framework.py 255.2 KB
Newer Older
G
gouzil 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

import textwrap
Y
Yu Yang 已提交
16
import collections
X
Xin Pan 已提交
17
from collections import defaultdict
H
huzhiqiang 已提交
18
from collections.abc import Iterable
Q
qiaolongfei 已提交
19
import contextlib
20
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
21
import os
F
fengjiayi 已提交
22
import re
23
import traceback
24
import copy
25
from types import MethodType, FunctionType
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
R
risemeup1 已提交
32 33 34

from .proto import framework_pb2, data_feed_pb2

35
from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
39
import functools
40
from .variable_index import _getitem_impl_, _setitem_impl_
41
import threading
Y
Yu Yang 已提交
42

43
__all__ = [
44 45 46 47
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
48
    'name_scope',
J
jianghaicheng 已提交
49
    'ipu_shard_guard',
50
    'set_ipu_shard',
S
sneaxiy 已提交
51 52
    'cuda_places',
    'cpu_places',
53
    'xpu_places',
S
sneaxiy 已提交
54
    'cuda_pinned_places',
L
lujun 已提交
55
    'in_dygraph_mode',
56
    'is_compiled_with_cinn',
C
chengduo 已提交
57
    'is_compiled_with_cuda',
58
    'is_compiled_with_rocm',
59
    'is_compiled_with_xpu',
60
    'Variable',
61
    'require_version',
62
    'device_guard',
G
guofei 已提交
63 64
    'set_flags',
    'get_flags',
65
]
Y
Yu Yang 已提交
66

Q
qiaolongfei 已提交
67 68 69 70
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
71 72
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

73

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
# use thread local to create thread save global variables.
class GlobalThreadLocal(threading.local):
    def __init__(self):
        """
        init the thread local data.
        TODO(xiongkun): how to access another thread local data ?
        """
        global _dygraph_tracer_
        self._in_declarative_mode_ = False
        self._functional_dygraph_context_manager = None
        self._dygraph_tracer_ = _dygraph_tracer_

    def __str__(self):
        strings = []
        strings.append(
            "_in_declarative_mode_:" + str(self._in_declarative_mode_)
        )
        strings.append(
            "_functional_dygraph_context_manager:"
            + str(self._functional_dygraph_context_manager)
        )
        strings.append("_dygraph_tracer_:" + str(self._dygraph_tracer_))
        return "\n".join(strings)

    def __setattr__(self, name, val):
        if name == '_dygraph_tracer_':
            global _dygraph_tracer_
            _dygraph_tracer_ = val
        self.__dict__[name] = val


L
lujun 已提交
105
_dygraph_tracer_ = None
106 107
global_var = GlobalThreadLocal()

108
_global_expected_place_ = None
109
_current_device = None
110
global_prog_seed = 0
111
_current_pipeline_stage = None
112
_current_cuda_graph_mode = None
113
_global_flags_ = core.globals()
114

J
Jiabin Yang 已提交
115

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
# special_op_attrs, extra_op_attrs are prepared for printing warnings
# when turning on FLAGS_print_extra_attrs
special_op_attrs = {
    "elementwise_add": [{"axis": -1}],
    "elementwise_sub": [{"axis": -1}],
    "elementwise_mul": [{"axis": -1}],
    "elementwise_div": [{"axis": -1}],
    "elementwise_max": [{"axis": -1}],
    "elementwise_min": [{"axis": -1}],
    "elementwise_pow": [{"axis": -1}],
    "elementwise_mod": [{"axis": -1}],
    "elementwise_floordiv": [{"axis": -1}],
    "less_than": [{"axis": -1}],
    "less_equal": [{"axis": -1}],
    "greater_than": [{"axis": -1}],
    "greater_equal": [{"axis": -1}],
    "equal": [{"axis": -1}],
    "not_equal": [{"axis": -1}],
    "amax": [{"reduce_all": False}],
    "amin": [{"reduce_all": False}],
    "any": [{"reduce_all": False}],
    "frobenius_norm": [{"reduce_all": False}],
    "logsumexp": [{"reduce_all": False}],
    "reduce_max": [{"reduce_all": False}],
    "reduce_min": [{"reduce_all": False}],
    "reduce_mean": [{"reduce_all": False}],
    "reduce_prod": [{"reduce_all": False}],
    "reduce_sum": [{"reduce_all": False}],
}

extra_op_attrs = {
    "gather": ["overwrite"],
    "graph_reindex": ["flag_buffer_hashtable"],
    "graph_sample_neighbors": ["flag_perm_buffer"],
    "relu6": ["threshold"],
    "swish": ["beta"],
    "hsigmoid_loss": ["remote_prefetch"],
    "max_pool2d_with_index": ["global_pooling"],
    "uniform": ["diag_num"],
    "unique": ["is_sorted"],
}

K
Kim Yann 已提交
158
# FIXME(dev): We haven't fully verified eager mode on XPU et.al but
159 160 161 162
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


J
Jiabin Yang 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
184
            print(paddle.in_dynamic_mode())  # False, Now we are in static graph mode
J
Jiabin Yang 已提交
185 186 187 188 189

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
190
    return global_var._dygraph_tracer_ is not None
J
Jiabin Yang 已提交
191 192


193 194
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
195 196 197 198 199
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


@signature_safe_contextmanager
200
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
201 202 203 204
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
205
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
206
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
207
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
208
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
209
            which means no pipelining computation order and run Ops in terms of graph.
210

G
gouzil 已提交
211 212 213 214 215 216 217
    Note:
        Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
        duplicated index.
J
jianghaicheng 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


252 253 254 255
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

G
gouzil 已提交
256 257 258 259 260
    Note:
        Only when enable_manual_shard=True to set the index to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        Only when enable_pipelining=True to set stage to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        An index supports a corresponding None stage or a stage, and a stage only supports a new index or a duplicate index.

261 262 263 264 265
    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
266
            The sharded model will be computed from small to large. The default value is -1,
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):
        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

292
    from paddle.nn import Layer
293

294 295 296 297 298
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
299 300
                "Unsupported type. Only accept paddle.nn.Layer or function."
            )
301 302 303 304 305 306 307 308 309 310 311 312

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):
        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


313 314
def require_version(min_version, max_version=None):
    """
315 316 317
    Check if the installed version of PaddlePaddle is in [min_version, max_version],
    if the installed version is lower than ``min_version`` or higher than ``max_version``,
    an exception will be thrown, NO returns if the installed version is satisfied.
318

319 320 321 322
    Args:
        min_version (str): the minimum version required (like '1.4.0').
        max_version (str, optional): the max version required (like '1.6.0'), default is None,
            meaning any version equal or higher than ``min_version`` is acceptable.
323

324 325
    Returns:
        None.
326

327 328 329 330 331 332
    Raises:
        TypeError: if the type of ``min_version`` is not str.
        TypeError: if the type of ``max_version`` is not str or type(None).
        ValueError: if the value of ``min_version`` is not in version format.
        ValueError: if the value of ``max_version`` is not in version format or None.
        Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.
333

334 335
    Examples:
        .. code-block:: python
336

337
            import paddle.fluid as fluid
338

339 340
            # any version >= 0.1.0 is acceptable.
            fluid.require_version('0.1.0')
341

342 343 344
            # if 0.1.0 <= version <= 10.0.0, it is acceptable.
            fluid.require_version(min_version='0.1.0', max_version='10.0.0')
    """
345 346 347
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
348 349
            % (type(min_version))
        )
350 351 352 353

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
354 355
            % (type(max_version))
        )
356 357 358 359 360

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
361 362
            "like '1.5.2.0', but received %s" % min_version
        )
363 364 365 366 367 368

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
369 370
                "like '1.5.2.0', but received %s" % max_version
            )
371 372

    version_installed = [
373 374 375 376
        fluid_version.major,
        fluid_version.minor,
        fluid_version.patch,
        fluid_version.rc,
377 378 379 380
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
381
        for i in range(len(ver_a)):
382 383 384 385 386 387 388 389 390 391 392
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
393 394 395
                "please make sure the version is good with your code."
                % (min_version, max_version, fluid_version.full_version)
            )
396 397 398 399
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
400 401 402
                "please make sure the version is good with your code."
                % (min_version, fluid_version.full_version)
            )
403 404 405
        return

    min_version_split = min_version.split('.')
406 407 408
    min_version_to_check = (
        min_version_split + zero_version[len(min_version_split) :]
    )
409 410 411

    if max_version is not None:
        max_version_split = max_version.split('.')
412 413 414
        max_version_to_check = (
            max_version_split + zero_version[len(max_version_split) :]
        )
415

416 417 418 419
        if (
            version_cmp(version_installed, max_version_to_check) > 0
            or version_cmp(version_installed, min_version_to_check) < 0
        ):
420 421
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
422 423
                % (min_version, max_version, fluid_version.full_version)
            )
424 425 426 427 428
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
429 430
                % (min_version, fluid_version.full_version, min_version)
            )
431 432


433 434
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
435
        assert not in_dygraph_mode(), (
436 437
            "We don't support %s in dynamic graph mode" % func.__name__
        )
438 439 440 441 442 443 444
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
445
        assert in_dygraph_mode(), (
446 447 448
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
449 450 451 452 453
        return func(*args, **kwargs)

    return __impl__


454 455 456
def _non_static_only_(func):
    def __impl__(*args, **kwargs):
        from .dygraph.base import in_declarative_mode
457

458
        assert in_dygraph_mode() or in_declarative_mode(), (
459 460 461
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
462 463 464 465 466
        return func(*args, **kwargs)

    return __impl__


467 468
def _static_only_(func):
    def __impl__(*args, **kwargs):
469
        assert not in_dygraph_mode(), (
470 471 472
            "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode."
            % func.__name__
        )
473 474 475 476 477
        return func(*args, **kwargs)

    return __impl__


478 479 480 481 482
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


483
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
W
wanghuancoder 已提交
484 485
# used to make Variable and Tensor has same interfaces, like numpy. Since Tensor is not exposed in our
# official docments, logically, we want to keep Tensor and logically consistent. While, actually,
486 487
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
W
wanghuancoder 已提交
488
# TODO(zhiqiu): We should make Tensor consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
489
# same base class.
490 491 492
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
493 494
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
R
Ryan 已提交
495
            "  2. If you are using `@paddle.jit.to_static`, you can call `paddle.jit.enable_to_static(False)`. "
496
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
497 498
            % (func.__name__, func.__name__)
        )
499 500 501 502

    return __impl__


T
tangwei12 已提交
503 504
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
505 506 507 508 509 510 511 512 513
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
514 515
                DeprecationWarning,
            )
516 517 518 519 520 521 522
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


523 524
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
525
static_only = wrap_decorator(_static_only_)
526
fake_interface_only = wrap_decorator(_fake_interface_only_)
527
non_static_only = wrap_decorator(_non_static_only_)
528 529


L
lujun 已提交
530
def _dygraph_tracer():
531
    return global_var._dygraph_tracer_
532

W
Wu Yi 已提交
533

534 535 536 537
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
538
def _current_expected_place():
539 540 541
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
542 543 544 545 546
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
547
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
548 549 550 551 552
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
553 554 555 556 557 558
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
559
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
560 561 562 563 564
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
        elif len(core.get_all_custom_device_type()) > 0:
            dev_type = core.get_all_custom_device_type()[0]
            try:
                device_count = core.get_custom_device_count(dev_type)
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CustomPlace(
                    dev_type, _custom_device_ids(dev_type)[0]
                )
            else:
                warnings.warn(
                    "You are using CUSTOM_DEVICE version Paddle, but your custom device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
580 581 582 583 584 585 586
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
587 588
    if global_var._dygraph_tracer_ is not None:
        global_var._dygraph_tracer_._expected_place = place
589 590 591 592 593


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
594
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
595 596


S
sneaxiy 已提交
597
def _cpu_num():
598
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
599 600 601 602 603 604 605
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
606 607 608
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()
                )
            )
C
chengduo 已提交
609
        os.environ['CPU_NUM'] = str(1)
610
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
611 612 613 614 615 616 617 618
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
619
        device_ids = range(core.get_cuda_device_count())
C
chengduo 已提交
620
    return device_ids
S
sneaxiy 已提交
621 622


623 624 625 626 627
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
628
        device_ids = range(core.get_xpu_device_count())
629 630 631
    return device_ids


632 633 634 635 636 637 638 639 640
def _custom_device_ids(device_type):
    custom_devices_env = os.getenv("FLAGS_selected_" + device_type + "s")
    if custom_devices_env:
        device_ids = [int(s) for s in custom_devices_env.split(",")]
    else:
        device_ids = range(core.get_custom_device_count(device_type))
    return device_ids


641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


656 657 658 659 660 661 662
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
663

664 665 666 667 668 669
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

Z
Zman 已提交
670 671
    Returns:
        None
672 673 674 675 676 677 678 679 680 681

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


682 683 684 685
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

686 687
    Returns:
        Bool: `True` if CINN is currently available, otherwise `False`.
688 689 690 691 692 693 694 695 696 697

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
698 699 700 701
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

702 703
    Returns:
        Bool: `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
704 705 706 707

    Examples:
        .. code-block:: python

708
            import paddle
709
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
710 711 712 713
    """
    return core.is_compiled_with_cuda()


714 715 716 717
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

718 719
    Returns:
        Bool: `True` if ROCm is currently available, otherwise `False`.
720 721 722 723 724

    Examples:
        .. code-block:: python

            import paddle
725
            support_gpu = paddle.device.is_compiled_with_rocm()
726 727 728 729
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
730
def cuda_places(device_ids=None):
L
lujun 已提交
731
    """
732
    Note:
733 734 735
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
736
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
737 738

    If :code:`device_ids` is None, environment variable of
739
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
740
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
741
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
742
    If :code:`FLAGS_selected_gpus` is not set, all visible
743
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
744 745

    If :code:`device_ids` is not None, it should be the device
746
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
747
    the returned list would be
C
Chen Weihang 已提交
748
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
749

750
    Parameters:
751
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
752 753

    Returns:
C
Chen Weihang 已提交
754
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
755 756

    Examples:
757

L
lujun 已提交
758 759
        .. code-block:: python

C
Chen Weihang 已提交
760 761
            import paddle
            import paddle.static as static
T
tangwei12 已提交
762

763
            # required: gpu
764

C
Chen Weihang 已提交
765 766 767
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
768 769

    """
770
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
771
    if device_ids is None:
C
chengduo 已提交
772
        device_ids = _cuda_ids()
S
sneaxiy 已提交
773 774 775 776 777
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


778 779 780 781
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
782 783 784 785 786 787 788 789 790
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
791
        the returned list would be
S
sunzhongkai588 已提交
792
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
793

794 795 796 797 798 799
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
800

801 802
            # required: xpu

803 804
            import paddle
            import paddle.static as static
805

806 807 808
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
809
    assert core.is_compiled_with_xpu(), "Not compiled with XPU"
810 811 812 813 814 815 816
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
817
def cpu_places(device_count=None):
L
lujun 已提交
818
    """
C
Chen Weihang 已提交
819
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
820

S
add doc  
sneaxiy 已提交
821
    If :code:`device_count` is None, the device count would
822
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
823 824
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
825 826
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
827

828 829
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
830 831

    Returns:
C
Chen Weihang 已提交
832
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
833 834

    Examples:
835

L
lujun 已提交
836 837
        .. code-block:: python

C
Chen Weihang 已提交
838 839
            import paddle
            import paddle.static as static
T
tangwei12 已提交
840

C
Chen Weihang 已提交
841 842 843
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
844 845
    """

S
sneaxiy 已提交
846 847 848 849 850 851
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
852
    """
853
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
854 855

    If :code:`device_count` is None, the device count would
856
    be determined by environment variable :code:`CPU_NUM`.
857 858 859 860
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
861

862 863
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
864 865

    Returns:
866
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
867 868 869 870

    Examples:
        .. code-block:: python

871
            import paddle.fluid as fluid
L
lujun 已提交
872 873 874 875 876
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
877
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
878
    if device_count is None:
879 880
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
881 882


883
class NameScope:
884 885 886 887 888 889 890 891 892 893
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
894 895 896
            new_child = NameScope(
                prefix + "_%d" % len(self._children[prefix]), self
            )
897 898 899 900 901 902 903 904 905 906 907 908 909
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
910
@signature_safe_contextmanager
911 912
def name_scope(prefix=None):
    """
913

914
    Generate hierarchical name prefix for the operators in Static Graph.
915

916
    Note:
T
Tao Luo 已提交
917 918
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
919
        Don't use it in dygraph, since it will cause memory leak.
920 921

    Args:
T
Tao Luo 已提交
922
        prefix(str, optional): prefix. Default is none.
923 924

    Examples:
925

926
        .. code-block:: python
T
Tink_Y 已提交
927

928 929 930
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
931
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
932
             b = a + 1
933
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
934
                c = b * 1
935
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
936
                d = c / 1
937 938 939
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
940 941
                g = f - 1

942
          # Op are created in the default main program.
943
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
959 960
    """
    # TODO(panyx0718): Only [0-9a-z].
961
    # in dygraph we don't need namescope since it will cause mem leak
962
    if in_dygraph_mode():
L
Leo Chen 已提交
963 964
        yield
    else:
T
tianshuo78520a 已提交
965
        assert prefix, "namescope prefix can not be empty."
966 967
        global _name_scope
        _name_scope = _name_scope.child(prefix)
968 969 970 971
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
972 973 974 975 976 977 978 979 980 981 982 983


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
984 985
def generate_control_dev_var_name():
    import random
986

W
Wu Yi 已提交
987
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
988 989 990 991


def grad_var_name(var_name):
    """
992 993
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
994 995 996
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
997

998
def convert_np_dtype_to_dtype_(np_dtype):
999
    """
1000
    Convert the data type in numpy to the data type in Paddle.
1001

1002
    Args:
1003 1004
        np_dtype (np.dtype|str): The data type in numpy or valid data type
            string.
1005

1006
    Returns:
1007
        core.VarDesc.VarType: The data type in Paddle.
1008 1009

    """
1010 1011
    # Convert the data type string to numpy data type.
    if isinstance(np_dtype, str) and np_dtype == "bfloat16":
1012 1013 1014
        dtype = np.uint16
    else:
        dtype = np.dtype(np_dtype)
1015

1016
    if dtype == np.float32:
1017
        return core.VarDesc.VarType.FP32
1018
    elif dtype == np.float64:
1019
        return core.VarDesc.VarType.FP64
1020
    elif dtype == np.float16:
1021
        return core.VarDesc.VarType.FP16
1022
    elif dtype == np.int32:
1023
        return core.VarDesc.VarType.INT32
1024
    elif dtype == np.int16:
1025
        return core.VarDesc.VarType.INT16
1026
    elif dtype == np.int64:
1027
        return core.VarDesc.VarType.INT64
1028
    elif dtype == np.bool_:
1029
        return core.VarDesc.VarType.BOOL
1030
    elif dtype == np.uint16:
1031 1032 1033
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1034 1035
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1036 1037
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1038 1039 1040 1041
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1042
    else:
M
minqiyang 已提交
1043
        raise ValueError("Not supported numpy dtype %s" % dtype)
1044 1045 1046


def dtype_is_floating(dtype):
1047 1048 1049
    """
    Check the data type is floating or not.
    Args:
1050
        dtype(np.dtype|core.VarDesc.VarType): data type.
1051 1052 1053 1054 1055
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1056
    if not isinstance(dtype, core.VarDesc.VarType):
1057 1058
        dtype = convert_np_dtype_to_dtype_(dtype)

1059
    return dtype in [
1060 1061 1062
        core.VarDesc.VarType.FP16,
        core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64,
1063
    ]
1064 1065


Y
Yang Yang(Tony) 已提交
1066
def _debug_string_(proto, throw_on_error=True):
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1078
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1079
    if not proto.IsInitialized(error_fields) and throw_on_error:
1080 1081
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
1082 1083 1084
                error_fields, proto
            )
        )
Y
Yu Yang 已提交
1085 1086 1087
    return proto.__str__()


1088
def _create_tensor(
1089 1090 1091 1092 1093
    type=core.VarDesc.VarType.LOD_TENSOR,
    name=None,
    shape=None,
    dtype=None,
    persistable=None,
1094
    **kwargs,
1095
):
1096 1097 1098 1099
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

W
wanghuancoder 已提交
1100 1101 1102 1103 1104 1105 1106 1107 1108
    eager_tensor = core.eager.Tensor(
        dtype if dtype else core.VarDesc.VarType.FP32,
        list(shape) if shape else [],
        name,
        type if type else core.VarDesc.VarType.LOD_TENSOR,
        True if persistable else False,
    )
    eager_tensor.retain_grads()
    return eager_tensor
1109 1110


1111 1112 1113 1114 1115 1116 1117
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
1118 1119
    if not vals:
        return False
1120 1121 1122
    return all(isinstance(v, expected_type) for v in vals)


1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
def wrap_as_scalar(number):
    """Wrap a number(either python scalar or numpy scalar) as core.Scalar if
    it is not a scalar.


    Args:
        number (Number): number

    Returns:
        Scalar: A Scalar that contains the value.
    """
    if isinstance(number, core.Scalar):
        return number
    if isinstance(number, (bool, int, float, complex)):
        return core.Scalar(number)
    if isinstance(number, np.number):
        # it is a numpy scalar
        return core.Scalar(number.item())
    else:
        raise TypeError("Cannot wrap {} as core.Scalar".format(number))


def wrap_as_scalars(array):
    """This function is used to convert flat list, or numpy array(not
    necesarily flat) to list of core.Scalar, which correspond to
    std::vector<paddle::experimental::Scalar> in operator runtime.

    Args:
        array (List | np.ndarray): array of numbers

    Returns:
        List: list of core.Scalar, of which each element is a Scalar containing
          the corresponding value.
    """
    if isinstance(array, np.ndarray):
        array = array.ravel().tolist()
    return [wrap_as_scalar(item) for item in array]


def extract_plain_list(array):
    """extract value from a list of core.Scalar.

    Args:
        array (list): Scalars

    Returns:
        list: values extracted from the scalars.
    """
    return [item.value() for item in array]


def canonicalize_attrs(attrs, op_proto):
    """This function is used to canonicalize attributes(as a string->any dict)
    according to the type specification in the OpProto. This is especially
    important for operators that has any attributes of type Scalar or Scalars.

    Though various frontends of phi kernels & paddle operators can wrap variables
    of concrete types into Scalars(a tagged union of several numeric types) or
    vector of Scalars. Paddle operator requires strict type matching.

    Args:
        attrs (Dict[str, Any]): attribute dict intended to pass to an operator.
        op_proto (OpProto): Proto (signature) of the operator.

    Returns:
        Dict[str, Any]: canonicalized attributes.
    """
    canonicalized_attrs = attrs.copy()  # shallow copy is enough here
    for attr in op_proto.attrs:
        attr_name = attr.name
        type_index = attr.type
        if (attr_name not in attrs) or (attrs[attr_name] is None):
            continue

        attr_val = attrs[attr_name]

        # VAR and VARS should be skipped
        if isinstance(attr_val, Variable):
            continue
        if isinstance(attr_val, list) and _all_is_type(attr_val, Variable):
            continue

        # wrap
        if type_index == core.AttrType.SCALAR:
            canonicalized_attrs[attr_name] = core.Scalar(attr_val)
        elif type_index == core.AttrType.SCALARS:
            # it should be a list (or a numpy array)
            if len(attr_val) > 0:
                attr_val = np.array(attr_val).ravel().tolist()
                attr_val = [core.Scalar(x) for x in attr_val]
                canonicalized_attrs[attr_name] = attr_val

    return canonicalized_attrs


1218 1219 1220 1221 1222
class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1223
            return issubclass(t, core.eager.Tensor)
1224 1225 1226 1227 1228 1229 1230 1231 1232
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1233
            return issubclass(t, EagerParamBase)
1234 1235 1236 1237
        else:
            return issubclass(t, Parameter)


1238
class Variable(metaclass=VariableMetaClass):
1239
    """
J
Jiabin Yang 已提交
1240

U
ustiniankw 已提交
1241 1242 1243 1244
    Notes:
        The constructor of Variable should not be invoked directly.

        In Static Graph Mode: Please use ** `Block.create_var` ** to create a Static variable which has no data until being feed.
1245

U
ustiniankw 已提交
1246
        In Dygraph Mode: Please use ** :ref:`api_fluid_dygraph_to_variable` ** to create a dygraph variable with real data.
J
Jiabin Yang 已提交
1247 1248

    In Fluid, every input and output of an OP is a variable. In most
1249
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1250 1251
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1252

1253
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1254
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1255

T
tianshuo78520a 已提交
1256
    Most of a Variable's member variables can be set to be None. It mean
1257
    it is not available or will be specified later.
1258

1259
    Examples:
1260 1261
        In Static Graph Mode:

1262 1263
        .. code-block:: python

1264
            import paddle.fluid as fluid
1265
            cur_program = fluid.Program()
1266 1267 1268 1269
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1270

1271
        In Dygraph  Mode:
1272 1273 1274 1275 1276 1277 1278 1279 1280

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1281 1282
    """

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
    def __init__(
        self,
        block,
        type=core.VarDesc.VarType.LOD_TENSOR,
        name=None,
        shape=None,
        dtype=None,
        lod_level=None,
        capacity=None,
        persistable=None,
        error_clip=None,
        stop_gradient=False,
        is_data=False,
        need_check_feed=False,
        belong_to_optimizer=False,
1298
        **kwargs,
1299
    ):
Y
Yu Yang 已提交
1300 1301
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1302
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1303

Y
Yu Yang 已提交
1304
        if dtype is not None:
1305
            if not isinstance(dtype, core.VarDesc.VarType):
1306
                dtype = convert_np_dtype_to_dtype_(dtype)
1307

S
Steffy-zxf 已提交
1308 1309 1310 1311
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1312 1313 1314
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1315 1316
        self.belong_to_optimizer = belong_to_optimizer

1317 1318 1319
        self.error_clip = error_clip

        is_new_var = False
1320
        self.desc = self.block.desc.find_var(name.encode())
1321

1322
        if self.desc is None:
1323
            self.desc = self.block.desc.var(name.encode())
1324
            is_new_var = True
1325

1326 1327 1328
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
1329 1330 1331 1332 1333
            raise ValueError(
                "Variable '{0}' has been created before. The "
                "previous type is {1}, the new type is {2}. They"
                " are not matched".format(self.name, self.desc.type(), type)
            )
1334

1335
        if shape is not None:
1336
            if is_new_var:
1337 1338 1339 1340 1341 1342
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1343 1344
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1345 1346
                        "matched.".format(self.name, old_shape, shape)
                    )
1347 1348 1349 1350 1351 1352
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
1353 1354 1355 1356 1357 1358
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous data type is {1}, the new "
                        "data type is {2}. They are not "
                        "matched.".format(self.name, old_dtype, dtype)
                    )
1359 1360 1361 1362 1363 1364

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
1365 1366 1367 1368 1369 1370
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous lod_level is {1}, the new "
                        "lod_level is {2}. They are not "
                        "matched".format(self.name, self.lod_level, lod_level)
                    )
1371 1372 1373 1374 1375 1376
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1377 1378
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1379
                        "persistable is {2}. They are not matched".format(
1380 1381 1382
                            self.name, self.persistable, persistable
                        )
                    )
1383

1384 1385
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1386

1387 1388 1389 1390 1391 1392 1393
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1394

1395 1396
        self.block.vars[name] = self
        self.op = None
1397
        self.stop_gradient = stop_gradient
1398
        self.is_data = is_data
Y
Yu Yang 已提交
1399

1400 1401
    def detach(self):
        """
U
ustiniankw 已提交
1402

1403
        Returns a new Variable, detached from the current graph.
1404 1405
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1406

1407
        Returns:
U
ustiniankw 已提交
1408
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable), The detached Variable.
1409 1410 1411 1412

        Examples:
            .. code-block:: python

1413
                import paddle
1414

1415 1416 1417 1418
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1419

1420 1421
                # create a detached Variable
                y = x.detach()
U
ustiniankw 已提交
1422

1423
        """
1424

1425 1426 1427 1428
        assert (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ), "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"
1429 1430 1431 1432 1433 1434

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
1435 1436
            stop_gradient=True,
        )
1437

1438 1439 1440
        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]}
        )
1441
        return output
1442

1443
    @fake_interface_only
1444
    def numpy(self):
1445
        """
J
Jiabin Yang 已提交
1446
        **Notes**:
T
tianshuo78520a 已提交
1447
            **This API is ONLY available in Dygraph mode**
1448

J
Jiabin Yang 已提交
1449
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1450 1451 1452 1453 1454

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1455
            ndarray: dtype is same as current Variable
1456 1457 1458 1459 1460 1461

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1462
                from paddle.fluid.dygraph import Linear
1463 1464 1465 1466
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1467
                    linear = Linear(32, 64)
1468
                    data = to_variable(data)
1469
                    x = linear(data)
1470 1471 1472
                    print(x.numpy())

        """
1473
        pass
1474

1475
    @non_static_only
1476
    def backward(self, retain_graph=False):
1477
        """
J
Jiabin Yang 已提交
1478
        **Notes**:
T
tianshuo78520a 已提交
1479
            **This API is ONLY available in Dygraph mode**
1480

1481
        Run backward of current Graph which starts from current Tensor.
1482

J
Jiabin Yang 已提交
1483
        Args:
1484 1485 1486 1487
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1488

J
Jiabin Yang 已提交
1489 1490
        Returns:
            NoneType: None
1491 1492 1493 1494 1495

        Examples:
            .. code-block:: python

                import numpy as np
1496 1497
                import paddle
                paddle.disable_static()
1498 1499

                x = np.ones([2, 2], np.float32)
1500 1501 1502 1503 1504 1505 1506
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1507 1508
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1509
                loss.backward()
1510 1511

        """
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
        from .backward import append_backward

        if retain_graph is True:
            raise AssertionError(
                "`retain_graph` == True is not supported in @to_static function."
                "please set retain_graph = False."
            )
        param_grad_list = append_backward(self)
        for param, param_grad in param_grad_list:
            # set grad to simulate dygraph loss.backward() in static mode.
            setattr(param, "grad", param_grad)
1523

1524
    @fake_interface_only
1525
    def gradient(self):
1526
        """
J
Jiabin Yang 已提交
1527
        **Notes**:
T
tianshuo78520a 已提交
1528
            **This API is ONLY available in Dygraph mode**
1529 1530 1531

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1532
        Returns:
1533
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1534 1535 1536 1537

        Examples:
            .. code-block:: python

1538
                import paddle
1539 1540 1541
                import paddle.fluid as fluid
                import numpy as np

1542
                # example1: return ndarray
1543 1544 1545 1546 1547 1548 1549
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1550
                    ret2 = paddle.add_n(inputs2)
1551
                    loss2 = paddle.sum(ret2)
1552
                    loss2.backward()
1553 1554
                    print(loss2.gradient())

1555 1556
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
1557 1558 1559 1560 1561
                    embedding = paddle.nn.Embedding(
                        20,
                        32,
                        weight_attr='emb.w',
                        sparse=True)
1562 1563 1564 1565 1566 1567 1568
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1569
        """
1570
        pass
1571

1572
    @fake_interface_only
1573
    def clear_gradient(self):
1574
        """
J
Jiabin Yang 已提交
1575
        **Notes**:
T
tianshuo78520a 已提交
1576
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1577 1578

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1579

J
Jiabin Yang 已提交
1580
        Clear  (set to ``0`` ) the Gradient of Current Variable
1581 1582 1583 1584 1585 1586

        Returns:  None

        Examples:
            .. code-block:: python

1587
                import paddle
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1598
                    ret2 = paddle.add_n(inputs2)
1599
                    loss2 = paddle.sum(ret2)
1600
                    loss2.backward()
1601 1602 1603 1604 1605
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1606
        pass
X
Xin Pan 已提交
1607

1608
    def register_hook(self, hook):
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
        import paddle

        def backward_hook_wrapper(dy):
            """call the backward hook in ."""
            return hook(np.array(dy))

        def forward_hook_wrapper(x):
            """do nothing but return a new variable."""
            return x

        paddle.static.py_func(
            func=forward_hook_wrapper,
            x=self,
            out=self,
            backward_func=backward_hook_wrapper,
            skip_vars_in_backward_input=[self],
        )
1626

1627
    def __str__(self):
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1644 1645
                import paddle
                import paddle.static as static
1646

1647 1648 1649
                paddle.enable_static()

                cur_program = static.Program()
1650 1651 1652 1653 1654 1655
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1656 1657
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1658 1659 1660 1661
        if (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ):
1662
            dtype_str = str(self.dtype).split('.')[1]
1663 1664 1665 1666 1667 1668 1669
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".format(
                name=self.name,
                type=type_str,
                shape=self.shape,
                dtype=dtype_str,
                stop_gradient=self.stop_gradient,
            )
1670
        else:
1671
            var_str = "{name} : {type})".format(name=self.name, type=type_str)
1672

1673
        if self.is_parameter:
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1684
        from paddle.distributed.auto_parallel.static.dist_context import (
1685 1686 1687
            get_default_distributed_context,
        )

1688
        dist_context = get_default_distributed_context()
1689 1690
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1691 1692 1693
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_tensor
            )
1694

1695
        return var_str
Y
Yang Yang(Tony) 已提交
1696

F
update  
fengjiayi 已提交
1697
    def to_string(self, throw_on_error, with_details=False):
1698 1699 1700
        """
        Get debug string.

J
Jiabin Yang 已提交
1701 1702 1703 1704 1705
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1706

1707 1708
        Returns:
            str: The debug string.
1709 1710 1711 1712 1713

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1714
                import paddle
1715

1716
                paddle.enable_static()
1717 1718 1719 1720 1721
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1722
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1723
                print("=============with detail===============")
1724
                print(new_variable.to_string(True, True))
1725
        """
1726
        assert isinstance(throw_on_error, bool) and isinstance(
1727 1728
            with_details, bool
        )
1729
        protostr = self.desc.serialize_to_string()
1730
        proto = framework_pb2.VarDesc.FromString(bytes(protostr))
F
update  
fengjiayi 已提交
1731 1732
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1733
            additional_attr = ("error_clip",)
F
update  
fengjiayi 已提交
1734
            for attr_name in additional_attr:
1735
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
1736

F
update  
fengjiayi 已提交
1737
        return res_str
1738 1739 1740

    __repr__ = __str__

1741 1742 1743
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
1744

1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1768
    @property
1769
    def stop_gradient(self):
J
Jiabin Yang 已提交
1770 1771 1772
        """
        Indicating if we stop gradient from current Variable

1773
        **Notes: This Property has default value as** ``True`` **in** Dygraph **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``
J
Jiabin Yang 已提交
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1785 1786
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1787 1788 1789
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1790 1791
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1792 1793 1794 1795
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1796
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1797 1798
                assert (out1.gradient() == 0).all()
        """
1799
        return self.desc.stop_gradient()
1800

1801 1802
    @stop_gradient.setter
    def stop_gradient(self, s):
1803
        self.desc.set_stop_gradient(s)
1804

1805 1806
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1807 1808 1809 1810 1811 1812 1813 1814
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

1815
            **2. In** Dygraph **mode, this property should not be changed**
J
Jiabin Yang 已提交
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1828
        return self.desc.persistable()
1829

Y
Yu Yang 已提交
1830 1831
    @persistable.setter
    def persistable(self, p):
1832
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1833

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1859 1860
    @property
    def name(self):
J
Jiabin Yang 已提交
1861 1862 1863
        """
        Indicating name of current Variable

1864
        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** Dygraph **mode. This is how we achieve Parameter sharing**
J
Jiabin Yang 已提交
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1877
        return self.desc.name()
Y
Yu Yang 已提交
1878

1879 1880 1881 1882 1883 1884
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1885 1886
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1887

1888 1889 1890
        Examples:
          .. code-block:: python

1891
          import paddle
1892

1893
          x = paddle.static.data(name="x", shape=[-1, 23, 48], dtype='float32')
1894
          print(x.grad_name) # output is ``x@GRAD``
1895 1896 1897 1898

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1899 1900
    @name.setter
    def name(self, new_name):
1901
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1902

Y
Yu Yang 已提交
1903 1904
    @property
    def shape(self):
J
Jiabin Yang 已提交
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1922
        # convert to tuple, make it as same as numpy API.
1923
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1924 1925

    @property
F
fengjiayi 已提交
1926
    def dtype(self):
J
Jiabin Yang 已提交
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1943
        return self.desc.dtype()
Y
Yu Yang 已提交
1944 1945 1946

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1947 1948 1949 1950 1951 1952 1953 1954
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

1955
            **2. Don't support this property in** Dygraph **mode, it's value should be** ``0(int)``
J
Jiabin Yang 已提交
1956 1957 1958 1959

        Examples:
          .. code-block:: python

1960
            import paddle
J
Jiabin Yang 已提交
1961
            import paddle.fluid as fluid
1962 1963

            paddle.enable_static()
J
Jiabin Yang 已提交
1964 1965 1966 1967 1968 1969 1970
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1971 1972
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
1973 1974
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
1975
        return self.desc.lod_level()
Y
Yu Yang 已提交
1976

Y
Yu Yang 已提交
1977 1978
    @property
    def type(self):
J
Jiabin Yang 已提交
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1995
        return self.desc.type()
Y
Yu Yang 已提交
1996

1997 1998 1999
    @property
    def T(self):
        """
U
ustiniankw 已提交
2000

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
U
ustiniankw 已提交
2019

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
2032 2033
            stop_gradient=False,
        )
2034 2035 2036 2037 2038
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
2039 2040 2041 2042 2043 2044 2045 2046 2047
            stop_gradient=False,
        )

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': perm},
        )
2048 2049
        return out

2050 2051 2052
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
2053
        Variable. It remains in the current graph, that is, the cloned Variable
2054 2055 2056 2057
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
U
ustiniankw 已提交
2058
            Variable, The cloned Variable.
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
2078 2079
            stop_gradient=self.stop_gradient,
        )
2080

2081 2082 2083
        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]}
        )
2084 2085
        return output

W
Wu Yi 已提交
2086
    def _set_error_clip(self, error_clip):
2087
        """
U
ustiniankw 已提交
2088

2089 2090 2091 2092 2093 2094 2095
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
U
ustiniankw 已提交
2096

2097
        """
2098 2099
        self.error_clip = error_clip

2100 2101
    def _set_info(self, key, value):
        """
U
ustiniankw 已提交
2102

2103 2104 2105 2106 2107 2108
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

2109
        Returns:
2110
            None
U
ustiniankw 已提交
2111

2112 2113 2114 2115 2116 2117 2118
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
U
ustiniankw 已提交
2119

2120 2121 2122 2123 2124
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

2125
        Returns:
2126
            object
U
ustiniankw 已提交
2127

2128 2129 2130 2131 2132
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2133 2134
    def _slice_indices(self, slice, length):
        """
U
ustiniankw 已提交
2135

2136
        Reference implementation for the slice.indices method.
U
ustiniankw 已提交
2137

2138 2139 2140 2141 2142 2143 2144 2145
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2146
            raise ValueError("slice step can not be zero")
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2157 2158 2159
            start = (
                max(start + length, lower) if start < 0 else min(start, upper)
            )
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
2205 2206 2207
                if (index > 0 and index >= self.shape[index]) or (
                    index < 0 and (index + self.shape[index]) < 0
                ):
2208
                    raise IndexError("invalid index")
2209 2210 2211 2212 2213
                start = (
                    max(start + self.shape[index], 0)
                    if start < 0
                    else min(start, self.shape[index])
                )
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2227
    def _cloneVar(self, copy=False):
2228 2229
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2230
                name=unique_name.generate_with_ignorable_key(self.name),
2231 2232
                dtype=self.dtype,
            )
2233 2234 2235 2236
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2237
        new_var = self._cloneVar()
2238 2239 2240 2241 2242 2243
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes, 'starts': starts, 'ends': ends},
        )
2244 2245 2246
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2247
        new_var = self._cloneVar()
2248 2249 2250 2251 2252 2253 2254 2255
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={
                'axis': axis,
            },
        )
2256 2257 2258 2259 2260
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2261
                return self._cloneVar(True)
2262 2263 2264 2265 2266 2267 2268
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2269 2270 2271
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2272 2273 2274
                        start += step
                else:
                    while start > stop:
2275 2276 2277
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2278 2279 2280 2281
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2282
                return self._cloneVar(True)
2283
            index = int(item)
2284 2285 2286
            if (index > 0 and index >= self.shape[axis]) or (
                index < 0 and (index + self.shape[axis]) < 0
            ):
2287 2288 2289 2290 2291 2292
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2293
        return _getitem_impl_(self, item)
2294

2295
    def __setitem__(self, item, value):
2296
        return _setitem_impl_(self, item, value)
2297

2298 2299
    def get_value(self, scope=None):
        """
2300
        Get the value of variable in given scope.
2301 2302

        Args:
2303
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2304 2305 2306 2307
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
U
ustiniankw 已提交
2308
            Tensor, the value in given scope.
2309 2310 2311 2312 2313

        Examples:
            .. code-block:: python

                import paddle
2314
                import paddle.static as static
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2339 2340
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2341 2342
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
2343

2344 2345
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2346 2347 2348 2349
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2350 2351 2352 2353 2354

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
2355 2356 2357
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2358 2359 2360 2361 2362
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
U
ustiniankw 已提交
2363

2364
        Set the value to the tensor in given scope.
2365 2366 2367

        Args:
            value(Tensor/ndarray) : The value to be set.
2368
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2369 2370 2371 2372 2373
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
2374

2375 2376 2377 2378
        Examples:
            .. code-block:: python

                import paddle
2379
                import paddle.static as static
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
U
ustiniankw 已提交
2403

2404 2405 2406
        '''

        # The 'framework' is a low-level module, and 'executor'
2407
        # can not be imported at the begainning of this file.
2408 2409 2410 2411 2412
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2413 2414 2415 2416
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".format(
                    type(value)
                )
            )
2417 2418 2419

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2420 2421 2422 2423
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2424 2425 2426 2427 2428 2429

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
2430 2431 2432
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
2443 2444 2445 2446
                    "{} expected a shape {}, but the received shape is {}.".format(
                        self.name, list(t.shape()), list(value_shape)
                    )
                )
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2464 2465
    def size(self):
        """
U
ustiniankw 已提交
2466

2467
        Returns the number of elements for current Variable, which is a int64 Variable with shape [] .
2468 2469

        Returns:
U
ustiniankw 已提交
2470
            Variable, the number of elements for current Variable
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
U
ustiniankw 已提交
2484

2485 2486 2487 2488
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
2489 2490
            dtype=core.VarDesc.VarType.INT64,
        )
2491

2492 2493 2494
        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]}
        )
2495 2496
        return output

2497 2498
    def _set_attr(self, name, val):
        """
U
ustiniankw 已提交
2499

2500 2501 2502 2503 2504
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
U
ustiniankw 已提交
2505

2506 2507 2508 2509 2510
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
U
ustiniankw 已提交
2511

2512 2513 2514 2515 2516 2517
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2518 2519
            bool, True if has this attribute.

2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

2541
    def attr(self, name):
2542 2543 2544 2545 2546 2547 2548
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2549
            int|str|list, The attribute value. The return value
2550 2551 2552 2553 2554
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2555
    def dist_attr(self):
2556
        """
2557
        Get distributed attribute of this Variable.
2558
        """
2559
        return self.desc.dist_attr
2560

2561 2562
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2563
        """
2564
        Set distributed attribute of this Variable.
2565
        """
2566
        self.desc.dist_attr = dist_attr
2567

Y
Yu Yang 已提交
2568

F
fengjiayi 已提交
2569 2570 2571
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2572

2573 2574
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2575 2576 2577 2578
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2579
        op_proto = framework_pb2.OpProto.FromString(bytes(pbstr))
F
fengjiayi 已提交
2580 2581 2582 2583
        ret_values.append(op_proto)
    return ret_values


2584
class OpProtoHolder:
2585 2586 2587 2588
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2589 2590 2591 2592 2593 2594 2595 2596
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
2597 2598
            self.__class__, '_instance'
        ), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2599 2600 2601 2602 2603 2604
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2605 2606 2607 2608 2609 2610 2611 2612
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2613 2614
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2615 2616
        return self.op_proto_map[type]

2617 2618
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2619
        custom_op_names = []
2620 2621 2622
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2623 2624 2625
                custom_op_names.append(proto.type)

        return custom_op_names
2626

2627 2628 2629
    def has_op_proto(self, type):
        return type in self.op_proto_map

2630 2631 2632 2633
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2634
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2635
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2636
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
2637
            core.op_proto_and_checker_maker.kOpDeviceAttrName(),
2638 2639
        }

F
fengjiayi 已提交
2640

2641
class Operator:
2642
    """
2643 2644 2645 2646 2647 2648 2649
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2650
        type(str): The type of operator. Default None.
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2671
        Block.append_op or Block._prepend_op instead.
2672 2673 2674 2675

    Examples:
        .. code-block:: python

2676
            import paddle.fluid as fluid
2677
            cur_program = fluid.Program()
2678 2679 2680 2681 2682
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2683
    """
2684

2685
    OP_WITHOUT_KERNEL_SET = {
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
        'feed',
        'fetch',
        'recurrent',
        'go',
        'rnn_memory_helper_grad',
        'conditional_block',
        'while',
        'send',
        'recv',
        'listen_and_serv',
        'fl_listen_and_serv',
        'ncclInit',
        'select',
        'checkpoint_notify',
        'gen_bkcl_id',
        'c_gen_bkcl_id',
        'gen_nccl_id',
        'c_gen_nccl_id',
        'c_comm_init',
        'c_sync_calc_stream',
        'c_sync_comm_stream',
        'queue_generator',
        'dequeue',
        'enqueue',
        'heter_listen_and_serv',
        'c_wait_comm',
        'c_wait_compute',
        'copy_cross_scope',
2714
    }
2715

2716 2717 2718
    def __init__(
        self, block, desc, type=None, inputs=None, outputs=None, attrs=None
    ):
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

2729
        if in_dygraph_mode():
2730 2731
            if type is None:
                raise ValueError(
2732 2733
                    "`type` to initialized an Operator can not be None."
                )
J
Jiabin Yang 已提交
2734
            self._type = type
M
minqiyang 已提交
2735
            self.attrs = attrs if attrs else {}
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2746
            # attr for static graph mode cuda graph
2747 2748
            self._cuda_graph_attr = _current_cuda_graph_mode

2749 2750 2751
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2752
                op_attrs[
2753 2754
                    op_maker.kOpRoleAttrName()
                ] = self.block.program._op_role
2755 2756

            role_var_name = op_maker.kOpRoleVarAttrName()
2757 2758 2759 2760
            if (
                len(self.block.program._op_role_var) != 0
                and role_var_name not in op_attrs
            ):
2761
                op_attrs[role_var_name] = self.block.program._op_role_var
2762 2763 2764 2765 2766

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2767 2768 2769 2770 2771
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2772 2773 2774
                return
            if type is None:
                raise ValueError(
2775 2776
                    "`type` to initialized an Operator can not be None."
                )
2777 2778
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2779 2780 2781
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2782
                        '  File "{}", line {}, in {}'.format(
2783 2784 2785 2786 2787 2788
                            frame[0], frame[1], frame[2]
                        )
                    )
                    op_attrs[callstack_var_name].append(
                        '    {}'.format(frame[3])
                    )
2789 2790 2791 2792 2793 2794 2795

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2796 2797 2798 2799 2800 2801 2802 2803
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
2804 2805 2806
                    warnings.warn(
                        "The Op(%s) is not support to set device." % type
                    )
2807
                if 'force_cpu' in op_attrs:
2808
                    if (
2809 2810
                        type == 'less_than'
                        and op_attrs['force_cpu'] is not None
2811
                    ) or op_attrs['force_cpu'] != False:
2812 2813 2814
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
2815 2816
                            "used at the same time." % type
                        )
2817
            if _current_pipeline_stage is not None:
2818 2819 2820 2821 2822
                pipeline_attr_name = (
                    'pipeline_stage' + core.kAutoParallelSuffix()
                )
                self._update_desc_attr(
                    pipeline_attr_name, _current_pipeline_stage
2823
                )
2824

2825 2826 2827 2828 2829 2830 2831 2832 2833
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
2834 2835 2836
                    assert (
                        found or in_proto.dispensable
                    ), "Input {} not found".format(in_proto.name)
2837 2838
                    if found:
                        in_args = inputs[in_proto.name]
2839
                        if not isinstance(in_args, (list, tuple)):
2840 2841 2842 2843
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
2844 2845
                                % (in_proto.name, len(in_args))
                            )
2846
                        in_arg_names = []
2847
                        for index, arg in enumerate(in_args):
2848
                            if isinstance(arg, str):
2849
                                in_arg_names.append(arg)
2850
                            elif isinstance(arg, bytes):
2851
                                in_arg_names.append(arg.decode())
W
wanghuancoder 已提交
2852
                            elif isinstance(arg, (Variable, core.eager.Tensor)):
2853
                                in_arg_names.append(arg.name)
2854
                            else:
2855
                                raise TypeError(
2856 2857
                                    f"The type of '%{in_proto.name}' in operator {type} should be "
                                    f"one of [str, bytes, Variable]. but received : {arg}"
2858
                                )
2859 2860 2861 2862 2863 2864 2865 2866
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884

                    # FIXME: The outputs of primitive operator currently
                    # doesn't include intermediate output as it will be dropped
                    # in operator codegen, such as xshape output of reshape2.
                    # It will fixed when the operator codegen support
                    # intermediate output.
                    if core._is_bwd_prim_enabled():
                        if not (
                            (m.name in outputs)
                            or m.dispensable
                            or m.intermediate
                        ):
                            raise ValueError(
                                (
                                    "Incorrect setting for output(s) of "
                                    "operator \"%s\", should set: [%s]."
                                )
                                % (type, m.name)
2885
                            )
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
                    else:
                        if not ((m.name in outputs) or m.dispensable):
                            raise ValueError(
                                (
                                    "Incorrect setting for output(s) of "
                                    "operator \"%s\", should set: [%s]."
                                )
                                % (type, m.name)
                            )

2896 2897 2898 2899 2900 2901 2902 2903 2904
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
2905 2906
                            % (out_proto.name, len(out_args))
                        )
2907 2908
                    out_arg_names = []
                    for arg in out_args:
2909
                        if isinstance(arg, str):
2910 2911
                            out_arg_names.append(arg)
                        else:
2912
                            out_arg_names.append(arg.name)
2913
                        # TODO(minqiyang): could we remove variable's op in static graph mode?
2914
                        if not in_dygraph_mode():
2915
                            if isinstance(arg, str):
2916 2917 2918
                                block.var(arg).op = self
                            else:
                                arg.op = self
2919 2920
                    self.desc.set_output(out_proto.name, out_arg_names)

2921
            extra_attrs_map = core.get_op_extra_attrs(type)
2922 2923 2924 2925 2926
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
2927 2928 2929
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
2930 2931 2932
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
2933
                for attr_name in extra_attrs_map.keys():
2934 2935 2936 2937 2938
                    if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                        warnings.warn(
                            "op %s use extra_attr: %s" % (type, attr_name)
                        )

2939 2940 2941 2942 2943 2944
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
                        self._update_desc_attr(
                            attr_name, extra_attrs_map[attr_name]
                        )
2945 2946
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
2947

2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
                if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                    if type in extra_op_attrs:
                        attrs = extra_op_attrs.get(type, [])
                        for attr in attrs:
                            if attr in op_attrs.keys():
                                warnings.warn(
                                    "op %s use extra_attr: %s" % (type, attr)
                                )

                    if type in special_op_attrs:
                        attrs = special_op_attrs.get(type, [])
                        for attr in attrs:
                            a_name = list(attr.keys())[0]
                            default_value = list(attr.values())[0]
                            if (
                                a_name in op_attrs.keys()
                                and default_value != op_attrs[a_name]
                            ):
                                warnings.warn(
                                    "op %s's attr %s = %s is not the default value: %s"
                                    % (
                                        type,
                                        a_name,
                                        op_attrs[a_name],
                                        default_value,
                                    )
                                )

J
jianghaicheng 已提交
2976 2977
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
2978
                if global_ipu_index >= 0:
2979 2980 2981
                    self._update_desc_attr(
                        ipu_index_attr_name, global_ipu_index
                    )
2982
                if global_ipu_stage >= 0:
2983 2984 2985
                    self._update_desc_attr(
                        ipu_stage_attr_name, global_ipu_stage
                    )
J
jianghaicheng 已提交
2986

2987
            self.desc.check_attrs()
2988

2989 2990 2991 2992
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2993
    def _has_kernel(self, op_type):
2994 2995
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2996
    def to_string(self, throw_on_error):
2997
        """
2998 2999
        Get debug string.

3000
        Args:
3001 3002
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
3003

3004 3005
        Returns:
            str: The debug string.
3006 3007

        """
3008
        protostr = self.desc.serialize_to_string()
3009
        proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang(Tony) 已提交
3010 3011
        return _debug_string_(proto, throw_on_error)

3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3044
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3045 3046
            type(skip_op_callstack)
        )
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

3073 3074 3075
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
3076 3077 3078
                a = "{name} = Var['{value}']".format(
                    name=name, type=attr_type, value=attr_var_name
                )
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
3089 3090
                    name=name, type=attr_type, value=','.join(attr_var_names)
                )
3091 3092 3093 3094 3095
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3096 3097
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
3098 3099
                    name=name, type=attr_type, value=self._block_attr_id(name)
                )
3100 3101 3102 3103 3104 3105 3106
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
3107 3108
                    name=name, type=attr_type, value=self._blocks_attr_ids(name)
                )
3109 3110 3111 3112 3113
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3114
            # it is bytes of serialized protobuf
3115 3116 3117 3118 3119
            if (
                is_compiled_with_cinn()
                and self.type == 'cinn_launch'
                and name == 'compilation_key'
            ):
3120 3121
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3122 3123 3124 3125 3126 3127 3128 3129 3130
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3131 3132 3133
            a = "{name} = {value}".format(
                name=name, type=attr_type, value=value
            )
3134

3135 3136 3137 3138
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3139
        from paddle.distributed.auto_parallel.static.dist_context import (
3140 3141 3142
            get_default_distributed_context,
        )

3143
        dist_context = get_default_distributed_context()
3144 3145
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3146 3147 3148
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_op
            )
3149

3150
        if outputs_str != "{}":
3151 3152 3153 3154 3155 3156
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".format(
                outputs=outputs_str,
                op_type=self.type,
                inputs=inputs_str,
                attrs=attrs_str,
            )
3157
        else:
3158 3159 3160
            op_str = "{op_type}(inputs={inputs}, {attrs})".format(
                op_type=self.type, inputs=inputs_str, attrs=attrs_str
            )
3161 3162
        return op_str

Y
Yang Yang(Tony) 已提交
3163
    def __str__(self):
3164
        return self._to_readable_code()
3165 3166 3167

    __repr__ = __str__

F
fengjiayi 已提交
3168 3169
    @property
    def type(self):
3170
        return self.desc.type()
F
fengjiayi 已提交
3171 3172

    def input(self, name):
3173
        r"""
U
ustiniankw 已提交
3174

3175
        Get the input arguments according to the input parameter name.
3176

3177 3178
        Args:
            name(str): The input parameter name.
3179

3180
        Returns:
U
ustiniankw 已提交
3181
            list, return the list of argument names that associated with \
3182
                the specific parameter name.
U
ustiniankw 已提交
3183

3184
        """
F
fengjiayi 已提交
3185 3186
        return self.desc.input(name)

W
Wu Yi 已提交
3187
    def _rename_input(self, old_name, new_name):
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3198
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3199

W
Wu Yi 已提交
3200
    def _rename_output(self, old_name, new_name):
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3211
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3212

F
fengjiayi 已提交
3213 3214 3215 3216
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3217 3218 3219 3220 3221 3222 3223 3224
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3225
    def output(self, name):
3226
        r"""
3227
        Get output arguments by the output parameter name.
3228

3229 3230
        Args:
            name(str): The output parameter name.
3231

3232 3233 3234
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3235
        """
F
fengjiayi 已提交
3236 3237 3238 3239 3240 3241
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3242 3243 3244 3245 3246 3247
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
3248 3249
            "Can't find op itself in it's block. It could be a bug of Paddle."
        )
3250

F
fengjiayi 已提交
3251
    def has_attr(self, name):
3252
        """
3253 3254
        Whether this Operator has the attribute with name or not.

3255
        Args:
3256
            name(str): the attribute name.
3257

3258 3259
        Returns:
            bool: True if has this attribute.
3260 3261

        """
F
fengjiayi 已提交
3262 3263 3264
        return self.desc.has_attr(name)

    def attr_type(self, name):
3265
        """
3266
        Get the type of attribute by attribute's name.
3267

3268 3269
        Args:
            name(str): the attribute name.
3270

3271 3272
        Returns:
            core.AttrType: the attribute type.
3273
        """
3274
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3275

W
Wu Yi 已提交
3276
    def _set_attr(self, name, val):
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3287 3288
        self._update_desc_attr(name, val)

3289 3290 3291
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3303 3304 3305 3306 3307
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3308
            self.desc.set_block_attr(name, val.desc)
3309
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3310
            self.desc.set_blocks_attr(name, [v.desc for v in val])
3311 3312 3313
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
Q
Qiyang Min 已提交
3314 3315
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3316 3317 3318 3319 3320 3321 3322 3323 3324
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
3325 3326 3327 3328 3329 3330
        # if the required attribute is a SCALAR, pass as-is
        if type_index == core.AttrType.SCALAR:
            desc._set_scalar_attr(name, wrap_as_scalar(val))
        elif type_index == core.AttrType.SCALARS:
            desc._set_scalars_attr(name, wrap_as_scalars(val))
        elif type_index == core.AttrType.BOOL:
3331 3332 3333 3334 3335 3336 3337
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
3338 3339
        elif type_index == core.AttrType.FLOAT64:
            desc._set_float64_attr(name, val)
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3357

F
fengjiayi 已提交
3358 3359
    @property
    def attr_names(self):
3360
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3361 3362

    def attr(self, name):
3363
        """
3364 3365
        Get the attribute by name.

3366
        Args:
3367
            name(str): the attribute name.
3368

3369 3370
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3371 3372
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3373
        return self.desc.attr(name)
Y
Yu Yang 已提交
3374

W
Wu Yi 已提交
3375
    def _block_attr_id(self, name):
3376
        """
G
gongweibao 已提交
3377
        Get the block attribute's id by name.
3378

3379 3380
        Args:
            name(str): the attribute name.
3381

3382 3383
        Returns:
            int: the block index.
3384
        """
W
Wu Yi 已提交
3385
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3386

W
Wu Yi 已提交
3387
    def _block_attr(self, name):
G
gongweibao 已提交
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3398
        id = self._block_attr_id(name)
3399
        assert id >= 0 and id < len(self.block.program.blocks)
G
gongweibao 已提交
3400 3401
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3402
    def _blocks_attr(self, name):
G
gongweibao 已提交
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3413
        for i in self._blocks_attr_ids(name):
3414
            assert i >= 0 and i < len(self.block.program.blocks)
G
gongweibao 已提交
3415 3416 3417 3418
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3419
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3430
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3431

3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3443 3444 3445 3446 3447
        assert (
            attr_type == core.AttrType.VAR
        ), "Required type attr({}) is Variable, but received {}".format(
            name, attr_type
        )
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3462 3463 3464 3465 3466
        assert (
            attr_type == core.AttrType.VARS
        ), "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type
        )
3467 3468 3469 3470 3471 3472
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3473
    def all_attrs(self):
F
fengjiayi 已提交
3474
        """
3475 3476 3477
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3478
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3479 3480 3481 3482
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3483
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3484
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3485
                attr_map[n] = self._block_attr(n)
3486
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3487
                attr_map[n] = self._blocks_attr(n)
3488 3489 3490 3491 3492 3493
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3494

F
fengjiayi 已提交
3495 3496
        return attr_map

3497 3498 3499
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3500 3501 3502 3503

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3504 3505 3506
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3507 3508 3509 3510 3511 3512 3513 3514

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3515 3516
            return False

3517 3518 3519 3520 3521 3522
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3523
    @property
3524
    def dist_attr(self):
3525
        """
3526
        Get distributed attribute of this Variable.
3527
        """
3528
        return self.desc.dist_attr
3529

3530 3531
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3532
        """
3533
        Set distributed attribute of this Variable.
3534
        """
3535
        self.desc.dist_attr = dist_attr
3536

Y
Yu Yang 已提交
3537

3538
class Block:
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3553
        use `Program._create_block()` to create a block.
3554 3555 3556 3557

    Examples:
        .. code-block:: python

3558 3559 3560
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3561 3562 3563 3564 3565 3566 3567 3568 3569
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3570
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3571
        self.desc = program.desc.block(idx)
3572
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3573
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3574 3575
        self.program = program

3576
    def __str__(self):
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3611
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3612 3613
            type(skip_op_callstack)
        )
3614 3615 3616 3617 3618 3619 3620
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
3621 3622
                op._to_readable_code(skip_op_callstack)
            )
3623 3624
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3625

F
fengjiayi 已提交
3626 3627
    def to_string(self, throw_on_error, with_details=False):
        """
3628 3629
        Get debug string.

F
fengjiayi 已提交
3630 3631
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3632
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3633
            with_details(bool): more details about variables and parameters
3634 3635
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3636

3637 3638
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3639
        """
3640
        assert isinstance(throw_on_error, bool) and isinstance(
3641 3642
            with_details, bool
        )
F
fengjiayi 已提交
3643
        if with_details:
F
fengjiayi 已提交
3644
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3645
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
3646 3647 3648
                self.idx,
                self.parent_idx,
            )
3649
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3650
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
3651 3652
                    r"\n    \1", var.to_string(throw_on_error, with_details)
                )
F
fengjiayi 已提交
3653
            for op in self.ops:
F
fengjiayi 已提交
3654
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
3655 3656
                    r"\n    \1", op.to_string(throw_on_error)
                )
F
fengjiayi 已提交
3657 3658 3659
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3660
            proto = framework_pb2.BlockDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
3661 3662
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3663 3664 3665

    __repr__ = __str__

Y
Yu Yang 已提交
3666 3667
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3668
        return self.desc.parent
Y
Yu Yang 已提交
3669

Y
Yu Yang 已提交
3670 3671 3672 3673
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3674
    def _set_forward_block_idx(self, idx):
3675 3676 3677 3678 3679 3680 3681 3682 3683
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3684
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3685

3686 3687 3688 3689 3690 3691 3692 3693
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3694 3695
    @property
    def idx(self):
Y
Yu Yang 已提交
3696
        return self.desc.id
Y
Yu Yang 已提交
3697

Q
Qiao Longfei 已提交
3698
    def var(self, name):
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3712
        if not isinstance(name, str):
M
minqiyang 已提交
3713
            raise TypeError(
3714 3715 3716
                "var require string as parameter, but get %s instead."
                % (type(name))
            )
Y
Yu Yang 已提交
3717 3718
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3719
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3720
        return v
Q
Qiao Longfei 已提交
3721

X
Xin Pan 已提交
3722
    def _find_var_recursive(self, name):
3723 3724 3725 3726 3727 3728 3729
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3730
            Variable: the Variable with the giving name. Or None if not found.
3731
        """
Y
Yu Yang 已提交
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3756
        return None
Y
Yu Yang 已提交
3757

X
Xin Pan 已提交
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3777

Q
Qiao Longfei 已提交
3778
    def all_parameters(self):
3779
        return list(self.iter_parameters())
3780

3781
    def iter_parameters(self):
3782 3783 3784 3785 3786
        return (
            item[1]
            for item in self.vars.items()
            if isinstance(item[1], Parameter)
        )
Q
Qiao Longfei 已提交
3787

Y
Yu Yang 已提交
3788
    def create_var(self, *args, **kwargs):
3789
        if in_dygraph_mode():
3790
            var = _create_tensor(*args, **kwargs)
L
Leo Chen 已提交
3791
        else:
3792 3793 3794
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3795
        return var
Y
Yu Yang 已提交
3796

Q
Qiao Longfei 已提交
3797 3798 3799
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3800
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3801 3802
        """
        Rename variable in vars and ops' inputs and outputs
3803 3804

        Args:
3805 3806
            name(str|bytes): the name that need to be renamed.
            new_name(str|bytes): the name that need to rename to.
3807 3808 3809 3810 3811 3812 3813 3814

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3815
        """
3816 3817
        # Ensure the type of name and new_name is str
        name = name.decode() if isinstance(name, bytes) else name
3818 3819 3820
        new_name = (
            new_name.decode() if isinstance(new_name, bytes) else new_name
        )
M
minqiyang 已提交
3821

T
typhoonzero 已提交
3822
        if not self.has_var(name):
3823
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3824 3825
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3826
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3827 3828 3829 3830 3831 3832
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3833
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3834 3835 3836 3837
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3838
        orig_var_type = v.type
3839
        self.desc._rename_var(name.encode(), new_name.encode())
W
Wu Yi 已提交
3840
        # NOTE: v is destroyed by C++ after calling _rename_var.
3841
        d = self.desc.find_var(new_name.encode())
T
typhoonzero 已提交
3842
        if var_type == "Parameter":
L
Leo Chen 已提交
3843
            if in_dygraph_mode():
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
                var = EagerParamBase(
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
3855
            else:
姜永久 已提交
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
                var = Parameter(
                    self,
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
T
typhoonzero 已提交
3868
        elif var_type == "Variable":
3869 3870 3871 3872 3873 3874 3875
            var = Variable(
                self,
                type=orig_var_type,
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient,
            )
T
wip  
typhoonzero 已提交
3876

W
Wu Yi 已提交
3877
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3878 3879 3880
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3881
        self._sync_with_cpp()
3882
        return var
T
typhoonzero 已提交
3883

3884 3885 3886
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
3887
        self.desc._remove_var(name.encode())
3888 3889
        del self.vars[name]

Y
Yu Yang 已提交
3890 3891
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3892
        param = None
L
Leo Chen 已提交
3893
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3894
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3895
        else:
姜永久 已提交
3896
            param = Parameter(global_block, *args, **kwargs)
3897 3898 3899
        # NOTE(Aurelius84): we deliver stop_gradient in append_op, so we
        # need recorde it state and reset it back after calling this API
        stop_gradient = param.stop_gradient
3900

3901
        if 'initializer' in kwargs:
3902 3903 3904 3905 3906

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3907
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3908
                        # are treated as initialization ops that cause error.
3909
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3910 3911
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
3912 3913 3914
                            "c_broadcast",
                            "c_sync_comm_stream",
                            "coalesce_tensor",
3915
                        ]:
3916
                            continue
3917 3918 3919 3920 3921 3922 3923
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
3924 3925 3926 3927 3928 3929
                raise RuntimeError(
                    "param "
                    + param.name
                    + " is inited by multiple init ops "
                    + str(init_ops)
                )
3930
            elif init_ops_len == 1:
3931
                # TODO already inited, do nothing, should log a warning
3932 3933 3934
                pass
            else:
                initializer(param, self)
3935
        param.stop_gradient = stop_gradient
Q
Qiao Longfei 已提交
3936
        return param
Y
Yu Yang 已提交
3937

Y
Yu Yang 已提交
3938
    def append_op(self, *args, **kwargs):
3939 3940 3941 3942 3943 3944
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
3945
        op_type = kwargs.get("type", None)
3946
        if in_dygraph_mode():
3947
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3948
            inplace_map = kwargs.get("inplace_map", None)
3949 3950 3951
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
3952 3953 3954 3955 3956 3957
                "using `_C_ops` method." % type,
                DeprecationWarning,
            )
            op = Operator(
                block=self,
                desc=None,
3958
                type=op_type,
3959 3960 3961 3962
                inputs=None,
                outputs=None,
                attrs=attrs,
            )
3963

M
minqiyang 已提交
3964 3965
            # record ops in tracer rather than blocks
            #
3966
            # TODO(minqiyang): add op stop_gradient support in static graph mode too.
L
lujun 已提交
3967
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3968

3969
            _dygraph_tracer().trace_op(
3970
                op_type,
3971 3972 3973 3974 3975 3976
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
                inplace_map,
            )
M
minqiyang 已提交
3977
        else:
3978
            from paddle.fluid.dygraph.base import param_guard
3979
            from paddle.utils import flatten
3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993

            def pass_stop_gradient(ins, outs):
                """
                Set out.stop_gradient = True if all inputs stop_gradient is True.
                """
                need_reset = True
                for var in flatten(ins):
                    if getattr(var, 'stop_gradient', None) is False:
                        need_reset = False
                        break
                if need_reset:
                    for var in flatten(outs):
                        if isinstance(var, Variable):
                            var.stop_gradient = True
3994

3995
            op_desc = self.desc.append_op()
3996 3997
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
W
wanghuancoder 已提交
3998
            # NOTE(Aurelius84): In case of @to_static, all Tensor(s) should
3999 4000
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
            ignore_ops = {
                'conditional_block',
                'conditional_block_grad',
                'recurrent',
                'recurrent_grad',
                'while',
                'while_grad',
            }
            if op_type not in ignore_ops:
                pass_stop_gradient(inputs, outputs)
4011
            with param_guard(inputs), param_guard(outputs):
4012 4013 4014
                op = Operator(
                    block=self,
                    desc=op_desc,
4015
                    type=op_type,
4016 4017 4018 4019
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None),
                )
4020

M
minqiyang 已提交
4021
            self.ops.append(op)
M
minqiyang 已提交
4022

4023 4024
        return op

W
Wu Yi 已提交
4025
    def _insert_op(self, index, *args, **kwargs):
4026 4027 4028 4029 4030 4031 4032 4033 4034
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
4035
        self._sync_with_cpp()
F
fangshuixun007 已提交
4036
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
4037

4038 4039
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
4040
        Insert an Operator according to the giving arguments,
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
4055 4056 4057 4058 4059 4060 4061 4062 4063
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
4064 4065
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
4066
        self.desc._remove_op(index, index + 1)
4067 4068
        del self.ops[index]

W
Wu Yi 已提交
4069
    def _slice_ops(self, start, end):
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
4080
        return self.ops[start:end]
Y
Yancey1989 已提交
4081

W
Wu Yi 已提交
4082
    def _prepend_op(self, *args, **kwargs):
4083
        if in_dygraph_mode():
J
Jiabin Yang 已提交
4084 4085
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
            op = Operator(
                self, None, type=type, inputs=None, outputs=None, attrs=attrs
            )

            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
            )
M
minqiyang 已提交
4097
        else:
4098
            op_desc = self.desc._prepend_op()
4099 4100 4101 4102 4103 4104 4105 4106
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None),
            )
M
minqiyang 已提交
4107
            self.ops.insert(0, op)
4108

Y
Yu Yang 已提交
4109 4110
        return op

W
Wu Yi 已提交
4111
    def _sync_with_cpp(self):
4112
        """
4113 4114
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
4115
        """
Q
Qiao Longfei 已提交
4116 4117 4118
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
4119 4120 4121 4122
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
4123 4124 4125 4126 4127 4128 4129 4130
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient,
                    )
4131
                else:
4132 4133 4134 4135 4136 4137
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient,
                    )
Q
Qiao Longfei 已提交
4138

4139
        # sync variables removed from c++ end
4140
        for var in list(self.vars.keys()):
4141
            if not self.desc.find_var(var.encode()):
4142 4143
                self.vars.pop(var)

Q
Qiao Longfei 已提交
4144
        # sync operators from cpp
4145 4146 4147 4148
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
4165 4166 4167 4168 4169

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
4170
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
4171 4172 4173 4174 4175 4176 4177

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

4178 4179 4180 4181 4182
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
4183 4184 4185 4186 4187 4188
                self.ops
            ) and ops_in_cpp_index < len(ops_in_cpp):
                if (
                    self.ops[ops_in_python_index].desc
                    != ops_in_cpp[ops_in_cpp_index]
                ):
4189 4190 4191 4192 4193
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4194 4195 4196 4197
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4198
    def _copy_param_info_from(self, other):
4199
        """
4200 4201
        Copy the information of parameters from the other block.

4202
        Args:
4203 4204 4205 4206 4207
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4208 4209 4210 4211 4212

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4213
            raise TypeError(
4214 4215
                "_copy_param_info_from should be invoked with Block"
            )
4216
        for p in other.iter_parameters():
4217 4218 4219
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4220 4221
                # if the Parameter is pruned, v may be None
                continue
4222
            assert isinstance(v, Variable)
4223
            new_p = None
L
Leo Chen 已提交
4224
            if in_dygraph_mode():
4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
                new_p = EagerParamBase(
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4237
            else:
姜永久 已提交
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
                new_p = Parameter(
                    block=self,
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR
                    else None,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4253 4254
            self.vars[new_p.name] = new_p

4255
    def _clone_variable(self, var, force_persistable=True):
4256 4257
        """
        Clone a variable into current block.
4258

4259 4260
        Args:
            var: the variable to be cloned.
4261 4262 4263
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4264 4265

        Returns:
4266
            Variable: the new  variable cloned from 'var' in current block.
4267 4268
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4269 4270 4271
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4272 4273 4274
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
tangwei12 已提交
4275
        elif var.type == core.VarDesc.VarType.RAW:
4276 4277 4278
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
typhoonzero 已提交
4279 4280 4281 4282 4283 4284
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4285
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4286
                is_data=var.is_data,
4287 4288
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4289 4290 4291 4292 4293 4294 4295
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4296
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4297
                is_data=var.is_data,
4298 4299
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4300
        return ret_var
4301

Y
Yu Yang 已提交
4302

4303 4304 4305 4306
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4307
# of some old Python Variables(all old Python Operators) may have
4308
# been destructed.
4309 4310 4311
def _apply_pass(
    main_program, startup_program, pass_name, pass_attrs={}, pass_attr_types={}
):
4312 4313 4314 4315
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
4316 4317 4318 4319 4320 4321 4322
    attrs = core.apply_pass(
        tmp_main_program,
        tmp_startup_program,
        pass_name,
        pass_attrs,
        pass_attr_types,
    )
4323 4324 4325 4326 4327
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4328
class IrNode:
4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4340 4341 4342
        assert isinstance(
            node, core.Node
        ), 'node must be the instance of core.Node.'
4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4424
    def remove_input_by_id(self, node_id):
4425 4426 4427 4428 4429 4430
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4431
        self.node.remove_input(node_id)
4432

4433
    def remove_input(self, node):
4434 4435 4436 4437
        """
        Remove a node from inputs.

        Args:
4438
            node(IrNode): the node being removed.
4439
        """
4440
        self.node.remove_input(node.node)
4441

4442
    def append_input(self, node):
4443 4444 4445 4446
        """
        Append a node in inputs.

        Args:
4447
            node(IrNode): the node being appended.
4448
        """
4449
        self.node.append_input(node.node)
4450 4451 4452 4453 4454 4455 4456 4457

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4458
    def remove_output_by_id(self, node_id):
4459 4460 4461 4462 4463 4464
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4465
        self.node.remove_output(node_id)
4466

4467
    def remove_output(self, node):
4468 4469 4470 4471
        """
        Remove a node from outputs.

        Args:
4472
            node(IrNode): the node being removed.
4473
        """
4474
        self.node.remove_output(node.node)
4475

4476
    def append_output(self, node):
4477 4478 4479 4480
        """
        Append a node in outputs.

        Args:
4481
            node(IrNode): the node being appended.
4482
        """
4483
        self.node.append_output(node.node)
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4518 4519 4520
        assert (
            isinstance(node, core.Node) and node.is_var()
        ), 'node must be the instance of core.Node and it must be a variable node.'
4521
        super().__init__(node)
4522 4523 4524 4525 4526 4527 4528 4529 4530
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
4531 4532 4533
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4534 4535 4536 4537 4538 4539 4540 4541 4542
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
4543 4544 4545
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4546 4547
        return self.node.var().persistable()

4548 4549 4550 4551 4552 4553 4554
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
4555 4556 4557
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4558 4559 4560 4561 4562 4563 4564 4565 4566
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
4567 4568 4569
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4570 4571 4572 4573 4574 4575 4576 4577 4578
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
4579 4580 4581
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4582 4583
        return self.node.var().shape()

4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4617 4618 4619
        assert (
            isinstance(node, core.Node) and node.is_op()
        ), 'node must be the instance of core.Node and it must be a operator node.'
4620
        super().__init__(node)
4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
4631 4632 4633
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4634 4635
        self.node.op()._rename_input(old_input_name, new_input_name)

4636 4637 4638 4639 4640 4641 4642 4643
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
4644 4645 4646
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4647 4648
        self.node.op()._rename_output(old_output_name, new_output_name)

4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4659 4660 4661
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4674 4675 4676
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4677 4678 4679 4680 4681 4682 4683 4684 4685
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
4686 4687 4688
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4689 4690
        return self.node.op().set_type(new_type)

4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
4705 4706 4707
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4708
        desc = self.node.op()
4709 4710 4711 4712 4713
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4714
            desc.set_block_attr(name, val.desc)
4715
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4716
            desc.set_blocks_attr(name, [v.desc for v in val])
4717 4718 4719
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
4720 4721 4722 4723
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4724 4725 4726 4727 4728 4729 4730
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
4731 4732 4733
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4734 4735 4736 4737 4738 4739 4740 4741 4742
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
4743 4744 4745
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4746 4747
        return self.node.op().output_arg_names()

4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4769
class IrGraph:
4770
    """
4771
    Python IrGraph. Beneath it is a core.Graph, which is used for
4772
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4773 4774
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4775 4776 4777 4778
    """

    def __init__(self, graph, for_test=False):
        """
4779 4780
        Construct an IrGraph using core.Graph.

4781 4782 4783 4784 4785
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
4786 4787
            graph, core.Graph
        ), 'graph must be the instance of core.Graph.'
4788 4789 4790
        self.graph = graph
        self._for_test = for_test

4791 4792 4793 4794
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4795 4796 4797
        Warns:
            The method only clones the graph structure, not its attributes.

4798 4799 4800
        Returns:
            IrGraph: A new and duplicated graph.
        """
4801
        g = self.graph.clone()
4802 4803
        return IrGraph(g, self._for_test)

4804
    def is_test(self):
4805 4806 4807
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4808 4809
        return self._for_test

W
WangZhen 已提交
4810
    def all_nodes(self):
4811 4812 4813
        """
        Return all nodes included in the graph as a set.
        """
4814
        return {IrNode(node) for node in self.graph.nodes()}
4815

4816
    def all_var_nodes(self):
4817 4818 4819
        """
        Return all variable nodes included in the graph as a set.
        """
4820
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4821

4822
    def all_persistable_nodes(self):
4823 4824 4825
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4826 4827
        persistable_nodes = set()
        for node in self.graph.nodes():
4828 4829 4830 4831 4832
            if (
                node.is_var()
                and node.var() is not None
                and node.var().persistable()
            ):
W
WangZhen 已提交
4833
                persistable_nodes.add(node)
4834
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4835

4836
    def all_op_nodes(self):
4837 4838 4839
        """
        Return all operator nodes included in the graph as a set.
        """
4840
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4841

4842 4843 4844 4845 4846 4847
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4848
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4849 4850 4851 4852 4853 4854 4855 4856 4857
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4858
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4870
            IrVarNode: the created persistable variable node.
4871
        """
4872 4873 4874 4875 4876
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4877
        return IrVarNode(self.graph.create_var_node(var_desc))
4878 4879

    def create_var_node(self, name, var_type, shape, var_dtype):
4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4891
            IrVarNode: the created variable node.
4892 4893
        """

4894 4895 4896 4897
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4898
        return IrVarNode(self.graph.create_var_node(var_desc))
4899

4900 4901 4902 4903 4904 4905
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4906
    def create_var_node_from_desc(self, var_desc):
4907 4908 4909 4910 4911 4912 4913 4914
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4915
            IrVarNode: the created variable node.
4916
        """
4917
        return IrVarNode(self.graph.create_var_node(var_desc))
4918 4919

    def create_op_node(self, op_type, attrs, inputs, outputs):
4920 4921 4922 4923 4924 4925 4926
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4927
            outputs(dict): the outputs of the operator node.
4928 4929

        Returns:
4930
            IrOpNode: the created operator node.
4931
        """
4932 4933
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4934
        for attr, value in attrs.items():
4935
            self._update_desc_attr(op_desc, attr, value)
4936
        for input_name, var_nodes in inputs.items():
4937 4938
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4939 4940 4941
            op_desc.set_input(
                input_name, [var_node.name() for var_node in var_nodes]
            )
4942
        for output_name, var_nodes in outputs.items():
4943 4944
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4945 4946 4947
            op_desc.set_output(
                output_name, [var_node.name() for var_node in var_nodes]
            )
4948
        return IrOpNode(self.graph.create_op_node(op_desc))
4949 4950

    def create_op_node_from_desc(self, op_desc):
4951 4952 4953 4954 4955 4956 4957
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4958
            IrOpNode: the created operator node.
4959
        """
4960
        return IrOpNode(self.graph.create_op_node(op_desc))
4961 4962

    def update_input_link(self, old_input_node, new_input_node, op_node):
4963 4964 4965 4966
        """
        Update the input's link of a operator node.

        Args:
4967 4968 4969
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4970
        """
4971 4972 4973 4974 4975
        assert (
            old_input_node.node in self.graph.nodes()
            and new_input_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4976 4977 4978 4979
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4980
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4981

4982 4983 4984 4985 4986 4987 4988 4989 4990
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
4991 4992 4993 4994 4995
        assert (
            old_output_node.node in self.graph.nodes()
            and new_output_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4996 4997 4998 4999 5000 5001
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

5002
    def link_to(self, node_in, node_out):
5003 5004 5005 5006
        """
        Connect two nodes.

        Args:
5007 5008
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
5009
        """
5010
        assert node_in.node in self.graph.nodes(), (
5011 5012
            'node_in(%s) must be in the graph nodes.' % node_in.node.name()
        )
5013
        assert node_out.node in self.graph.nodes(), (
5014 5015
            'node_out(%s) must be in the graph nodes.' % node_out.node.name()
        )
5016 5017
        node_in.append_output(node_out)
        node_out.append_input(node_in)
5018 5019

    def safe_remove_nodes(self, remove_nodes):
5020 5021 5022 5023 5024 5025 5026
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
5027
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
5028 5029 5030 5031
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
5032 5033
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
5034

Z
Zhen Wang 已提交
5035 5036 5037 5038 5039 5040 5041 5042
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5043
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
5044 5045 5046 5047
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5048
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
5049 5050 5051
                        ]
                    else:
                        var_nodes[each_var_name].append(
5052 5053
                            self._find_node_by_name(node.outputs, each_var_name)
                        )
Z
Zhen Wang 已提交
5054 5055
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
5056
    def has_circle(self):
5057 5058 5059 5060 5061 5062
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
5063 5064 5065
        return core.has_circle(self.graph)

    def graph_num(self):
5066 5067 5068 5069 5070 5071
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
5072 5073 5074
        return core.graph_num(self.graph)

    def topology_sort(self):
5075 5076 5077
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
5078
        Notes: the `graph` can not contain a circle.
5079 5080

        Returns:
Z
Zhen Wang 已提交
5081
            list(IrNode): nodes in topology order.
5082
        """
5083
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
5084
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
5085 5086

    def build_adjacency_list(self):
5087 5088 5089 5090
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
5091
            dict{IrNode: set(IrNode)}: the adjacency list.
5092
        """
5093 5094
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
5095
        for k, v in adj_list.items():
5096 5097
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
5098

5099 5100 5101 5102 5103 5104 5105 5106
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
5107
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
5108 5109 5110 5111 5112
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

5113 5114
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
5115 5116 5117 5118
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True,
            )
5119 5120
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
5121 5122 5123
                print(
                    'The {} is saved as the dot filetype.'.format(dot_file_path)
                )
5124

5125
        remove_ctr_vars = set()
5126
        if remove_ctr_var:
5127
            for node in self.all_var_nodes():
5128 5129 5130
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
5131 5132
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

5133 5134
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
5135 5136 5137 5138 5139 5140
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
5141 5142 5143 5144
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
5145 5146
        if not os.path.exists(save_path):
            os.makedirs(save_path)
5147 5148 5149 5150 5151 5152 5153
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
5154 5155 5156
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
5157
        WARN: When the graph includes backward operator nodes, the
5158 5159 5160 5161 5162 5163
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
5164
        convert_pass = core.get_pass('graph_to_program_pass')
5165 5166
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
5167 5168 5169 5170
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

5171 5172 5173 5174 5175 5176 5177 5178
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
5179
        assert target_node is not None, (
5180 5181
            "Cannot find the target node (%s)in the giving set." % node_name
        )
5182 5183
        return target_node

5184 5185 5186 5187
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
5188 5189 5190 5191 5192
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
5193
            desc.set_block_attr(name, val.desc)
5194
        elif isinstance(val, list) and val and _all_is_type(val, Block):
5195
            desc.set_blocks_attr(name, [v.desc for v in val])
5196 5197 5198
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5199 5200 5201 5202 5203
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


5204
class Program:
D
dzhwinter 已提交
5205
    """
5206
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
5207
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
5208
    it will contain nested block.
5209

J
Jiabin Yang 已提交
5210 5211 5212
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
5213

J
Jiabin Yang 已提交
5214
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
5215
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
5216 5217 5218 5219 5220 5221 5222
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
5223
    **Notes**:
5224 5225 5226
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5227 5228

    Returns:
J
Jiabin Yang 已提交
5229
        Program: An empty Program.
D
dzhwinter 已提交
5230 5231

    Examples:
5232 5233
        .. code-block:: python

5234 5235 5236 5237
            import paddle
            import paddle.static as static

            paddle.enable_static()
5238

5239 5240 5241 5242 5243
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5244
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5245 5246 5247

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5248 5249 5250

    """

5251 5252
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5253 5254
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5255 5256
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5257
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5258
        self.__op_role_var = []
T
tangwei12 已提交
5259

5260 5261
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5262
        self._is_distributed = False
5263
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5264
        self._is_chief = False
5265 5266 5267
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5268
        self._endpoints = []
5269 5270 5271
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5272
        self._trainers_endpoints = []
5273
        # the distributed lookup table names
T
tangwei12 已提交
5274
        self._distributed_lookup_table = None
5275 5276 5277

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5278 5279
        self._use_lamb = False

5280 5281 5282
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5283

5284 5285 5286
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5287
        self._program_config = None
5288

5289 5290
        self._pass_applied = None

H
hutuxian 已提交
5291 5292 5293
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5294 5295 5296
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5297 5298 5299
        # appending gradients times
        self._appending_grad_times = 0

5300 5301
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
5302 5303
            "__auto_checkpoint_program__"
        )
5304

5305 5306
        # compiled program, i.e. Graph
        self._graph = None
5307 5308
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5309

5310
    def _find_var_class_kwargs(self, new_desc):
5311 5312 5313 5314 5315 5316 5317 5318
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5319 5320 5321 5322
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5323
            if idx > (len(self.blocks) - 1):
5324
                self._create_block()
5325 5326 5327 5328 5329 5330 5331 5332 5333 5334
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
                    'shape': get_var_desc_attr_or_none(
                        new_var_desc,
                        "shape",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'dtype': get_var_desc_attr_or_none(
                        new_var_desc,
                        "dtype",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'lod_level': get_var_desc_attr_or_none(
                        new_var_desc,
                        "lod_level",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'error_clip': old_var.error_clip
                    if old_var is not None
                    else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None
                    else False,
                    'is_data': old_var.is_data
                    if old_var is not None
                    else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None
                    else False,
5376 5377 5378
                }

                if isinstance(old_var, Parameter):
5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395
                    kwargs.update(
                        {
                            'trainable': old_var.trainable,
                            'optimize_attr': old_var.optimize_attr,
                            'regularizer': old_var.regularizer,
                            'do_model_average': old_var.do_model_average,
                            'need_clip': old_var.need_clip,
                            'is_distributed': old_var.is_distributed,
                            'is_parameter': old_var.is_parameter,
                        }
                    )
                    block_new_vars.append(
                        {
                            'class': Parameter,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5396 5397
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
5398 5399 5400 5401 5402 5403
                    block_new_vars.append(
                        {
                            'class': Variable,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5404 5405 5406 5407 5408 5409 5410

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5411
        assert block_num == self.desc.num_blocks()
5412 5413

        # clear old blocks and desc
5414 5415 5416 5417 5418 5419 5420 5421 5422
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5423

5424
        del desc
5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5444 5445 5446 5447 5448 5449 5450 5451 5452 5453
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5454 5455
                import paddle
                import paddle.static as static
5456

5457 5458 5459
                paddle.enable_static()

                prog = static.default_main_program()
5460 5461 5462 5463 5464
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5465
                prog1 = static.default_main_program()
5466 5467 5468 5469 5470 5471 5472 5473
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5474
    @property
5475
    def _op_role(self):
Y
yuyang18 已提交
5476 5477 5478 5479 5480 5481 5482 5483
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5484
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5485 5486 5487 5488
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5489 5490
        return self._current_role

5491 5492
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5493 5494 5495
        self._current_role = role

    @property
5496
    def _op_role_var(self):
Y
yuyang18 已提交
5497
        """
5498
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5499

5500
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5501 5502 5503

        Notes: This is a very low-level API. Users should not use it directly.
        """
5504
        return self.__op_role_var
Y
yuyang18 已提交
5505

5506
    @signature_safe_contextmanager
5507 5508 5509 5510 5511
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5512 5513 5514 5515
        try:
            yield
        finally:
            self._current_role = tmp_role
5516

S
rename  
sneaxiy 已提交
5517
    @signature_safe_contextmanager
W
Wu Yi 已提交
5518
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5519 5520 5521 5522 5523 5524 5525
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5526
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5527 5528 5529

        Examples:

5530
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5531
            >>> p, g = backward(...)
W
Wu Yi 已提交
5532
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5533 5534
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5535
        tmp_role = self._current_role
5536
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5537

Y
yuyang18 已提交
5538 5539
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5540
        self.__op_role_var = [
5541 5542 5543
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5544 5545 5546 5547 5548
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5549

S
rename  
sneaxiy 已提交
5550
    @signature_safe_contextmanager
X
Xin Pan 已提交
5551
    def _lr_schedule_guard(self, is_with_opt=False):
5552 5553 5554 5555 5556 5557 5558
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5559 5560 5561 5562
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5563 5564 5565

        Examples:

5566
            >>> import paddle.fluid as fluid
5567 5568 5569 5570
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5571 5572

        tmp_role = self._current_role
5573
        tmp_var = self.__op_role_var
5574

5575 5576
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5577 5578
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5579
        # TODO(typhoonzero): how to set target learning rate var
5580
        self.__op_role_var = []
5581 5582 5583 5584 5585
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5586

5587
    def __str__(self):
Y
yuyang18 已提交
5588 5589 5590 5591 5592 5593 5594 5595 5596
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5617 5618
            import paddle
            import paddle.static as static
5619

5620 5621 5622
            paddle.enable_static()

            cur_program = static.Program()
5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5634
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5635 5636
            type(skip_op_callstack)
        )
5637 5638 5639
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5640
            program_str += '\n'
5641
        return program_str
Y
Yang Yang(Tony) 已提交
5642

F
fengjiayi 已提交
5643 5644 5645
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5646

J
Jiabin Yang 已提交
5647 5648 5649
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5650

J
Jiabin Yang 已提交
5651
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5652

H
haowang101779990 已提交
5653
        Returns:
J
Jiabin Yang 已提交
5654
            str: The debug string describe current Program.
Y
yuyang18 已提交
5655 5656

        Raises:
J
Jiabin Yang 已提交
5657
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5658

5659 5660 5661
        Examples:
            .. code-block:: python

5662 5663 5664 5665
                import paddle
                import paddle.static as static

                paddle.enable_static()
5666

5667 5668 5669
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5670
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5671
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5672
                print("program string without detail: {}".format(prog_string))
5673
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5674
        """
5675 5676 5677
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
5678 5679
            type(throw_on_error)
        )
5680 5681 5682
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
5683 5684
            type(with_details)
        )
5685

F
fengjiayi 已提交
5686 5687 5688 5689
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705
            protostr = self.desc.serialize_to_string()
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
            res_str += (
                "version {\n  "
                + textwrap.indent(
                    _debug_string_(proto.version, throw_on_error), "  "
                )
                + "}\n"
            )
            res_str += (
                "op_version_map {\n  "
                + textwrap.indent(
                    _debug_string_(proto.op_version_map, throw_on_error), "  "
                )
                + "}\n"
            )
F
fengjiayi 已提交
5706 5707
        else:
            protostr = self.desc.serialize_to_string()
5708
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
5709 5710
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5711

W
Wu Yi 已提交
5712
    def _get_desc(self):
Y
yuyang18 已提交
5713 5714 5715 5716 5717 5718 5719
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5720 5721
        return self.desc

X
version  
Xin Pan 已提交
5722 5723 5724
    def _version(self):
        return self.desc._version()

5725
    def clone(self, for_test=False):
Y
yuyang18 已提交
5726
        """
5727
        .. note:::
5728 5729
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
5730
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5731

5732
        Create a new Program with forward content of original one when ``for_test=True``.
5733
        Create a new Program as same as the original one when ``for_test=False``.
5734

5735
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5736 5737 5738
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5739

5740 5741
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5742 5743
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5744
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5745

J
Jiabin Yang 已提交
5746
        For Example:
5747
          ::
L
Luo Tao 已提交
5748

5749 5750 5751 5752 5753 5754
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5755
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5756
            loss = paddle.mean(pred)
5757
            # Here we use clone before Momentum
5758 5759
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5760
            optimizer.minimize(loss)
5761

J
Jiabin Yang 已提交
5762
        Args:
5763

5764 5765
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5766

J
Jiabin Yang 已提交
5767
        Returns:
5768
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5769

Y
yuyang18 已提交
5770 5771 5772

        Examples:

5773 5774 5775 5776 5777 5778 5779
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5780 5781
            .. code-block:: python

5782
                import paddle
5783 5784

                def print_prog(prog):
5785
                    for name, value in sorted(prog.block(0).vars.items()):
5786 5787 5788 5789 5790
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
5791
                        for key, value in sorted(op.all_attrs().items()):
5792 5793 5794 5795
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5796
            1. To clone a test program, the sample code is:
5797 5798
                .. code-block:: python

5799 5800 5801 5802 5803 5804
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5805 5806

                    def print_prog(prog):
5807
                        for name, value in sorted(prog.block(0).vars.items()):
5808 5809 5810 5811 5812
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5813
                            for key, value in sorted(op.all_attrs().items()):
5814 5815 5816
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5817 5818
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5819 5820 5821

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5822 5823 5824
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5825
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5826 5827
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5828
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5829 5830
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5831
                            test_program = train_program.clone(for_test=True)
5832
                    print_prog(test_program)
J
Jiabin Yang 已提交
5833 5834 5835 5836

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5837
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5838 5839 5840 5841
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5842 5843 5844
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5845 5846 5847
                            sgd.minimize(avg_loss)


5848
            2. The clone method can be avoid if you create program for training and program for testing individually.
5849 5850
                .. code-block:: python

5851 5852 5853 5854 5855 5856
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5857 5858

                    def print_prog(prog):
5859
                        for name, value in sorted(prog.block(0).vars.items()):
5860 5861 5862 5863 5864
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5865
                            for key, value in sorted(op.all_attrs().items()):
5866 5867
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5868

5869
                    def network():
5870
                        img = static.data(name='image', shape=[None, 784])
5871
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5872 5873
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5874
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5875 5876
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5877 5878
                        return avg_loss

5879 5880 5881 5882 5883
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5884
                            avg_loss = network()
5885
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5886
                            sgd.minimize(avg_loss)
5887
                    # the test startup program is not used.
5888 5889
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5890 5891
                            avg_loss = network()
                    print_prog(test_program_2)
5892

5893
            The two code snippets above will generate and print same programs.
5894
        """
5895

T
tangwei12 已提交
5896
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5897 5898 5899
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5900
        pruned_origin_block_id_map = None
5901
        if for_test:
5902 5903
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
5904 5905
                self.desc
            )
5906 5907
            forward_prog.blocks = [
                Block(forward_prog, i)
5908
                for i in range(forward_prog.desc.num_blocks())
5909 5910 5911
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5912
        else:
5913
            p = Program()
G
gongweibao 已提交
5914 5915
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5916
            p.desc = core.ProgramDesc(self.desc)
5917
            p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())]
G
gongweibao 已提交
5918 5919

            p._current_role = self._current_role
5920
            p.__op_role_var = self.__op_role_var
5921
            p._appending_grad_times = self._appending_grad_times
5922 5923
            if hasattr(self, 'lr_scheduler'):
                p.lr_scheduler = self.lr_scheduler
G
gongweibao 已提交
5924

T
tangwei12 已提交
5925
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5926
            # its desc.
W
Wu Yi 已提交
5927
            p._sync_with_cpp()
5928

W
Wu Yi 已提交
5929
        p._copy_param_info_from(self)
5930
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5931
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5932
        return p
5933

5934
    def _prune(self, targets):
Y
yuyang18 已提交
5935 5936 5937 5938 5939 5940 5941 5942
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5943
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5944 5945 5946 5947
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5948
        """
5949
        return self._prune_with_input([], targets)
5950 5951

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5952
        """
5953
        Prune operators and variables which are not needed to generate
5954 5955
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
5956 5957 5958 5959 5960 5961 5962

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5963
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5964 5965 5966 5967 5968 5969
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5970
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5971 5972 5973
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5974 5975
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5976 5977
        if not isinstance(targets, list):
            targets = [targets]
5978 5979

        for var in feeded_var_names:
5980
            if not isinstance(var, str):
5981 5982
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
5983 5984
                    "str, but received %s." % type(var)
                )
5985

5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

6002 6003 6004 6005
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
6006
                    name = t.name
6007
                elif isinstance(t, str):
6008
                    name = str(t)
6009
                else:
6010 6011
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
6012 6013
                        "Variable or Operator, but received %s." % type(t)
                    )
6014 6015 6016 6017 6018 6019

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
6020 6021 6022
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
6023

6024 6025 6026 6027 6028 6029 6030 6031 6032
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
6033
                        # Skip optimize op except for optimize op in targets,
6034 6035 6036 6037 6038
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
6039

6040
                if target_op is not None:
6041 6042 6043
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
6044

6045
        res = Program()
6046
        res.desc, pruned_origin_block_id_map = core.prune(
6047 6048
            self.desc, set(feeded_var_names), targets_idx
        )
6049
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6050
        res._sync_with_cpp()
6051 6052 6053 6054 6055

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

6056 6057
        return res

X
Xin Pan 已提交
6058
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
6059
        """
F
fengjiayi 已提交
6060 6061 6062 6063 6064
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

6065
        3. change the :code:`is_test`
Y
yuyang18 已提交
6066 6067 6068
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

6069
        Args:
X
Xin Pan 已提交
6070 6071
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
6072

Y
yuyang18 已提交
6073 6074 6075 6076 6077 6078
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
6079
        res = Program()
6080
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
6081 6082 6083 6084

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
6085
        if prune_read_op:
6086
            while True:
6087 6088 6089 6090
                if (
                    read_op_idx >= root_block.op_size()
                    or root_block.op(read_op_idx).type() == 'read'
                ):
6091 6092 6093 6094 6095 6096
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
6097
                    root_block._remove_var(var.name().encode())
F
fengjiayi 已提交
6098 6099

        # change all `is_test` attributes to True
6100
        for i in range(res.desc.num_blocks()):
6101
            block = res.desc.block(i)
6102
            for j in range(block.op_size()):
6103 6104
                op = block.op(j)
                if op.has_attr('is_test'):
6105
                    op._set_bool_attr('is_test', True)
6106 6107 6108
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
6109
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6110
        res._sync_with_cpp()
6111 6112
        return res

6113
    def _remove_training_info(self, clip_extra=True):
6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

6128
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
6129 6130
        res._sync_with_cpp()

6131 6132
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
6133
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
6134

6135
        for i in range(res.desc.num_blocks()):
6136 6137 6138 6139
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
6140 6141
            if not clip_extra:
                continue
6142 6143 6144 6145
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
6146 6147 6148

                extra_attrs_map = core.get_op_extra_attrs(op.type())

6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
6162 6163 6164
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
6178
                # The extra output of op will be removed in the future
6179 6180
                for name in remove_output_list:
                    op.remove_output(name)
6181

6182 6183 6184 6185 6186 6187 6188
                op_quant_name = (
                    core.op_proto_and_checker_maker.kOpWithQuantAttrName()
                )
                quant = (
                    bool(op.attr(op_quant_name))
                    if op_quant_name in op.attr_names()
                    else False
6189 6190
                )
                quant_attrs = [
6191 6192 6193 6194 6195 6196 6197
                    op_quant_name,
                    "quantization_type",
                    "skip_quant",
                    "activation_bits",
                    "bit_length",
                    "quantize_weight_bits",
                    "weight_quant_scale",
6198
                ]
6199 6200
                for extra_attr_name in extra_attrs_map.keys():
                    op.remove_attr(extra_attr_name)
6201
                remove_attr_list = []
6202 6203 6204 6205 6206 6207
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
6208
                    if len(extra_attrs_map) > 0:
6209
                        if name in common_clipped_attrs_list:
6210
                            op.remove_attr(name)
6211
                        continue
6212 6213 6214 6215 6216 6217 6218 6219 6220 6221
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
6222 6223
        return res

6224 6225
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
6226
        """
6227
        .. note::
6228
            1. All information about parameters will be lost after serialization;
6229
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6230

6231 6232
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
6233

J
Jiabin Yang 已提交
6234
        Args:
Y
yuyang18 已提交
6235

J
Jiabin Yang 已提交
6236
            binary_str_type (str): the binary prootbuf string.
6237

J
Jiabin Yang 已提交
6238 6239
        Returns:
            Program: A deserialized Program.
6240 6241 6242 6243

        Examples:
            .. code-block:: python

6244 6245 6246 6247
                import paddle
                import paddle.static as static

                paddle.enable_static()
6248

6249 6250 6251 6252
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
6253

6254
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
6255

6256
                    z = paddle.matmul(x=x, y=y)
6257

6258 6259
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
6260

6261
                    print(static.default_main_program())
6262
                    print(prog_restored)
Y
yuyang18 已提交
6263
        """
6264 6265
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
6266
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
W
Wu Yi 已提交
6267
        p._sync_with_cpp()
6268
        return p
Y
Yu Yang 已提交
6269

6270
    @staticmethod
6271
    def _construct_from_desc(desc):
6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
6283
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
6284 6285 6286
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6287 6288
    @property
    def random_seed(self):
Y
yuyang18 已提交
6289
        """
J
Jiabin Yang 已提交
6290
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6291 6292
        the random seed from random device.

6293
        .. note::
6294
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6295 6296 6297

        Returns:
            int64: Random seed in current Program
6298

6299 6300 6301 6302

        Examples:
            .. code-block:: python

6303 6304 6305
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6306

6307 6308 6309
                paddle.enable_static()

                prog = static.default_main_program()
6310
                random_seed = prog.random_seed
6311
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6312 6313 6314
                print(random_seed)
                ## 0
                ## the default random seed is 0
6315

6316
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6317
                prog.random_seed = 1
6318
                z_var = F.dropout(x_var, 0.7)
6319

6320
                print(prog.random_seed)
6321 6322
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6323
        """
D
dzhwinter 已提交
6324 6325
        return self._seed

Q
qiaolongfei 已提交
6326 6327
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6328
        """
6329 6330
        The number of :ref:`api_guide_Block_en`  in this Program.

6331
        .. note::
6332
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6333 6334 6335

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6336

6337 6338 6339 6340

        Examples:
            .. code-block:: python

6341 6342 6343 6344
                import paddle
                import paddle.static as static

                paddle.enable_static()
6345

6346
                prog = static.default_main_program()
6347 6348
                num_blocks = prog.num_blocks
                print(num_blocks)
6349

6350 6351
                # print result:
                # 1
Y
yuyang18 已提交
6352
        """
Q
qiaolongfei 已提交
6353 6354
        return self.desc.num_blocks()

D
dzhwinter 已提交
6355 6356 6357
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6358 6359
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
6360 6361
                % type(seed)
            )
D
dzhwinter 已提交
6362 6363
        self._seed = seed

Y
Yu Yang 已提交
6364
    def __repr__(self):
6365
        return self.__str__()
6366

Y
Yu Yang 已提交
6367
    def global_block(self):
Y
yuyang18 已提交
6368
        """
6369 6370
        .. note::
            This API has no effect in Dygraph mode.
6371 6372 6373

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6374 6375
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6376

6377 6378 6379 6380

        Examples:
            .. code-block:: python

6381 6382 6383 6384
                import paddle
                import paddle.static as static

                paddle.enable_static()
6385

6386
                prog = static.default_main_program()
6387 6388
                gb_block = prog.global_block()
                print(gb_block)
6389

Y
yuyang18 已提交
6390
        """
Y
Yu Yang 已提交
6391 6392
        return self.blocks[0]

Q
Qiao Longfei 已提交
6393
    def block(self, index):
Y
yuyang18 已提交
6394
        """
6395 6396
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6397

6398 6399
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6400 6401
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6402

J
Jiabin Yang 已提交
6403 6404
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6405 6406 6407 6408

        Examples:
            .. code-block:: python

6409 6410 6411 6412
                import paddle
                import paddle.static as static

                paddle.enable_static()
6413

6414
                prog = static.default_main_program()
6415 6416
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6417
        """
Q
Qiao Longfei 已提交
6418 6419
        return self.blocks[index]

Y
Yu Yang 已提交
6420
    def current_block(self):
Y
yuyang18 已提交
6421
        """
6422 6423
        .. note::
            This API has no effect in Dygraph mode.
6424

J
Jiabin Yang 已提交
6425 6426
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6427

J
Jiabin Yang 已提交
6428 6429
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6430

6431 6432 6433
        Examples:
            .. code-block:: python

6434 6435 6436 6437
                import paddle
                import paddle.static as static

                paddle.enable_static()
6438

6439
                prog = static.default_main_program()
6440 6441
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6442
        """
Y
Yu Yang 已提交
6443 6444
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6445
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6446 6447 6448 6449 6450
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6451

Y
yuyang18 已提交
6452 6453 6454 6455 6456
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6457
        new_block_idx = len(self.blocks)
6458 6459 6460 6461 6462
        parent = (
            self.current_block()
            if parent_idx is None
            else self.block(parent_idx)
        )
F
update  
fengjiayi 已提交
6463
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6464 6465 6466 6467
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6468
    def _rollback(self):
Y
yuyang18 已提交
6469 6470 6471 6472 6473
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6474 6475
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6476
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6477 6478 6479 6480 6481 6482 6483 6484 6485 6486
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6487 6488 6489
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6490
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6491

W
Wu Yi 已提交
6492
    def _copy_param_info_from(self, other):
6493
        """
6494
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6495

Y
yuyang18 已提交
6496 6497 6498
        Notes: This is a very low level API. Users should not invoke it
        directly.

6499 6500 6501 6502 6503 6504 6505
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6506 6507
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6508 6509
                % type(other)
            )
6510

W
Wu Yi 已提交
6511
        self.global_block()._copy_param_info_from(other.global_block())
6512

6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6524 6525
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6526 6527
                % type(other)
            )
6528 6529
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6530
        self._parameters_on_pservers = other._parameters_on_pservers
6531
        self._endpoints = other._endpoints
6532
        self._ps_endpoint = other._ps_endpoint
6533 6534
        self._distributed_lookup_table = other._distributed_lookup_table

6535
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6536 6537
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6538

Y
yuyang18 已提交
6539 6540 6541
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6542 6543
        Args:
            other(Program): Other program
6544
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
6545 6546
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6547
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6548 6549 6550 6551 6552

        Returns:
            None
        """
        if not isinstance(other, Program):
6553 6554
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6555 6556
                % type(other)
            )
F
fengjiayi 已提交
6557

6558 6559
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
6560
                i: i for i in range(self.desc.num_blocks())
6561
            }
6562 6563 6564

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6565 6566
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6567
            for var in list(block.vars.values()):
6568 6569 6570 6571 6572 6573 6574
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6575

6576
    def list_vars(self):
Y
yuyang18 已提交
6577
        """
6578
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6579

J
Jiabin Yang 已提交
6580
        Returns:
6581
            iterable Tensors: The Generator will yield every Tensor in this program.
6582 6583 6584 6585

        Examples:
            .. code-block:: python

6586 6587
                import paddle
                import paddle.static as static
6588

6589 6590 6591 6592 6593
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6594 6595
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6596

6597 6598
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6599
        """
6600
        for each_block in self.blocks:
6601
            for each_var in list(each_block.vars.values()):
6602 6603
                yield each_var

6604 6605 6606 6607 6608 6609 6610 6611 6612 6613
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6614 6615 6616 6617
                import paddle
                import paddle.static as static

                paddle.enable_static()
6618

6619 6620
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6621
                hidden = static.nn.fc(x=data, size=10)
6622 6623
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6624 6625 6626 6627 6628 6629 6630

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6631 6632
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6633 6634 6635 6636 6637 6638 6639 6640 6641 6642
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6643 6644 6645 6646 6647 6648 6649 6650 6651
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
6652 6653 6654
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6655 6656
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
6657
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6685
        # can not be imported at the begainning of this file.
6686 6687
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
6688

6689 6690
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6691 6692 6693 6694
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".format(
                    type(scope)
                )
            )
6695 6696 6697 6698 6699

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6700 6701
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
6702 6703 6704
                    type(mode)
                )
            )
6705 6706 6707 6708 6709

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
6710 6711 6712 6713 6714
            if (
                var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
                or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
                or var.desc.type() == core.VarDesc.VarType.READER
            ):
6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):
            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6732 6733 6734 6735
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".format(
                        mode
                    )
                )
6736 6737 6738 6739 6740 6741 6742 6743

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
6744 6745 6746 6747
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".format(
                        var.name
                    )
                )
6748 6749 6750 6751 6752 6753
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
6754
        Set parameters and persistable buffers in state_dict to program.
6755
        An exception will throw if shape or dtype of the parameters is not match.
6756

6757 6758 6759 6760
        .. note::
            This function MUST called after run start_up_program

        Args:
6761
            state_dict(dict): the dict store parameters and persistable buffers.
6762 6763
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
6764
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6765 6766
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
6767

6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
6797 6798 6799
                    type(state_dict)
                )
            )
6800 6801

        vars_dict = {var.name: var for var in self.list_vars()}
6802 6803 6804
        condition = (
            True if 'StructuredToParameterName@@' in state_dict else False
        )
6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
6816 6817
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6818 6819
                except TypeError as err:
                    warnings.warn(
6820 6821
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6822
            else:
6823
                warnings.warn(
6824 6825 6826 6827 6828 6829
                    (
                        "Skip loading for '{0}'. Because '{0}' not in the program.".format(
                            name
                        )
                    )
                )
6830

Y
Yu Yang 已提交
6831

6832
class Parameter(Variable, metaclass=ParameterMetaClass):
6833
    """
6834
    Parameter is derived from Variable. A parameter is a persistable
6835
    Variable, and will be updated by optimizers after each iteration.
6836
    The training of a neural network is essentially the updating of
6837 6838
    its parameters.

6839
    Relative to a general Variable, a Parameter has several its own
6840 6841
    member variables:

6842 6843 6844 6845 6846 6847 6848 6849 6850 6851
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6852
        need_clip (bool): Whether the parameter gradient need to be cliped
6853
            in optimizer. Default is True.
6854 6855
    """

6856 6857 6858 6859 6860 6861
    def __init__(
        self,
        block,
        shape,
        dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
6862
        **kwargs,
6863
    ):
6864 6865 6866 6867 6868
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6869 6870
        for each in shape:
            if each < 0:
6871 6872
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
6873 6874 6875 6876 6877 6878 6879 6880 6881 6882
                    % list(shape)
                )

        Variable.__init__(
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
6883
            **kwargs,
6884
        )
Y
Yu Yang 已提交
6885 6886 6887 6888
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6889 6890
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6891
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6892

6893 6894
        self.need_clip = kwargs.get('need_clip', True)

6895 6896
        self.is_distributed = False

6897 6898
        self.is_parameter = True

F
fengjiayi 已提交
6899
    def __str__(self):
6900
        return self._to_readable_code()
F
fengjiayi 已提交
6901

F
update  
fengjiayi 已提交
6902 6903 6904
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6905

F
update  
fengjiayi 已提交
6906 6907 6908 6909 6910 6911 6912 6913
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6914 6915 6916 6917
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
G
GGBond8488 已提交
6918
                import paddle
6919 6920

                prog = fluid.default_main_program()
G
GGBond8488 已提交
6921
                rlt = paddle.static.data("fake_data", shape=[-1,1,1], dtype='float32')
6922 6923
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6924
        """
6925
        assert isinstance(throw_on_error, bool) and isinstance(
6926 6927
            with_details, bool
        )
F
update  
fengjiayi 已提交
6928 6929
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
6930 6931 6932 6933 6934 6935 6936
            additional_attr = (
                "trainable",
                "optimize_attr",
                "regularizer",
                "do_model_average",
                "need_clip",
            )
F
update  
fengjiayi 已提交
6937
            for attr_name in additional_attr:
6938
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
F
update  
fengjiayi 已提交
6939 6940
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6941 6942 6943 6944
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6945

W
wanghuancoder 已提交
6946
class EagerParamBase(core.eager.Tensor):
6947
    """
6948 6949
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
6967
        need_clip (bool): Whether the parameter gradient need to be cliped
6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
6982 6983
                    % list(shape)
                )
6984 6985 6986 6987 6988 6989 6990

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

6991 6992 6993
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

6994
        super().__init__(
6995 6996 6997 6998 6999 7000
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
7015 7016 7017
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
7018 7019

    def set_init_func(self, obj):
7020
        self._init_func = obj
7021 7022 7023

    @dygraph_only
    def initialize(self):
7024 7025 7026
        assert (
            self._init_func is not None
        ), "Required self._init_func is not None, but received None."
7027
        self._init_func(self, None)
7028
        # clear function handle to release resource
7029
        self._init_func = None
7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7042 7043
                type(trainable),
            )
7044

7045 7046 7047 7048
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
7049 7050 7051
        assert (
            self._init_op_creator is not None
        ), "Required self._init_op_creator is not None, but received None."
7052
        self._init_op_creator(self, block)
7053

7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
7073
            tensor=super().__str__()
7074
        )
7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
7104 7105
        new_param._init_func = self._init_func
        new_param._init_op_creator = self._init_op_creator
7106 7107 7108 7109 7110 7111
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
7112 7113
        return new_param

7114 7115 7116
    __repr__ = __str__


Y
Yu Yang 已提交
7117
# program is a global instance.
Y
Yu Yang 已提交
7118 7119
_main_program_ = Program()
_startup_program_ = Program()
7120
_startup_program_._is_start_up_program_ = True
7121

7122

7123
def default_startup_program():
Y
Yu Yang 已提交
7124
    """
Y
yuyang18 已提交
7125 7126
    Get default/global startup program.

7127
    The :code:`paddle.nn` function will append the initialization operators into startup program.
7128
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
7129

7130 7131
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
7132

7133 7134
    Returns:
        Program: current default startup program.
7135

7136
    Returns type:
7137 7138 7139 7140

    Examples:
        .. code-block:: python

7141
            import paddle
7142

7143
            paddle.enable_static()
7144 7145 7146 7147
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
7148
    """
Y
Yu Yang 已提交
7149
    return _startup_program_
7150

7151

7152
def default_main_program():
Y
Yu Yang 已提交
7153
    """
7154
    This API can be used to get ``default main program`` which store the
7155
    descriptions of Ops and tensors.
T
tangwei12 已提交
7156

7157 7158
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
7159

7160
    The ``default main program`` is the default value for ``Program`` parameter in
7161
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7162
    :code:`default_main_program` when the program is not specified.
7163

7164
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7165

Y
Yu Yang 已提交
7166
    Returns:
7167
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7168 7169 7170 7171

    Examples:
        ..  code-block:: python

7172
            import paddle
7173

7174
            paddle.enable_static()
7175
            # Sample Network:
7176 7177 7178
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7179

7180 7181 7182
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7183
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7184
    """
Y
Yu Yang 已提交
7185
    return _main_program_
Y
Yu Yang 已提交
7186 7187 7188 7189 7190


def switch_main_program(program):
    """
    Switch the main program to a new program.
7191

Y
Yu Yang 已提交
7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7206
    Switch the startup program to a new program
Y
Yu Yang 已提交
7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7219
@signature_safe_contextmanager
Y
Yu Yang 已提交
7220 7221
def program_guard(main_program, startup_program=None):
    """
7222 7223
    :api_attr: Static Graph

7224 7225 7226
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7227

G
guofei 已提交
7228
    Args:
7229
        main_program(Program): New main program inside ``with`` statement.
7230 7231
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7232 7233 7234
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7235
    Examples:
7236
       .. code-block:: python
T
tangwei12 已提交
7237

7238
          import paddle
Y
yuyang18 已提交
7239

7240 7241 7242 7243 7244
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
7245
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7246 7247 7248

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7249

Y
Yu Yang 已提交
7250
    Examples:
7251
       .. code-block:: python
Y
yuyang18 已提交
7252

7253
          import paddle
7254

7255 7256 7257 7258 7259
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7260

Y
Yu Yang 已提交
7261
    """
7262
    from .data_feeder import check_type
7263 7264 7265 7266

    check_type(
        main_program, 'main_program', Program, 'paddle.static.program_guard'
    )
Y
Yu Yang 已提交
7267 7268
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7269 7270 7271 7272 7273 7274
        check_type(
            startup_program,
            'startup_program',
            Program,
            'paddle.static.program_guard',
        )
7275 7276
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7277
        startup_program = switch_startup_program(startup_program)
7278 7279 7280 7281 7282 7283
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7284 7285


W
Wu Yi 已提交
7286
def _get_var(name, program=None):
X
xuwei06 已提交
7287
    """
Y
yuyang18 已提交
7288
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7289

X
xuwei06 已提交
7290 7291 7292
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7293
        If None, default_global_program() will be used.
X
xuwei06 已提交
7294 7295 7296 7297 7298 7299 7300

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7301
    assert isinstance(program, Program)
X
xuwei06 已提交
7302 7303

    return program.global_block().var(name)
7304 7305


7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318
@signature_safe_contextmanager
def dygraph_guard_if_declarative():
    from .dygraph.base import in_declarative_mode
    from .dygraph import Tracer

    if in_declarative_mode():
        # Under @paddle.jit.to_static decorator, we switch back dygraph mode temporarily.
        with _dygraph_guard(tracer=Tracer()):
            yield
    else:
        yield


S
rename  
sneaxiy 已提交
7319
@signature_safe_contextmanager
L
lujun 已提交
7320
def _dygraph_guard(tracer):
7321 7322 7323 7324
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = tracer
    if tracer is not None:
        core._switch_tracer(tracer)
M
minqiyang 已提交
7325

C
Charles-hit 已提交
7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337
    try:
        yield
    finally:
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer


@signature_safe_contextmanager
def _static_guard():
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = None
7338 7339 7340
    try:
        yield
    finally:
7341 7342 7343
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7344 7345


S
rename  
sneaxiy 已提交
7346
@signature_safe_contextmanager
L
lujun 已提交
7347
def _dygraph_place_guard(place):
7348 7349 7350
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7351 7352
    _set_dygraph_tracer_expected_place(place)

7353 7354 7355
    try:
        yield
    finally:
7356
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7357
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7358 7359


7360 7361 7362 7363 7364 7365 7366 7367 7368 7369
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7370

7371
    Note:
7372
        The API only supports static graph mode.
7373 7374 7375 7376

    A context manager that specifies the device on which the OP will be placed.

    Args:
7377
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
7378
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7379 7380 7381 7382 7383 7384 7385
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7386

7387
        .. code-block:: python
7388

7389
            # required: gpu
Z
Zhang Ting 已提交
7390
            import paddle
7391

Z
Zhang Ting 已提交
7392 7393 7394
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7395
            if support_gpu:
Z
Zhang Ting 已提交
7396
                place = paddle.CUDAPlace(0)
7397 7398

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7399 7400 7401
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7402

Z
Zhang Ting 已提交
7403
            with paddle.static.device_guard("cpu"):
7404
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7405 7406
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7407
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7408
                out = paddle.reshape(data1, shape=shape)
7409

Z
Zhang Ting 已提交
7410 7411
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7412 7413 7414
            result = exe.run(fetch_list=[out])
    """

7415 7416 7417 7418 7419
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7420 7421 7422 7423
    if (
        device not in ['cpu', 'gpu', 'xpu', '', None]
        and device not in core.get_all_custom_device_type()
    ):
7424
        raise ValueError(
7425
            "The Attr(device) should be 'cpu', 'xpu', 'gpu' or custom device, and it can also be empty string or None "
7426 7427
            "when there is no need to specify device. But received %s" % device
        )
7428 7429
    if index:
        device = ":".join([device, index])
7430
    pre_device = switch_device(device)
7431 7432 7433 7434
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7435 7436


7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
7449
        The API only supports static graph mode.
7450

7451
    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static graph mode.
7452 7453 7454 7455 7456

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
7457
    assert (
7458
        not in_dygraph_mode()
7459
    ), "cuda_graph_guard only works under static graph mode"
7460 7461
    assert (
        core.is_compiled_with_cuda()
7462 7463 7464 7465 7466 7467 7468 7469
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7470 7471 7472
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7473
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7474 7475 7476 7477 7478 7479 7480

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7481 7482
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7483 7484 7485 7486
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7487 7488
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7489 7490
        else:
            raise ValueError(
7491 7492
                "Flag %s cannot set its value through this function." % (key)
            )
G
guofei 已提交
7493 7494 7495 7496 7497


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7498
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7499 7500 7501 7502 7503 7504 7505 7506 7507 7508

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7509
            import paddle
G
guofei 已提交
7510 7511

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7512
            res = paddle.get_flags(flags)
G
guofei 已提交
7513 7514 7515 7516 7517 7518
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7519
            if _global_flags().is_public(key):
7520
                value = _global_flags()[key]
G
guofei 已提交
7521 7522 7523 7524
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
7525 7526 7527
                    'Flag %s cannot get its value through this function.'
                    % (key)
                )
G
guofei 已提交
7528
    elif isinstance(flags, str):
7529
        if _global_flags().is_public(flags):
7530
            value = _global_flags()[flags]
G
guofei 已提交
7531 7532 7533 7534
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
7535 7536
                'Flag %s cannot get its value through this function.' % (flags)
            )
G
guofei 已提交
7537 7538 7539
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7540 7541 7542 7543 7544 7545


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557
    if isinstance(
        place,
        (
            core.Place,
            core.XPUPlace,
            core.CPUPlace,
            core.CUDAPinnedPlace,
            core.CUDAPlace,
            core.IPUPlace,
            core.CustomPlace,
        ),
    ):
7558 7559 7560 7561
        return place

    if not isinstance(place, str):
        raise ValueError(
7562 7563
            "place only support string which is 'Place' and so on."
        )
7564 7565

    place = place.lower()
7566
    if place == "cpu":
7567
        return core.CPUPlace()
7568

7569
    if place == "device":
7570 7571
        return core.Place()

7572
    # GPU
7573 7574 7575 7576
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
7577
                "The device should not be {}, since PaddlePaddle is "
7578
                "not compiled with CUDA".format(avaliable_gpu_place.group())
7579
            )
7580 7581 7582 7583 7584 7585 7586 7587 7588
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7589 7590

    # XPU
7591 7592 7593 7594
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
7595
                "The device should not be {}, since PaddlePaddle is "
7596
                "not compiled with XPU".format(avaliable_xpu_place.group())
7597
            )
7598 7599 7600 7601
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7602

J
jianghaicheng 已提交
7603 7604 7605 7606 7607
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
7608
                "The device should not be {}, since PaddlePaddle is "
7609
                "not compiled with IPU".format(avaliable_ipu_place.group())
7610
            )
J
jianghaicheng 已提交
7611 7612 7613 7614 7615
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7616
    raise ValueError(
K
Kim Yann 已提交
7617
        f"Paddle supports CPUPlace, CUDAPlace, CUDAPinnedPlace, XPUPlace and IPUPlace, but received {place}."
7618
    )
7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630


def _get_paddle_place_list(places):
    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret