:
            desc._set_scalar_attr(name, wrap_as_scalar(val))
        elif type_index == core.AttrType.SCALARS:
            desc._set_scalars_attr(name, wrap_as_scalars(val))
        elif type_index == core.AttrType.BOOL:
3358 3359 3360 3361 3362 3363 3364
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
3365 3366
        elif type_index == core.AttrType.FLOAT64:
            desc._set_float64_attr(name, val)
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3384

F
fengjiayi 已提交
3385 3386
    @property
    def attr_names(self):
3387
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3388 3389

    def attr(self, name):
3390
        """
3391 3392
        Get the attribute by name.

3393
        Args:
3394
            name(str): the attribute name.
3395

3396 3397
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3398 3399
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3400
        return self.desc.attr(name)
Y
Yu Yang 已提交
3401

W
Wu Yi 已提交
3402
    def _block_attr_id(self, name):
3403
        """
G
gongweibao 已提交
3404
        Get the block attribute's id by name.
3405

3406 3407
        Args:
            name(str): the attribute name.
3408

3409 3410
        Returns:
            int: the block index.
3411
        """
W
Wu Yi 已提交
3412
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3413

W
Wu Yi 已提交
3414
    def _block_attr(self, name):
G
gongweibao 已提交
3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3425
        id = self._block_attr_id(name)
3426
        assert id >= 0 and id < len(self.block.program.blocks)
G
gongweibao 已提交
3427 3428
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3429
    def _blocks_attr(self, name):
G
gongweibao 已提交
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3440
        for i in self._blocks_attr_ids(name):
3441
            assert i >= 0 and i < len(self.block.program.blocks)
G
gongweibao 已提交
3442 3443 3444 3445
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3446
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3457
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3458

3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3470 3471 3472 3473 3474
        assert (
            attr_type == core.AttrType.VAR
        ), "Required type attr({}) is Variable, but received {}".format(
            name, attr_type
        )
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3489 3490 3491 3492 3493
        assert (
            attr_type == core.AttrType.VARS
        ), "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type
        )
3494 3495 3496 3497 3498 3499
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3500
    def all_attrs(self):
F
fengjiayi 已提交
3501
        """
3502 3503 3504
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3505
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3506 3507 3508 3509
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3510
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3511
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3512
                attr_map[n] = self._block_attr(n)
3513
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3514
                attr_map[n] = self._blocks_attr(n)
3515 3516 3517 3518 3519 3520
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3521

F
fengjiayi 已提交
3522 3523
        return attr_map

3524 3525 3526
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3527 3528 3529 3530

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3531 3532 3533
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3534 3535 3536 3537 3538 3539 3540 3541

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3542 3543
            return False

3544 3545 3546 3547 3548 3549
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3550
    @property
3551
    def dist_attr(self):
3552
        """
3553
        Get distributed attribute of this Variable.
3554
        """
3555
        return self.desc.dist_attr
3556

3557 3558
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3559
        """
3560
        Set distributed attribute of this Variable.
3561
        """
3562
        self.desc.dist_attr = dist_attr
3563

Y
Yu Yang 已提交
3564

W
wanghuancoder 已提交
3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
@signature_safe_contextmanager
def _stride_in_no_check_dy2st_diff():
    global _stride_in_no_check_dy2st_diff_mode
    _stride_in_no_check_dy2st_diff_mode = True
    try:
        yield
    finally:
        _stride_in_no_check_dy2st_diff_mode = False


def check_if_to_static_diff_with_dygraph(op_type, inplace_map, outputs):
    if outputs is not None:
        for k, v in outputs.items():
            if isinstance(v, Variable):
                if v.is_view_var and not (
                    op_type == "set_value"
                    and inplace_map.get("Input", None) == "Out"
                ):
                    raise ValueError(
                        'Sorry about what\'s happend. In to_static mode, %s\'s output variable %s is a viewed Tensor in dygraph. This will result in inconsistent calculation behavior between dynamic and static graphs. If you are sure it is safe, you can call with paddle.fluid.framework._stride_in_no_check_dy2st_diff() in your safe code block.'
                        % (op_type, k)
                    )
            elif isinstance(v, list):
                for var in v:
                    if isinstance(var, Variable):
                        if var.is_view_var and not (
                            op_type == "set_value"
                            and inplace_map.get("Input", None) == "Out"
                        ):
                            raise ValueError(
                                'Sorry about what\'s happend. In to_static mode, %s\'s output variable %s is a viewed Tensor in dygraph. This will result in inconsistent calculation behavior between dynamic and static graphs. If you are sure it is safe, you can call with paddle.fluid.framework._stride_in_no_check_dy2st_diff() in your safe code block.'
                                % (op_type, k)
                            )


def record_is_view_var(op_type, inputs, outputs):
    if op_type == "slice":
        if inputs is not None and isinstance(inputs["Input"], list):
            if hasattr(inputs["Input"][0], "is_view_var"):
                inputs["Input"][0].is_view_var = True
        else:
            if hasattr(inputs["Input"], "is_view_var"):
                inputs["Input"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "strided_slice":
        if inputs is not None and isinstance(inputs["Input"], list):
            if hasattr(inputs["Input"][0], "is_view_var"):
                inputs["Input"][0].is_view_var = True
        else:
            if hasattr(inputs["Input"], "is_view_var"):
                inputs["Input"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "index_select":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "split":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None:
            for out in outputs["Out"]:
                if hasattr(out, "is_view_var"):
                    out.is_view_var = True
    elif op_type == "unsqueeze" or op_type == "unsqueeze2":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "squeeze" or op_type == "squeeze2":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "transpose" or op_type == "transpose2":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "unbind":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "diagonal":
        if inputs is not None and isinstance(inputs["Input"], list):
            if hasattr(inputs["Input"][0], "is_view_var"):
                inputs["Input"][0].is_view_var = True
        else:
            if hasattr(inputs["Input"], "is_view_var"):
                inputs["Input"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "flatten":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "imag":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "real":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "reshape" or op_type == "reshape2":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "as_real":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True


3783
class Block:
3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3798
        use `Program._create_block()` to create a block.
3799 3800 3801 3802

    Examples:
        .. code-block:: python

3803 3804 3805
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3806 3807 3808 3809 3810 3811 3812 3813 3814
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3815
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3816
        self.desc = program.desc.block(idx)
3817
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3818
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3819 3820
        self.program = program

3821
    def __str__(self):
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3856
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3857 3858
            type(skip_op_callstack)
        )
3859 3860 3861 3862 3863 3864 3865
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
3866 3867
                op._to_readable_code(skip_op_callstack)
            )
3868 3869
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3870

F
fengjiayi 已提交
3871 3872
    def to_string(self, throw_on_error, with_details=False):
        """
3873 3874
        Get debug string.

F
fengjiayi 已提交
3875 3876
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3877
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3878
            with_details(bool): more details about variables and parameters
3879 3880
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3881

3882 3883
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3884
        """
3885
        assert isinstance(throw_on_error, bool) and isinstance(
3886 3887
            with_details, bool
        )
F
fengjiayi 已提交
3888
        if with_details:
F
fengjiayi 已提交
3889
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3890
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
3891 3892 3893
                self.idx,
                self.parent_idx,
            )
3894
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3895
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
3896 3897
                    r"\n    \1", var.to_string(throw_on_error, with_details)
                )
F
fengjiayi 已提交
3898
            for op in self.ops:
F
fengjiayi 已提交
3899
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
3900 3901
                    r"\n    \1", op.to_string(throw_on_error)
                )
F
fengjiayi 已提交
3902 3903 3904
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3905
            proto = framework_pb2.BlockDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
3906 3907
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3908 3909 3910

    __repr__ = __str__

Y
Yu Yang 已提交
3911 3912
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3913
        return self.desc.parent
Y
Yu Yang 已提交
3914

Y
Yu Yang 已提交
3915 3916 3917 3918
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3919
    def _set_forward_block_idx(self, idx):
3920 3921 3922 3923 3924 3925 3926 3927 3928
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3929
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3930

3931 3932 3933 3934 3935 3936 3937 3938
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3939 3940
    @property
    def idx(self):
Y
Yu Yang 已提交
3941
        return self.desc.id
Y
Yu Yang 已提交
3942

Q
Qiao Longfei 已提交
3943
    def var(self, name):
3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3957
        if not isinstance(name, str):
M
minqiyang 已提交
3958
            raise TypeError(
3959 3960 3961
                "var require string as parameter, but get %s instead."
                % (type(name))
            )
Y
Yu Yang 已提交
3962 3963
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3964
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3965
        return v
Q
Qiao Longfei 已提交
3966

X
Xin Pan 已提交
3967
    def _find_var_recursive(self, name):
3968 3969 3970 3971 3972 3973 3974
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3975
            Variable: the Variable with the giving name. Or None if not found.
3976
        """
Y
Yu Yang 已提交
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
4001
        return None
Y
Yu Yang 已提交
4002

X
Xin Pan 已提交
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
4022

Q
Qiao Longfei 已提交
4023
    def all_parameters(self):
4024
        return list(self.iter_parameters())
4025

4026
    def iter_parameters(self):
4027 4028 4029 4030 4031
        return (
            item[1]
            for item in self.vars.items()
            if isinstance(item[1], Parameter)
        )
Q
Qiao Longfei 已提交
4032

Y
Yu Yang 已提交
4033
    def create_var(self, *args, **kwargs):
4034
        if in_dygraph_mode():
4035
            var = _create_tensor(*args, **kwargs)
L
Leo Chen 已提交
4036
        else:
4037 4038 4039
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
4040
        return var
Y
Yu Yang 已提交
4041

Q
Qiao Longfei 已提交
4042 4043 4044
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
4045
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
4046 4047
        """
        Rename variable in vars and ops' inputs and outputs
4048 4049

        Args:
4050 4051
            name(str|bytes): the name that need to be renamed.
            new_name(str|bytes): the name that need to rename to.
4052 4053 4054 4055 4056 4057 4058 4059

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
4060
        """
4061 4062
        # Ensure the type of name and new_name is str
        name = name.decode() if isinstance(name, bytes) else name
4063 4064 4065
        new_name = (
            new_name.decode() if isinstance(new_name, bytes) else new_name
        )
M
minqiyang 已提交
4066

T
typhoonzero 已提交
4067
        if not self.has_var(name):
4068
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
4069 4070
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
4071
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
4072 4073 4074 4075 4076 4077
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
4078
            var_type = "Variable"
T
wip  
typhoonzero 已提交
4079 4080 4081 4082
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
4083
        orig_var_type = v.type
4084
        self.desc._rename_var(name.encode(), new_name.encode())
W
Wu Yi 已提交
4085
        # NOTE: v is destroyed by C++ after calling _rename_var.
4086
        d = self.desc.find_var(new_name.encode())
T
typhoonzero 已提交
4087
        if var_type == "Parameter":
L
Leo Chen 已提交
4088
            if in_dygraph_mode():
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
                var = EagerParamBase(
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
4100
            else:
姜永久 已提交
4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
                var = Parameter(
                    self,
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
T
typhoonzero 已提交
4113
        elif var_type == "Variable":
4114 4115 4116 4117 4118 4119 4120
            var = Variable(
                self,
                type=orig_var_type,
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient,
            )
T
wip  
typhoonzero 已提交
4121

W
Wu Yi 已提交
4122
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
4123 4124 4125
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
4126
        self._sync_with_cpp()
4127
        return var
T
typhoonzero 已提交
4128

4129 4130 4131
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
4132
        self.desc._remove_var(name.encode())
4133 4134
        del self.vars[name]

Y
Yu Yang 已提交
4135 4136
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
4137
        param = None
L
Leo Chen 已提交
4138
        if in_dygraph_mode():
J
Jiabin Yang 已提交
4139
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
4140
        else:
姜永久 已提交
4141
            param = Parameter(global_block, *args, **kwargs)
4142 4143 4144
        # NOTE(Aurelius84): we deliver stop_gradient in append_op, so we
        # need recorde it state and reset it back after calling this API
        stop_gradient = param.stop_gradient
4145

4146
        if 'initializer' in kwargs:
4147 4148 4149 4150 4151

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
4152
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
4153
                        # are treated as initialization ops that cause error.
4154
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
4155 4156
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
4157 4158 4159
                            "c_broadcast",
                            "c_sync_comm_stream",
                            "coalesce_tensor",
4160
                        ]:
4161
                            continue
4162 4163 4164 4165 4166 4167 4168
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
4169 4170 4171 4172 4173 4174
                raise RuntimeError(
                    "param "
                    + param.name
                    + " is inited by multiple init ops "
                    + str(init_ops)
                )
4175
            elif init_ops_len == 1:
4176
                # TODO already inited, do nothing, should log a warning
4177 4178 4179
                pass
            else:
                initializer(param, self)
4180
        param.stop_gradient = stop_gradient
Q
Qiao Longfei 已提交
4181
        return param
Y
Yu Yang 已提交
4182

Y
Yu Yang 已提交
4183
    def append_op(self, *args, **kwargs):
4184 4185 4186 4187 4188 4189
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
W
wanghuancoder 已提交
4190
        inplace_map = kwargs.get("inplace_map", None)
4191
        op_type = kwargs.get("type", None)
4192
        if in_dygraph_mode():
4193
            attrs = kwargs.get("attrs", {})
4194 4195 4196
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
4197 4198 4199 4200 4201 4202
                "using `_C_ops` method." % type,
                DeprecationWarning,
            )
            op = Operator(
                block=self,
                desc=None,
4203
                type=op_type,
4204 4205 4206 4207
                inputs=None,
                outputs=None,
                attrs=attrs,
            )
4208

M
minqiyang 已提交
4209 4210
            # record ops in tracer rather than blocks
            #
4211
            # TODO(minqiyang): add op stop_gradient support in static graph mode too.
L
lujun 已提交
4212
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
4213

4214
            _dygraph_tracer().trace_op(
4215
                op_type,
4216 4217 4218 4219 4220 4221
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
                inplace_map,
            )
M
minqiyang 已提交
4222
        else:
4223
            from paddle.fluid.dygraph.base import param_guard
4224
            from paddle.utils import flatten
4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238

            def pass_stop_gradient(ins, outs):
                """
                Set out.stop_gradient = True if all inputs stop_gradient is True.
                """
                need_reset = True
                for var in flatten(ins):
                    if getattr(var, 'stop_gradient', None) is False:
                        need_reset = False
                        break
                if need_reset:
                    for var in flatten(outs):
                        if isinstance(var, Variable):
                            var.stop_gradient = True
4239

4240
            op_desc = self.desc.append_op()
4241 4242
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
W
wanghuancoder 已提交
4243
            # NOTE(Aurelius84): In case of @to_static, all Tensor(s) should
4244 4245
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
4246 4247 4248 4249 4250 4251 4252 4253
            ignore_ops = {
                'conditional_block',
                'conditional_block_grad',
                'recurrent',
                'recurrent_grad',
                'while',
                'while_grad',
            }
W
wanghuancoder 已提交
4254 4255 4256 4257 4258 4259 4260 4261 4262
            from .dygraph.base import in_declarative_mode

            if (
                in_declarative_mode()
                and not _stride_in_no_check_dy2st_diff_mode
            ):
                check_if_to_static_diff_with_dygraph(
                    op_type, inplace_map, outputs
                )
4263 4264
            if op_type not in ignore_ops:
                pass_stop_gradient(inputs, outputs)
4265
            with param_guard(inputs), param_guard(outputs):
4266 4267 4268
                op = Operator(
                    block=self,
                    desc=op_desc,
4269
                    type=op_type,
4270 4271 4272 4273
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None),
                )
4274

M
minqiyang 已提交
4275
            self.ops.append(op)
W
wanghuancoder 已提交
4276 4277
            if in_declarative_mode():
                record_is_view_var(op_type, inputs, outputs)
M
minqiyang 已提交
4278

4279 4280
        return op

W
Wu Yi 已提交
4281
    def _insert_op(self, index, *args, **kwargs):
4282 4283 4284 4285 4286 4287 4288 4289 4290
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
4291
        self._sync_with_cpp()
F
fangshuixun007 已提交
4292
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
4293

4294 4295
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
4296
        Insert an Operator according to the giving arguments,
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
4311 4312 4313 4314 4315 4316 4317 4318 4319
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
4320 4321
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
4322
        self.desc._remove_op(index, index + 1)
4323 4324
        del self.ops[index]

W
Wu Yi 已提交
4325
    def _slice_ops(self, start, end):
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
4336
        return self.ops[start:end]
Y
Yancey1989 已提交
4337

W
Wu Yi 已提交
4338
    def _prepend_op(self, *args, **kwargs):
4339
        if in_dygraph_mode():
J
Jiabin Yang 已提交
4340 4341
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352
            op = Operator(
                self, None, type=type, inputs=None, outputs=None, attrs=attrs
            )

            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
            )
M
minqiyang 已提交
4353
        else:
4354
            op_desc = self.desc._prepend_op()
4355 4356 4357 4358 4359 4360 4361 4362
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None),
            )
M
minqiyang 已提交
4363
            self.ops.insert(0, op)
4364

Y
Yu Yang 已提交
4365 4366
        return op

W
Wu Yi 已提交
4367
    def _sync_with_cpp(self):
4368
        """
4369 4370
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
4371
        """
Q
Qiao Longfei 已提交
4372 4373 4374
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
4375 4376 4377 4378
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
4379 4380 4381 4382 4383 4384 4385 4386
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient,
                    )
4387
                else:
4388 4389 4390 4391 4392 4393
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient,
                    )
Q
Qiao Longfei 已提交
4394

4395
        # sync variables removed from c++ end
4396
        for var in list(self.vars.keys()):
4397
            if not self.desc.find_var(var.encode()):
4398 4399
                self.vars.pop(var)

Q
Qiao Longfei 已提交
4400
        # sync operators from cpp
4401 4402 4403 4404
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
4421 4422 4423 4424 4425

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
4426
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
4427 4428 4429 4430 4431 4432 4433

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

4434 4435 4436 4437 4438
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
4439 4440 4441 4442 4443 4444
                self.ops
            ) and ops_in_cpp_index < len(ops_in_cpp):
                if (
                    self.ops[ops_in_python_index].desc
                    != ops_in_cpp[ops_in_cpp_index]
                ):
4445 4446 4447 4448 4449
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4450 4451 4452 4453
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4454
    def _copy_param_info_from(self, other):
4455
        """
4456 4457
        Copy the information of parameters from the other block.

4458
        Args:
4459 4460 4461 4462 4463
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4464 4465 4466 4467 4468

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4469
            raise TypeError(
4470 4471
                "_copy_param_info_from should be invoked with Block"
            )
4472
        for p in other.iter_parameters():
4473 4474 4475
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4476 4477
                # if the Parameter is pruned, v may be None
                continue
4478
            assert isinstance(v, Variable)
4479
            new_p = None
L
Leo Chen 已提交
4480
            if in_dygraph_mode():
4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492
                new_p = EagerParamBase(
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4493
            else:
姜永久 已提交
4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508
                new_p = Parameter(
                    block=self,
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR
                    else None,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4509 4510
            self.vars[new_p.name] = new_p

4511
    def _clone_variable(self, var, force_persistable=True):
4512 4513
        """
        Clone a variable into current block.
4514

4515 4516
        Args:
            var: the variable to be cloned.
4517 4518 4519
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4520 4521

        Returns:
4522
            Variable: the new  variable cloned from 'var' in current block.
4523 4524
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4525 4526 4527
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4528 4529 4530
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
tangwei12 已提交
4531
        elif var.type == core.VarDesc.VarType.RAW:
4532 4533 4534
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
typhoonzero 已提交
4535 4536 4537 4538 4539 4540
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4541
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4542
                is_data=var.is_data,
4543 4544
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4545 4546 4547 4548 4549 4550 4551
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4552
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4553
                is_data=var.is_data,
4554 4555
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4556
        return ret_var
4557

Y
Yu Yang 已提交
4558

4559 4560 4561 4562
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4563
# of some old Python Variables(all old Python Operators) may have
4564
# been destructed.
4565 4566 4567
def _apply_pass(
    main_program, startup_program, pass_name, pass_attrs={}, pass_attr_types={}
):
4568 4569 4570 4571
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
4572 4573 4574 4575 4576 4577 4578
    attrs = core.apply_pass(
        tmp_main_program,
        tmp_startup_program,
        pass_name,
        pass_attrs,
        pass_attr_types,
    )
4579 4580 4581 4582 4583
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4584
class IrNode:
4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4596 4597 4598
        assert isinstance(
            node, core.Node
        ), 'node must be the instance of core.Node.'
4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4680
    def remove_input_by_id(self, node_id):
4681 4682 4683 4684 4685 4686
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4687
        self.node.remove_input(node_id)
4688

4689
    def remove_input(self, node):
4690 4691 4692 4693
        """
        Remove a node from inputs.

        Args:
4694
            node(IrNode): the node being removed.
4695
        """
4696
        self.node.remove_input(node.node)
4697

4698
    def append_input(self, node):
4699 4700 4701 4702
        """
        Append a node in inputs.

        Args:
4703
            node(IrNode): the node being appended.
4704
        """
4705
        self.node.append_input(node.node)
4706 4707 4708 4709 4710 4711 4712 4713

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4714
    def remove_output_by_id(self, node_id):
4715 4716 4717 4718 4719 4720
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4721
        self.node.remove_output(node_id)
4722

4723
    def remove_output(self, node):
4724 4725 4726 4727
        """
        Remove a node from outputs.

        Args:
4728
            node(IrNode): the node being removed.
4729
        """
4730
        self.node.remove_output(node.node)
4731

4732
    def append_output(self, node):
4733 4734 4735 4736
        """
        Append a node in outputs.

        Args:
4737
            node(IrNode): the node being appended.
4738
        """
4739
        self.node.append_output(node.node)
4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4774 4775 4776
        assert (
            isinstance(node, core.Node) and node.is_var()
        ), 'node must be the instance of core.Node and it must be a variable node.'
4777
        super().__init__(node)
4778 4779 4780 4781 4782 4783 4784 4785 4786
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
4787 4788 4789
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4790 4791 4792 4793 4794 4795 4796 4797 4798
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
4799 4800 4801
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4802 4803
        return self.node.var().persistable()

4804 4805 4806 4807 4808 4809 4810
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
4811 4812 4813
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4814 4815 4816 4817 4818 4819 4820 4821 4822
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
4823 4824 4825
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4826 4827 4828 4829 4830 4831 4832 4833 4834
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
4835 4836 4837
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4838 4839
        return self.node.var().shape()

4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4873 4874 4875
        assert (
            isinstance(node, core.Node) and node.is_op()
        ), 'node must be the instance of core.Node and it must be a operator node.'
4876
        super().__init__(node)
4877 4878 4879 4880 4881 4882 4883 4884 4885 4886
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
4887 4888 4889
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4890 4891
        self.node.op()._rename_input(old_input_name, new_input_name)

4892 4893 4894 4895 4896 4897 4898 4899
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
4900 4901 4902
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4903 4904
        self.node.op()._rename_output(old_output_name, new_output_name)

4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4915 4916 4917
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4930 4931 4932
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4933 4934 4935 4936 4937 4938 4939 4940 4941
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
4942 4943 4944
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4945 4946
        return self.node.op().set_type(new_type)

4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
4961 4962 4963
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4964
        desc = self.node.op()
4965 4966 4967 4968 4969
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4970
            desc.set_block_attr(name, val.desc)
4971
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4972
            desc.set_blocks_attr(name, [v.desc for v in val])
4973 4974 4975
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
4976 4977 4978 4979
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4980 4981 4982 4983 4984 4985 4986
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
4987 4988 4989
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4990 4991 4992 4993 4994 4995 4996 4997 4998
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
4999 5000 5001
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
5002 5003
        return self.node.op().output_arg_names()

5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


5025
class IrGraph:
5026
    """
5027
    Python IrGraph. Beneath it is a core.Graph, which is used for
5028
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
5029 5030
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
5031 5032 5033 5034
    """

    def __init__(self, graph, for_test=False):
        """
5035 5036
        Construct an IrGraph using core.Graph.

5037 5038 5039 5040 5041
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
5042 5043
            graph, core.Graph
        ), 'graph must be the instance of core.Graph.'
5044 5045 5046
        self.graph = graph
        self._for_test = for_test

5047 5048 5049 5050
    def clone(self):
        """
        Create a new and duplicated IrGraph.

5051 5052 5053
        Warns:
            The method only clones the graph structure, not its attributes.

5054 5055 5056
        Returns:
            IrGraph: A new and duplicated graph.
        """
5057
        g = self.graph.clone()
5058 5059
        return IrGraph(g, self._for_test)

5060
    def is_test(self):
5061 5062 5063
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
5064 5065
        return self._for_test

W
WangZhen 已提交
5066
    def all_nodes(self):
5067 5068 5069
        """
        Return all nodes included in the graph as a set.
        """
5070
        return {IrNode(node) for node in self.graph.nodes()}
5071

5072
    def all_var_nodes(self):
5073 5074 5075
        """
        Return all variable nodes included in the graph as a set.
        """
5076
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
5077

5078
    def all_persistable_nodes(self):
5079 5080 5081
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
5082 5083
        persistable_nodes = set()
        for node in self.graph.nodes():
5084 5085 5086 5087 5088
            if (
                node.is_var()
                and node.var() is not None
                and node.var().persistable()
            ):
W
WangZhen 已提交
5089
                persistable_nodes.add(node)
5090
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
5091

5092
    def all_op_nodes(self):
5093 5094 5095
        """
        Return all operator nodes included in the graph as a set.
        """
5096
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
5097

5098 5099 5100 5101 5102 5103
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
5104
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
5105 5106 5107 5108 5109 5110 5111 5112 5113
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

5114
    def create_persistable_node(self, name, var_type, shape, var_dtype):
5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
5126
            IrVarNode: the created persistable variable node.
5127
        """
5128 5129 5130 5131 5132
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
5133
        return IrVarNode(self.graph.create_var_node(var_desc))
5134 5135

    def create_var_node(self, name, var_type, shape, var_dtype):
5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
5147
            IrVarNode: the created variable node.
5148 5149
        """

5150 5151 5152 5153
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
5154
        return IrVarNode(self.graph.create_var_node(var_desc))
5155

5156 5157 5158 5159 5160 5161
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

5162
    def create_var_node_from_desc(self, var_desc):
5163 5164 5165 5166 5167 5168 5169 5170
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
5171
            IrVarNode: the created variable node.
5172
        """
5173
        return IrVarNode(self.graph.create_var_node(var_desc))
5174 5175

    def create_op_node(self, op_type, attrs, inputs, outputs):
5176 5177 5178 5179 5180 5181 5182
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
5183
            outputs(dict): the outputs of the operator node.
5184 5185

        Returns:
5186
            IrOpNode: the created operator node.
5187
        """
5188 5189
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
5190
        for attr, value in attrs.items():
5191
            self._update_desc_attr(op_desc, attr, value)
5192
        for input_name, var_nodes in inputs.items():
5193 5194
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
5195 5196 5197
            op_desc.set_input(
                input_name, [var_node.name() for var_node in var_nodes]
            )
5198
        for output_name, var_nodes in outputs.items():
5199 5200
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
5201 5202 5203
            op_desc.set_output(
                output_name, [var_node.name() for var_node in var_nodes]
            )
5204
        return IrOpNode(self.graph.create_op_node(op_desc))
5205 5206

    def create_op_node_from_desc(self, op_desc):
5207 5208 5209 5210 5211 5212 5213
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
5214
            IrOpNode: the created operator node.
5215
        """
5216
        return IrOpNode(self.graph.create_op_node(op_desc))
5217 5218

    def update_input_link(self, old_input_node, new_input_node, op_node):
5219 5220 5221 5222
        """
        Update the input's link of a operator node.

        Args:
5223 5224 5225
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
5226
        """
5227 5228 5229 5230 5231
        assert (
            old_input_node.node in self.graph.nodes()
            and new_input_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
5232 5233 5234 5235
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
5236
        op_node.rename_input(old_input_node.name(), new_input_node.name())
5237

5238 5239 5240 5241 5242 5243 5244 5245 5246
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
5247 5248 5249 5250 5251
        assert (
            old_output_node.node in self.graph.nodes()
            and new_output_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
5252 5253 5254 5255 5256 5257
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

5258
    def link_to(self, node_in, node_out):
5259 5260 5261 5262
        """
        Connect two nodes.

        Args:
5263 5264
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
5265
        """
5266
        assert node_in.node in self.graph.nodes(), (
5267 5268
            'node_in(%s) must be in the graph nodes.' % node_in.node.name()
        )
5269
        assert node_out.node in self.graph.nodes(), (
5270 5271
            'node_out(%s) must be in the graph nodes.' % node_out.node.name()
        )
5272 5273
        node_in.append_output(node_out)
        node_out.append_input(node_in)
5274 5275

    def safe_remove_nodes(self, remove_nodes):
5276 5277 5278 5279 5280 5281 5282
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
5283
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
5284 5285 5286 5287
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
5288 5289
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
5290

Z
Zhen Wang 已提交
5291 5292 5293 5294 5295 5296 5297 5298
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5299
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
5300 5301 5302 5303
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5304
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
5305 5306 5307
                        ]
                    else:
                        var_nodes[each_var_name].append(
5308 5309
                            self._find_node_by_name(node.outputs, each_var_name)
                        )
Z
Zhen Wang 已提交
5310 5311
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
5312
    def has_circle(self):
5313 5314 5315 5316 5317 5318
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
5319 5320 5321
        return core.has_circle(self.graph)

    def graph_num(self):
5322 5323 5324 5325 5326 5327
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
5328 5329 5330
        return core.graph_num(self.graph)

    def topology_sort(self):
5331 5332 5333
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
5334
        Notes: the `graph` can not contain a circle.
5335 5336

        Returns:
Z
Zhen Wang 已提交
5337
            list(IrNode): nodes in topology order.
5338
        """
5339
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
5340
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
5341 5342

    def build_adjacency_list(self):
5343 5344 5345 5346
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
5347
            dict{IrNode: set(IrNode)}: the adjacency list.
5348
        """
5349 5350
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
5351
        for k, v in adj_list.items():
5352 5353
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
5354

5355 5356 5357 5358 5359 5360 5361 5362
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
5363
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
5364 5365 5366 5367 5368
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

5369 5370
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
5371 5372 5373 5374
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True,
            )
5375 5376
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
5377 5378 5379
                print(
                    'The {} is saved as the dot filetype.'.format(dot_file_path)
                )
5380

5381
        remove_ctr_vars = set()
5382
        if remove_ctr_var:
5383
            for node in self.all_var_nodes():
5384 5385 5386
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
5387 5388
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

5389 5390
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
5391 5392 5393 5394 5395 5396
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
5397 5398 5399 5400
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
5401 5402
        if not os.path.exists(save_path):
            os.makedirs(save_path)
5403 5404 5405 5406 5407 5408 5409
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
5410 5411 5412
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
5413
        WARN: When the graph includes backward operator nodes, the
5414 5415 5416 5417 5418 5419
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
5420
        convert_pass = core.get_pass('graph_to_program_pass')
5421 5422
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
5423 5424 5425 5426
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

5427 5428 5429 5430 5431 5432 5433 5434
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
5435
        assert target_node is not None, (
5436 5437
            "Cannot find the target node (%s)in the giving set." % node_name
        )
5438 5439
        return target_node

5440 5441 5442 5443
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
5444 5445 5446 5447 5448
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
5449
            desc.set_block_attr(name, val.desc)
5450
        elif isinstance(val, list) and val and _all_is_type(val, Block):
5451
            desc.set_blocks_attr(name, [v.desc for v in val])
5452 5453 5454
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5455 5456 5457 5458 5459
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


5460
class Program:
D
dzhwinter 已提交
5461
    """
5462
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
5463
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
5464
    it will contain nested block.
5465

J
Jiabin Yang 已提交
5466 5467 5468
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
5469

J
Jiabin Yang 已提交
5470
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
5471
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
5472 5473 5474 5475 5476 5477 5478
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
5479
    **Notes**:
5480 5481 5482
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5483 5484

    Returns:
J
Jiabin Yang 已提交
5485
        Program: An empty Program.
D
dzhwinter 已提交
5486 5487

    Examples:
5488 5489
        .. code-block:: python

5490 5491 5492 5493
            import paddle
            import paddle.static as static

            paddle.enable_static()
5494

5495 5496 5497 5498 5499
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5500
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5501 5502 5503

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5504 5505 5506

    """

5507 5508
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5509 5510
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5511 5512
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5513
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5514
        self.__op_role_var = []
T
tangwei12 已提交
5515

5516 5517
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5518
        self._is_distributed = False
5519
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5520
        self._is_chief = False
5521 5522 5523
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5524
        self._endpoints = []
5525 5526 5527
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5528
        self._trainers_endpoints = []
5529
        # the distributed lookup table names
T
tangwei12 已提交
5530
        self._distributed_lookup_table = None
5531 5532 5533

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5534 5535
        self._use_lamb = False

5536 5537 5538
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5539

5540 5541 5542
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5543
        self._program_config = None
5544

5545 5546
        self._pass_applied = None

H
hutuxian 已提交
5547 5548 5549
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5550 5551 5552
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5553 5554 5555
        # appending gradients times
        self._appending_grad_times = 0

5556 5557
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
5558 5559
            "__auto_checkpoint_program__"
        )
5560

5561 5562
        # compiled program, i.e. Graph
        self._graph = None
5563 5564
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5565

5566
    def _find_var_class_kwargs(self, new_desc):
5567 5568 5569 5570 5571 5572 5573 5574
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5575 5576 5577 5578
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5579
            if idx > (len(self.blocks) - 1):
5580
                self._create_block()
5581 5582 5583 5584 5585 5586 5587 5588 5589 5590
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
                    'shape': get_var_desc_attr_or_none(
                        new_var_desc,
                        "shape",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'dtype': get_var_desc_attr_or_none(
                        new_var_desc,
                        "dtype",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'lod_level': get_var_desc_attr_or_none(
                        new_var_desc,
                        "lod_level",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'error_clip': old_var.error_clip
                    if old_var is not None
                    else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None
                    else False,
                    'is_data': old_var.is_data
                    if old_var is not None
                    else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None
                    else False,
5632 5633 5634
                }

                if isinstance(old_var, Parameter):
5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651
                    kwargs.update(
                        {
                            'trainable': old_var.trainable,
                            'optimize_attr': old_var.optimize_attr,
                            'regularizer': old_var.regularizer,
                            'do_model_average': old_var.do_model_average,
                            'need_clip': old_var.need_clip,
                            'is_distributed': old_var.is_distributed,
                            'is_parameter': old_var.is_parameter,
                        }
                    )
                    block_new_vars.append(
                        {
                            'class': Parameter,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5652 5653
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
5654 5655 5656 5657 5658 5659
                    block_new_vars.append(
                        {
                            'class': Variable,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5660 5661 5662 5663 5664 5665 5666

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5667
        assert block_num == self.desc.num_blocks()
5668 5669

        # clear old blocks and desc
5670 5671 5672 5673 5674 5675 5676 5677 5678
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5679

5680
        del desc
5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5700 5701 5702 5703 5704 5705 5706 5707 5708 5709
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5710 5711
                import paddle
                import paddle.static as static
5712

5713 5714 5715
                paddle.enable_static()

                prog = static.default_main_program()
5716 5717 5718 5719 5720
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5721
                prog1 = static.default_main_program()
5722 5723 5724 5725 5726 5727 5728 5729
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5730
    @property
5731
    def _op_role(self):
Y
yuyang18 已提交
5732 5733 5734 5735 5736 5737 5738 5739
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5740
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5741 5742 5743 5744
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5745 5746
        return self._current_role

5747 5748
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5749 5750 5751
        self._current_role = role

    @property
5752
    def _op_role_var(self):
Y
yuyang18 已提交
5753
        """
5754
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5755

5756
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5757 5758 5759

        Notes: This is a very low-level API. Users should not use it directly.
        """
5760
        return self.__op_role_var
Y
yuyang18 已提交
5761

5762
    @signature_safe_contextmanager
5763 5764 5765 5766 5767
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5768 5769 5770 5771
        try:
            yield
        finally:
            self._current_role = tmp_role
5772

S
rename  
sneaxiy 已提交
5773
    @signature_safe_contextmanager
W
Wu Yi 已提交
5774
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5775 5776 5777 5778 5779 5780 5781
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5782
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5783 5784 5785

        Examples:

5786
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5787
            >>> p, g = backward(...)
W
Wu Yi 已提交
5788
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5789 5790
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5791
        tmp_role = self._current_role
5792
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5793

Y
yuyang18 已提交
5794 5795
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5796
        self.__op_role_var = [
5797 5798 5799
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5800 5801 5802 5803 5804
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5805

S
rename  
sneaxiy 已提交
5806
    @signature_safe_contextmanager
X
Xin Pan 已提交
5807
    def _lr_schedule_guard(self, is_with_opt=False):
5808 5809 5810 5811 5812 5813 5814
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5815 5816 5817 5818
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5819 5820 5821

        Examples:

5822
            >>> import paddle.fluid as fluid
5823 5824 5825 5826
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5827 5828

        tmp_role = self._current_role
5829
        tmp_var = self.__op_role_var
5830

5831 5832
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5833 5834
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5835
        # TODO(typhoonzero): how to set target learning rate var
5836
        self.__op_role_var = []
5837 5838 5839 5840 5841
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5842

5843
    def __str__(self):
Y
yuyang18 已提交
5844 5845 5846 5847 5848 5849 5850 5851 5852
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5873 5874
            import paddle
            import paddle.static as static
5875

5876 5877 5878
            paddle.enable_static()

            cur_program = static.Program()
5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5890
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5891 5892
            type(skip_op_callstack)
        )
5893 5894 5895
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5896
            program_str += '\n'
5897
        return program_str
Y
Yang Yang(Tony) 已提交
5898

F
fengjiayi 已提交
5899 5900 5901
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5902

J
Jiabin Yang 已提交
5903 5904 5905
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5906

J
Jiabin Yang 已提交
5907
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5908

H
haowang101779990 已提交
5909
        Returns:
J
Jiabin Yang 已提交
5910
            str: The debug string describe current Program.
Y
yuyang18 已提交
5911 5912

        Raises:
J
Jiabin Yang 已提交
5913
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5914

5915 5916 5917
        Examples:
            .. code-block:: python

5918 5919 5920 5921
                import paddle
                import paddle.static as static

                paddle.enable_static()
5922

5923 5924 5925
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5926
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5927
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5928
                print("program string without detail: {}".format(prog_string))
5929
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5930
        """
5931 5932 5933
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
5934 5935
            type(throw_on_error)
        )
5936 5937 5938
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
5939 5940
            type(with_details)
        )
5941

F
fengjiayi 已提交
5942 5943 5944 5945
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
            protostr = self.desc.serialize_to_string()
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
            res_str += (
                "version {\n  "
                + textwrap.indent(
                    _debug_string_(proto.version, throw_on_error), "  "
                )
                + "}\n"
            )
            res_str += (
                "op_version_map {\n  "
                + textwrap.indent(
                    _debug_string_(proto.op_version_map, throw_on_error), "  "
                )
                + "}\n"
            )
F
fengjiayi 已提交
5962 5963
        else:
            protostr = self.desc.serialize_to_string()
5964
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
5965 5966
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5967

W
Wu Yi 已提交
5968
    def _get_desc(self):
Y
yuyang18 已提交
5969 5970 5971 5972 5973 5974 5975
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5976 5977
        return self.desc

X
version  
Xin Pan 已提交
5978 5979 5980
    def _version(self):
        return self.desc._version()

5981
    def clone(self, for_test=False):
Y
yuyang18 已提交
5982
        """
5983
        .. note:::
5984 5985
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
5986
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5987

5988
        Create a new Program with forward content of original one when ``for_test=True``.
5989
        Create a new Program as same as the original one when ``for_test=False``.
5990

5991
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5992 5993 5994
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5995

5996 5997
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5998 5999
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
6000
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
6001

C
cyberslack_lee 已提交
6002 6003 6004
        Examples:
            .. code-block:: python
                :name: code-example-1
L
Luo Tao 已提交
6005

C
cyberslack_lee 已提交
6006 6007
                import paddle
                import paddle.static as static
6008

C
cyberslack_lee 已提交
6009
                paddle.enable_static()
6010

C
cyberslack_lee 已提交
6011 6012 6013 6014 6015 6016 6017
                img = static.data(name='image', shape=[None, 784])
                pred = static.nn.fc(x=img, size=10, actvation='relu')
                loss = paddle.mean(pred)
                # Here we use clone before Momentum
                test_program = static.default_main_program().clone(for_test=True)
                optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
                optimizer.minimize(loss)
6018

J
Jiabin Yang 已提交
6019
        Args:
6020

6021 6022
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
6023

J
Jiabin Yang 已提交
6024
        Returns:
6025
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
6026

Y
yuyang18 已提交
6027 6028 6029

        Examples:

6030 6031 6032 6033 6034 6035 6036
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

6037
            .. code-block:: python
C
cyberslack_lee 已提交
6038
                :name: code-example-2
6039

6040
                import paddle
6041 6042

                def print_prog(prog):
6043
                    for name, value in sorted(prog.block(0).vars.items()):
6044 6045 6046 6047 6048
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
6049
                        for key, value in sorted(op.all_attrs().items()):
6050 6051 6052 6053
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


6054
            1. To clone a test program, the sample code is:
6055
                .. code-block:: python
C
cyberslack_lee 已提交
6056
                    :name: code-example-3
6057

6058 6059 6060 6061 6062 6063
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
6064 6065

                    def print_prog(prog):
6066
                        for name, value in sorted(prog.block(0).vars.items()):
6067 6068 6069 6070 6071
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
6072
                            for key, value in sorted(op.all_attrs().items()):
6073 6074 6075
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

6076 6077
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
6078 6079 6080

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
6081 6082 6083
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
6084
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
6085 6086
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
6087
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
6088 6089
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
6090
                            test_program = train_program.clone(for_test=True)
6091
                    print_prog(test_program)
J
Jiabin Yang 已提交
6092 6093 6094 6095

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

6096
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
6097 6098 6099 6100
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

6101 6102 6103
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
6104 6105 6106
                            sgd.minimize(avg_loss)


6107
            2. The clone method can be avoid if you create program for training and program for testing individually.
6108
                .. code-block:: python
C
cyberslack_lee 已提交
6109
                    :name: code-example-4
6110

6111 6112 6113 6114 6115 6116
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
6117 6118

                    def print_prog(prog):
6119
                        for name, value in sorted(prog.block(0).vars.items()):
6120 6121 6122 6123 6124
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
6125
                            for key, value in sorted(op.all_attrs().items()):
6126 6127
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
6128

6129
                    def network():
6130
                        img = static.data(name='image', shape=[None, 784])
6131
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
6132 6133
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
6134
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
6135 6136
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
6137 6138
                        return avg_loss

6139 6140 6141 6142 6143
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
6144
                            avg_loss = network()
6145
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
6146
                            sgd.minimize(avg_loss)
6147
                    # the test startup program is not used.
6148 6149
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
6150 6151
                            avg_loss = network()
                    print_prog(test_program_2)
6152

6153
            The two code snippets above will generate and print same programs.
6154
        """
6155

T
tangwei12 已提交
6156
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
6157 6158 6159
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

6160
        pruned_origin_block_id_map = None
6161
        if for_test:
6162 6163
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
6164 6165
                self.desc
            )
6166 6167
            forward_prog.blocks = [
                Block(forward_prog, i)
6168
                for i in range(forward_prog.desc.num_blocks())
6169 6170 6171
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
6172
        else:
6173
            p = Program()
G
gongweibao 已提交
6174 6175
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
6176
            p.desc = core.ProgramDesc(self.desc)
6177
            p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())]
G
gongweibao 已提交
6178 6179

            p._current_role = self._current_role
6180
            p.__op_role_var = self.__op_role_var
6181
            p._appending_grad_times = self._appending_grad_times
6182 6183
            if hasattr(self, 'lr_scheduler'):
                p.lr_scheduler = self.lr_scheduler
6184 6185
            if hasattr(self, '_pipeline_opt'):
                p._pipeline_opt = self._pipeline_opt
G
gongweibao 已提交
6186

T
tangwei12 已提交
6187
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
6188
            # its desc.
W
Wu Yi 已提交
6189
            p._sync_with_cpp()
6190

W
Wu Yi 已提交
6191
        p._copy_param_info_from(self)
6192
        p._copy_data_info_from(self, pruned_origin_block_id_map)
6193
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
6194
        return p
6195

6196
    def _prune(self, targets):
Y
yuyang18 已提交
6197 6198 6199 6200 6201 6202 6203 6204
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
6205
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
6206 6207 6208 6209
                need to be pruned

        Returns:
            Program:  A new, pruned program.
6210
        """
6211
        return self._prune_with_input([], targets)
6212 6213

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
6214
        """
6215
        Prune operators and variables which are not needed to generate
6216 6217
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
6218 6219 6220 6221 6222 6223 6224

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
6225
            targets(list|Variable|Operator): A list of variables, operators, or variable names
6226 6227 6228 6229 6230 6231
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
6232
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
6233 6234 6235
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

6236 6237
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
6238 6239
        if not isinstance(targets, list):
            targets = [targets]
6240 6241

        for var in feeded_var_names:
6242
            if not isinstance(var, str):
6243 6244
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
6245 6246
                    "str, but received %s." % type(var)
                )
6247

6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

6264 6265 6266 6267
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
6268
                    name = t.name
6269
                elif isinstance(t, str):
6270
                    name = str(t)
6271
                else:
6272 6273
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
6274 6275
                        "Variable or Operator, but received %s." % type(t)
                    )
6276 6277 6278 6279 6280 6281

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
6282 6283 6284
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
6285

6286 6287 6288 6289 6290 6291 6292 6293 6294
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
6295
                        # Skip optimize op except for optimize op in targets,
6296 6297 6298 6299 6300
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
6301

6302
                if target_op is not None:
6303 6304 6305
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
6306

6307
        res = Program()
6308
        res.desc, pruned_origin_block_id_map = core.prune(
6309 6310
            self.desc, set(feeded_var_names), targets_idx
        )
6311
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6312
        res._sync_with_cpp()
6313 6314 6315 6316 6317

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

6318 6319
        return res

X
Xin Pan 已提交
6320
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
6321
        """
F
fengjiayi 已提交
6322 6323 6324 6325 6326
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

6327
        3. change the :code:`is_test`
Y
yuyang18 已提交
6328 6329 6330
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

6331
        Args:
X
Xin Pan 已提交
6332 6333
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
6334

Y
yuyang18 已提交
6335 6336 6337 6338 6339 6340
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
6341
        res = Program()
6342
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
6343 6344 6345 6346

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
6347
        if prune_read_op:
6348
            while True:
6349 6350 6351 6352
                if (
                    read_op_idx >= root_block.op_size()
                    or root_block.op(read_op_idx).type() == 'read'
                ):
6353 6354 6355 6356 6357 6358
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
6359
                    root_block._remove_var(var.name().encode())
F
fengjiayi 已提交
6360 6361

        # change all `is_test` attributes to True
6362
        for i in range(res.desc.num_blocks()):
6363
            block = res.desc.block(i)
6364
            for j in range(block.op_size()):
6365 6366
                op = block.op(j)
                if op.has_attr('is_test'):
6367
                    op._set_bool_attr('is_test', True)
6368 6369 6370
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
6371
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6372
        res._sync_with_cpp()
6373 6374
        return res

6375
    def _remove_training_info(self, clip_extra=True):
6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

6390
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
6391 6392
        res._sync_with_cpp()

6393 6394
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
6395
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
6396

6397
        for i in range(res.desc.num_blocks()):
6398 6399 6400 6401
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
6402 6403
            if not clip_extra:
                continue
6404 6405 6406 6407
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
6408 6409 6410

                extra_attrs_map = core.get_op_extra_attrs(op.type())

6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
6424 6425 6426
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
6440
                # The extra output of op will be removed in the future
6441 6442
                for name in remove_output_list:
                    op.remove_output(name)
6443

6444 6445 6446 6447 6448 6449 6450
                op_quant_name = (
                    core.op_proto_and_checker_maker.kOpWithQuantAttrName()
                )
                quant = (
                    bool(op.attr(op_quant_name))
                    if op_quant_name in op.attr_names()
                    else False
6451 6452
                )
                quant_attrs = [
6453 6454 6455 6456 6457 6458 6459
                    op_quant_name,
                    "quantization_type",
                    "skip_quant",
                    "activation_bits",
                    "bit_length",
                    "quantize_weight_bits",
                    "weight_quant_scale",
6460
                ]
6461 6462
                for extra_attr_name in extra_attrs_map.keys():
                    op.remove_attr(extra_attr_name)
6463
                remove_attr_list = []
6464 6465 6466 6467 6468 6469
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
6470
                    if len(extra_attrs_map) > 0:
6471
                        if name in common_clipped_attrs_list:
6472
                            op.remove_attr(name)
6473
                        continue
6474 6475 6476 6477 6478 6479 6480 6481 6482 6483
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
6484 6485
        return res

6486 6487
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
6488
        """
6489
        .. note::
6490
            1. All information about parameters will be lost after serialization;
6491
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6492

6493 6494
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
6495

J
Jiabin Yang 已提交
6496
        Args:
Y
yuyang18 已提交
6497

J
Jiabin Yang 已提交
6498
            binary_str_type (str): the binary prootbuf string.
6499

J
Jiabin Yang 已提交
6500 6501
        Returns:
            Program: A deserialized Program.
6502 6503 6504 6505

        Examples:
            .. code-block:: python

6506 6507 6508 6509
                import paddle
                import paddle.static as static

                paddle.enable_static()
6510

6511 6512 6513 6514
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
6515

6516
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
6517

6518
                    z = paddle.matmul(x=x, y=y)
6519

6520 6521
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
6522

6523
                    print(static.default_main_program())
6524
                    print(prog_restored)
Y
yuyang18 已提交
6525
        """
6526 6527
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
6528
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
W
Wu Yi 已提交
6529
        p._sync_with_cpp()
6530
        return p
Y
Yu Yang 已提交
6531

6532
    @staticmethod
6533
    def _construct_from_desc(desc):
6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
6545
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
6546 6547 6548
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6549 6550
    @property
    def random_seed(self):
Y
yuyang18 已提交
6551
        """
J
Jiabin Yang 已提交
6552
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6553 6554
        the random seed from random device.

6555
        .. note::
6556
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6557 6558 6559

        Returns:
            int64: Random seed in current Program
6560

6561 6562 6563 6564

        Examples:
            .. code-block:: python

6565 6566 6567
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6568

6569 6570 6571
                paddle.enable_static()

                prog = static.default_main_program()
6572
                random_seed = prog.random_seed
6573
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6574 6575 6576
                print(random_seed)
                ## 0
                ## the default random seed is 0
6577

6578
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6579
                prog.random_seed = 1
6580
                z_var = F.dropout(x_var, 0.7)
6581

6582
                print(prog.random_seed)
6583 6584
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6585
        """
D
dzhwinter 已提交
6586 6587
        return self._seed

Q
qiaolongfei 已提交
6588 6589
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6590
        """
6591 6592
        The number of :ref:`api_guide_Block_en`  in this Program.

6593
        .. note::
6594
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6595 6596 6597

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6598

6599 6600 6601 6602

        Examples:
            .. code-block:: python

6603 6604 6605 6606
                import paddle
                import paddle.static as static

                paddle.enable_static()
6607

6608
                prog = static.default_main_program()
6609 6610
                num_blocks = prog.num_blocks
                print(num_blocks)
6611

6612 6613
                # print result:
                # 1
Y
yuyang18 已提交
6614
        """
Q
qiaolongfei 已提交
6615 6616
        return self.desc.num_blocks()

D
dzhwinter 已提交
6617 6618 6619
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6620 6621
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
6622 6623
                % type(seed)
            )
D
dzhwinter 已提交
6624 6625
        self._seed = seed

Y
Yu Yang 已提交
6626
    def __repr__(self):
6627
        return self.__str__()
6628

Y
Yu Yang 已提交
6629
    def global_block(self):
Y
yuyang18 已提交
6630
        """
6631 6632
        .. note::
            This API has no effect in Dygraph mode.
6633 6634 6635

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6636 6637
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6638

6639 6640 6641 6642

        Examples:
            .. code-block:: python

6643 6644 6645 6646
                import paddle
                import paddle.static as static

                paddle.enable_static()
6647

6648
                prog = static.default_main_program()
6649 6650
                gb_block = prog.global_block()
                print(gb_block)
6651

Y
yuyang18 已提交
6652
        """
Y
Yu Yang 已提交
6653 6654
        return self.blocks[0]

Q
Qiao Longfei 已提交
6655
    def block(self, index):
Y
yuyang18 已提交
6656
        """
6657 6658
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6659

6660 6661
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6662 6663
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6664

J
Jiabin Yang 已提交
6665 6666
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6667 6668 6669 6670

        Examples:
            .. code-block:: python

6671 6672 6673 6674
                import paddle
                import paddle.static as static

                paddle.enable_static()
6675

6676
                prog = static.default_main_program()
6677 6678
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6679
        """
Q
Qiao Longfei 已提交
6680 6681
        return self.blocks[index]

Y
Yu Yang 已提交
6682
    def current_block(self):
Y
yuyang18 已提交
6683
        """
6684 6685
        .. note::
            This API has no effect in Dygraph mode.
6686

J
Jiabin Yang 已提交
6687 6688
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6689

J
Jiabin Yang 已提交
6690 6691
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6692

6693 6694 6695
        Examples:
            .. code-block:: python

6696 6697 6698 6699
                import paddle
                import paddle.static as static

                paddle.enable_static()
6700

6701
                prog = static.default_main_program()
6702 6703
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6704
        """
Y
Yu Yang 已提交
6705 6706
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6707
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6708 6709 6710 6711 6712
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6713

Y
yuyang18 已提交
6714 6715 6716 6717 6718
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6719
        new_block_idx = len(self.blocks)
6720 6721 6722 6723 6724
        parent = (
            self.current_block()
            if parent_idx is None
            else self.block(parent_idx)
        )
F
update  
fengjiayi 已提交
6725
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6726 6727 6728 6729
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6730
    def _rollback(self):
Y
yuyang18 已提交
6731 6732 6733 6734 6735
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6736 6737
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6738
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6739 6740 6741 6742 6743 6744 6745 6746 6747 6748
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6749 6750 6751
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6752
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6753

W
Wu Yi 已提交
6754
    def _copy_param_info_from(self, other):
6755
        """
6756
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6757

Y
yuyang18 已提交
6758 6759 6760
        Notes: This is a very low level API. Users should not invoke it
        directly.

6761 6762 6763 6764 6765 6766 6767
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6768 6769
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6770 6771
                % type(other)
            )
6772

W
Wu Yi 已提交
6773
        self.global_block()._copy_param_info_from(other.global_block())
6774

6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6786 6787
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6788 6789
                % type(other)
            )
6790 6791
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6792
        self._parameters_on_pservers = other._parameters_on_pservers
6793
        self._endpoints = other._endpoints
6794
        self._ps_endpoint = other._ps_endpoint
6795 6796
        self._distributed_lookup_table = other._distributed_lookup_table

6797
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6798 6799
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6800

Y
yuyang18 已提交
6801 6802 6803
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6804 6805
        Args:
            other(Program): Other program
6806
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
6807 6808
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6809
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6810 6811 6812 6813 6814

        Returns:
            None
        """
        if not isinstance(other, Program):
6815 6816
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6817 6818
                % type(other)
            )
F
fengjiayi 已提交
6819

6820 6821
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
6822
                i: i for i in range(self.desc.num_blocks())
6823
            }
6824 6825 6826

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6827 6828
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6829
            for var in list(block.vars.values()):
6830 6831 6832 6833 6834 6835 6836
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6837

6838
    def list_vars(self):
Y
yuyang18 已提交
6839
        """
6840
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6841

J
Jiabin Yang 已提交
6842
        Returns:
6843
            iterable Tensors: The Generator will yield every Tensor in this program.
6844 6845 6846 6847

        Examples:
            .. code-block:: python

6848 6849
                import paddle
                import paddle.static as static
6850

6851 6852 6853 6854 6855
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6856 6857
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6858

6859 6860
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6861
        """
6862
        for each_block in self.blocks:
6863
            for each_var in list(each_block.vars.values()):
6864 6865
                yield each_var

6866 6867 6868 6869 6870 6871 6872 6873 6874 6875
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6876 6877 6878 6879
                import paddle
                import paddle.static as static

                paddle.enable_static()
6880

6881 6882
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6883
                hidden = static.nn.fc(x=data, size=10)
6884 6885
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6886 6887 6888 6889 6890 6891 6892

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6893 6894
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6895 6896 6897 6898 6899 6900 6901 6902 6903 6904
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6905 6906 6907 6908 6909 6910 6911 6912 6913
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
6914 6915 6916
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6917 6918
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
6919
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6947
        # can not be imported at the begainning of this file.
6948 6949
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
6950

6951 6952
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6953 6954 6955 6956
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".format(
                    type(scope)
                )
            )
6957 6958 6959 6960 6961

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6962 6963
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
6964 6965 6966
                    type(mode)
                )
            )
6967 6968 6969 6970 6971

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
6972 6973 6974 6975 6976
            if (
                var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
                or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
                or var.desc.type() == core.VarDesc.VarType.READER
            ):
6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):
            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6994 6995 6996 6997
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".format(
                        mode
                    )
                )
6998 6999 7000 7001 7002 7003 7004 7005

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
7006 7007 7008 7009
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".format(
                        var.name
                    )
                )
7010 7011 7012 7013 7014 7015
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
7016
        Set parameters and persistable buffers in state_dict to program.
7017
        An exception will throw if shape or dtype of the parameters is not match.
7018

7019 7020 7021 7022
        .. note::
            This function MUST called after run start_up_program

        Args:
7023
            state_dict(dict): the dict store parameters and persistable buffers.
7024 7025
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
7026
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
7027 7028
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
7029

7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
7059 7060 7061
                    type(state_dict)
                )
            )
7062 7063

        vars_dict = {var.name: var for var in self.list_vars()}
7064 7065 7066
        condition = (
            True if 'StructuredToParameterName@@' in state_dict else False
        )
7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
7078 7079
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
7080 7081
                except TypeError as err:
                    warnings.warn(
7082 7083
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
7084
            else:
7085
                warnings.warn(
7086 7087 7088 7089 7090 7091
                    (
                        "Skip loading for '{0}'. Because '{0}' not in the program.".format(
                            name
                        )
                    )
                )
7092

Y
Yu Yang 已提交
7093

7094
class Parameter(Variable, metaclass=ParameterMetaClass):
7095
    """
7096
    Parameter is derived from Variable. A parameter is a persistable
7097
    Variable, and will be updated by optimizers after each iteration.
7098
    The training of a neural network is essentially the updating of
7099 7100
    its parameters.

7101
    Relative to a general Variable, a Parameter has several its own
7102 7103
    member variables:

7104 7105 7106 7107 7108 7109 7110 7111 7112 7113
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
7114
        need_clip (bool): Whether the parameter gradient need to be cliped
7115
            in optimizer. Default is True.
7116 7117
    """

7118 7119 7120 7121 7122 7123
    def __init__(
        self,
        block,
        shape,
        dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
7124
        **kwargs,
7125
    ):
7126 7127 7128 7129 7130
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
7131 7132
        for each in shape:
            if each < 0:
7133 7134
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7135 7136 7137 7138 7139 7140 7141 7142 7143 7144
                    % list(shape)
                )

        Variable.__init__(
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
7145
            **kwargs,
7146
        )
Y
Yu Yang 已提交
7147 7148
        self.trainable = kwargs.get('trainable', True)

J
JYChen 已提交
7149 7150
        self.stop_gradient = not self.trainable

Y
Yu Yang 已提交
7151 7152
        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

7153 7154
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
7155
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
7156

7157 7158
        self.need_clip = kwargs.get('need_clip', True)

7159 7160
        self.is_distributed = False

7161 7162
        self.is_parameter = True

F
fengjiayi 已提交
7163
    def __str__(self):
7164
        return self._to_readable_code()
F
fengjiayi 已提交
7165

F
update  
fengjiayi 已提交
7166 7167 7168
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
7169

F
update  
fengjiayi 已提交
7170 7171 7172 7173 7174 7175 7176 7177
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

7178 7179 7180 7181
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
G
GGBond8488 已提交
7182
                import paddle
7183 7184

                prog = fluid.default_main_program()
G
GGBond8488 已提交
7185
                rlt = paddle.static.data("fake_data", shape=[-1,1,1], dtype='float32')
7186 7187
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
7188
        """
7189
        assert isinstance(throw_on_error, bool) and isinstance(
7190 7191
            with_details, bool
        )
F
update  
fengjiayi 已提交
7192 7193
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
7194 7195 7196 7197 7198 7199 7200
            additional_attr = (
                "trainable",
                "optimize_attr",
                "regularizer",
                "do_model_average",
                "need_clip",
            )
F
update  
fengjiayi 已提交
7201
            for attr_name in additional_attr:
7202
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
F
update  
fengjiayi 已提交
7203 7204
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
7205 7206 7207 7208
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
7209

W
wanghuancoder 已提交
7210
class EagerParamBase(core.eager.Tensor):
7211
    """
7212 7213
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
7231
        need_clip (bool): Whether the parameter gradient need to be cliped
7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7246 7247
                    % list(shape)
                )
7248 7249 7250 7251 7252 7253 7254

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

7255 7256 7257
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

7258
        super().__init__(
7259 7260 7261 7262 7263 7264
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
7279 7280 7281
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
7282 7283

    def set_init_func(self, obj):
7284
        self._init_func = obj
7285 7286 7287

    @dygraph_only
    def initialize(self):
7288 7289 7290
        assert (
            self._init_func is not None
        ), "Required self._init_func is not None, but received None."
7291
        self._init_func(self, None)
7292
        # clear function handle to release resource
7293
        self._init_func = None
7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7306 7307
                type(trainable),
            )
7308

7309 7310 7311 7312
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
7313 7314 7315
        assert (
            self._init_op_creator is not None
        ), "Required self._init_op_creator is not None, but received None."
7316
        self._init_op_creator(self, block)
7317

7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
7337
            tensor=super().__str__()
7338
        )
7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
7368 7369
        new_param._init_func = self._init_func
        new_param._init_op_creator = self._init_op_creator
7370 7371 7372 7373 7374 7375
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
7376 7377
        return new_param

7378 7379 7380
    __repr__ = __str__


Y
Yu Yang 已提交
7381
# program is a global instance.
Y
Yu Yang 已提交
7382 7383
_main_program_ = Program()
_startup_program_ = Program()
7384
_startup_program_._is_start_up_program_ = True
7385

7386

7387
def default_startup_program():
Y
Yu Yang 已提交
7388
    """
Y
yuyang18 已提交
7389 7390
    Get default/global startup program.

7391
    The :code:`paddle.nn` function will append the initialization operators into startup program.
7392
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
7393

7394 7395
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
7396

7397 7398
    Returns:
        Program: current default startup program.
7399

7400
    Returns type:
7401 7402 7403 7404

    Examples:
        .. code-block:: python

7405
            import paddle
7406

7407
            paddle.enable_static()
7408 7409 7410 7411
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
7412
    """
Y
Yu Yang 已提交
7413
    return _startup_program_
7414

7415

7416
def default_main_program():
Y
Yu Yang 已提交
7417
    """
7418
    This API can be used to get ``default main program`` which store the
7419
    descriptions of Ops and tensors.
T
tangwei12 已提交
7420

7421 7422
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
7423

7424
    The ``default main program`` is the default value for ``Program`` parameter in
7425
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7426
    :code:`default_main_program` when the program is not specified.
7427

7428
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7429

Y
Yu Yang 已提交
7430
    Returns:
7431
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7432 7433 7434 7435

    Examples:
        ..  code-block:: python

7436
            import paddle
7437

7438
            paddle.enable_static()
7439
            # Sample Network:
7440 7441 7442
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7443

7444 7445 7446
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7447
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7448
    """
Y
Yu Yang 已提交
7449
    return _main_program_
Y
Yu Yang 已提交
7450 7451 7452 7453 7454


def switch_main_program(program):
    """
    Switch the main program to a new program.
7455

Y
Yu Yang 已提交
7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7470
    Switch the startup program to a new program
Y
Yu Yang 已提交
7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7483
@signature_safe_contextmanager
Y
Yu Yang 已提交
7484 7485
def program_guard(main_program, startup_program=None):
    """
7486 7487
    :api_attr: Static Graph

7488 7489 7490
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7491

G
guofei 已提交
7492
    Args:
7493
        main_program(Program): New main program inside ``with`` statement.
7494 7495
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7496 7497 7498
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7499
    Examples:
C
cyberslack_lee 已提交
7500 7501
        .. code-block:: python
            :name: code-example-1
T
tangwei12 已提交
7502

C
cyberslack_lee 已提交
7503
            import paddle
Y
yuyang18 已提交
7504

C
cyberslack_lee 已提交
7505 7506 7507 7508 7509 7510
            paddle.enable_static()
            main_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(main_program, startup_program):
                data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
                hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7511 7512 7513

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7514

Y
Yu Yang 已提交
7515
    Examples:
C
cyberslack_lee 已提交
7516 7517
        .. code-block:: python
            :name: code-example-2
Y
yuyang18 已提交
7518

C
cyberslack_lee 已提交
7519
            import paddle
7520

C
cyberslack_lee 已提交
7521 7522 7523 7524 7525
            paddle.enable_static()
            main_program = paddle.static.Program()
            # does not care about startup program. Just pass a temporary value.
            with paddle.static.program_guard(main_program, paddle.static.Program()):
                data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7526

Y
Yu Yang 已提交
7527
    """
7528
    from .data_feeder import check_type
7529 7530 7531 7532

    check_type(
        main_program, 'main_program', Program, 'paddle.static.program_guard'
    )
Y
Yu Yang 已提交
7533 7534
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7535 7536 7537 7538 7539 7540
        check_type(
            startup_program,
            'startup_program',
            Program,
            'paddle.static.program_guard',
        )
7541 7542
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7543
        startup_program = switch_startup_program(startup_program)
7544 7545 7546 7547 7548 7549
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7550 7551


W
Wu Yi 已提交
7552
def _get_var(name, program=None):
X
xuwei06 已提交
7553
    """
Y
yuyang18 已提交
7554
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7555

X
xuwei06 已提交
7556 7557 7558
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7559
        If None, default_global_program() will be used.
X
xuwei06 已提交
7560 7561 7562 7563 7564 7565 7566

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7567
    assert isinstance(program, Program)
X
xuwei06 已提交
7568 7569

    return program.global_block().var(name)
7570 7571


7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584
@signature_safe_contextmanager
def dygraph_guard_if_declarative():
    from .dygraph.base import in_declarative_mode
    from .dygraph import Tracer

    if in_declarative_mode():
        # Under @paddle.jit.to_static decorator, we switch back dygraph mode temporarily.
        with _dygraph_guard(tracer=Tracer()):
            yield
    else:
        yield


S
rename  
sneaxiy 已提交
7585
@signature_safe_contextmanager
L
lujun 已提交
7586
def _dygraph_guard(tracer):
7587 7588 7589 7590
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = tracer
    if tracer is not None:
        core._switch_tracer(tracer)
M
minqiyang 已提交
7591

C
Charles-hit 已提交
7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603
    try:
        yield
    finally:
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer


@signature_safe_contextmanager
def _static_guard():
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = None
7604 7605 7606
    try:
        yield
    finally:
7607 7608 7609
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7610 7611


S
rename  
sneaxiy 已提交
7612
@signature_safe_contextmanager
L
lujun 已提交
7613
def _dygraph_place_guard(place):
7614 7615 7616
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7617 7618
    _set_dygraph_tracer_expected_place(place)

7619 7620 7621
    try:
        yield
    finally:
7622
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7623
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7624 7625


7626 7627 7628 7629 7630 7631 7632 7633 7634 7635
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7636

7637
    Note:
7638
        The API only supports static graph mode.
7639 7640 7641 7642

    A context manager that specifies the device on which the OP will be placed.

    Args:
7643
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
7644
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7645 7646 7647 7648 7649 7650 7651
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7652

7653
        .. code-block:: python
7654

7655
            # required: gpu
Z
Zhang Ting 已提交
7656
            import paddle
7657

Z
Zhang Ting 已提交
7658 7659 7660
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7661
            if support_gpu:
Z
Zhang Ting 已提交
7662
                place = paddle.CUDAPlace(0)
7663 7664

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7665 7666 7667
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7668

Z
Zhang Ting 已提交
7669
            with paddle.static.device_guard("cpu"):
7670
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7671 7672
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7673
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7674
                out = paddle.reshape(data1, shape=shape)
7675

Z
Zhang Ting 已提交
7676 7677
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7678 7679 7680
            result = exe.run(fetch_list=[out])
    """

7681 7682 7683 7684 7685
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7686 7687 7688 7689
    if (
        device not in ['cpu', 'gpu', 'xpu', '', None]
        and device not in core.get_all_custom_device_type()
    ):
7690
        raise ValueError(
7691
            "The Attr(device) should be 'cpu', 'xpu', 'gpu' or custom device, and it can also be empty string or None "
7692 7693
            "when there is no need to specify device. But received %s" % device
        )
7694 7695
    if index:
        device = ":".join([device, index])
7696
    pre_device = switch_device(device)
7697 7698 7699 7700
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7701 7702


7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
7715
        The API only supports static graph mode.
7716

7717
    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static graph mode.
7718 7719 7720 7721 7722

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
7723
    assert (
7724
        not in_dygraph_mode()
7725
    ), "cuda_graph_guard only works under static graph mode"
7726 7727
    assert (
        core.is_compiled_with_cuda()
7728 7729 7730 7731 7732 7733 7734 7735
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7736 7737 7738
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7739
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7740 7741 7742 7743 7744 7745 7746

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7747 7748
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7749 7750 7751 7752
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7753 7754
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7755 7756
        else:
            raise ValueError(
7757 7758
                "Flag %s cannot set its value through this function." % (key)
            )
G
guofei 已提交
7759 7760 7761 7762 7763


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7764
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7765 7766 7767 7768 7769 7770 7771 7772 7773 7774

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7775
            import paddle
G
guofei 已提交
7776 7777

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7778
            res = paddle.get_flags(flags)
G
guofei 已提交
7779 7780 7781 7782 7783 7784
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7785
            if _global_flags().is_public(key):
7786
                value = _global_flags()[key]
G
guofei 已提交
7787 7788 7789 7790
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
7791 7792 7793
                    'Flag %s cannot get its value through this function.'
                    % (key)
                )
G
guofei 已提交
7794
    elif isinstance(flags, str):
7795
        if _global_flags().is_public(flags):
7796
            value = _global_flags()[flags]
G
guofei 已提交
7797 7798 7799 7800
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
7801 7802
                'Flag %s cannot get its value through this function.' % (flags)
            )
G
guofei 已提交
7803 7804 7805
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7806 7807 7808 7809 7810 7811


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823
    if isinstance(
        place,
        (
            core.Place,
            core.XPUPlace,
            core.CPUPlace,
            core.CUDAPinnedPlace,
            core.CUDAPlace,
            core.IPUPlace,
            core.CustomPlace,
        ),
    ):
7824 7825 7826 7827
        return place

    if not isinstance(place, str):
        raise ValueError(
7828 7829
            "place only support string which is 'Place' and so on."
        )
7830 7831

    place = place.lower()
7832
    if place == "cpu":
7833
        return core.CPUPlace()
7834

7835
    if place == "device":
7836 7837
        return core.Place()

7838
    # GPU
7839 7840 7841 7842
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
7843
                "The device should not be {}, since PaddlePaddle is "
7844
                "not compiled with CUDA".format(avaliable_gpu_place.group())
7845
            )
7846 7847 7848 7849 7850 7851 7852 7853 7854
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7855 7856

    # XPU
7857 7858 7859 7860
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
7861
                "The device should not be {}, since PaddlePaddle is "
7862
                "not compiled with XPU".format(avaliable_xpu_place.group())
7863
            )
7864 7865 7866 7867
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7868

J
jianghaicheng 已提交
7869 7870 7871 7872 7873
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
7874
                "The device should not be {}, since PaddlePaddle is "
7875
                "not compiled with IPU".format(avaliable_ipu_place.group())
7876
            )
J
jianghaicheng 已提交
7877 7878 7879 7880 7881
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7882 7883 7884 7885 7886 7887 7888
    place_info_list = place.split(':', 1)
    device_type = place_info_list[0]
    if device_type in core.get_all_custom_device_type():
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.CustomPlace(device_type, device_id)

7889
    raise ValueError(
7890
        f"Paddle supports CPUPlace, CUDAPlace, CUDAPinnedPlace, XPUPlace, IPUPlace and CustomPlace, but received {place}."
7891
    )
7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903


def _get_paddle_place_list(places):
    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret