framework.py 268.4 KB
Newer Older
G
gouzil 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

import textwrap
Y
Yu Yang 已提交
16
import collections
X
Xin Pan 已提交
17
from collections import defaultdict
H
huzhiqiang 已提交
18
from collections.abc import Iterable
Q
qiaolongfei 已提交
19
import contextlib
20
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
21
import os
F
fengjiayi 已提交
22
import re
23
import traceback
24
import copy
25
from types import MethodType, FunctionType
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
R
risemeup1 已提交
32 33 34

from .proto import framework_pb2, data_feed_pb2

35
from . import core
36
from . import unique_name
37
from .. import ir
38
from paddle.fluid.libpaddle import DataType
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_static, _setitem_static, _setitem_impl_
43
import threading
Y
Yu Yang 已提交
44

45
__all__ = [
46 47 48 49
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
50
    'name_scope',
J
jianghaicheng 已提交
51
    'ipu_shard_guard',
52
    'set_ipu_shard',
S
sneaxiy 已提交
53 54
    'cuda_places',
    'cpu_places',
55
    'xpu_places',
S
sneaxiy 已提交
56
    'cuda_pinned_places',
L
lujun 已提交
57
    'in_dygraph_mode',
58
    'is_compiled_with_cinn',
C
chengduo 已提交
59
    'is_compiled_with_cuda',
60
    'is_compiled_with_rocm',
61
    'is_compiled_with_xpu',
62
    'Variable',
63
    'require_version',
64
    'device_guard',
G
guofei 已提交
65 66
    'set_flags',
    'get_flags',
67
    '_stride_in_no_check_dy2st_diff',
68
]
Y
Yu Yang 已提交
69

Q
qiaolongfei 已提交
70 71 72 73
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
74 75
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

76

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
# use thread local to create thread save global variables.
class GlobalThreadLocal(threading.local):
    def __init__(self):
        """
        init the thread local data.
        TODO(xiongkun): how to access another thread local data ?
        """
        global _dygraph_tracer_
        self._in_declarative_mode_ = False
        self._functional_dygraph_context_manager = None
        self._dygraph_tracer_ = _dygraph_tracer_

    def __str__(self):
        strings = []
        strings.append(
            "_in_declarative_mode_:" + str(self._in_declarative_mode_)
        )
        strings.append(
            "_functional_dygraph_context_manager:"
            + str(self._functional_dygraph_context_manager)
        )
        strings.append("_dygraph_tracer_:" + str(self._dygraph_tracer_))
        return "\n".join(strings)

    def __setattr__(self, name, val):
        if name == '_dygraph_tracer_':
            global _dygraph_tracer_
            _dygraph_tracer_ = val
        self.__dict__[name] = val


L
lujun 已提交
108
_dygraph_tracer_ = None
109 110
global_var = GlobalThreadLocal()

111
_global_expected_place_ = None
112
_current_device = None
113
global_prog_seed = 0
114
_current_pipeline_stage = None
115
_current_cuda_graph_mode = None
116
_global_flags_ = core.globals()
W
wanghuancoder 已提交
117
_stride_in_no_check_dy2st_diff_mode = False
J
Jiabin Yang 已提交
118

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
# special_op_attrs, extra_op_attrs are prepared for printing warnings
# when turning on FLAGS_print_extra_attrs
special_op_attrs = {
    "elementwise_add": [{"axis": -1}],
    "elementwise_sub": [{"axis": -1}],
    "elementwise_mul": [{"axis": -1}],
    "elementwise_div": [{"axis": -1}],
    "elementwise_max": [{"axis": -1}],
    "elementwise_min": [{"axis": -1}],
    "elementwise_pow": [{"axis": -1}],
    "elementwise_mod": [{"axis": -1}],
    "elementwise_floordiv": [{"axis": -1}],
    "less_than": [{"axis": -1}],
    "less_equal": [{"axis": -1}],
    "greater_than": [{"axis": -1}],
    "greater_equal": [{"axis": -1}],
    "equal": [{"axis": -1}],
    "not_equal": [{"axis": -1}],
    "amax": [{"reduce_all": False}],
    "amin": [{"reduce_all": False}],
    "any": [{"reduce_all": False}],
    "frobenius_norm": [{"reduce_all": False}],
    "logsumexp": [{"reduce_all": False}],
    "reduce_max": [{"reduce_all": False}],
    "reduce_min": [{"reduce_all": False}],
    "reduce_mean": [{"reduce_all": False}],
    "reduce_prod": [{"reduce_all": False}],
    "reduce_sum": [{"reduce_all": False}],
}

extra_op_attrs = {
    "gather": ["overwrite"],
    "graph_reindex": ["flag_buffer_hashtable"],
    "graph_sample_neighbors": ["flag_perm_buffer"],
    "relu6": ["threshold"],
    "swish": ["beta"],
    "hsigmoid_loss": ["remote_prefetch"],
    "max_pool2d_with_index": ["global_pooling"],
    "uniform": ["diag_num"],
    "unique": ["is_sorted"],
}

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
paddle_type_to_proto_type = {
    DataType.BOOL: core.VarDesc.VarType.BOOL,
    DataType.FLOAT16: core.VarDesc.VarType.FP16,
    DataType.UINT16: core.VarDesc.VarType.BF16,
    DataType.FLOAT32: core.VarDesc.VarType.FP32,
    DataType.FLOAT64: core.VarDesc.VarType.FP64,
    DataType.INT8: core.VarDesc.VarType.INT8,
    DataType.INT16: core.VarDesc.VarType.INT16,
    DataType.INT32: core.VarDesc.VarType.INT32,
    DataType.INT64: core.VarDesc.VarType.INT64,
    DataType.UINT8: core.VarDesc.VarType.UINT8,
    DataType.COMPLEX64: core.VarDesc.VarType.COMPLEX64,
    DataType.COMPLEX128: core.VarDesc.VarType.COMPLEX128,
}


K
Kim Yann 已提交
177
# FIXME(dev): We haven't fully verified eager mode on XPU et.al but
178 179 180 181
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


J
Jiabin Yang 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
203
            print(paddle.in_dynamic_mode())  # False, Now we are in static graph mode
J
Jiabin Yang 已提交
204 205 206 207 208

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
209
    return global_var._dygraph_tracer_ is not None
J
Jiabin Yang 已提交
210 211


212 213
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
214 215 216 217 218
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


@signature_safe_contextmanager
219
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
220 221 222 223
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
224
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
225
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
226
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
227
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
228
            which means no pipelining computation order and run Ops in terms of graph.
229

G
gouzil 已提交
230 231 232 233 234 235 236
    Note:
        Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
        duplicated index.
J
jianghaicheng 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


271 272 273 274
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

G
gouzil 已提交
275 276 277 278 279
    Note:
        Only when enable_manual_shard=True to set the index to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        Only when enable_pipelining=True to set stage to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        An index supports a corresponding None stage or a stage, and a stage only supports a new index or a duplicate index.

280 281 282 283 284
    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
285
            The sharded model will be computed from small to large. The default value is -1,
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):
        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

311
    from paddle.nn import Layer
312

313 314 315 316 317
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
318 319
                "Unsupported type. Only accept paddle.nn.Layer or function."
            )
320 321 322 323 324 325 326 327 328 329 330 331

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):
        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


332 333
def require_version(min_version, max_version=None):
    """
334 335 336
    Check if the installed version of PaddlePaddle is in [min_version, max_version],
    if the installed version is lower than ``min_version`` or higher than ``max_version``,
    an exception will be thrown, NO returns if the installed version is satisfied.
337

338 339 340 341
    Args:
        min_version (str): the minimum version required (like '1.4.0').
        max_version (str, optional): the max version required (like '1.6.0'), default is None,
            meaning any version equal or higher than ``min_version`` is acceptable.
342

343 344
    Returns:
        None.
345

346 347 348 349 350 351
    Raises:
        TypeError: if the type of ``min_version`` is not str.
        TypeError: if the type of ``max_version`` is not str or type(None).
        ValueError: if the value of ``min_version`` is not in version format.
        ValueError: if the value of ``max_version`` is not in version format or None.
        Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.
352

353 354
    Examples:
        .. code-block:: python
355

356
            import paddle.fluid as fluid
357

358 359
            # any version >= 0.1.0 is acceptable.
            fluid.require_version('0.1.0')
360

361 362 363
            # if 0.1.0 <= version <= 10.0.0, it is acceptable.
            fluid.require_version(min_version='0.1.0', max_version='10.0.0')
    """
364 365 366
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
367 368
            % (type(min_version))
        )
369 370 371 372

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
373 374
            % (type(max_version))
        )
375 376 377 378 379

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
380 381
            "like '1.5.2.0', but received %s" % min_version
        )
382 383 384 385 386 387

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
388 389
                "like '1.5.2.0', but received %s" % max_version
            )
390 391

    version_installed = [
392 393 394 395
        fluid_version.major,
        fluid_version.minor,
        fluid_version.patch,
        fluid_version.rc,
396 397 398 399
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
400
        for i in range(len(ver_a)):
401 402 403 404 405 406 407 408 409 410 411
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
412 413 414
                "please make sure the version is good with your code."
                % (min_version, max_version, fluid_version.full_version)
            )
415 416 417 418
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
419 420 421
                "please make sure the version is good with your code."
                % (min_version, fluid_version.full_version)
            )
422 423 424
        return

    min_version_split = min_version.split('.')
425 426 427
    min_version_to_check = (
        min_version_split + zero_version[len(min_version_split) :]
    )
428 429 430

    if max_version is not None:
        max_version_split = max_version.split('.')
431 432 433
        max_version_to_check = (
            max_version_split + zero_version[len(max_version_split) :]
        )
434

435 436 437 438
        if (
            version_cmp(version_installed, max_version_to_check) > 0
            or version_cmp(version_installed, min_version_to_check) < 0
        ):
439 440
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
441 442
                % (min_version, max_version, fluid_version.full_version)
            )
443 444 445 446 447
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
448 449
                % (min_version, fluid_version.full_version, min_version)
            )
450 451


452 453
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
454
        assert not in_dygraph_mode(), (
455 456
            "We don't support %s in dynamic graph mode" % func.__name__
        )
457 458 459 460 461 462 463
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
464
        assert in_dygraph_mode(), (
465 466 467
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
468 469 470 471 472
        return func(*args, **kwargs)

    return __impl__


473 474 475
def _non_static_only_(func):
    def __impl__(*args, **kwargs):
        from .dygraph.base import in_declarative_mode
476

477
        assert in_dygraph_mode() or in_declarative_mode(), (
478 479 480
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
481 482 483 484 485
        return func(*args, **kwargs)

    return __impl__


486 487
def _static_only_(func):
    def __impl__(*args, **kwargs):
488
        assert not in_dygraph_mode(), (
489 490 491
            "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode."
            % func.__name__
        )
492 493 494 495 496
        return func(*args, **kwargs)

    return __impl__


497 498 499 500 501
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


502
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
W
wanghuancoder 已提交
503 504
# used to make Variable and Tensor has same interfaces, like numpy. Since Tensor is not exposed in our
# official docments, logically, we want to keep Tensor and logically consistent. While, actually,
505 506
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
W
wanghuancoder 已提交
507
# TODO(zhiqiu): We should make Tensor consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
508
# same base class.
509 510 511
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
512 513
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
R
Ryan 已提交
514
            "  2. If you are using `@paddle.jit.to_static`, you can call `paddle.jit.enable_to_static(False)`. "
515
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
516 517
            % (func.__name__, func.__name__)
        )
518 519 520 521

    return __impl__


T
tangwei12 已提交
522 523
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
524 525 526 527 528 529 530 531 532
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
533 534
                DeprecationWarning,
            )
535 536 537 538 539 540 541
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


542 543
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
544
static_only = wrap_decorator(_static_only_)
545
fake_interface_only = wrap_decorator(_fake_interface_only_)
546
non_static_only = wrap_decorator(_non_static_only_)
547 548


L
lujun 已提交
549
def _dygraph_tracer():
550
    return global_var._dygraph_tracer_
551

W
Wu Yi 已提交
552

553 554 555 556
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
557
def _current_expected_place():
558 559 560
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
561 562 563 564 565
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
566
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
567 568 569 570 571
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
572 573 574 575 576 577
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
578
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
579 580 581 582 583
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
        elif len(core.get_all_custom_device_type()) > 0:
            dev_type = core.get_all_custom_device_type()[0]
            try:
                device_count = core.get_custom_device_count(dev_type)
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CustomPlace(
                    dev_type, _custom_device_ids(dev_type)[0]
                )
            else:
                warnings.warn(
                    "You are using CUSTOM_DEVICE version Paddle, but your custom device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
599 600 601 602 603 604 605
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
606 607
    if global_var._dygraph_tracer_ is not None:
        global_var._dygraph_tracer_._expected_place = place
608 609 610 611 612


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
613
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
614 615


S
sneaxiy 已提交
616
def _cpu_num():
617
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
618 619 620 621 622 623 624
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
625 626 627
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()
                )
            )
C
chengduo 已提交
628
        os.environ['CPU_NUM'] = str(1)
629
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
630 631 632 633 634 635 636 637
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
638
        device_ids = range(core.get_cuda_device_count())
C
chengduo 已提交
639
    return device_ids
S
sneaxiy 已提交
640 641


642 643 644 645 646
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
647
        device_ids = range(core.get_xpu_device_count())
648 649 650
    return device_ids


651 652 653 654 655 656 657 658 659
def _custom_device_ids(device_type):
    custom_devices_env = os.getenv("FLAGS_selected_" + device_type + "s")
    if custom_devices_env:
        device_ids = [int(s) for s in custom_devices_env.split(",")]
    else:
        device_ids = range(core.get_custom_device_count(device_type))
    return device_ids


660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


675 676 677 678 679 680 681
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
682

683 684 685 686 687 688
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

Z
Zman 已提交
689 690
    Returns:
        None
691 692 693 694 695 696 697 698 699 700

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


701 702 703 704
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

705 706
    Returns:
        Bool: `True` if CINN is currently available, otherwise `False`.
707 708 709 710 711 712 713 714 715 716

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
717 718 719 720
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

721 722
    Returns:
        Bool: `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
723 724 725 726

    Examples:
        .. code-block:: python

727
            import paddle
728
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
729 730 731 732
    """
    return core.is_compiled_with_cuda()


733 734 735 736
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

737 738
    Returns:
        Bool: `True` if ROCm is currently available, otherwise `False`.
739 740 741 742 743

    Examples:
        .. code-block:: python

            import paddle
744
            support_gpu = paddle.device.is_compiled_with_rocm()
745 746 747 748
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
749
def cuda_places(device_ids=None):
L
lujun 已提交
750
    """
751
    Note:
752 753 754
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
755
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
756 757

    If :code:`device_ids` is None, environment variable of
758
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
759
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
760
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
761
    If :code:`FLAGS_selected_gpus` is not set, all visible
762
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
763 764

    If :code:`device_ids` is not None, it should be the device
765
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
766
    the returned list would be
C
Chen Weihang 已提交
767
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
768

769
    Parameters:
770
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
771 772

    Returns:
C
Chen Weihang 已提交
773
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
774 775

    Examples:
776

L
lujun 已提交
777 778
        .. code-block:: python

C
Chen Weihang 已提交
779 780
            import paddle
            import paddle.static as static
T
tangwei12 已提交
781

782
            # required: gpu
783

C
Chen Weihang 已提交
784 785 786
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
787 788

    """
789
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
790
    if device_ids is None:
C
chengduo 已提交
791
        device_ids = _cuda_ids()
S
sneaxiy 已提交
792 793 794 795 796
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


797 798 799 800
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
801 802 803 804 805 806 807 808 809
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
810
        the returned list would be
S
sunzhongkai588 已提交
811
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
812

813 814 815 816 817 818
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
819

820 821
            # required: xpu

822 823
            import paddle
            import paddle.static as static
824

825 826 827
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
828
    assert core.is_compiled_with_xpu(), "Not compiled with XPU"
829 830 831 832 833 834 835
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
836
def cpu_places(device_count=None):
L
lujun 已提交
837
    """
C
Chen Weihang 已提交
838
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
839

S
add doc  
sneaxiy 已提交
840
    If :code:`device_count` is None, the device count would
841
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
842 843
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
844 845
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
846

847 848
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
849 850

    Returns:
C
Chen Weihang 已提交
851
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
852 853

    Examples:
854

L
lujun 已提交
855 856
        .. code-block:: python

C
Chen Weihang 已提交
857 858
            import paddle
            import paddle.static as static
T
tangwei12 已提交
859

C
Chen Weihang 已提交
860 861 862
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
863 864
    """

S
sneaxiy 已提交
865 866 867 868 869 870
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
871
    """
872
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
873 874

    If :code:`device_count` is None, the device count would
875
    be determined by environment variable :code:`CPU_NUM`.
876 877 878 879
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
880

881 882
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
883 884

    Returns:
885
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
886 887 888 889

    Examples:
        .. code-block:: python

890
            import paddle.fluid as fluid
L
lujun 已提交
891 892 893 894 895
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
896
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
897
    if device_count is None:
898 899
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
900 901


902
class NameScope:
903 904 905 906 907 908 909 910 911 912
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
913 914 915
            new_child = NameScope(
                prefix + "_%d" % len(self._children[prefix]), self
            )
916 917 918 919 920 921 922 923 924 925 926 927 928
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
929
@signature_safe_contextmanager
930 931
def name_scope(prefix=None):
    """
932

933
    Generate hierarchical name prefix for the operators in Static Graph.
934

935
    Note:
T
Tao Luo 已提交
936 937
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
938
        Don't use it in dygraph, since it will cause memory leak.
939 940

    Args:
T
Tao Luo 已提交
941
        prefix(str, optional): prefix. Default is none.
942 943

    Examples:
944

945
        .. code-block:: python
T
Tink_Y 已提交
946

947 948 949
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
950
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
951
             b = a + 1
952
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
953
                c = b * 1
954
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
955
                d = c / 1
956 957 958
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
959 960
                g = f - 1

961
          # Op are created in the default main program.
962
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
978 979
    """
    # TODO(panyx0718): Only [0-9a-z].
980
    # in dygraph we don't need namescope since it will cause mem leak
981
    if in_dygraph_mode():
L
Leo Chen 已提交
982 983
        yield
    else:
T
tianshuo78520a 已提交
984
        assert prefix, "namescope prefix can not be empty."
985 986
        global _name_scope
        _name_scope = _name_scope.child(prefix)
987 988 989 990
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
991 992 993 994 995 996 997 998 999 1000 1001 1002


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1003 1004
def generate_control_dev_var_name():
    import random
1005

W
Wu Yi 已提交
1006
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1007 1008 1009 1010


def grad_var_name(var_name):
    """
1011 1012
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1013 1014 1015
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1016

1017
def convert_np_dtype_to_dtype_(np_dtype):
1018
    """
1019
    Convert the data type in numpy to the data type in Paddle.
1020

1021
    Args:
1022 1023
        np_dtype (np.dtype|str): The data type in numpy or valid data type
            string.
1024

1025
    Returns:
1026
        core.VarDesc.VarType / core.DataType : The data type in Paddle.
1027 1028

    """
1029 1030
    # Convert the data type string to numpy data type.
    if isinstance(np_dtype, str) and np_dtype == "bfloat16":
1031 1032 1033
        dtype = np.uint16
    else:
        dtype = np.dtype(np_dtype)
1034

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
    if dtype == np.float32:
        return core.VarDesc.VarType.FP32
    elif dtype == np.float64:
        return core.VarDesc.VarType.FP64
    elif dtype == np.float16:
        return core.VarDesc.VarType.FP16
    elif dtype == np.int32:
        return core.VarDesc.VarType.INT32
    elif dtype == np.int16:
        return core.VarDesc.VarType.INT16
    elif dtype == np.int64:
        return core.VarDesc.VarType.INT64
    elif dtype == np.bool_:
        return core.VarDesc.VarType.BOOL
    elif dtype == np.uint16:
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1061
    else:
1062
        raise ValueError("Not supported numpy dtype %s" % dtype)
1063 1064 1065


def dtype_is_floating(dtype):
1066 1067 1068
    """
    Check the data type is floating or not.
    Args:
1069
        dtype(np.dtype|core.VarDesc.VarType): data type.
1070 1071 1072 1073 1074
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1075
    if not isinstance(dtype, core.VarDesc.VarType):
1076 1077
        dtype = convert_np_dtype_to_dtype_(dtype)

1078
    return dtype in [
1079 1080 1081
        core.VarDesc.VarType.FP16,
        core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64,
1082
    ]
1083 1084


Y
Yang Yang(Tony) 已提交
1085
def _debug_string_(proto, throw_on_error=True):
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1097
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1098
    if not proto.IsInitialized(error_fields) and throw_on_error:
1099 1100
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
1101 1102 1103
                error_fields, proto
            )
        )
Y
Yu Yang 已提交
1104 1105 1106
    return proto.__str__()


1107
def _create_tensor(
1108 1109 1110 1111 1112
    type=core.VarDesc.VarType.LOD_TENSOR,
    name=None,
    shape=None,
    dtype=None,
    persistable=None,
1113
    **kwargs,
1114
):
1115 1116 1117 1118
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

W
wanghuancoder 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127
    eager_tensor = core.eager.Tensor(
        dtype if dtype else core.VarDesc.VarType.FP32,
        list(shape) if shape else [],
        name,
        type if type else core.VarDesc.VarType.LOD_TENSOR,
        True if persistable else False,
    )
    eager_tensor.retain_grads()
    return eager_tensor
1128 1129


1130 1131 1132 1133 1134 1135 1136
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
1137 1138
    if not vals:
        return False
1139 1140 1141
    return all(isinstance(v, expected_type) for v in vals)


1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
def wrap_as_scalar(number):
    """Wrap a number(either python scalar or numpy scalar) as core.Scalar if
    it is not a scalar.


    Args:
        number (Number): number

    Returns:
        Scalar: A Scalar that contains the value.
    """
    if isinstance(number, core.Scalar):
        return number
    if isinstance(number, (bool, int, float, complex)):
        return core.Scalar(number)
    if isinstance(number, np.number):
        # it is a numpy scalar
        return core.Scalar(number.item())
    else:
        raise TypeError("Cannot wrap {} as core.Scalar".format(number))


def wrap_as_scalars(array):
    """This function is used to convert flat list, or numpy array(not
    necesarily flat) to list of core.Scalar, which correspond to
    std::vector<paddle::experimental::Scalar> in operator runtime.

    Args:
        array (List | np.ndarray): array of numbers

    Returns:
        List: list of core.Scalar, of which each element is a Scalar containing
          the corresponding value.
    """
    if isinstance(array, np.ndarray):
        array = array.ravel().tolist()
    return [wrap_as_scalar(item) for item in array]


def extract_plain_list(array):
    """extract value from a list of core.Scalar.

    Args:
        array (list): Scalars

    Returns:
        list: values extracted from the scalars.
    """
    return [item.value() for item in array]


def canonicalize_attrs(attrs, op_proto):
    """This function is used to canonicalize attributes(as a string->any dict)
    according to the type specification in the OpProto. This is especially
    important for operators that has any attributes of type Scalar or Scalars.

    Though various frontends of phi kernels & paddle operators can wrap variables
    of concrete types into Scalars(a tagged union of several numeric types) or
    vector of Scalars. Paddle operator requires strict type matching.

    Args:
        attrs (Dict[str, Any]): attribute dict intended to pass to an operator.
        op_proto (OpProto): Proto (signature) of the operator.

    Returns:
        Dict[str, Any]: canonicalized attributes.
    """
    canonicalized_attrs = attrs.copy()  # shallow copy is enough here
    for attr in op_proto.attrs:
        attr_name = attr.name
        type_index = attr.type
        if (attr_name not in attrs) or (attrs[attr_name] is None):
            continue

        attr_val = attrs[attr_name]

        # VAR and VARS should be skipped
        if isinstance(attr_val, Variable):
            continue
        if isinstance(attr_val, list) and _all_is_type(attr_val, Variable):
            continue

        # wrap
        if type_index == core.AttrType.SCALAR:
            canonicalized_attrs[attr_name] = core.Scalar(attr_val)
        elif type_index == core.AttrType.SCALARS:
            # it should be a list (or a numpy array)
            if len(attr_val) > 0:
                attr_val = np.array(attr_val).ravel().tolist()
                attr_val = [core.Scalar(x) for x in attr_val]
                canonicalized_attrs[attr_name] = attr_val

    return canonicalized_attrs


1237 1238 1239 1240 1241
class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1242
            return issubclass(t, core.eager.Tensor)
1243 1244 1245 1246 1247 1248 1249 1250 1251
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1252
            return issubclass(t, EagerParamBase)
1253 1254 1255 1256
        else:
            return issubclass(t, Parameter)


1257
class Variable(metaclass=VariableMetaClass):
1258
    """
J
Jiabin Yang 已提交
1259

U
ustiniankw 已提交
1260 1261 1262 1263
    Notes:
        The constructor of Variable should not be invoked directly.

        In Static Graph Mode: Please use ** `Block.create_var` ** to create a Static variable which has no data until being feed.
1264

U
ustiniankw 已提交
1265
        In Dygraph Mode: Please use ** :ref:`api_fluid_dygraph_to_variable` ** to create a dygraph variable with real data.
J
Jiabin Yang 已提交
1266 1267

    In Fluid, every input and output of an OP is a variable. In most
1268
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1269 1270
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1271

1272
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1273
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1274

T
tianshuo78520a 已提交
1275
    Most of a Variable's member variables can be set to be None. It mean
1276
    it is not available or will be specified later.
1277

1278
    Examples:
1279 1280
        In Static Graph Mode:

1281
        .. code-block:: python
C
cyberslack_lee 已提交
1282
            :name: code-example-1
1283

1284
            import paddle.fluid as fluid
1285
            cur_program = fluid.Program()
1286 1287 1288 1289
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1290

1291
        In Dygraph  Mode:
1292 1293

        .. code-block:: python
C
cyberslack_lee 已提交
1294
            :name: code-example-2
1295 1296 1297 1298 1299 1300 1301

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1302 1303
    """

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
    def __init__(
        self,
        block,
        type=core.VarDesc.VarType.LOD_TENSOR,
        name=None,
        shape=None,
        dtype=None,
        lod_level=None,
        capacity=None,
        persistable=None,
        error_clip=None,
        stop_gradient=False,
        is_data=False,
        need_check_feed=False,
        belong_to_optimizer=False,
1319
        **kwargs,
1320
    ):
Y
Yu Yang 已提交
1321 1322
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1323
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1324

Y
Yu Yang 已提交
1325
        if dtype is not None:
1326
            if not isinstance(dtype, core.VarDesc.VarType):
1327
                dtype = convert_np_dtype_to_dtype_(dtype)
1328

S
Steffy-zxf 已提交
1329 1330 1331 1332
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1333 1334 1335
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1336 1337
        self.belong_to_optimizer = belong_to_optimizer

1338 1339 1340
        self.error_clip = error_clip

        is_new_var = False
1341
        self.desc = self.block.desc.find_var(name.encode())
1342

1343
        if self.desc is None:
1344
            self.desc = self.block.desc.var(name.encode())
1345
            is_new_var = True
1346

1347 1348 1349
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
1350 1351 1352 1353 1354
            raise ValueError(
                "Variable '{0}' has been created before. The "
                "previous type is {1}, the new type is {2}. They"
                " are not matched".format(self.name, self.desc.type(), type)
            )
1355

1356
        if shape is not None:
1357
            if is_new_var:
1358 1359 1360 1361 1362 1363
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1364 1365
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1366 1367
                        "matched.".format(self.name, old_shape, shape)
                    )
1368 1369 1370 1371 1372 1373
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
1374 1375 1376 1377 1378 1379
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous data type is {1}, the new "
                        "data type is {2}. They are not "
                        "matched.".format(self.name, old_dtype, dtype)
                    )
1380 1381 1382 1383 1384 1385

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
1386 1387 1388 1389 1390 1391
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous lod_level is {1}, the new "
                        "lod_level is {2}. They are not "
                        "matched".format(self.name, self.lod_level, lod_level)
                    )
1392 1393 1394 1395 1396 1397
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1398 1399
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1400
                        "persistable is {2}. They are not matched".format(
1401 1402 1403
                            self.name, self.persistable, persistable
                        )
                    )
1404

1405 1406
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1407

1408 1409 1410 1411 1412 1413 1414
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1415

1416 1417
        self.block.vars[name] = self
        self.op = None
1418
        self.stop_gradient = stop_gradient
1419
        self.is_data = is_data
W
wanghuancoder 已提交
1420
        self.is_view_var = False
Y
Yu Yang 已提交
1421

1422 1423
    def detach(self):
        """
U
ustiniankw 已提交
1424

1425
        Returns a new Variable, detached from the current graph.
1426 1427
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1428

1429
        Returns:
U
ustiniankw 已提交
1430
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable), The detached Variable.
1431 1432 1433 1434

        Examples:
            .. code-block:: python

1435
                import paddle
1436

1437 1438 1439 1440
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1441

1442 1443
                # create a detached Variable
                y = x.detach()
U
ustiniankw 已提交
1444

1445
        """
1446

1447 1448 1449 1450
        assert (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ), "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"
1451 1452 1453 1454 1455 1456

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
1457 1458
            stop_gradient=True,
        )
1459

1460 1461 1462
        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]}
        )
1463
        return output
1464

1465
    @fake_interface_only
1466
    def numpy(self):
1467
        """
J
Jiabin Yang 已提交
1468
        **Notes**:
T
tianshuo78520a 已提交
1469
            **This API is ONLY available in Dygraph mode**
1470

J
Jiabin Yang 已提交
1471
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1472 1473 1474 1475 1476

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1477
            ndarray: dtype is same as current Variable
1478 1479 1480 1481 1482 1483

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1484
                from paddle.fluid.dygraph import Linear
1485 1486 1487 1488
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1489
                    linear = Linear(32, 64)
1490
                    data = to_variable(data)
1491
                    x = linear(data)
1492 1493 1494
                    print(x.numpy())

        """
1495
        pass
1496

1497
    @non_static_only
1498
    def backward(self, retain_graph=False):
1499
        """
J
Jiabin Yang 已提交
1500
        **Notes**:
T
tianshuo78520a 已提交
1501
            **This API is ONLY available in Dygraph mode**
1502

1503
        Run backward of current Graph which starts from current Tensor.
1504

J
Jiabin Yang 已提交
1505
        Args:
1506 1507 1508 1509
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1510

J
Jiabin Yang 已提交
1511 1512
        Returns:
            NoneType: None
1513 1514 1515 1516 1517

        Examples:
            .. code-block:: python

                import numpy as np
1518 1519
                import paddle
                paddle.disable_static()
1520 1521

                x = np.ones([2, 2], np.float32)
1522 1523 1524 1525 1526 1527 1528
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1529 1530
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1531
                loss.backward()
1532 1533

        """
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
        from .backward import append_backward

        if retain_graph is True:
            raise AssertionError(
                "`retain_graph` == True is not supported in @to_static function."
                "please set retain_graph = False."
            )
        param_grad_list = append_backward(self)
        for param, param_grad in param_grad_list:
            # set grad to simulate dygraph loss.backward() in static mode.
            setattr(param, "grad", param_grad)
1545

1546
    @fake_interface_only
1547
    def gradient(self):
1548
        """
J
Jiabin Yang 已提交
1549
        **Notes**:
T
tianshuo78520a 已提交
1550
            **This API is ONLY available in Dygraph mode**
1551 1552 1553

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1554
        Returns:
1555
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1556 1557 1558 1559

        Examples:
            .. code-block:: python

1560
                import paddle
1561 1562 1563
                import paddle.fluid as fluid
                import numpy as np

1564
                # example1: return ndarray
1565 1566 1567 1568 1569 1570 1571
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1572
                    ret2 = paddle.add_n(inputs2)
1573
                    loss2 = paddle.sum(ret2)
1574
                    loss2.backward()
1575 1576
                    print(loss2.gradient())

1577 1578
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
1579 1580 1581 1582 1583
                    embedding = paddle.nn.Embedding(
                        20,
                        32,
                        weight_attr='emb.w',
                        sparse=True)
1584 1585 1586 1587 1588 1589 1590
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1591
        """
1592
        pass
1593

1594
    @fake_interface_only
1595
    def clear_gradient(self):
1596
        """
J
Jiabin Yang 已提交
1597
        **Notes**:
T
tianshuo78520a 已提交
1598
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1599 1600

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1601

J
Jiabin Yang 已提交
1602
        Clear  (set to ``0`` ) the Gradient of Current Variable
1603 1604 1605 1606 1607 1608

        Returns:  None

        Examples:
            .. code-block:: python

1609
                import paddle
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1620
                    ret2 = paddle.add_n(inputs2)
1621
                    loss2 = paddle.sum(ret2)
1622
                    loss2.backward()
1623 1624 1625 1626 1627
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1628
        pass
X
Xin Pan 已提交
1629

1630
    def register_hook(self, hook):
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
        import paddle

        def backward_hook_wrapper(dy):
            """call the backward hook in ."""
            return hook(np.array(dy))

        def forward_hook_wrapper(x):
            """do nothing but return a new variable."""
            return x

        paddle.static.py_func(
            func=forward_hook_wrapper,
            x=self,
            out=self,
            backward_func=backward_hook_wrapper,
            skip_vars_in_backward_input=[self],
        )
1648

1649
    def __str__(self):
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1666 1667
                import paddle
                import paddle.static as static
1668

1669 1670 1671
                paddle.enable_static()

                cur_program = static.Program()
1672 1673 1674 1675 1676 1677
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1678 1679
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1680 1681 1682 1683
        if (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ):
1684
            dtype_str = str(self.dtype).split('.')[1]
1685 1686 1687 1688 1689 1690 1691
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".format(
                name=self.name,
                type=type_str,
                shape=self.shape,
                dtype=dtype_str,
                stop_gradient=self.stop_gradient,
            )
1692
        else:
1693
            var_str = "{name} : {type})".format(name=self.name, type=type_str)
1694

1695
        if self.is_parameter:
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1706
        from paddle.distributed.auto_parallel.static.dist_context import (
1707 1708 1709
            get_default_distributed_context,
        )

1710
        dist_context = get_default_distributed_context()
1711 1712
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1713 1714 1715
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_tensor
            )
1716

1717
        return var_str
Y
Yang Yang(Tony) 已提交
1718

F
update  
fengjiayi 已提交
1719
    def to_string(self, throw_on_error, with_details=False):
1720 1721 1722
        """
        Get debug string.

J
Jiabin Yang 已提交
1723 1724 1725 1726 1727
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1728

1729 1730
        Returns:
            str: The debug string.
1731 1732 1733 1734 1735

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1736
                import paddle
1737

1738
                paddle.enable_static()
1739 1740 1741 1742 1743
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1744
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1745
                print("=============with detail===============")
1746
                print(new_variable.to_string(True, True))
1747
        """
1748
        assert isinstance(throw_on_error, bool) and isinstance(
1749 1750
            with_details, bool
        )
1751
        protostr = self.desc.serialize_to_string()
1752
        proto = framework_pb2.VarDesc.FromString(bytes(protostr))
F
update  
fengjiayi 已提交
1753 1754
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1755
            additional_attr = ("error_clip",)
F
update  
fengjiayi 已提交
1756
            for attr_name in additional_attr:
1757
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
1758

F
update  
fengjiayi 已提交
1759
        return res_str
1760 1761 1762

    __repr__ = __str__

1763 1764 1765
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
1766

1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1790
    @property
1791
    def stop_gradient(self):
J
Jiabin Yang 已提交
1792 1793 1794
        """
        Indicating if we stop gradient from current Variable

1795
        **Notes: This Property has default value as** ``True`` **in** Dygraph **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``
J
Jiabin Yang 已提交
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1807 1808
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1809 1810 1811
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1812 1813
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1814 1815 1816 1817
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1818
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1819 1820
                assert (out1.gradient() == 0).all()
        """
1821
        return self.desc.stop_gradient()
1822

1823 1824
    @stop_gradient.setter
    def stop_gradient(self, s):
1825
        self.desc.set_stop_gradient(s)
1826

1827 1828
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1829 1830 1831 1832 1833 1834 1835 1836
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

1837
            **2. In** Dygraph **mode, this property should not be changed**
J
Jiabin Yang 已提交
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1850
        return self.desc.persistable()
1851

Y
Yu Yang 已提交
1852 1853
    @persistable.setter
    def persistable(self, p):
1854
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1855

1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1881 1882
    @property
    def name(self):
J
Jiabin Yang 已提交
1883 1884 1885
        """
        Indicating name of current Variable

1886
        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** Dygraph **mode. This is how we achieve Parameter sharing**
J
Jiabin Yang 已提交
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1899
        return self.desc.name()
Y
Yu Yang 已提交
1900

1901 1902 1903 1904 1905 1906
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1907 1908
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1909

1910 1911 1912
        Examples:
          .. code-block:: python

1913
          import paddle
1914

1915
          x = paddle.static.data(name="x", shape=[-1, 23, 48], dtype='float32')
1916
          print(x.grad_name) # output is ``x@GRAD``
1917 1918 1919 1920

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1921 1922
    @name.setter
    def name(self, new_name):
1923
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1924

Y
Yu Yang 已提交
1925 1926
    @property
    def shape(self):
J
Jiabin Yang 已提交
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1944
        # convert to tuple, make it as same as numpy API.
1945
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1946 1947

    @property
F
fengjiayi 已提交
1948
    def dtype(self):
J
Jiabin Yang 已提交
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1965
        return self.desc.dtype()
Y
Yu Yang 已提交
1966 1967 1968

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1969 1970 1971 1972 1973 1974 1975 1976
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

1977
            **2. Don't support this property in** Dygraph **mode, it's value should be** ``0(int)``
J
Jiabin Yang 已提交
1978 1979 1980 1981

        Examples:
          .. code-block:: python

1982
            import paddle
J
Jiabin Yang 已提交
1983
            import paddle.fluid as fluid
1984 1985

            paddle.enable_static()
J
Jiabin Yang 已提交
1986 1987 1988 1989 1990 1991 1992
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1993 1994
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
1995 1996
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
1997
        return self.desc.lod_level()
Y
Yu Yang 已提交
1998

Y
Yu Yang 已提交
1999 2000
    @property
    def type(self):
J
Jiabin Yang 已提交
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2017
        return self.desc.type()
Y
Yu Yang 已提交
2018

2019 2020 2021
    @property
    def T(self):
        """
U
ustiniankw 已提交
2022

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
U
ustiniankw 已提交
2041

2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
2054 2055
            stop_gradient=False,
        )
2056 2057 2058 2059 2060
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
2061 2062 2063 2064 2065 2066 2067 2068 2069
            stop_gradient=False,
        )

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': perm},
        )
2070 2071
        return out

2072 2073 2074
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
2075
        Variable. It remains in the current graph, that is, the cloned Variable
2076 2077 2078 2079
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
U
ustiniankw 已提交
2080
            Variable, The cloned Variable.
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
2100 2101
            stop_gradient=self.stop_gradient,
        )
2102

2103 2104 2105
        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]}
        )
2106 2107
        return output

W
Wu Yi 已提交
2108
    def _set_error_clip(self, error_clip):
2109
        """
U
ustiniankw 已提交
2110

2111 2112 2113 2114 2115 2116 2117
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
U
ustiniankw 已提交
2118

2119
        """
2120 2121
        self.error_clip = error_clip

2122 2123
    def _set_info(self, key, value):
        """
U
ustiniankw 已提交
2124

2125 2126 2127 2128 2129 2130
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

2131
        Returns:
2132
            None
U
ustiniankw 已提交
2133

2134 2135 2136 2137 2138 2139 2140
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
U
ustiniankw 已提交
2141

2142 2143 2144 2145 2146
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

2147
        Returns:
2148
            object
U
ustiniankw 已提交
2149

2150 2151 2152 2153 2154
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2155 2156
    def _slice_indices(self, slice, length):
        """
U
ustiniankw 已提交
2157

2158
        Reference implementation for the slice.indices method.
U
ustiniankw 已提交
2159

2160 2161 2162 2163 2164 2165 2166 2167
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2168
            raise ValueError("slice step can not be zero")
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2179 2180 2181
            start = (
                max(start + length, lower) if start < 0 else min(start, upper)
            )
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
2227 2228 2229
                if (index > 0 and index >= self.shape[index]) or (
                    index < 0 and (index + self.shape[index]) < 0
                ):
2230
                    raise IndexError("invalid index")
2231 2232 2233 2234 2235
                start = (
                    max(start + self.shape[index], 0)
                    if start < 0
                    else min(start, self.shape[index])
                )
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2249
    def _cloneVar(self, copy=False):
2250 2251
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2252
                name=unique_name.generate_with_ignorable_key(self.name),
2253 2254
                dtype=self.dtype,
            )
2255 2256 2257 2258
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2259
        new_var = self._cloneVar()
2260 2261 2262 2263 2264 2265
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes, 'starts': starts, 'ends': ends},
        )
2266 2267 2268
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2269
        new_var = self._cloneVar()
2270 2271 2272 2273 2274 2275 2276 2277
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={
                'axis': axis,
            },
        )
2278 2279 2280 2281 2282
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2283
                return self._cloneVar(True)
2284 2285 2286 2287 2288 2289 2290
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2291 2292 2293
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2294 2295 2296
                        start += step
                else:
                    while start > stop:
2297 2298 2299
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2300 2301 2302 2303
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2304
                return self._cloneVar(True)
2305
            index = int(item)
2306 2307 2308
            if (index > 0 and index >= self.shape[axis]) or (
                index < 0 and (index + self.shape[axis]) < 0
            ):
2309 2310 2311 2312 2313 2314
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2315
        return _getitem_static(self, item)
2316

2317
    def __setitem__(self, item, value):
2318 2319 2320
        from .dygraph.base import in_declarative_mode

        if in_declarative_mode():
2321 2322 2323 2324
            if is_compiled_with_xpu():
                # (NOTE): Currently, there is no index_put_xpu kernel.
                return _setitem_impl_(self, item, value)
            return _setitem_static(self, item, value)
2325 2326 2327 2328
        else:
            raise RuntimeError(
                "In static mode, the __setitem__ (looks like: x[indices] = values) should not be used. Please use x = paddle.static.setitem(x, indices, values)"
            )
2329

2330 2331
    def get_value(self, scope=None):
        """
2332
        Get the value of variable in given scope.
2333 2334

        Args:
2335
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2336 2337 2338 2339
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
U
ustiniankw 已提交
2340
            Tensor, the value in given scope.
2341 2342 2343 2344 2345

        Examples:
            .. code-block:: python

                import paddle
2346
                import paddle.static as static
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2371 2372
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2373 2374
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
2375

2376 2377
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2378 2379 2380 2381
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2382 2383 2384 2385 2386

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
2387 2388 2389
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2390 2391 2392 2393 2394
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
U
ustiniankw 已提交
2395

2396
        Set the value to the tensor in given scope.
2397 2398 2399

        Args:
            value(Tensor/ndarray) : The value to be set.
2400
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2401 2402 2403 2404 2405
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
2406

2407 2408 2409 2410
        Examples:
            .. code-block:: python

                import paddle
2411
                import paddle.static as static
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
U
ustiniankw 已提交
2435

2436 2437 2438
        '''

        # The 'framework' is a low-level module, and 'executor'
2439
        # can not be imported at the begainning of this file.
2440 2441 2442 2443 2444
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2445 2446 2447 2448
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".format(
                    type(value)
                )
            )
2449 2450 2451

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2452 2453 2454 2455
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2456 2457 2458 2459 2460 2461

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
2462 2463 2464
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
2475 2476 2477 2478
                    "{} expected a shape {}, but the received shape is {}.".format(
                        self.name, list(t.shape()), list(value_shape)
                    )
                )
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2489 2490 2491 2492 2493 2494
        elif p.is_custom_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.CustomPlace(
                p.custom_device_type(), p.custom_device_id()
            )
2495 2496 2497 2498 2499 2500 2501
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2502 2503
    def size(self):
        """
U
ustiniankw 已提交
2504

2505
        Returns the number of elements for current Variable, which is a int64 Variable with shape [] .
2506 2507

        Returns:
U
ustiniankw 已提交
2508
            Variable, the number of elements for current Variable
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
U
ustiniankw 已提交
2522

2523 2524 2525 2526
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
2527 2528
            dtype=core.VarDesc.VarType.INT64,
        )
2529

2530 2531 2532
        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]}
        )
2533 2534
        return output

2535 2536
    def _set_attr(self, name, val):
        """
U
ustiniankw 已提交
2537

2538 2539 2540 2541 2542
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
U
ustiniankw 已提交
2543

2544 2545 2546 2547 2548
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
U
ustiniankw 已提交
2549

2550 2551 2552 2553 2554 2555
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2556 2557
            bool, True if has this attribute.

2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

2579
    def attr(self, name):
2580 2581 2582 2583 2584 2585 2586
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2587
            int|str|list, The attribute value. The return value
2588 2589 2590 2591 2592
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2593
    def dist_attr(self):
2594
        """
2595
        Get distributed attribute of this Variable.
2596
        """
2597
        return self.desc.dist_attr
2598

2599 2600
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2601
        """
2602
        Set distributed attribute of this Variable.
2603
        """
2604
        self.desc.dist_attr = dist_attr
2605

Y
Yu Yang 已提交
2606

F
fengjiayi 已提交
2607 2608 2609
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2610

2611 2612
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2613 2614 2615 2616
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2617
        op_proto = framework_pb2.OpProto.FromString(bytes(pbstr))
F
fengjiayi 已提交
2618 2619 2620 2621
        ret_values.append(op_proto)
    return ret_values


2622
class OpProtoHolder:
2623 2624 2625 2626
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2627 2628 2629 2630 2631 2632 2633 2634
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
2635 2636
            self.__class__, '_instance'
        ), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2637 2638 2639 2640 2641 2642
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2643 2644 2645 2646 2647 2648 2649 2650
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2651 2652
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2653 2654
        return self.op_proto_map[type]

2655 2656
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2657
        custom_op_names = []
2658 2659 2660
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2661 2662 2663
                custom_op_names.append(proto.type)

        return custom_op_names
2664

2665 2666 2667
    def has_op_proto(self, type):
        return type in self.op_proto_map

2668 2669 2670 2671
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2672
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2673
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2674
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
2675
            core.op_proto_and_checker_maker.kOpDeviceAttrName(),
2676 2677
        }

F
fengjiayi 已提交
2678

2679
class Operator:
2680
    """
2681 2682 2683 2684 2685 2686 2687
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2688
        type(str): The type of operator. Default None.
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2709
        Block.append_op or Block._prepend_op instead.
2710 2711 2712 2713

    Examples:
        .. code-block:: python

2714
            import paddle.fluid as fluid
2715
            cur_program = fluid.Program()
2716 2717 2718 2719 2720
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2721
    """
2722

2723
    OP_WITHOUT_KERNEL_SET = {
2724 2725 2726 2727 2728 2729
        'feed',
        'fetch',
        'recurrent',
        'go',
        'rnn_memory_helper_grad',
        'conditional_block',
2730
        'pylayer',
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
        'while',
        'send',
        'recv',
        'listen_and_serv',
        'fl_listen_and_serv',
        'ncclInit',
        'select',
        'checkpoint_notify',
        'gen_bkcl_id',
        'c_gen_bkcl_id',
        'gen_nccl_id',
        'c_gen_nccl_id',
        'c_comm_init',
        'c_sync_calc_stream',
        'c_sync_comm_stream',
        'queue_generator',
        'dequeue',
        'enqueue',
        'heter_listen_and_serv',
        'c_wait_comm',
        'c_wait_compute',
        'copy_cross_scope',
2753
    }
2754

2755 2756 2757
    def __init__(
        self, block, desc, type=None, inputs=None, outputs=None, attrs=None
    ):
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

2768
        if in_dygraph_mode():
2769 2770
            if type is None:
                raise ValueError(
2771 2772
                    "`type` to initialized an Operator can not be None."
                )
J
Jiabin Yang 已提交
2773
            self._type = type
M
minqiyang 已提交
2774
            self.attrs = attrs if attrs else {}
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2785
            # attr for static graph mode cuda graph
2786 2787
            self._cuda_graph_attr = _current_cuda_graph_mode

2788 2789 2790
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2791
                op_attrs[
2792 2793
                    op_maker.kOpRoleAttrName()
                ] = self.block.program._op_role
2794 2795

            role_var_name = op_maker.kOpRoleVarAttrName()
2796 2797 2798 2799
            if (
                len(self.block.program._op_role_var) != 0
                and role_var_name not in op_attrs
            ):
2800
                op_attrs[role_var_name] = self.block.program._op_role_var
2801 2802 2803 2804 2805

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2806 2807 2808 2809 2810
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2811 2812 2813
                return
            if type is None:
                raise ValueError(
2814 2815
                    "`type` to initialized an Operator can not be None."
                )
2816 2817
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2818 2819 2820
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2821
                        '  File "{}", line {}, in {}'.format(
2822 2823 2824 2825 2826 2827
                            frame[0], frame[1], frame[2]
                        )
                    )
                    op_attrs[callstack_var_name].append(
                        '    {}'.format(frame[3])
                    )
2828 2829 2830 2831 2832 2833 2834

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2835 2836 2837 2838 2839 2840 2841 2842
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
2843 2844 2845
                    warnings.warn(
                        "The Op(%s) is not support to set device." % type
                    )
2846
                if 'force_cpu' in op_attrs:
2847
                    if (
2848 2849
                        type == 'less_than'
                        and op_attrs['force_cpu'] is not None
2850
                    ) or op_attrs['force_cpu'] != False:
2851 2852 2853
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
2854 2855
                            "used at the same time." % type
                        )
2856
            if _current_pipeline_stage is not None:
2857 2858 2859 2860 2861
                pipeline_attr_name = (
                    'pipeline_stage' + core.kAutoParallelSuffix()
                )
                self._update_desc_attr(
                    pipeline_attr_name, _current_pipeline_stage
2862
                )
2863

2864 2865 2866 2867 2868 2869 2870 2871 2872
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
2873 2874 2875
                    assert (
                        found or in_proto.dispensable
                    ), "Input {} not found".format(in_proto.name)
2876 2877
                    if found:
                        in_args = inputs[in_proto.name]
2878
                        if not isinstance(in_args, (list, tuple)):
2879 2880 2881 2882
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
2883 2884
                                % (in_proto.name, len(in_args))
                            )
2885
                        in_arg_names = []
2886
                        for index, arg in enumerate(in_args):
2887
                            if isinstance(arg, str):
2888
                                in_arg_names.append(arg)
2889
                            elif isinstance(arg, bytes):
2890
                                in_arg_names.append(arg.decode())
W
wanghuancoder 已提交
2891
                            elif isinstance(arg, (Variable, core.eager.Tensor)):
2892
                                in_arg_names.append(arg.name)
2893
                            else:
2894
                                raise TypeError(
2895 2896
                                    f"The type of '%{in_proto.name}' in operator {type} should be "
                                    f"one of [str, bytes, Variable]. but received : {arg}"
2897
                                )
2898 2899 2900 2901 2902 2903 2904 2905
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923

                    # FIXME: The outputs of primitive operator currently
                    # doesn't include intermediate output as it will be dropped
                    # in operator codegen, such as xshape output of reshape2.
                    # It will fixed when the operator codegen support
                    # intermediate output.
                    if core._is_bwd_prim_enabled():
                        if not (
                            (m.name in outputs)
                            or m.dispensable
                            or m.intermediate
                        ):
                            raise ValueError(
                                (
                                    "Incorrect setting for output(s) of "
                                    "operator \"%s\", should set: [%s]."
                                )
                                % (type, m.name)
2924
                            )
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
                    else:
                        if not ((m.name in outputs) or m.dispensable):
                            raise ValueError(
                                (
                                    "Incorrect setting for output(s) of "
                                    "operator \"%s\", should set: [%s]."
                                )
                                % (type, m.name)
                            )

2935 2936 2937 2938 2939 2940 2941 2942 2943
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
2944 2945
                            % (out_proto.name, len(out_args))
                        )
2946 2947
                    out_arg_names = []
                    for arg in out_args:
2948
                        if isinstance(arg, str):
2949 2950
                            out_arg_names.append(arg)
                        else:
2951
                            out_arg_names.append(arg.name)
2952
                        # TODO(minqiyang): could we remove variable's op in static graph mode?
2953
                        if not in_dygraph_mode():
2954
                            if isinstance(arg, str):
2955 2956 2957
                                block.var(arg).op = self
                            else:
                                arg.op = self
2958 2959
                    self.desc.set_output(out_proto.name, out_arg_names)

2960
            extra_attrs_map = core.get_op_extra_attrs(type)
2961 2962 2963 2964 2965
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
2966 2967 2968
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
2969 2970 2971
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
2972
                for attr_name in extra_attrs_map.keys():
2973 2974 2975 2976 2977
                    if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                        warnings.warn(
                            "op %s use extra_attr: %s" % (type, attr_name)
                        )

2978 2979 2980 2981 2982 2983
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
                        self._update_desc_attr(
                            attr_name, extra_attrs_map[attr_name]
                        )
2984 2985
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
2986

2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
                if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                    if type in extra_op_attrs:
                        attrs = extra_op_attrs.get(type, [])
                        for attr in attrs:
                            if attr in op_attrs.keys():
                                warnings.warn(
                                    "op %s use extra_attr: %s" % (type, attr)
                                )

                    if type in special_op_attrs:
                        attrs = special_op_attrs.get(type, [])
                        for attr in attrs:
                            a_name = list(attr.keys())[0]
                            default_value = list(attr.values())[0]
                            if (
                                a_name in op_attrs.keys()
                                and default_value != op_attrs[a_name]
                            ):
                                warnings.warn(
                                    "op %s's attr %s = %s is not the default value: %s"
                                    % (
                                        type,
                                        a_name,
                                        op_attrs[a_name],
                                        default_value,
                                    )
                                )

J
jianghaicheng 已提交
3015 3016
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
3017
                if global_ipu_index >= 0:
3018 3019 3020
                    self._update_desc_attr(
                        ipu_index_attr_name, global_ipu_index
                    )
3021
                if global_ipu_stage >= 0:
3022 3023 3024
                    self._update_desc_attr(
                        ipu_stage_attr_name, global_ipu_stage
                    )
J
jianghaicheng 已提交
3025

3026
            self.desc.check_attrs()
3027

3028 3029 3030 3031
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
3032
    def _has_kernel(self, op_type):
3033 3034
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
3035
    def to_string(self, throw_on_error):
3036
        """
3037 3038
        Get debug string.

3039
        Args:
3040 3041
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
3042

3043 3044
        Returns:
            str: The debug string.
3045 3046

        """
3047
        protostr = self.desc.serialize_to_string()
3048
        proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang(Tony) 已提交
3049 3050
        return _debug_string_(proto, throw_on_error)

3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3083
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3084 3085
            type(skip_op_callstack)
        )
3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

3112 3113 3114
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
3115 3116 3117
                a = "{name} = Var['{value}']".format(
                    name=name, type=attr_type, value=attr_var_name
                )
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
3128 3129
                    name=name, type=attr_type, value=','.join(attr_var_names)
                )
3130 3131 3132 3133 3134
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3135 3136
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
3137 3138
                    name=name, type=attr_type, value=self._block_attr_id(name)
                )
3139 3140 3141 3142 3143 3144 3145
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
3146 3147
                    name=name, type=attr_type, value=self._blocks_attr_ids(name)
                )
3148 3149 3150 3151 3152
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3153
            # it is bytes of serialized protobuf
3154 3155 3156 3157 3158
            if (
                is_compiled_with_cinn()
                and self.type == 'cinn_launch'
                and name == 'compilation_key'
            ):
3159 3160
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3161 3162 3163 3164 3165 3166 3167 3168 3169
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3170 3171 3172
            a = "{name} = {value}".format(
                name=name, type=attr_type, value=value
            )
3173

3174 3175 3176 3177
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3178
        from paddle.distributed.auto_parallel.static.dist_context import (
3179 3180 3181
            get_default_distributed_context,
        )

3182
        dist_context = get_default_distributed_context()
3183 3184
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3185 3186 3187
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_op
            )
3188

3189
        if outputs_str != "{}":
3190 3191 3192 3193 3194 3195
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".format(
                outputs=outputs_str,
                op_type=self.type,
                inputs=inputs_str,
                attrs=attrs_str,
            )
3196
        else:
3197 3198 3199
            op_str = "{op_type}(inputs={inputs}, {attrs})".format(
                op_type=self.type, inputs=inputs_str, attrs=attrs_str
            )
3200 3201
        return op_str

Y
Yang Yang(Tony) 已提交
3202
    def __str__(self):
3203
        return self._to_readable_code()
3204 3205 3206

    __repr__ = __str__

F
fengjiayi 已提交
3207 3208
    @property
    def type(self):
3209
        return self.desc.type()
F
fengjiayi 已提交
3210 3211

    def input(self, name):
3212
        r"""
U
ustiniankw 已提交
3213

3214
        Get the input arguments according to the input parameter name.
3215

3216 3217
        Args:
            name(str): The input parameter name.
3218

3219
        Returns:
U
ustiniankw 已提交
3220
            list, return the list of argument names that associated with \
3221
                the specific parameter name.
U
ustiniankw 已提交
3222

3223
        """
F
fengjiayi 已提交
3224 3225
        return self.desc.input(name)

W
Wu Yi 已提交
3226
    def _rename_input(self, old_name, new_name):
3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3237
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3238

W
Wu Yi 已提交
3239
    def _rename_output(self, old_name, new_name):
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3250
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3251

F
fengjiayi 已提交
3252 3253 3254 3255
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3256 3257 3258 3259 3260 3261 3262 3263
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3264
    def output(self, name):
3265
        r"""
3266
        Get output arguments by the output parameter name.
3267

3268 3269
        Args:
            name(str): The output parameter name.
3270

3271 3272 3273
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3274
        """
F
fengjiayi 已提交
3275 3276 3277 3278 3279 3280
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3281 3282 3283 3284 3285 3286
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
3287 3288
            "Can't find op itself in it's block. It could be a bug of Paddle."
        )
3289

F
fengjiayi 已提交
3290
    def has_attr(self, name):
3291
        """
3292 3293
        Whether this Operator has the attribute with name or not.

3294
        Args:
3295
            name(str): the attribute name.
3296

3297 3298
        Returns:
            bool: True if has this attribute.
3299 3300

        """
F
fengjiayi 已提交
3301 3302 3303
        return self.desc.has_attr(name)

    def attr_type(self, name):
3304
        """
3305
        Get the type of attribute by attribute's name.
3306

3307 3308
        Args:
            name(str): the attribute name.
3309

3310 3311
        Returns:
            core.AttrType: the attribute type.
3312
        """
3313
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3314

W
Wu Yi 已提交
3315
    def _set_attr(self, name, val):
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3326 3327
        self._update_desc_attr(name, val)

3328 3329 3330
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3342 3343 3344 3345 3346
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3347
            self.desc.set_block_attr(name, val.desc)
3348
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3349
            self.desc.set_blocks_attr(name, [v.desc for v in val])
3350 3351 3352
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
Q
Qiyang Min 已提交
3353 3354
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3355 3356 3357 3358 3359 3360 3361 3362 3363
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
3364 3365 3366 3367 3368 3369
        # if the required attribute is a SCALAR, pass as-is
        if type_index == core.AttrType.SCALAR:
            desc._set_scalar_attr(name, wrap_as_scalar(val))
        elif type_index == core.AttrType.SCALARS:
            desc._set_scalars_attr(name, wrap_as_scalars(val))
        elif type_index == core.AttrType.BOOL:
3370 3371 3372 3373 3374 3375 3376
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
3377 3378
        elif type_index == core.AttrType.FLOAT64:
            desc._set_float64_attr(name, val)
3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3396

F
fengjiayi 已提交
3397 3398
    @property
    def attr_names(self):
3399
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3400 3401

    def attr(self, name):
3402
        """
3403 3404
        Get the attribute by name.

3405
        Args:
3406
            name(str): the attribute name.
3407

3408 3409
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3410 3411
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3412
        return self.desc.attr(name)
Y
Yu Yang 已提交
3413

W
Wu Yi 已提交
3414
    def _block_attr_id(self, name):
3415
        """
G
gongweibao 已提交
3416
        Get the block attribute's id by name.
3417

3418 3419
        Args:
            name(str): the attribute name.
3420

3421 3422
        Returns:
            int: the block index.
3423
        """
W
Wu Yi 已提交
3424
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3425

W
Wu Yi 已提交
3426
    def _block_attr(self, name):
G
gongweibao 已提交
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3437
        id = self._block_attr_id(name)
3438
        assert id >= 0 and id < len(self.block.program.blocks)
G
gongweibao 已提交
3439 3440
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3441
    def _blocks_attr(self, name):
G
gongweibao 已提交
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3452
        for i in self._blocks_attr_ids(name):
3453
            assert i >= 0 and i < len(self.block.program.blocks)
G
gongweibao 已提交
3454 3455 3456 3457
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3458
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3469
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3470

3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3482 3483 3484 3485 3486
        assert (
            attr_type == core.AttrType.VAR
        ), "Required type attr({}) is Variable, but received {}".format(
            name, attr_type
        )
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3501 3502 3503 3504 3505
        assert (
            attr_type == core.AttrType.VARS
        ), "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type
        )
3506 3507 3508 3509 3510 3511
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3512
    def all_attrs(self):
F
fengjiayi 已提交
3513
        """
3514 3515 3516
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3517
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3518 3519 3520 3521
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3522
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3523
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3524
                attr_map[n] = self._block_attr(n)
3525
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3526
                attr_map[n] = self._blocks_attr(n)
3527 3528 3529 3530 3531 3532
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3533

F
fengjiayi 已提交
3534 3535
        return attr_map

3536 3537 3538
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3539 3540 3541 3542

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3543 3544 3545
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3546 3547 3548 3549 3550 3551 3552 3553

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3554 3555
            return False

3556 3557 3558 3559 3560 3561
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3562
    @property
3563
    def dist_attr(self):
3564
        """
3565
        Get distributed attribute of this Variable.
3566
        """
3567
        return self.desc.dist_attr
3568

3569 3570
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3571
        """
3572
        Set distributed attribute of this Variable.
3573
        """
3574
        self.desc.dist_attr = dist_attr
3575

Y
Yu Yang 已提交
3576

W
wanghuancoder 已提交
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
@signature_safe_contextmanager
def _stride_in_no_check_dy2st_diff():
    global _stride_in_no_check_dy2st_diff_mode
    _stride_in_no_check_dy2st_diff_mode = True
    try:
        yield
    finally:
        _stride_in_no_check_dy2st_diff_mode = False


def check_if_to_static_diff_with_dygraph(op_type, inplace_map, outputs):
3588 3589 3590 3591
    if (
        op_type == "while"
    ):  # dont' need check while, while is only a wrapper of inner ops, we will stuck in inner op.
        return
W
wanghuancoder 已提交
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
    if outputs is not None:
        for k, v in outputs.items():
            if isinstance(v, Variable):
                if v.is_view_var and not (
                    op_type == "set_value"
                    and inplace_map.get("Input", None) == "Out"
                ):
                    raise ValueError(
                        'Sorry about what\'s happend. In to_static mode, %s\'s output variable %s is a viewed Tensor in dygraph. This will result in inconsistent calculation behavior between dynamic and static graphs. If you are sure it is safe, you can call with paddle.fluid.framework._stride_in_no_check_dy2st_diff() in your safe code block.'
                        % (op_type, k)
                    )
            elif isinstance(v, list):
                for var in v:
                    if isinstance(var, Variable):
                        if var.is_view_var and not (
                            op_type == "set_value"
                            and inplace_map.get("Input", None) == "Out"
                        ):
                            raise ValueError(
                                'Sorry about what\'s happend. In to_static mode, %s\'s output variable %s is a viewed Tensor in dygraph. This will result in inconsistent calculation behavior between dynamic and static graphs. If you are sure it is safe, you can call with paddle.fluid.framework._stride_in_no_check_dy2st_diff() in your safe code block.'
                                % (op_type, k)
                            )


def record_is_view_var(op_type, inputs, outputs):
    if op_type == "slice":
        if inputs is not None and isinstance(inputs["Input"], list):
            if hasattr(inputs["Input"][0], "is_view_var"):
                inputs["Input"][0].is_view_var = True
        else:
            if hasattr(inputs["Input"], "is_view_var"):
                inputs["Input"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "strided_slice":
        if inputs is not None and isinstance(inputs["Input"], list):
            if hasattr(inputs["Input"][0], "is_view_var"):
                inputs["Input"][0].is_view_var = True
        else:
            if hasattr(inputs["Input"], "is_view_var"):
                inputs["Input"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "index_select":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "split":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None:
            for out in outputs["Out"]:
                if hasattr(out, "is_view_var"):
                    out.is_view_var = True
    elif op_type == "unsqueeze" or op_type == "unsqueeze2":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "squeeze" or op_type == "squeeze2":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "transpose" or op_type == "transpose2":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "unbind":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "diagonal":
        if inputs is not None and isinstance(inputs["Input"], list):
            if hasattr(inputs["Input"][0], "is_view_var"):
                inputs["Input"][0].is_view_var = True
        else:
            if hasattr(inputs["Input"], "is_view_var"):
                inputs["Input"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "flatten":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "imag":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "real":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "reshape" or op_type == "reshape2":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "as_real":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True


3799
class Block:
3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3814
        use `Program._create_block()` to create a block.
3815 3816 3817 3818

    Examples:
        .. code-block:: python

3819 3820 3821
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3822 3823 3824 3825 3826 3827 3828 3829 3830
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3831
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3832
        self.desc = program.desc.block(idx)
3833
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3834
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3835 3836
        self.program = program

3837
    def __str__(self):
3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3872
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3873 3874
            type(skip_op_callstack)
        )
3875 3876 3877 3878 3879 3880 3881
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
3882 3883
                op._to_readable_code(skip_op_callstack)
            )
3884 3885
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3886

F
fengjiayi 已提交
3887 3888
    def to_string(self, throw_on_error, with_details=False):
        """
3889 3890
        Get debug string.

F
fengjiayi 已提交
3891 3892
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3893
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3894
            with_details(bool): more details about variables and parameters
3895 3896
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3897

3898 3899
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3900
        """
3901
        assert isinstance(throw_on_error, bool) and isinstance(
3902 3903
            with_details, bool
        )
F
fengjiayi 已提交
3904
        if with_details:
F
fengjiayi 已提交
3905
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3906
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
3907 3908 3909
                self.idx,
                self.parent_idx,
            )
3910
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3911
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
3912 3913
                    r"\n    \1", var.to_string(throw_on_error, with_details)
                )
F
fengjiayi 已提交
3914
            for op in self.ops:
F
fengjiayi 已提交
3915
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
3916 3917
                    r"\n    \1", op.to_string(throw_on_error)
                )
F
fengjiayi 已提交
3918 3919 3920
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3921
            proto = framework_pb2.BlockDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
3922 3923
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3924 3925 3926

    __repr__ = __str__

Y
Yu Yang 已提交
3927 3928
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3929
        return self.desc.parent
Y
Yu Yang 已提交
3930

Y
Yu Yang 已提交
3931 3932 3933 3934
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3935
    def _set_forward_block_idx(self, idx):
3936 3937 3938 3939 3940 3941 3942 3943 3944
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3945
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3946

3947 3948 3949 3950 3951 3952 3953 3954
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3955 3956
    @property
    def idx(self):
Y
Yu Yang 已提交
3957
        return self.desc.id
Y
Yu Yang 已提交
3958

Q
Qiao Longfei 已提交
3959
    def var(self, name):
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3973
        if not isinstance(name, str):
M
minqiyang 已提交
3974
            raise TypeError(
3975 3976 3977
                "var require string as parameter, but get %s instead."
                % (type(name))
            )
Y
Yu Yang 已提交
3978 3979
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3980
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3981
        return v
Q
Qiao Longfei 已提交
3982

X
Xin Pan 已提交
3983
    def _find_var_recursive(self, name):
3984 3985 3986 3987 3988 3989 3990
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3991
            Variable: the Variable with the giving name. Or None if not found.
3992
        """
Y
Yu Yang 已提交
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
4017
        return None
Y
Yu Yang 已提交
4018

X
Xin Pan 已提交
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
4038

Q
Qiao Longfei 已提交
4039
    def all_parameters(self):
4040
        return list(self.iter_parameters())
4041

4042
    def iter_parameters(self):
4043 4044 4045 4046 4047
        return (
            item[1]
            for item in self.vars.items()
            if isinstance(item[1], Parameter)
        )
Q
Qiao Longfei 已提交
4048

Y
Yu Yang 已提交
4049
    def create_var(self, *args, **kwargs):
4050
        if in_dygraph_mode():
4051
            var = _create_tensor(*args, **kwargs)
L
Leo Chen 已提交
4052
        else:
4053 4054 4055
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
4056
        return var
Y
Yu Yang 已提交
4057

Q
Qiao Longfei 已提交
4058 4059 4060
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
4061
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
4062 4063
        """
        Rename variable in vars and ops' inputs and outputs
4064 4065

        Args:
4066 4067
            name(str|bytes): the name that need to be renamed.
            new_name(str|bytes): the name that need to rename to.
4068 4069 4070 4071 4072 4073 4074 4075

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
4076
        """
4077 4078
        # Ensure the type of name and new_name is str
        name = name.decode() if isinstance(name, bytes) else name
4079 4080 4081
        new_name = (
            new_name.decode() if isinstance(new_name, bytes) else new_name
        )
M
minqiyang 已提交
4082

T
typhoonzero 已提交
4083
        if not self.has_var(name):
4084
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
4085 4086
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
4087
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
4088 4089 4090 4091 4092 4093
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
4094
            var_type = "Variable"
T
wip  
typhoonzero 已提交
4095 4096 4097 4098
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
4099
        orig_var_type = v.type
4100
        self.desc._rename_var(name.encode(), new_name.encode())
W
Wu Yi 已提交
4101
        # NOTE: v is destroyed by C++ after calling _rename_var.
4102
        d = self.desc.find_var(new_name.encode())
T
typhoonzero 已提交
4103
        if var_type == "Parameter":
L
Leo Chen 已提交
4104
            if in_dygraph_mode():
4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115
                var = EagerParamBase(
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
4116
            else:
姜永久 已提交
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
                var = Parameter(
                    self,
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
T
typhoonzero 已提交
4129
        elif var_type == "Variable":
4130 4131 4132 4133 4134 4135 4136
            var = Variable(
                self,
                type=orig_var_type,
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient,
            )
T
wip  
typhoonzero 已提交
4137

W
Wu Yi 已提交
4138
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
4139 4140 4141
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
4142
        self._sync_with_cpp()
4143
        return var
T
typhoonzero 已提交
4144

4145 4146 4147
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
4148
        self.desc._remove_var(name.encode())
4149 4150
        del self.vars[name]

Y
Yu Yang 已提交
4151 4152
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
4153
        param = None
L
Leo Chen 已提交
4154
        if in_dygraph_mode():
J
Jiabin Yang 已提交
4155
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
4156
        else:
姜永久 已提交
4157
            param = Parameter(global_block, *args, **kwargs)
4158 4159 4160
        # NOTE(Aurelius84): we deliver stop_gradient in append_op, so we
        # need recorde it state and reset it back after calling this API
        stop_gradient = param.stop_gradient
4161

4162
        if 'initializer' in kwargs:
4163 4164 4165 4166 4167

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
4168
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
4169
                        # are treated as initialization ops that cause error.
4170
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
4171 4172
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
4173 4174 4175
                            "c_broadcast",
                            "c_sync_comm_stream",
                            "coalesce_tensor",
4176
                        ]:
4177
                            continue
4178 4179 4180 4181 4182 4183 4184
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
4185 4186 4187 4188 4189 4190
                raise RuntimeError(
                    "param "
                    + param.name
                    + " is inited by multiple init ops "
                    + str(init_ops)
                )
4191
            elif init_ops_len == 1:
4192
                # TODO already inited, do nothing, should log a warning
4193 4194 4195
                pass
            else:
                initializer(param, self)
4196
        param.stop_gradient = stop_gradient
Q
Qiao Longfei 已提交
4197
        return param
Y
Yu Yang 已提交
4198

Y
Yu Yang 已提交
4199
    def append_op(self, *args, **kwargs):
4200 4201 4202 4203 4204 4205
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
W
wanghuancoder 已提交
4206
        inplace_map = kwargs.get("inplace_map", None)
4207
        op_type = kwargs.get("type", None)
4208
        if in_dygraph_mode():
4209
            attrs = kwargs.get("attrs", {})
4210 4211 4212
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
4213 4214 4215 4216 4217 4218
                "using `_C_ops` method." % type,
                DeprecationWarning,
            )
            op = Operator(
                block=self,
                desc=None,
4219
                type=op_type,
4220 4221 4222 4223
                inputs=None,
                outputs=None,
                attrs=attrs,
            )
4224

M
minqiyang 已提交
4225 4226
            # record ops in tracer rather than blocks
            #
4227
            # TODO(minqiyang): add op stop_gradient support in static graph mode too.
L
lujun 已提交
4228
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
4229

4230
            _dygraph_tracer().trace_op(
4231
                op_type,
4232 4233 4234 4235 4236 4237
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
                inplace_map,
            )
M
minqiyang 已提交
4238
        else:
4239
            from paddle.fluid.dygraph.base import param_guard
4240
            from paddle.utils import flatten
4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254

            def pass_stop_gradient(ins, outs):
                """
                Set out.stop_gradient = True if all inputs stop_gradient is True.
                """
                need_reset = True
                for var in flatten(ins):
                    if getattr(var, 'stop_gradient', None) is False:
                        need_reset = False
                        break
                if need_reset:
                    for var in flatten(outs):
                        if isinstance(var, Variable):
                            var.stop_gradient = True
4255

4256
            op_desc = self.desc.append_op()
4257 4258
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
W
wanghuancoder 已提交
4259
            # NOTE(Aurelius84): In case of @to_static, all Tensor(s) should
4260 4261
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
4262 4263 4264
            ignore_ops = {
                'conditional_block',
                'conditional_block_grad',
4265 4266
                'pylayer',
                'pylayer_grad',
4267 4268 4269 4270 4271
                'recurrent',
                'recurrent_grad',
                'while',
                'while_grad',
            }
W
wanghuancoder 已提交
4272 4273 4274 4275 4276 4277 4278 4279 4280
            from .dygraph.base import in_declarative_mode

            if (
                in_declarative_mode()
                and not _stride_in_no_check_dy2st_diff_mode
            ):
                check_if_to_static_diff_with_dygraph(
                    op_type, inplace_map, outputs
                )
4281 4282
            if op_type not in ignore_ops:
                pass_stop_gradient(inputs, outputs)
4283
            with param_guard(inputs), param_guard(outputs):
4284 4285 4286
                op = Operator(
                    block=self,
                    desc=op_desc,
4287
                    type=op_type,
4288 4289 4290 4291
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None),
                )
4292

M
minqiyang 已提交
4293
            self.ops.append(op)
W
wanghuancoder 已提交
4294 4295
            if in_declarative_mode():
                record_is_view_var(op_type, inputs, outputs)
M
minqiyang 已提交
4296

4297 4298
        return op

W
Wu Yi 已提交
4299
    def _insert_op(self, index, *args, **kwargs):
4300 4301 4302 4303 4304 4305 4306 4307 4308
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
4309
        self._sync_with_cpp()
F
fangshuixun007 已提交
4310
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
4311

4312 4313
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
4314
        Insert an Operator according to the giving arguments,
4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
4329 4330 4331 4332 4333 4334 4335 4336 4337
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
4338 4339
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
4340
        self.desc._remove_op(index, index + 1)
4341 4342
        del self.ops[index]

W
Wu Yi 已提交
4343
    def _slice_ops(self, start, end):
4344 4345 4346 4347 4348 4349 4350 4351 4352 4353
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
4354
        return self.ops[start:end]
Y
Yancey1989 已提交
4355

W
Wu Yi 已提交
4356
    def _prepend_op(self, *args, **kwargs):
4357
        if in_dygraph_mode():
J
Jiabin Yang 已提交
4358 4359
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
            op = Operator(
                self, None, type=type, inputs=None, outputs=None, attrs=attrs
            )

            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
            )
M
minqiyang 已提交
4371
        else:
4372
            op_desc = self.desc._prepend_op()
4373 4374 4375 4376 4377 4378 4379 4380
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None),
            )
M
minqiyang 已提交
4381
            self.ops.insert(0, op)
4382

Y
Yu Yang 已提交
4383 4384
        return op

W
Wu Yi 已提交
4385
    def _sync_with_cpp(self):
4386
        """
4387 4388
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
4389
        """
Q
Qiao Longfei 已提交
4390 4391 4392
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
4393 4394 4395 4396
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
4397 4398 4399 4400 4401 4402 4403 4404
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient,
                    )
4405
                else:
4406 4407 4408 4409 4410 4411
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient,
                    )
Q
Qiao Longfei 已提交
4412

4413
        # sync variables removed from c++ end
4414
        for var in list(self.vars.keys()):
4415
            if not self.desc.find_var(var.encode()):
4416 4417
                self.vars.pop(var)

Q
Qiao Longfei 已提交
4418
        # sync operators from cpp
4419 4420 4421 4422
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
4439 4440 4441 4442 4443

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
4444
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
4445 4446 4447 4448 4449 4450 4451

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

4452 4453 4454 4455 4456
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
4457 4458 4459 4460 4461 4462
                self.ops
            ) and ops_in_cpp_index < len(ops_in_cpp):
                if (
                    self.ops[ops_in_python_index].desc
                    != ops_in_cpp[ops_in_cpp_index]
                ):
4463 4464 4465 4466 4467
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4468 4469 4470 4471
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4472
    def _copy_param_info_from(self, other):
4473
        """
4474 4475
        Copy the information of parameters from the other block.

4476
        Args:
4477 4478 4479 4480 4481
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4482 4483 4484 4485 4486

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4487
            raise TypeError(
4488 4489
                "_copy_param_info_from should be invoked with Block"
            )
4490
        for p in other.iter_parameters():
4491 4492 4493
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4494 4495
                # if the Parameter is pruned, v may be None
                continue
4496
            assert isinstance(v, Variable)
4497
            new_p = None
L
Leo Chen 已提交
4498
            if in_dygraph_mode():
4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
                new_p = EagerParamBase(
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4511
            else:
姜永久 已提交
4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
                new_p = Parameter(
                    block=self,
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR
                    else None,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4527 4528
            self.vars[new_p.name] = new_p

4529
    def _clone_variable(self, var, force_persistable=True):
4530 4531
        """
        Clone a variable into current block.
4532

4533 4534
        Args:
            var: the variable to be cloned.
4535 4536 4537
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4538 4539

        Returns:
4540
            Variable: the new  variable cloned from 'var' in current block.
4541 4542
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4543 4544 4545
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4546 4547 4548
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
tangwei12 已提交
4549
        elif var.type == core.VarDesc.VarType.RAW:
4550 4551 4552
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
typhoonzero 已提交
4553 4554 4555 4556 4557 4558
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4559
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4560
                is_data=var.is_data,
4561 4562
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4563 4564 4565 4566 4567 4568 4569
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4570
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4571
                is_data=var.is_data,
4572 4573
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4574
        return ret_var
4575

Y
Yu Yang 已提交
4576

4577 4578 4579 4580
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4581
# of some old Python Variables(all old Python Operators) may have
4582
# been destructed.
4583 4584 4585
def _apply_pass(
    main_program, startup_program, pass_name, pass_attrs={}, pass_attr_types={}
):
4586 4587 4588 4589
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
4590 4591 4592 4593 4594 4595 4596
    attrs = core.apply_pass(
        tmp_main_program,
        tmp_startup_program,
        pass_name,
        pass_attrs,
        pass_attr_types,
    )
4597 4598 4599 4600 4601
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4602
class IrNode:
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4614 4615 4616
        assert isinstance(
            node, core.Node
        ), 'node must be the instance of core.Node.'
4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4698
    def remove_input_by_id(self, node_id):
4699 4700 4701 4702 4703 4704
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4705
        self.node.remove_input(node_id)
4706

4707
    def remove_input(self, node):
4708 4709 4710 4711
        """
        Remove a node from inputs.

        Args:
4712
            node(IrNode): the node being removed.
4713
        """
4714
        self.node.remove_input(node.node)
4715

4716
    def append_input(self, node):
4717 4718 4719 4720
        """
        Append a node in inputs.

        Args:
4721
            node(IrNode): the node being appended.
4722
        """
4723
        self.node.append_input(node.node)
4724 4725 4726 4727 4728 4729 4730 4731

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4732
    def remove_output_by_id(self, node_id):
4733 4734 4735 4736 4737 4738
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4739
        self.node.remove_output(node_id)
4740

4741
    def remove_output(self, node):
4742 4743 4744 4745
        """
        Remove a node from outputs.

        Args:
4746
            node(IrNode): the node being removed.
4747
        """
4748
        self.node.remove_output(node.node)
4749

4750
    def append_output(self, node):
4751 4752 4753 4754
        """
        Append a node in outputs.

        Args:
4755
            node(IrNode): the node being appended.
4756
        """
4757
        self.node.append_output(node.node)
4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4792 4793 4794
        assert (
            isinstance(node, core.Node) and node.is_var()
        ), 'node must be the instance of core.Node and it must be a variable node.'
4795
        super().__init__(node)
4796 4797 4798 4799 4800 4801 4802 4803 4804
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
4805 4806 4807
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4808 4809 4810 4811 4812 4813 4814 4815 4816
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
4817 4818 4819
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4820 4821
        return self.node.var().persistable()

4822 4823 4824 4825 4826 4827 4828
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
4829 4830 4831
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4832 4833 4834 4835 4836 4837 4838 4839 4840
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
4841 4842 4843
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4844 4845 4846 4847 4848 4849 4850 4851 4852
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
4853 4854 4855
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4856 4857
        return self.node.var().shape()

4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4891 4892 4893
        assert (
            isinstance(node, core.Node) and node.is_op()
        ), 'node must be the instance of core.Node and it must be a operator node.'
4894
        super().__init__(node)
4895 4896 4897 4898 4899 4900 4901 4902 4903 4904
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
4905 4906 4907
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4908 4909
        self.node.op()._rename_input(old_input_name, new_input_name)

4910 4911 4912 4913 4914 4915 4916 4917
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
4918 4919 4920
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4921 4922
        self.node.op()._rename_output(old_output_name, new_output_name)

4923 4924 4925 4926 4927 4928 4929 4930 4931 4932
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4933 4934 4935
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4948 4949 4950
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4951 4952 4953 4954 4955 4956 4957 4958 4959
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
4960 4961 4962
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4963 4964
        return self.node.op().set_type(new_type)

4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
4979 4980 4981
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4982
        desc = self.node.op()
4983 4984 4985 4986 4987
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4988
            desc.set_block_attr(name, val.desc)
4989
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4990
            desc.set_blocks_attr(name, [v.desc for v in val])
4991 4992 4993
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
4994 4995 4996 4997
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4998 4999 5000 5001 5002 5003 5004
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
5005 5006 5007
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
5008 5009 5010 5011 5012 5013 5014 5015 5016
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
5017 5018 5019
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
5020 5021
        return self.node.op().output_arg_names()

5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


5043
class IrGraph:
5044
    """
5045
    Python IrGraph. Beneath it is a core.Graph, which is used for
5046
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
5047 5048
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
5049 5050 5051 5052
    """

    def __init__(self, graph, for_test=False):
        """
5053 5054
        Construct an IrGraph using core.Graph.

5055 5056 5057 5058 5059
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
5060 5061
            graph, core.Graph
        ), 'graph must be the instance of core.Graph.'
5062 5063 5064
        self.graph = graph
        self._for_test = for_test

5065 5066 5067 5068
    def clone(self):
        """
        Create a new and duplicated IrGraph.

5069 5070 5071
        Warns:
            The method only clones the graph structure, not its attributes.

5072 5073 5074
        Returns:
            IrGraph: A new and duplicated graph.
        """
5075
        g = self.graph.clone()
5076 5077
        return IrGraph(g, self._for_test)

5078
    def is_test(self):
5079 5080 5081
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
5082 5083
        return self._for_test

W
WangZhen 已提交
5084
    def all_nodes(self):
5085 5086 5087
        """
        Return all nodes included in the graph as a set.
        """
5088
        return {IrNode(node) for node in self.graph.nodes()}
5089

5090
    def all_var_nodes(self):
5091 5092 5093
        """
        Return all variable nodes included in the graph as a set.
        """
5094
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
5095

5096
    def all_persistable_nodes(self):
5097 5098 5099
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
5100 5101
        persistable_nodes = set()
        for node in self.graph.nodes():
5102 5103 5104 5105 5106
            if (
                node.is_var()
                and node.var() is not None
                and node.var().persistable()
            ):
W
WangZhen 已提交
5107
                persistable_nodes.add(node)
5108
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
5109

5110
    def all_op_nodes(self):
5111 5112 5113
        """
        Return all operator nodes included in the graph as a set.
        """
5114
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
5115

5116 5117 5118 5119 5120 5121
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
5122
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
5123 5124 5125 5126 5127 5128 5129 5130 5131
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

5132
    def create_persistable_node(self, name, var_type, shape, var_dtype):
5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
5144
            IrVarNode: the created persistable variable node.
5145
        """
5146 5147 5148 5149 5150
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
5151
        return IrVarNode(self.graph.create_var_node(var_desc))
5152 5153

    def create_var_node(self, name, var_type, shape, var_dtype):
5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
5165
            IrVarNode: the created variable node.
5166 5167
        """

5168 5169 5170 5171
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
5172
        return IrVarNode(self.graph.create_var_node(var_desc))
5173

5174 5175 5176 5177 5178 5179
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

5180
    def create_var_node_from_desc(self, var_desc):
5181 5182 5183 5184 5185 5186 5187 5188
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
5189
            IrVarNode: the created variable node.
5190
        """
5191
        return IrVarNode(self.graph.create_var_node(var_desc))
5192 5193

    def create_op_node(self, op_type, attrs, inputs, outputs):
5194 5195 5196 5197 5198 5199 5200
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
5201
            outputs(dict): the outputs of the operator node.
5202 5203

        Returns:
5204
            IrOpNode: the created operator node.
5205
        """
5206 5207
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
5208
        for attr, value in attrs.items():
5209
            self._update_desc_attr(op_desc, attr, value)
5210
        for input_name, var_nodes in inputs.items():
5211 5212
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
5213 5214 5215
            op_desc.set_input(
                input_name, [var_node.name() for var_node in var_nodes]
            )
5216
        for output_name, var_nodes in outputs.items():
5217 5218
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
5219 5220 5221
            op_desc.set_output(
                output_name, [var_node.name() for var_node in var_nodes]
            )
5222
        return IrOpNode(self.graph.create_op_node(op_desc))
5223 5224

    def create_op_node_from_desc(self, op_desc):
5225 5226 5227 5228 5229 5230 5231
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
5232
            IrOpNode: the created operator node.
5233
        """
5234
        return IrOpNode(self.graph.create_op_node(op_desc))
5235 5236

    def update_input_link(self, old_input_node, new_input_node, op_node):
5237 5238 5239 5240
        """
        Update the input's link of a operator node.

        Args:
5241 5242 5243
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
5244
        """
5245 5246 5247 5248 5249
        assert (
            old_input_node.node in self.graph.nodes()
            and new_input_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
5250 5251 5252 5253
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
5254
        op_node.rename_input(old_input_node.name(), new_input_node.name())
5255

5256 5257 5258 5259 5260 5261 5262 5263 5264
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
5265 5266 5267 5268 5269
        assert (
            old_output_node.node in self.graph.nodes()
            and new_output_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
5270 5271 5272 5273 5274 5275
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

5276
    def link_to(self, node_in, node_out):
5277 5278 5279 5280
        """
        Connect two nodes.

        Args:
5281 5282
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
5283
        """
5284
        assert node_in.node in self.graph.nodes(), (
5285 5286
            'node_in(%s) must be in the graph nodes.' % node_in.node.name()
        )
5287
        assert node_out.node in self.graph.nodes(), (
5288 5289
            'node_out(%s) must be in the graph nodes.' % node_out.node.name()
        )
5290 5291
        node_in.append_output(node_out)
        node_out.append_input(node_in)
5292 5293

    def safe_remove_nodes(self, remove_nodes):
5294 5295 5296 5297 5298 5299 5300
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
5301
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
5302 5303 5304 5305
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
5306 5307
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
5308

Z
Zhen Wang 已提交
5309 5310 5311 5312 5313 5314 5315 5316
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5317
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
5318 5319 5320 5321
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5322
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
5323 5324 5325
                        ]
                    else:
                        var_nodes[each_var_name].append(
5326 5327
                            self._find_node_by_name(node.outputs, each_var_name)
                        )
Z
Zhen Wang 已提交
5328 5329
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
5330
    def has_circle(self):
5331 5332 5333 5334 5335 5336
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
5337 5338 5339
        return core.has_circle(self.graph)

    def graph_num(self):
5340 5341 5342 5343 5344 5345
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
5346 5347 5348
        return core.graph_num(self.graph)

    def topology_sort(self):
5349 5350 5351
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
5352
        Notes: the `graph` can not contain a circle.
5353 5354

        Returns:
Z
Zhen Wang 已提交
5355
            list(IrNode): nodes in topology order.
5356
        """
5357
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
5358
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
5359 5360

    def build_adjacency_list(self):
5361 5362 5363 5364
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
5365
            dict{IrNode: set(IrNode)}: the adjacency list.
5366
        """
5367 5368
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
5369
        for k, v in adj_list.items():
5370 5371
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
5372

5373 5374 5375 5376 5377 5378 5379 5380
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
5381
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
5382 5383 5384 5385 5386
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

5387 5388
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
5389 5390 5391 5392
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True,
            )
5393 5394
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
5395 5396 5397
                print(
                    'The {} is saved as the dot filetype.'.format(dot_file_path)
                )
5398

5399
        remove_ctr_vars = set()
5400
        if remove_ctr_var:
5401
            for node in self.all_var_nodes():
5402 5403 5404
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
5405 5406
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

5407 5408
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
5409 5410 5411 5412 5413 5414
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
5415 5416 5417 5418
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
5419 5420
        if not os.path.exists(save_path):
            os.makedirs(save_path)
5421 5422 5423 5424 5425 5426 5427
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
5428 5429 5430
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
5431
        WARN: When the graph includes backward operator nodes, the
5432 5433 5434 5435 5436 5437
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
5438
        convert_pass = core.get_pass('graph_to_program_pass')
5439 5440
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
5441 5442 5443 5444
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

5445 5446 5447 5448 5449 5450 5451 5452
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
5453
        assert target_node is not None, (
5454 5455
            "Cannot find the target node (%s)in the giving set." % node_name
        )
5456 5457
        return target_node

5458 5459 5460 5461
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
5462 5463 5464 5465 5466
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
5467
            desc.set_block_attr(name, val.desc)
5468
        elif isinstance(val, list) and val and _all_is_type(val, Block):
5469
            desc.set_blocks_attr(name, [v.desc for v in val])
5470 5471 5472
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5473 5474 5475 5476 5477
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


5478
class Program:
D
dzhwinter 已提交
5479
    """
5480
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
5481
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
5482
    it will contain nested block.
5483

J
Jiabin Yang 已提交
5484 5485 5486
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
5487

J
Jiabin Yang 已提交
5488
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
5489
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
5490 5491 5492 5493 5494 5495 5496
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
5497
    **Notes**:
5498 5499 5500
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5501 5502

    Returns:
J
Jiabin Yang 已提交
5503
        Program: An empty Program.
D
dzhwinter 已提交
5504 5505

    Examples:
5506 5507
        .. code-block:: python

5508 5509 5510 5511
            import paddle
            import paddle.static as static

            paddle.enable_static()
5512

5513 5514 5515 5516 5517
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5518
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5519 5520 5521

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5522 5523 5524

    """

5525 5526
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5527 5528
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5529 5530
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5531
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5532
        self.__op_role_var = []
T
tangwei12 已提交
5533

5534 5535
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5536
        self._is_distributed = False
5537
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5538
        self._is_chief = False
5539 5540 5541
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5542
        self._endpoints = []
5543 5544 5545
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5546
        self._trainers_endpoints = []
5547
        # the distributed lookup table names
T
tangwei12 已提交
5548
        self._distributed_lookup_table = None
5549 5550 5551

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5552 5553
        self._use_lamb = False

5554 5555 5556
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5557

5558 5559 5560
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5561
        self._program_config = None
5562

5563 5564
        self._pass_applied = None

H
hutuxian 已提交
5565 5566 5567
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5568 5569 5570
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5571 5572 5573
        # appending gradients times
        self._appending_grad_times = 0

5574 5575
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
5576 5577
            "__auto_checkpoint_program__"
        )
5578

5579 5580
        # compiled program, i.e. Graph
        self._graph = None
5581 5582
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5583

5584
    def _find_var_class_kwargs(self, new_desc):
5585 5586 5587 5588 5589 5590 5591 5592
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5593 5594 5595 5596
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5597
            if idx > (len(self.blocks) - 1):
5598
                self._create_block()
5599 5600 5601 5602 5603 5604 5605 5606 5607 5608
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
                    'shape': get_var_desc_attr_or_none(
                        new_var_desc,
                        "shape",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'dtype': get_var_desc_attr_or_none(
                        new_var_desc,
                        "dtype",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'lod_level': get_var_desc_attr_or_none(
                        new_var_desc,
                        "lod_level",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'error_clip': old_var.error_clip
                    if old_var is not None
                    else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None
                    else False,
                    'is_data': old_var.is_data
                    if old_var is not None
                    else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None
                    else False,
5650 5651 5652
                }

                if isinstance(old_var, Parameter):
5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669
                    kwargs.update(
                        {
                            'trainable': old_var.trainable,
                            'optimize_attr': old_var.optimize_attr,
                            'regularizer': old_var.regularizer,
                            'do_model_average': old_var.do_model_average,
                            'need_clip': old_var.need_clip,
                            'is_distributed': old_var.is_distributed,
                            'is_parameter': old_var.is_parameter,
                        }
                    )
                    block_new_vars.append(
                        {
                            'class': Parameter,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5670 5671
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
5672 5673 5674 5675 5676 5677
                    block_new_vars.append(
                        {
                            'class': Variable,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5678 5679 5680 5681 5682 5683 5684

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5685
        assert block_num == self.desc.num_blocks()
5686 5687

        # clear old blocks and desc
5688 5689 5690 5691 5692 5693 5694 5695 5696
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5697

5698
        del desc
5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5718 5719 5720 5721 5722 5723 5724 5725 5726 5727
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5728 5729
                import paddle
                import paddle.static as static
5730

5731 5732 5733
                paddle.enable_static()

                prog = static.default_main_program()
5734 5735 5736 5737 5738
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5739
                prog1 = static.default_main_program()
5740 5741 5742 5743 5744 5745 5746 5747
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5748
    @property
5749
    def _op_role(self):
Y
yuyang18 已提交
5750 5751 5752 5753 5754 5755 5756 5757
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5758
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5759 5760 5761 5762
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5763 5764
        return self._current_role

5765 5766
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5767 5768 5769
        self._current_role = role

    @property
5770
    def _op_role_var(self):
Y
yuyang18 已提交
5771
        """
5772
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5773

5774
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5775 5776 5777

        Notes: This is a very low-level API. Users should not use it directly.
        """
5778
        return self.__op_role_var
Y
yuyang18 已提交
5779

5780
    @signature_safe_contextmanager
5781 5782 5783 5784 5785
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5786 5787 5788 5789
        try:
            yield
        finally:
            self._current_role = tmp_role
5790

S
rename  
sneaxiy 已提交
5791
    @signature_safe_contextmanager
W
Wu Yi 已提交
5792
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5793 5794 5795 5796 5797 5798 5799
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5800
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5801 5802 5803

        Examples:

5804
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5805
            >>> p, g = backward(...)
W
Wu Yi 已提交
5806
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5807 5808
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5809
        tmp_role = self._current_role
5810
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5811

Y
yuyang18 已提交
5812 5813
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5814
        self.__op_role_var = [
5815 5816 5817
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5818 5819 5820 5821 5822
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5823

S
rename  
sneaxiy 已提交
5824
    @signature_safe_contextmanager
X
Xin Pan 已提交
5825
    def _lr_schedule_guard(self, is_with_opt=False):
5826 5827 5828 5829 5830 5831 5832
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5833 5834 5835 5836
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5837 5838 5839

        Examples:

5840
            >>> import paddle.fluid as fluid
5841 5842 5843 5844
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5845 5846

        tmp_role = self._current_role
5847
        tmp_var = self.__op_role_var
5848

5849 5850
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5851 5852
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5853
        # TODO(typhoonzero): how to set target learning rate var
5854
        self.__op_role_var = []
5855 5856 5857 5858 5859
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5860

5861
    def __str__(self):
Y
yuyang18 已提交
5862 5863 5864 5865 5866 5867 5868 5869 5870
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5891 5892
            import paddle
            import paddle.static as static
5893

5894 5895 5896
            paddle.enable_static()

            cur_program = static.Program()
5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5908
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5909 5910
            type(skip_op_callstack)
        )
5911 5912 5913
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5914
            program_str += '\n'
5915
        return program_str
Y
Yang Yang(Tony) 已提交
5916

F
fengjiayi 已提交
5917 5918 5919
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5920

J
Jiabin Yang 已提交
5921 5922 5923
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5924

J
Jiabin Yang 已提交
5925
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5926

H
haowang101779990 已提交
5927
        Returns:
J
Jiabin Yang 已提交
5928
            str: The debug string describe current Program.
Y
yuyang18 已提交
5929 5930

        Raises:
J
Jiabin Yang 已提交
5931
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5932

5933 5934 5935
        Examples:
            .. code-block:: python

5936 5937 5938 5939
                import paddle
                import paddle.static as static

                paddle.enable_static()
5940

5941 5942 5943
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5944
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5945
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5946
                print("program string without detail: {}".format(prog_string))
5947
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5948
        """
5949 5950 5951
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
5952 5953
            type(throw_on_error)
        )
5954 5955 5956
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
5957 5958
            type(with_details)
        )
5959

F
fengjiayi 已提交
5960 5961 5962 5963
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979
            protostr = self.desc.serialize_to_string()
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
            res_str += (
                "version {\n  "
                + textwrap.indent(
                    _debug_string_(proto.version, throw_on_error), "  "
                )
                + "}\n"
            )
            res_str += (
                "op_version_map {\n  "
                + textwrap.indent(
                    _debug_string_(proto.op_version_map, throw_on_error), "  "
                )
                + "}\n"
            )
F
fengjiayi 已提交
5980 5981
        else:
            protostr = self.desc.serialize_to_string()
5982
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
5983 5984
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5985

W
Wu Yi 已提交
5986
    def _get_desc(self):
Y
yuyang18 已提交
5987 5988 5989 5990 5991 5992 5993
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5994 5995
        return self.desc

X
version  
Xin Pan 已提交
5996 5997 5998
    def _version(self):
        return self.desc._version()

5999
    def clone(self, for_test=False):
Y
yuyang18 已提交
6000
        """
6001
        .. note:::
6002 6003
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
6004
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
6005

6006
        Create a new Program with forward content of original one when ``for_test=True``.
6007
        Create a new Program as same as the original one when ``for_test=False``.
6008

6009
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
6010 6011 6012
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
6013

6014 6015
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
6016 6017
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
6018
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
6019

C
cyberslack_lee 已提交
6020 6021 6022
        Examples:
            .. code-block:: python
                :name: code-example-1
L
Luo Tao 已提交
6023

C
cyberslack_lee 已提交
6024 6025
                import paddle
                import paddle.static as static
6026

C
cyberslack_lee 已提交
6027
                paddle.enable_static()
6028

C
cyberslack_lee 已提交
6029 6030 6031 6032 6033 6034 6035
                img = static.data(name='image', shape=[None, 784])
                pred = static.nn.fc(x=img, size=10, actvation='relu')
                loss = paddle.mean(pred)
                # Here we use clone before Momentum
                test_program = static.default_main_program().clone(for_test=True)
                optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
                optimizer.minimize(loss)
6036

J
Jiabin Yang 已提交
6037
        Args:
6038

6039 6040
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
6041

J
Jiabin Yang 已提交
6042
        Returns:
6043
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
6044

Y
yuyang18 已提交
6045 6046 6047

        Examples:

6048 6049 6050 6051 6052 6053 6054
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

6055
            .. code-block:: python
C
cyberslack_lee 已提交
6056
                :name: code-example-2
6057

6058
                import paddle
6059 6060

                def print_prog(prog):
6061
                    for name, value in sorted(prog.block(0).vars.items()):
6062 6063 6064 6065 6066
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
6067
                        for key, value in sorted(op.all_attrs().items()):
6068 6069 6070 6071
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


6072
            1. To clone a test program, the sample code is:
6073
                .. code-block:: python
C
cyberslack_lee 已提交
6074
                    :name: code-example-3
6075

6076 6077 6078 6079 6080 6081
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
6082 6083

                    def print_prog(prog):
6084
                        for name, value in sorted(prog.block(0).vars.items()):
6085 6086 6087 6088 6089
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
6090
                            for key, value in sorted(op.all_attrs().items()):
6091 6092 6093
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

6094 6095
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
6096 6097 6098

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
6099 6100 6101
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
6102
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
6103 6104
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
6105
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
6106 6107
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
6108
                            test_program = train_program.clone(for_test=True)
6109
                    print_prog(test_program)
J
Jiabin Yang 已提交
6110 6111 6112 6113

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

6114
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
6115 6116 6117 6118
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

6119 6120 6121
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
6122 6123 6124
                            sgd.minimize(avg_loss)


6125
            2. The clone method can be avoid if you create program for training and program for testing individually.
6126
                .. code-block:: python
C
cyberslack_lee 已提交
6127
                    :name: code-example-4
6128

6129 6130 6131 6132 6133 6134
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
6135 6136

                    def print_prog(prog):
6137
                        for name, value in sorted(prog.block(0).vars.items()):
6138 6139 6140 6141 6142
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
6143
                            for key, value in sorted(op.all_attrs().items()):
6144 6145
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
6146

6147
                    def network():
6148
                        img = static.data(name='image', shape=[None, 784])
6149
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
6150 6151
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
6152
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
6153 6154
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
6155 6156
                        return avg_loss

6157 6158 6159 6160 6161
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
6162
                            avg_loss = network()
6163
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
6164
                            sgd.minimize(avg_loss)
6165
                    # the test startup program is not used.
6166 6167
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
6168 6169
                            avg_loss = network()
                    print_prog(test_program_2)
6170

6171
            The two code snippets above will generate and print same programs.
6172
        """
6173

T
tangwei12 已提交
6174
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
6175 6176 6177
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

6178
        pruned_origin_block_id_map = None
6179
        if for_test:
6180 6181
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
6182 6183
                self.desc
            )
6184 6185
            forward_prog.blocks = [
                Block(forward_prog, i)
6186
                for i in range(forward_prog.desc.num_blocks())
6187 6188 6189
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
6190
        else:
6191
            p = Program()
G
gongweibao 已提交
6192 6193
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
6194
            p.desc = core.ProgramDesc(self.desc)
6195
            p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())]
G
gongweibao 已提交
6196 6197

            p._current_role = self._current_role
6198
            p.__op_role_var = self.__op_role_var
6199
            p._appending_grad_times = self._appending_grad_times
6200 6201
            if hasattr(self, 'lr_scheduler'):
                p.lr_scheduler = self.lr_scheduler
6202 6203
            if hasattr(self, '_pipeline_opt'):
                p._pipeline_opt = self._pipeline_opt
G
gongweibao 已提交
6204

T
tangwei12 已提交
6205
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
6206
            # its desc.
W
Wu Yi 已提交
6207
            p._sync_with_cpp()
6208

W
Wu Yi 已提交
6209
        p._copy_param_info_from(self)
6210
        p._copy_data_info_from(self, pruned_origin_block_id_map)
6211
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
6212
        return p
6213

6214
    def _prune(self, targets):
Y
yuyang18 已提交
6215 6216 6217 6218 6219 6220 6221 6222
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
6223
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
6224 6225 6226 6227
                need to be pruned

        Returns:
            Program:  A new, pruned program.
6228
        """
6229
        return self._prune_with_input([], targets)
6230 6231

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
6232
        """
6233
        Prune operators and variables which are not needed to generate
6234 6235
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
6236 6237 6238 6239 6240 6241 6242

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
6243
            targets(list|Variable|Operator): A list of variables, operators, or variable names
6244 6245 6246 6247 6248 6249
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
6250
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
6251 6252 6253
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

6254 6255
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
6256 6257
        if not isinstance(targets, list):
            targets = [targets]
6258 6259

        for var in feeded_var_names:
6260
            if not isinstance(var, str):
6261 6262
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
6263 6264
                    "str, but received %s." % type(var)
                )
6265

6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

6282 6283 6284 6285
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
6286
                    name = t.name
6287
                elif isinstance(t, str):
6288
                    name = str(t)
6289
                else:
6290 6291
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
6292 6293
                        "Variable or Operator, but received %s." % type(t)
                    )
6294 6295 6296 6297 6298 6299

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
6300 6301 6302
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
6303

6304 6305 6306 6307 6308 6309 6310 6311 6312
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
6313
                        # Skip optimize op except for optimize op in targets,
6314 6315 6316 6317 6318
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
6319

6320
                if target_op is not None:
6321 6322 6323
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
6324

6325
        res = Program()
6326
        res.desc, pruned_origin_block_id_map = core.prune(
6327 6328
            self.desc, set(feeded_var_names), targets_idx
        )
6329
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6330
        res._sync_with_cpp()
6331 6332 6333 6334 6335

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

6336 6337
        return res

X
Xin Pan 已提交
6338
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
6339
        """
F
fengjiayi 已提交
6340 6341 6342 6343 6344
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

6345
        3. change the :code:`is_test`
Y
yuyang18 已提交
6346 6347 6348
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

6349
        Args:
X
Xin Pan 已提交
6350 6351
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
6352

Y
yuyang18 已提交
6353 6354 6355 6356 6357 6358
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
6359
        res = Program()
6360
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
6361 6362 6363 6364

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
6365
        if prune_read_op:
6366
            while True:
6367 6368 6369 6370
                if (
                    read_op_idx >= root_block.op_size()
                    or root_block.op(read_op_idx).type() == 'read'
                ):
6371 6372 6373 6374 6375 6376
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
6377
                    root_block._remove_var(var.name().encode())
F
fengjiayi 已提交
6378 6379

        # change all `is_test` attributes to True
6380
        for i in range(res.desc.num_blocks()):
6381
            block = res.desc.block(i)
6382
            for j in range(block.op_size()):
6383 6384
                op = block.op(j)
                if op.has_attr('is_test'):
6385
                    op._set_bool_attr('is_test', True)
6386 6387 6388
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
6389
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6390
        res._sync_with_cpp()
6391 6392
        return res

6393
    def _remove_training_info(self, clip_extra=True):
6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

6408
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
6409 6410
        res._sync_with_cpp()

6411 6412
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
6413
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
6414

6415
        for i in range(res.desc.num_blocks()):
6416 6417 6418 6419
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
6420 6421
            if not clip_extra:
                continue
6422 6423 6424 6425
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
6426 6427 6428

                extra_attrs_map = core.get_op_extra_attrs(op.type())

6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
6442 6443 6444
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
6458
                # The extra output of op will be removed in the future
6459 6460
                for name in remove_output_list:
                    op.remove_output(name)
6461

6462 6463 6464 6465 6466 6467 6468
                op_quant_name = (
                    core.op_proto_and_checker_maker.kOpWithQuantAttrName()
                )
                quant = (
                    bool(op.attr(op_quant_name))
                    if op_quant_name in op.attr_names()
                    else False
6469 6470
                )
                quant_attrs = [
6471 6472 6473 6474 6475 6476 6477
                    op_quant_name,
                    "quantization_type",
                    "skip_quant",
                    "activation_bits",
                    "bit_length",
                    "quantize_weight_bits",
                    "weight_quant_scale",
6478
                ]
6479 6480
                for extra_attr_name in extra_attrs_map.keys():
                    op.remove_attr(extra_attr_name)
6481
                remove_attr_list = []
6482 6483 6484 6485 6486 6487
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
6488
                    if len(extra_attrs_map) > 0:
6489
                        if name in common_clipped_attrs_list:
6490
                            op.remove_attr(name)
6491
                        continue
6492 6493 6494 6495 6496 6497 6498 6499 6500 6501
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
6502 6503
        return res

6504 6505
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
6506
        """
6507
        .. note::
6508
            1. All information about parameters will be lost after serialization;
6509
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6510

6511 6512
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
6513

J
Jiabin Yang 已提交
6514
        Args:
Y
yuyang18 已提交
6515

J
Jiabin Yang 已提交
6516
            binary_str_type (str): the binary prootbuf string.
6517

J
Jiabin Yang 已提交
6518 6519
        Returns:
            Program: A deserialized Program.
6520 6521 6522 6523

        Examples:
            .. code-block:: python

6524 6525 6526 6527
                import paddle
                import paddle.static as static

                paddle.enable_static()
6528

6529 6530 6531 6532
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
6533

6534
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
6535

6536
                    z = paddle.matmul(x=x, y=y)
6537

6538 6539
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
6540

6541
                    print(static.default_main_program())
6542
                    print(prog_restored)
Y
yuyang18 已提交
6543
        """
6544 6545
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
6546
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
W
Wu Yi 已提交
6547
        p._sync_with_cpp()
6548
        return p
Y
Yu Yang 已提交
6549

6550
    @staticmethod
6551
    def _construct_from_desc(desc):
6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
6563
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
6564 6565 6566
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6567 6568
    @property
    def random_seed(self):
Y
yuyang18 已提交
6569
        """
J
Jiabin Yang 已提交
6570
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6571 6572
        the random seed from random device.

6573
        .. note::
6574
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6575 6576 6577

        Returns:
            int64: Random seed in current Program
6578

6579 6580 6581 6582

        Examples:
            .. code-block:: python

6583 6584 6585
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6586

6587 6588 6589
                paddle.enable_static()

                prog = static.default_main_program()
6590
                random_seed = prog.random_seed
6591
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6592 6593 6594
                print(random_seed)
                ## 0
                ## the default random seed is 0
6595

6596
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6597
                prog.random_seed = 1
6598
                z_var = F.dropout(x_var, 0.7)
6599

6600
                print(prog.random_seed)
6601 6602
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6603
        """
D
dzhwinter 已提交
6604 6605
        return self._seed

Q
qiaolongfei 已提交
6606 6607
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6608
        """
6609 6610
        The number of :ref:`api_guide_Block_en`  in this Program.

6611
        .. note::
6612
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6613 6614 6615

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6616

6617 6618 6619 6620

        Examples:
            .. code-block:: python

6621 6622 6623 6624
                import paddle
                import paddle.static as static

                paddle.enable_static()
6625

6626
                prog = static.default_main_program()
6627 6628
                num_blocks = prog.num_blocks
                print(num_blocks)
6629

6630 6631
                # print result:
                # 1
Y
yuyang18 已提交
6632
        """
Q
qiaolongfei 已提交
6633 6634
        return self.desc.num_blocks()

D
dzhwinter 已提交
6635 6636 6637
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6638 6639
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
6640 6641
                % type(seed)
            )
D
dzhwinter 已提交
6642 6643
        self._seed = seed

Y
Yu Yang 已提交
6644
    def __repr__(self):
6645
        return self.__str__()
6646

Y
Yu Yang 已提交
6647
    def global_block(self):
Y
yuyang18 已提交
6648
        """
6649 6650
        .. note::
            This API has no effect in Dygraph mode.
6651 6652 6653

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6654 6655
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6656

6657 6658 6659 6660

        Examples:
            .. code-block:: python

6661 6662 6663 6664
                import paddle
                import paddle.static as static

                paddle.enable_static()
6665

6666
                prog = static.default_main_program()
6667 6668
                gb_block = prog.global_block()
                print(gb_block)
6669

Y
yuyang18 已提交
6670
        """
Y
Yu Yang 已提交
6671 6672
        return self.blocks[0]

Q
Qiao Longfei 已提交
6673
    def block(self, index):
Y
yuyang18 已提交
6674
        """
6675 6676
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6677

6678 6679
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6680 6681
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6682

J
Jiabin Yang 已提交
6683 6684
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6685 6686 6687 6688

        Examples:
            .. code-block:: python

6689 6690 6691 6692
                import paddle
                import paddle.static as static

                paddle.enable_static()
6693

6694
                prog = static.default_main_program()
6695 6696
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6697
        """
Q
Qiao Longfei 已提交
6698 6699
        return self.blocks[index]

Y
Yu Yang 已提交
6700
    def current_block(self):
Y
yuyang18 已提交
6701
        """
6702 6703
        .. note::
            This API has no effect in Dygraph mode.
6704

J
Jiabin Yang 已提交
6705 6706
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6707

J
Jiabin Yang 已提交
6708 6709
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6710

6711 6712 6713
        Examples:
            .. code-block:: python

6714 6715 6716 6717
                import paddle
                import paddle.static as static

                paddle.enable_static()
6718

6719
                prog = static.default_main_program()
6720 6721
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6722
        """
Y
Yu Yang 已提交
6723 6724
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6725
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6726 6727 6728 6729 6730
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6731

Y
yuyang18 已提交
6732 6733 6734 6735 6736
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6737
        new_block_idx = len(self.blocks)
6738 6739 6740 6741 6742
        parent = (
            self.current_block()
            if parent_idx is None
            else self.block(parent_idx)
        )
F
update  
fengjiayi 已提交
6743
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6744 6745 6746 6747
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6748
    def _rollback(self):
Y
yuyang18 已提交
6749 6750 6751 6752 6753
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6754 6755
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6756
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6757 6758 6759 6760 6761 6762 6763 6764 6765 6766
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6767 6768 6769
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6770
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6771

W
Wu Yi 已提交
6772
    def _copy_param_info_from(self, other):
6773
        """
6774
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6775

Y
yuyang18 已提交
6776 6777 6778
        Notes: This is a very low level API. Users should not invoke it
        directly.

6779 6780 6781 6782 6783 6784 6785
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6786 6787
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6788 6789
                % type(other)
            )
6790

W
Wu Yi 已提交
6791
        self.global_block()._copy_param_info_from(other.global_block())
6792

6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6804 6805
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6806 6807
                % type(other)
            )
6808 6809
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6810
        self._parameters_on_pservers = other._parameters_on_pservers
6811
        self._endpoints = other._endpoints
6812
        self._ps_endpoint = other._ps_endpoint
6813 6814
        self._distributed_lookup_table = other._distributed_lookup_table

6815
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6816 6817
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6818

Y
yuyang18 已提交
6819 6820 6821
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6822 6823
        Args:
            other(Program): Other program
6824
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
6825 6826
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6827
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6828 6829 6830 6831 6832

        Returns:
            None
        """
        if not isinstance(other, Program):
6833 6834
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6835 6836
                % type(other)
            )
F
fengjiayi 已提交
6837

6838 6839
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
6840
                i: i for i in range(self.desc.num_blocks())
6841
            }
6842 6843 6844

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6845 6846
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6847
            for var in list(block.vars.values()):
6848 6849 6850 6851 6852 6853 6854
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6855

6856
    def list_vars(self):
Y
yuyang18 已提交
6857
        """
6858
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6859

J
Jiabin Yang 已提交
6860
        Returns:
6861
            iterable Tensors: The Generator will yield every Tensor in this program.
6862 6863 6864 6865

        Examples:
            .. code-block:: python

6866 6867
                import paddle
                import paddle.static as static
6868

6869 6870 6871 6872 6873
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6874 6875
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6876

6877 6878
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6879
        """
6880
        for each_block in self.blocks:
6881
            for each_var in list(each_block.vars.values()):
6882 6883
                yield each_var

6884 6885 6886 6887 6888 6889 6890 6891 6892 6893
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6894 6895 6896 6897
                import paddle
                import paddle.static as static

                paddle.enable_static()
6898

6899 6900
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6901
                hidden = static.nn.fc(x=data, size=10)
6902 6903
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6904 6905 6906 6907 6908 6909 6910

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6911 6912
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6913 6914 6915 6916 6917 6918 6919 6920 6921 6922
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6923 6924 6925 6926 6927 6928 6929 6930 6931
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
6932 6933 6934
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6935 6936
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
6937
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6965
        # can not be imported at the begainning of this file.
6966 6967
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
6968

6969 6970
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6971 6972 6973 6974
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".format(
                    type(scope)
                )
            )
6975 6976 6977 6978 6979

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6980 6981
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
6982 6983 6984
                    type(mode)
                )
            )
6985 6986 6987 6988 6989

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
6990 6991 6992 6993 6994
            if (
                var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
                or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
                or var.desc.type() == core.VarDesc.VarType.READER
            ):
6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):
            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
7012 7013 7014 7015
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".format(
                        mode
                    )
                )
7016 7017 7018 7019 7020 7021 7022 7023

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
7024 7025 7026 7027
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".format(
                        var.name
                    )
                )
7028 7029 7030 7031 7032 7033
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
7034
        Set parameters and persistable buffers in state_dict to program.
7035
        An exception will throw if shape or dtype of the parameters is not match.
7036

7037 7038 7039 7040
        .. note::
            This function MUST called after run start_up_program

        Args:
7041
            state_dict(dict): the dict store parameters and persistable buffers.
7042 7043
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
7044
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
7045 7046
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
7047

7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
7077 7078 7079
                    type(state_dict)
                )
            )
7080 7081

        vars_dict = {var.name: var for var in self.list_vars()}
7082 7083 7084
        condition = (
            True if 'StructuredToParameterName@@' in state_dict else False
        )
7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
7096 7097
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
7098 7099
                except TypeError as err:
                    warnings.warn(
7100 7101
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
7102
            else:
7103
                warnings.warn(
7104 7105 7106 7107 7108 7109
                    (
                        "Skip loading for '{0}'. Because '{0}' not in the program.".format(
                            name
                        )
                    )
                )
7110

Y
Yu Yang 已提交
7111

7112
class Parameter(Variable, metaclass=ParameterMetaClass):
7113
    """
7114
    Parameter is derived from Variable. A parameter is a persistable
7115
    Variable, and will be updated by optimizers after each iteration.
7116
    The training of a neural network is essentially the updating of
7117 7118
    its parameters.

7119
    Relative to a general Variable, a Parameter has several its own
7120 7121
    member variables:

7122 7123 7124 7125 7126 7127 7128 7129 7130 7131
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
7132
        need_clip (bool): Whether the parameter gradient need to be cliped
7133
            in optimizer. Default is True.
7134 7135
    """

7136 7137 7138 7139 7140 7141
    def __init__(
        self,
        block,
        shape,
        dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
7142
        **kwargs,
7143
    ):
7144 7145 7146 7147 7148
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
7149 7150
        for each in shape:
            if each < 0:
7151 7152
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7153 7154 7155 7156 7157 7158 7159 7160 7161 7162
                    % list(shape)
                )

        Variable.__init__(
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
7163
            **kwargs,
7164
        )
Y
Yu Yang 已提交
7165 7166
        self.trainable = kwargs.get('trainable', True)

J
JYChen 已提交
7167 7168
        self.stop_gradient = not self.trainable

Y
Yu Yang 已提交
7169 7170
        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

7171 7172
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
7173
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
7174

7175 7176
        self.need_clip = kwargs.get('need_clip', True)

7177 7178
        self.is_distributed = False

7179 7180
        self.is_parameter = True

F
fengjiayi 已提交
7181
    def __str__(self):
7182
        return self._to_readable_code()
F
fengjiayi 已提交
7183

F
update  
fengjiayi 已提交
7184 7185 7186
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
7187

F
update  
fengjiayi 已提交
7188 7189 7190 7191 7192 7193 7194 7195
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

7196 7197 7198 7199
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
G
GGBond8488 已提交
7200
                import paddle
7201 7202

                prog = fluid.default_main_program()
G
GGBond8488 已提交
7203
                rlt = paddle.static.data("fake_data", shape=[-1,1,1], dtype='float32')
7204 7205
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
7206
        """
7207
        assert isinstance(throw_on_error, bool) and isinstance(
7208 7209
            with_details, bool
        )
F
update  
fengjiayi 已提交
7210 7211
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
7212 7213 7214 7215 7216 7217 7218
            additional_attr = (
                "trainable",
                "optimize_attr",
                "regularizer",
                "do_model_average",
                "need_clip",
            )
F
update  
fengjiayi 已提交
7219
            for attr_name in additional_attr:
7220
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
F
update  
fengjiayi 已提交
7221 7222
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
7223 7224 7225 7226
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
7227

W
wanghuancoder 已提交
7228
class EagerParamBase(core.eager.Tensor):
7229
    """
7230 7231
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
7249
        need_clip (bool): Whether the parameter gradient need to be cliped
7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7264 7265
                    % list(shape)
                )
7266 7267 7268 7269 7270 7271 7272

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

7273 7274 7275
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

7276
        super().__init__(
7277 7278 7279 7280 7281 7282
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
7297 7298 7299
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
7300 7301

    def set_init_func(self, obj):
7302
        self._init_func = obj
7303 7304 7305

    @dygraph_only
    def initialize(self):
7306 7307 7308
        assert (
            self._init_func is not None
        ), "Required self._init_func is not None, but received None."
7309
        self._init_func(self, None)
7310
        # clear function handle to release resource
7311
        self._init_func = None
7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7324 7325
                type(trainable),
            )
7326

7327 7328 7329 7330
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
7331 7332 7333
        assert (
            self._init_op_creator is not None
        ), "Required self._init_op_creator is not None, but received None."
7334
        self._init_op_creator(self, block)
7335

7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
7355
            tensor=super().__str__()
7356
        )
7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
7386 7387
        new_param._init_func = self._init_func
        new_param._init_op_creator = self._init_op_creator
7388 7389 7390 7391 7392 7393
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
7394 7395
        return new_param

7396 7397 7398
    __repr__ = __str__


Y
Yu Yang 已提交
7399
# program is a global instance.
Y
Yu Yang 已提交
7400 7401
_main_program_ = Program()
_startup_program_ = Program()
7402
_startup_program_._is_start_up_program_ = True
7403

7404

7405
def default_startup_program():
Y
Yu Yang 已提交
7406
    """
Y
yuyang18 已提交
7407 7408
    Get default/global startup program.

7409
    The :code:`paddle.nn` function will append the initialization operators into startup program.
7410
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
7411

7412 7413
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
7414

7415 7416
    Returns:
        Program: current default startup program.
7417

7418
    Returns type:
7419 7420 7421 7422

    Examples:
        .. code-block:: python

7423
            import paddle
7424

7425
            paddle.enable_static()
7426 7427 7428 7429
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
7430
    """
Y
Yu Yang 已提交
7431
    return _startup_program_
7432

7433

7434
def default_main_program():
Y
Yu Yang 已提交
7435
    """
7436
    This API can be used to get ``default main program`` which store the
7437
    descriptions of Ops and tensors.
T
tangwei12 已提交
7438

7439 7440
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
7441

7442
    The ``default main program`` is the default value for ``Program`` parameter in
7443
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7444
    :code:`default_main_program` when the program is not specified.
7445

7446
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7447

Y
Yu Yang 已提交
7448
    Returns:
7449
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7450 7451 7452 7453

    Examples:
        ..  code-block:: python

7454
            import paddle
7455

7456
            paddle.enable_static()
7457
            # Sample Network:
7458
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
7459
            y = paddle.static.data(name='y', shape=[100, 100], dtype='float32')
7460
            out = paddle.add(x, y)
7461

7462 7463 7464
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7465
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7466
    """
Y
Yu Yang 已提交
7467
    return _main_program_
Y
Yu Yang 已提交
7468 7469 7470 7471 7472


def switch_main_program(program):
    """
    Switch the main program to a new program.
7473

Y
Yu Yang 已提交
7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7488
    Switch the startup program to a new program
Y
Yu Yang 已提交
7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7501
@signature_safe_contextmanager
Y
Yu Yang 已提交
7502 7503
def program_guard(main_program, startup_program=None):
    """
7504 7505
    :api_attr: Static Graph

7506 7507 7508
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7509

G
guofei 已提交
7510
    Args:
7511
        main_program(Program): New main program inside ``with`` statement.
7512 7513
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7514 7515 7516
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7517
    Examples:
C
cyberslack_lee 已提交
7518 7519
        .. code-block:: python
            :name: code-example-1
T
tangwei12 已提交
7520

C
cyberslack_lee 已提交
7521
            import paddle
Y
yuyang18 已提交
7522

C
cyberslack_lee 已提交
7523 7524 7525 7526 7527 7528
            paddle.enable_static()
            main_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(main_program, startup_program):
                data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
                hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7529 7530 7531

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7532

Y
Yu Yang 已提交
7533
    Examples:
C
cyberslack_lee 已提交
7534 7535
        .. code-block:: python
            :name: code-example-2
Y
yuyang18 已提交
7536

C
cyberslack_lee 已提交
7537
            import paddle
7538

C
cyberslack_lee 已提交
7539 7540 7541 7542 7543
            paddle.enable_static()
            main_program = paddle.static.Program()
            # does not care about startup program. Just pass a temporary value.
            with paddle.static.program_guard(main_program, paddle.static.Program()):
                data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7544

Y
Yu Yang 已提交
7545
    """
7546
    from .data_feeder import check_type
7547 7548 7549 7550

    check_type(
        main_program, 'main_program', Program, 'paddle.static.program_guard'
    )
Y
Yu Yang 已提交
7551 7552
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7553 7554 7555 7556 7557 7558
        check_type(
            startup_program,
            'startup_program',
            Program,
            'paddle.static.program_guard',
        )
7559 7560
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7561
        startup_program = switch_startup_program(startup_program)
7562 7563 7564 7565 7566 7567
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7568 7569


W
Wu Yi 已提交
7570
def _get_var(name, program=None):
X
xuwei06 已提交
7571
    """
Y
yuyang18 已提交
7572
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7573

X
xuwei06 已提交
7574 7575 7576
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7577
        If None, default_global_program() will be used.
X
xuwei06 已提交
7578 7579 7580 7581 7582 7583 7584

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7585
    assert isinstance(program, Program)
X
xuwei06 已提交
7586 7587

    return program.global_block().var(name)
7588 7589


7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602
@signature_safe_contextmanager
def dygraph_guard_if_declarative():
    from .dygraph.base import in_declarative_mode
    from .dygraph import Tracer

    if in_declarative_mode():
        # Under @paddle.jit.to_static decorator, we switch back dygraph mode temporarily.
        with _dygraph_guard(tracer=Tracer()):
            yield
    else:
        yield


S
rename  
sneaxiy 已提交
7603
@signature_safe_contextmanager
L
lujun 已提交
7604
def _dygraph_guard(tracer):
7605 7606 7607 7608
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = tracer
    if tracer is not None:
        core._switch_tracer(tracer)
M
minqiyang 已提交
7609

C
Charles-hit 已提交
7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621
    try:
        yield
    finally:
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer


@signature_safe_contextmanager
def _static_guard():
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = None
7622 7623 7624
    try:
        yield
    finally:
7625 7626 7627
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7628 7629


S
rename  
sneaxiy 已提交
7630
@signature_safe_contextmanager
L
lujun 已提交
7631
def _dygraph_place_guard(place):
7632 7633 7634
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7635 7636
    _set_dygraph_tracer_expected_place(place)

7637 7638 7639
    try:
        yield
    finally:
7640
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7641
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7642 7643


7644 7645 7646 7647 7648 7649 7650 7651 7652 7653
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7654

7655
    Note:
7656
        The API only supports static graph mode.
7657 7658 7659 7660

    A context manager that specifies the device on which the OP will be placed.

    Args:
7661
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
7662
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7663 7664 7665 7666 7667 7668 7669
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7670

7671
        .. code-block:: python
7672

7673
            # required: gpu
Z
Zhang Ting 已提交
7674
            import paddle
7675

Z
Zhang Ting 已提交
7676 7677 7678
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7679
            if support_gpu:
Z
Zhang Ting 已提交
7680
                place = paddle.CUDAPlace(0)
7681 7682

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7683 7684 7685
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7686

Z
Zhang Ting 已提交
7687
            with paddle.static.device_guard("cpu"):
7688
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7689 7690
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7691
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7692
                out = paddle.reshape(data1, shape=shape)
7693

Z
Zhang Ting 已提交
7694 7695
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7696 7697 7698
            result = exe.run(fetch_list=[out])
    """

7699 7700 7701 7702 7703
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7704 7705 7706 7707
    if (
        device not in ['cpu', 'gpu', 'xpu', '', None]
        and device not in core.get_all_custom_device_type()
    ):
7708
        raise ValueError(
7709
            "The Attr(device) should be 'cpu', 'xpu', 'gpu' or custom device, and it can also be empty string or None "
7710 7711
            "when there is no need to specify device. But received %s" % device
        )
7712 7713
    if index:
        device = ":".join([device, index])
7714
    pre_device = switch_device(device)
7715 7716 7717 7718
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7719 7720


7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
7733
        The API only supports static graph mode.
7734

7735
    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static graph mode.
7736 7737 7738 7739 7740

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
7741
    assert (
7742
        not in_dygraph_mode()
7743
    ), "cuda_graph_guard only works under static graph mode"
7744 7745
    assert (
        core.is_compiled_with_cuda()
7746 7747 7748 7749 7750 7751 7752 7753
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7754 7755 7756
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7757
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7758 7759 7760 7761 7762 7763 7764

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7765 7766
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7767 7768 7769 7770
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7771 7772
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7773 7774
        else:
            raise ValueError(
7775 7776
                "Flag %s cannot set its value through this function." % (key)
            )
G
guofei 已提交
7777 7778 7779 7780 7781


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7782
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7783 7784 7785 7786 7787 7788 7789 7790 7791 7792

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7793
            import paddle
G
guofei 已提交
7794 7795

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7796
            res = paddle.get_flags(flags)
G
guofei 已提交
7797 7798 7799 7800 7801 7802
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7803
            if _global_flags().is_public(key):
7804
                value = _global_flags()[key]
G
guofei 已提交
7805 7806 7807 7808
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
7809 7810 7811
                    'Flag %s cannot get its value through this function.'
                    % (key)
                )
G
guofei 已提交
7812
    elif isinstance(flags, str):
7813
        if _global_flags().is_public(flags):
7814
            value = _global_flags()[flags]
G
guofei 已提交
7815 7816 7817 7818
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
7819 7820
                'Flag %s cannot get its value through this function.' % (flags)
            )
G
guofei 已提交
7821 7822 7823
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7824 7825 7826 7827 7828 7829


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841
    if isinstance(
        place,
        (
            core.Place,
            core.XPUPlace,
            core.CPUPlace,
            core.CUDAPinnedPlace,
            core.CUDAPlace,
            core.IPUPlace,
            core.CustomPlace,
        ),
    ):
7842 7843 7844 7845
        return place

    if not isinstance(place, str):
        raise ValueError(
7846 7847
            "place only support string which is 'Place' and so on."
        )
7848 7849

    place = place.lower()
7850
    if place == "cpu":
7851
        return core.CPUPlace()
7852

7853
    if place == "device":
7854 7855
        return core.Place()

7856
    # GPU
7857 7858 7859 7860
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
7861
                "The device should not be {}, since PaddlePaddle is "
7862
                "not compiled with CUDA".format(avaliable_gpu_place.group())
7863
            )
7864 7865 7866 7867 7868 7869 7870 7871 7872
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7873 7874

    # XPU
7875 7876 7877 7878
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
7879
                "The device should not be {}, since PaddlePaddle is "
7880
                "not compiled with XPU".format(avaliable_xpu_place.group())
7881
            )
7882 7883 7884 7885
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7886

J
jianghaicheng 已提交
7887 7888 7889 7890 7891
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
7892
                "The device should not be {}, since PaddlePaddle is "
7893
                "not compiled with IPU".format(avaliable_ipu_place.group())
7894
            )
J
jianghaicheng 已提交
7895 7896 7897 7898 7899
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7900 7901 7902 7903 7904 7905 7906
    place_info_list = place.split(':', 1)
    device_type = place_info_list[0]
    if device_type in core.get_all_custom_device_type():
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.CustomPlace(device_type, device_id)

7907
    raise ValueError(
7908
        f"Paddle supports CPUPlace, CUDAPlace, CUDAPinnedPlace, XPUPlace, IPUPlace and CustomPlace, but received {place}."
7909
    )
7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921


def _get_paddle_place_list(places):
    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret