parallel_executor.cc 41.7 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
Q
qingqing01 已提交
17
#include <memory>
C
chengduoZH 已提交
18
#include <string>
19
#include <tuple>
Q
Qiao Longfei 已提交
20
#include <utility>
Q
qiaolongfei 已提交
21
#include <vector>
Q
Qiao Longfei 已提交
22
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
Y
yuyang18 已提交
23
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
24
#include "paddle/fluid/framework/details/multi_devices_helper.h"
25
#include "paddle/fluid/framework/details/op_handle_base.h"
Y
Yancey1989 已提交
26
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
28
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
29 30
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
31
#include "paddle/fluid/framework/ir/memory_optimize_pass/memory_optimization_var_info.h"
32
#include "paddle/fluid/framework/ir/memory_optimize_pass/reference_count_pass_helper.h"
33
#include "paddle/fluid/framework/ir/multi_devices_graph_pass/set_reader_device_info_utils.h"
W
wangchaochaohu 已提交
34
#include "paddle/fluid/platform/event.h"
35
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
36

37 38
DECLARE_double(eager_delete_tensor_gb);

Y
Yu Yang 已提交
39
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
40
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
41
#endif
Y
Yu Yang 已提交
42
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
43 44
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
45
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
46
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
47

Y
Yang Yang 已提交
48
namespace paddle {
Y
Yu Yang 已提交
49 50
namespace framework {

Y
Yu Yang 已提交
51
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
52
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
53
static bool gProfileStarted = false;
Y
Yu Yang 已提交
54
#endif
55

Y
Yu Yang 已提交
56 57
class ParallelExecutorPrivate {
 public:
58 59 60
  ParallelExecutorPrivate(const std::vector<platform::Place> &places,
                          Scope *global_scope)
      : places_(places), global_scope_(global_scope) {
Y
Yu Yang 已提交
61
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
62 63
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
64
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
65 66 67
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
68
          "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
69 70 71 72
#endif
      });
    }
  }
Y
Yu Yang 已提交
73

74 75 76 77 78 79 80 81 82 83 84
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
85

86 87 88 89
  void SetHasFeed(size_t dev_idx, bool has_feed = true);

  bool AllowPartialFeed() const;

90
  ir::Graph *ApplyMemoryOptimizePass(ir::Graph *graph);
S
sneaxiy 已提交
91 92 93

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

94
  /**
T
tianshuo78520a 已提交
95 96
   * NOTE(zengjinle): the fed variables of users should not be reused,
   * because users may feed them into another network. Changing the fed
97 98 99 100 101 102
   * variables that users can visit may cause calculation wrong, which is
   * a very subtle bug when traning networks. However, these variables
   * can be garbage collected.
   *
   * ParallelExecutor provides 2 methods to feed variables:
   *
T
tianshuo78520a 已提交
103
   *  - FeedTensorsIntoLocalScopes: this method would share memory of fed
104 105
   *                                variables, so we have to skip these.
   *
T
tianshuo78520a 已提交
106
   *  - FeedAndSplitTensorIntoLocalScopes: this method would copy data of fed
107 108 109 110 111 112 113 114 115 116
   *                                       variables, so we do not need to skip
   *                                       them.
   */
  inline void SetSkipMemoryReuse(size_t scope_idx, const std::string &name) {
    auto iter = mem_opt_var_infos_[scope_idx].find(name);
    if (iter != mem_opt_var_infos_[scope_idx].end()) {
      iter->second->SetSkipMemoryReuse(true);
    }
  }

117
#if defined(PADDLE_WITH_NCCL)
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
  void InitNCCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "nccl comm num:" << bst.nccl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    if (bst.use_hierarchical_allreduce_) {
      VLOG(1) << ", use_hierarchical_allreduce:"
              << bst.use_hierarchical_allreduce_ << ", inter_trainers_num:"
              << bst.hierarchical_allreduce_inter_nranks_
              << ", exter_trainers_num:"
              << bst.hierarchical_allreduce_exter_nranks_;
    }

    std::vector<ncclUniqueId *> flat_nccl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create ncclid when nranks==1
134 135
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
136 137 138 139 140 141 142 143 144 145 146 147
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one ncclid in pg model";

      ncclUniqueId *nccl_id = nullptr;

      std::string var_name = platform::GetFlatNCCLVarName(0);
      auto nccl_id_var = scope->FindVar(var_name);
      if (nccl_id_var) {
        nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
148
        VLOG(10) << "find nccl_id_var:" << var_name << ", nccl_id:" << nccl_id;
149 150
      } else {
        nccl_id = new ncclUniqueId();
151 152 153
        PADDLE_ENFORCE_EQ(
            platform::dynload::ncclGetUniqueId(nccl_id), ncclSuccess,
            platform::errors::PreconditionNotMet("Get NCCL unique ID failed."));
154 155
        VLOG(10) << "can't find nccl_id_var:" << var_name
                 << ", nccl_id:" << nccl_id;
156 157 158 159
      }

      flat_nccl_ids.push_back(nccl_id);

160 161
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
162 163 164 165 166 167
      VLOG(1) << "init bst nccl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
168 169
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
170 171 172 173 174 175
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
      std::string var_name = platform::GetFlatNCCLVarName(i);
      auto nccl_id_var = scope->FindVar(var_name);
176 177 178
      PADDLE_ENFORCE_NOT_NULL(
          nccl_id_var,
          platform::errors::NotFound("Can't find nccl_id_var '%s'.", var_name));
179 180 181 182
      auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      flat_nccl_ids.push_back(nccl_id);
    }

183 184
    nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                             bst.trainer_id_);
185 186

    if (bst.use_hierarchical_allreduce_) {
G
gongweibao 已提交
187 188 189 190
      std::vector<ncclUniqueId *> inter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalInterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
191 192 193
        PADDLE_ENFORCE_NOT_NULL(nccl_id_var,
                                platform::errors::NotFound(
                                    "Can't find nccl_id_var '%s'.", var_name));
G
gongweibao 已提交
194 195 196
        auto inter_nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        inter_nccl_ids.push_back(inter_nccl_id);
      }
197 198 199 200 201

      std::vector<ncclUniqueId *> exter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalExterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
202 203 204
        PADDLE_ENFORCE_NOT_NULL(nccl_id_var,
                                platform::errors::NotFound(
                                    "Can't find nccl_id_var '%s'.", var_name));
205 206 207
        auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        exter_nccl_ids.push_back(nccl_id);
      }
G
gongweibao 已提交
208

209 210 211 212
      nccl_ctxs_->InitHierarchicalCtxs(
          places_, inter_nccl_ids, exter_nccl_ids, bst.num_trainers_,
          bst.trainer_id_, bst.hierarchical_allreduce_inter_nranks_,
          bst.hierarchical_allreduce_exter_nranks_);
213 214
    }
  }
215

216
  void InitOrGetNCCLCommunicator(framework::Scope *scope, BuildStrategy *bst) {
217 218 219
    const std::string var_name = "NCCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
220 221 222
      PADDLE_ENFORCE_EQ(var->IsInitialized(), true,
                        platform::errors::PreconditionNotMet(
                            "if %s exists, it must be initialized", var_name));
223 224 225 226 227 228
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      nccl_ctxs_ = var->GetMutable<platform::NCCLCommunicator>();
      return;
    }

229
    if (bst->use_hierarchical_allreduce_) {
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
      PADDLE_ENFORCE_GT(
          bst->num_trainers_, 1,
          platform::errors::PreconditionNotMet(
              "The num_trainers should be greater than 1, but received %llu.",
              bst->num_trainers_));
      PADDLE_ENFORCE_GT(
          bst->hierarchical_allreduce_inter_nranks_, 1,
          platform::errors::PreconditionNotMet(
              "The inter_nranks should be greater than 1, but received %d.",
              bst->hierarchical_allreduce_inter_nranks_));
      PADDLE_ENFORCE_EQ(
          bst->num_trainers_ % bst->hierarchical_allreduce_inter_nranks_, 0,
          platform::errors::PreconditionNotMet(
              "num_trainers:%llu mod inter_nranks:%d != 0", bst->num_trainers_,
              bst->hierarchical_allreduce_inter_nranks_));
245 246 247 248 249

      bst->hierarchical_allreduce_exter_nranks_ =
          bst->num_trainers_ / bst->hierarchical_allreduce_inter_nranks_;
    }

250 251
    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    nccl_ctxs_ = scope->Var(var_name)->GetMutable<platform::NCCLCommunicator>();
252
    InitNCCLCtxs(scope, *bst);
253
  }
254 255
#endif

256 257 258 259 260
  inline bool IsPersistable(const std::string &name) const {
    auto iter = is_persistable_.find(name);
    return iter != is_persistable_.end() && iter->second;
  }

D
dzhwinter 已提交
261
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
262 263
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
264
  std::vector<Scope *> local_exec_scopes_;
265
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
266
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
267

268 269
  std::unordered_map<std::string, bool> is_persistable_;

270
#if defined(PADDLE_WITH_NCCL)
271
  platform::NCCLCommunicator *nccl_ctxs_{nullptr};
Y
Yu Yang 已提交
272
#endif
C
chengduoZH 已提交
273 274
  bool own_local_scope_;
  bool use_cuda_;
275
  bool use_all_reduce_;
276
  size_t nranks_;
S
sneaxiy 已提交
277

278
  ir::MemOptVarInfoMapList mem_opt_var_infos_;
279
  ir::GarbageCollectorMap gcs_;
280 281

  details::ParallelSSAGraphExecutor *inference_executor_{nullptr};
Y
Yu Yang 已提交
282 283
};

284 285 286 287 288 289 290 291 292 293
void ParallelExecutorPrivate::SetHasFeed(size_t dev_idx, bool has_feed) {
  if (inference_executor_) {
    inference_executor_->SetHasFeed(dev_idx, has_feed);
  }
}

bool ParallelExecutorPrivate::AllowPartialFeed() const {
  return inference_executor_ && inference_executor_->SupportPartialFeed();
}

294
ir::Graph *ParallelExecutorPrivate::ApplyMemoryOptimizePass(ir::Graph *graph) {
Z
Zeng Jinle 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
  /**
   * NOTE(zengjinle): If BuildStrategy.memory_optimize = None in Python,
   * set BuildStrategy.memory_optimize according to whether gc is enabled.
   * If gc is enabled, BuildStrategy.memory_optimize = False.
   * If gc is disabled, BuildStrategy.memory_optimize = True.
   * This is because gc+memory_optimize is worse than gc only.
   *
   * As an option, users can enable BuildStrategy.memory_optimize forcely
   * by setting True, and disable it forcely by setting False.
   */
  bool is_gc_enabled = (GetEagerDeletionThreshold() >= 0);
  if (!build_strategy_.memory_optimize_) {
    build_strategy_.memory_optimize_ = !is_gc_enabled;
  }

  bool need_mem_opt = build_strategy_.enable_inplace_ ||
                      build_strategy_.memory_optimize_.get() || is_gc_enabled;

  if (!need_mem_opt) return graph;

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
  std::vector<ir::LastLiveOpsOfVars> last_live_ops_of_vars;

  auto ref_cnt_pass = ir::PassRegistry::Instance().Get("reference_count_pass");
  ref_cnt_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
  ref_cnt_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
  graph = ref_cnt_pass->Apply(graph);
  VLOG(10) << "ReferenceCountPass Applied";

  if (build_strategy_.enable_inplace_) {
    auto inplace_pass =
        ir::PassRegistry::Instance().Get("buffer_shared_inplace_pass");
    inplace_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    inplace_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
    inplace_pass->SetNotOwned(ir::kUseCuda, &use_cuda_);
    VLOG(10) << "Start to apply buffer_shared_inplace_pass";
    graph = inplace_pass->Apply(graph);
    VLOG(10) << "buffer_shared_inplace_pass Applied";
332 333
    VLOG(1) << "Inplace strategy is enabled, when "
               "build_strategy.enable_inplace = True";
334 335
  }

336
  if (build_strategy_.memory_optimize_.get()) {
337 338 339 340 341 342 343 344 345 346
    auto cross_op_memory_reuse_pass = ir::PassRegistry::Instance().Get(
        "buffer_shared_cross_op_memory_reuse_pass");
    cross_op_memory_reuse_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                            &mem_opt_var_infos_);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
                                            &last_live_ops_of_vars);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kUseCuda, &use_cuda_);
    VLOG(10) << "Start to apply buffer_shared_cross_op_memory_reuse_pass";
    graph = cross_op_memory_reuse_pass->Apply(graph);
    VLOG(10) << "buffer_shared_cross_op_memory_reuse_pass Applied";
Z
Zeng Jinle 已提交
347 348 349
    LOG(INFO) << "Cross op memory reuse strategy is enabled, when "
                 "build_strategy.memory_optimize = True or garbage collection "
                 "strategy is disabled, which is not recommended";
350
  }
351

352
  if (!is_gc_enabled) {
353 354 355 356
    return graph;
  }
  size_t max_memory_size = static_cast<size_t>(GetEagerDeletionThreshold());

S
sneaxiy 已提交
357 358 359 360 361
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
362
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
363
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
364 365
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
366
        gc.reset(new UnsafeFastGPUGarbageCollector(
367
            BOOST_GET_CONST(platform::CUDAPlace, place), max_memory_size));
S
sneaxiy 已提交
368
      } else {
S
sneaxiy 已提交
369
        gc.reset(new StreamGarbageCollector(
370
            BOOST_GET_CONST(platform::CUDAPlace, place), max_memory_size));
S
sneaxiy 已提交
371 372
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
373
    } else {
S
sneaxiy 已提交
374
#endif
S
sneaxiy 已提交
375
      if (platform::is_cpu_place(place)) {
376 377
        gc.reset(new CPUGarbageCollector(
            BOOST_GET_CONST(platform::CPUPlace, place), max_memory_size));
S
sneaxiy 已提交
378 379
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
380 381
        PADDLE_THROW(platform::errors::PreconditionNotMet(
            "Unsupported place for garbage collection"));
S
sneaxiy 已提交
382
      }
S
sneaxiy 已提交
383 384 385 386
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
387
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
388 389
  }

S
sneaxiy 已提交
390
  if (!gcs_.empty()) {
S
sneaxiy 已提交
391 392
    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
393 394
    eager_deletion_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                     &mem_opt_var_infos_);
395 396
    eager_deletion_pass->SetNotOwned(ir::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
S
sneaxiy 已提交
397
                                     &last_live_ops_of_vars);
398
    eager_deletion_pass->SetNotOwned(ir::kAllPlaces, &places_);
399
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
400
    VLOG(10) << "EagerDeletionPass Applied";
401 402 403
    VLOG(1) << "Garbage collection strategy is enabled, when "
            << "FLAGS_eager_delete_tensor_gb = "
            << FLAGS_eager_delete_tensor_gb;
S
sneaxiy 已提交
404 405 406 407
  }
  return graph;
}

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
class ResetHasFeedGuard {
 public:
  explicit ResetHasFeedGuard(ParallelExecutorPrivate *pe_member)
      : pe_member_(pe_member) {}

  ~ResetHasFeedGuard() {
    for (size_t i = 0; i < pe_member_->places_.size(); ++i) {
      pe_member_->SetHasFeed(i, false);
    }
  }

 private:
  ParallelExecutorPrivate *pe_member_;
};

423 424
size_t ParallelExecutor::DeviceCount() const { return member_->places_.size(); }

425 426 427 428
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

429 430 431 432 433 434 435 436 437 438 439 440 441 442
void ParallelExecutor::DropLocalExeScopes() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  if (executor) {
    executor->DropLocalExeScopes();
  }
}

bool ParallelExecutor::NeedCreateLocalExeScope() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  return executor && executor->NeedCreateLocalExeScope();
}

Y
Yan Xu 已提交
443 444 445 446 447 448 449 450
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
451
    : member_(new ParallelExecutorPrivate(places, scope)) {
452 453 454
  PADDLE_ENFORCE(places.size() > 0 && !is_xpu_place(places[0]),
                 platform::errors::Unavailable(
                     "XPU is not supported in ParallelExecutor"));
455 456
  ir::InitReaderQueueDeviceCount(graph, *(member_->global_scope_),
                                 member_->places_.size());
457
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
458
  member_->build_strategy_ = build_strategy;
C
chengduo 已提交
459 460
  member_->use_all_reduce_ = member_->build_strategy_.reduce_ ==
                             BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
461
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
C
chengduo 已提交
462 463 464 465 466 467 468
  if (!member_->use_all_reduce_ && member_->nranks_ == 1) {
    LOG(INFO) << "If you set build_strategy.reduce with 'Reduce',"
                 "the number of places should be greater than 1.";
    member_->build_strategy_.reduce_ =
        BuildStrategy::ReduceStrategy::kAllReduce;
    member_->use_all_reduce_ = true;
  }
469 470
#if defined(PADDLE_WITH_CUDA) && defined(_WIN32)
  if (member_->use_cuda_) {
471 472 473
    PADDLE_ENFORCE_EQ(
        places.size(), 1,
        platform::errors::Unavailable("Windows can support Single GPU only."));
474 475
  }
#endif
Y
Yancey1989 已提交
476

477 478 479 480 481 482 483 484 485 486
#if defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_NCCL)
  PADDLE_ENFORCE_EQ(
      places.size(), 1,
      platform::errors::PermissionDenied(
          "Your machine has multiple cards, "
          "but the WITH_NCCL option is not turned on during compilation, "
          "and you cannot use multi-card training or prediction. "
          "Please recompile and turn on the WITH_NCCL option."));
#endif

487
  VLOG(1) << string::Sprintf(
488 489 490
      "The Program will be executed on %s using ParallelExecutor, %lu "
      "cards are used, so %lu programs are executed in parallel.",
      (member_->use_cuda_ ? "CUDA" : "CPU"), places.size(), places.size());
C
chengduo 已提交
491

492
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
493
  // Create local scopes
494
  if (local_scopes.empty()) {
C
chengduoZH 已提交
495
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
496 497
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
498
      member_->local_scopes_.emplace_back(&scope->NewScope());
499 500
    }
  } else {
C
chengduoZH 已提交
501
    member_->own_local_scope_ = false;
502 503 504 505 506
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size(),
                      platform::errors::PreconditionNotMet(
                          "member_->places_.size() = %d is not equal to "
                          "local_scopes.size() = %d",
                          member_->places_.size(), local_scopes.size()));
507
    for (size_t i = 0; i < member_->places_.size(); ++i) {
508
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
509
    }
Y
Yu Yang 已提交
510 511
  }

Q
Qiao Longfei 已提交
512
  std::vector<ir::Graph *> graphs;
C
chengduo 已提交
513
  if (member_->build_strategy_.async_mode_) {
514 515 516
    PADDLE_ENFORCE_EQ(member_->use_cuda_, false,
                      platform::errors::Unavailable(
                          "gpu mode does not support async_mode_ now!"));
Q
Qiao Longfei 已提交
517
    graphs.push_back(graph);
D
dongdaxiang 已提交
518
    for (size_t i = 1; i < places.size(); ++i) {
Q
Qiao Longfei 已提交
519 520 521 522
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
Q
Qiao Longfei 已提交
523
  }
Q
Qiao Longfei 已提交
524

Y
Yancey1989 已提交
525 526 527
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
C
chengduo 已提交
528 529 530 531
  member_->build_strategy_.enable_parallel_graph_ =
      EnableParallelGraphExecution(*graph, exec_strategy,
                                   member_->build_strategy_);
  if (member_->build_strategy_.enable_parallel_graph_) {
532 533 534 535
    LOG(INFO) << "The Executor would execute the graph by ParallelGraph "
                 "Execution which can get better performance,"
              << "you can force it off by env FLAGS_enable_parallel_graph=0";
  }
Y
Yancey1989 已提交
536

537
  if (member_->use_cuda_ && member_->nranks_ > 1) {
538
#if defined(PADDLE_WITH_NCCL)
539
    member_->InitOrGetNCCLCommunicator(scope, &member_->build_strategy_);
Q
qingqing01 已提交
540

W
Wu Yi 已提交
541 542 543
    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
Q
qingqing01 已提交
544
    // be rewrite and there will be some problem.
W
Wu Yi 已提交
545 546 547
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
548 549
    auto *nccl_ctxs =
        member_->nccl_ctxs_->GetSyncBatchNormCtx(scope, member_->places_);
550
    auto &pool = platform::DeviceContextPool::Instance();
Q
qingqing01 已提交
551 552 553
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
554
      auto &nccl_ctx = nccl_ctxs->at(member_->places_[dev_id]);
555
      dev_ctx->set_nccl_comm(nccl_ctx.comm());
Q
qingqing01 已提交
556
    }
Y
Yu Yang 已提交
557
#endif
C
chengduoZH 已提交
558
  }
Y
Yan Xu 已提交
559 560
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
C
chengduo 已提交
561
    if (member_->build_strategy_.num_trainers_ > 1) {
Y
Yan Xu 已提交
562 563 564 565 566 567 568 569 570
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };
571
  // Bcast Parameters to all GPUs
Y
Yan Xu 已提交
572
  if (need_broadcast()) {
C
chengduo 已提交
573
    BCastParamsToDevices(bcast_vars, member_->build_strategy_.trainer_id_);
Y
Yu Yang 已提交
574
  }
575

Q
Qiao Longfei 已提交
576
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
577

Q
Qiao Longfei 已提交
578 579 580
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<ir::Graph *> async_graphs(places.size());
581
#if defined(PADDLE_WITH_NCCL)
C
chengduo 已提交
582
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
583
    VLOG(3) << "use local async mode";
C
chengduo 已提交
584 585 586 587
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_cuda_,
        member_->nccl_ctxs_);
D
dongdaxiang 已提交
588
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
589 590 591 592
      graphs[i] = member_->build_strategy_.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, 1, member_->use_cuda_,
          member_->nccl_ctxs_);
593
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
594
    }
Q
Qiao Longfei 已提交
595
  } else {
C
chengduo 已提交
596 597 598
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_, member_->nccl_ctxs_);
Q
Qiao Longfei 已提交
599
  }
C
chengduoZH 已提交
600
#else
C
chengduo 已提交
601
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
602
    VLOG(3) << "use local async mode";
C
chengduo 已提交
603 604 605
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_cuda_);
606
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
607
      graphs[i] = member_->build_strategy_.Apply(
608
          graphs[i], {member_->places_[i]}, loss_var_name,
Q
Qiao Longfei 已提交
609
          {member_->local_scopes_[i]}, 1, member_->use_cuda_);
610
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
611
    }
Q
can run  
Qiao Longfei 已提交
612
  } else {
C
chengduo 已提交
613 614 615
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_);
Q
can run  
Qiao Longfei 已提交
616
  }
Y
Yu Yang 已提交
617
#endif
618

619
  graph = member_->ApplyMemoryOptimizePass(graph);
Y
Yancey1989 已提交
620

Q
Qiao Longfei 已提交
621 622
  async_graphs[0] = graph;

623 624
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
625
  std::vector<details::VariableInfo> var_infos;
Q
Qiao Longfei 已提交
626 627 628 629 630 631
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
632 633 634

      member_->is_persistable_.emplace(node->Var()->Name(),
                                       node->Var()->Persistable());
Y
Yancey1989 已提交
635 636
    }
  }
Y
Yancey1989 已提交
637

638 639 640 641 642 643 644
  std::unordered_map<Scope *, Scope *> scope_map;
  for (auto *scope : member_->local_scopes_) {
    auto &local_exec_scope = scope->NewScope();
    member_->local_exec_scopes_.emplace_back(&local_exec_scope);
    scope_map.emplace(scope, &local_exec_scope);
  }

645 646 647 648 649 650
  PADDLE_ENFORCE_EQ(
      member_->local_scopes_.size(), member_->local_exec_scopes_.size(),
      platform::errors::PreconditionNotMet(
          "member_->local_scopes_.size() = %d is not equal to "
          "member_->local_exec_scopes_.size() = %d",
          member_->local_scopes_.size(), member_->local_exec_scopes_.size()));
651 652 653

  std::vector<ir::Graph *> final_graphs;

C
chengduo 已提交
654
  if (member_->build_strategy_.async_mode_) {
Q
can run  
Qiao Longfei 已提交
655 656
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
657 658 659
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, async_graphs));
    final_graphs = async_graphs;
C
chengduo 已提交
660
  } else if (member_->build_strategy_.enable_parallel_graph_) {
Q
can run  
Qiao Longfei 已提交
661
    VLOG(3) << "use ParallelSSAGraphExecutor";
Y
Yancey1989 已提交
662
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
663 664
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
665 666 667
    bool is_inference = details::IsDataParallelInferenceGraph(*graph);
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);

668 669 670 671 672
    auto *pg_exe = new details::ParallelSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, graph);
    final_graphs = pg_exe->Graphs();
    member_->executor_.reset(pg_exe);
673 674 675 676 677 678 679 680

    if (is_inference && member_->places_.size() > 1) {
      member_->inference_executor_ = pg_exe;
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
    }
Y
Yancey1989 已提交
681
#else
682 683
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Paddle should be compiled with CUDA for ParallelGraph Execution."));
Y
Yancey1989 已提交
684
#endif
Y
yuyang18 已提交
685
  } else {
686 687 688 689 690 691
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);
    auto possible_inference_graphs =
        details::TrySeparateToMultipleSingleDeviceGraphs(graph);
    if (!possible_inference_graphs.empty()) {
      VLOG(5) << "Use ParallelSSAGraphExecutor in inference phase";
      auto *pg_exe = new details::ParallelSSAGraphExecutor(
692
          exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
693 694 695 696 697 698 699 700
          member_->places_, std::move(possible_inference_graphs));
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
      final_graphs = pg_exe->Graphs();
      member_->executor_.reset(pg_exe);
      member_->inference_executor_ = pg_exe;
Y
Yancey1989 已提交
701
    } else {
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
      LOG_IF(WARNING, details::HasKeepLastReadOp(*graph))
          << "drop_last=False for DataLoader is not supported in training "
             "network. It is automatically turned to drop_last=True.";
      if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
        VLOG(3) << "use ThreadedSSAGraphExecutor";
        member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
            exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
            member_->places_, graph));
      } else {
        VLOG(3) << "use FastThreadedSSAGraphExecutor";
        member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
            exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
            member_->places_, graph));
      }
      final_graphs.emplace_back(graph);
Y
Yancey1989 已提交
717
    }
C
chengduoZH 已提交
718
  }
Y
yuyang18 已提交
719

Q
can run  
Qiao Longfei 已提交
720
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
C
chengduo 已提交
721
  if (!member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
722
    member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
723 724 725 726 727 728 729 730 731
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        std::move(var_infos), member_->places_, std::move(member_->executor_)));
  }

  for (auto *g : final_graphs) {
    auto ops = ir::FilterByNodeWrapper<details::OpHandleBase>(*g);
    for (auto *op : ops) {
      op->SetLocalExecScopes(scope_map);
    }
Q
Qiao Longfei 已提交
732
  }
733 734 735 736 737 738 739 740

  if (final_graphs.size() == 1) {
    ir::SetReaderOpDeviceInfo(final_graphs[0], member_->places_.size());
  } else {
    for (size_t i = 0; i < final_graphs.size(); ++i) {
      ir::SetReaderOpDeviceInfo(final_graphs[i], member_->places_.size(), i);
    }
  }
Y
Yu Yang 已提交
741 742
}

Y
Yancey1989 已提交
743
void ParallelExecutor::BCastParamsToDevices(
Y
Yan Xu 已提交
744
    const std::vector<std::string> &vars, int trainer_id) const {
Q
Qiao Longfei 已提交
745
  VLOG(3) << "BCastParamsToDevices";
X
Xin Pan 已提交
746
  // the initializing bcast, all vars would be bcast from device(0).
747
  for (auto &var : vars) {
X
Xin Pan 已提交
748
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
749
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
750 751 752 753
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
754
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
755
      VLOG(3) << "one in var not inited, return!";
756 757
      continue;
    }
758 759
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
760
#if defined(PADDLE_WITH_NCCL)
761
      std::vector<void *> buffers;
C
chengduo 已提交
762
      buffers.reserve(member_->places_.size());
763 764 765 766 767
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
768

Y
Yan Xu 已提交
769
        if (i == 0 && trainer_id == 0) {
770 771
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
772
          auto local_scope = member_->local_scopes_[i];
773
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
774
          t->Resize(dims);
775
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
776
        }
777
        buffers.push_back(buffer);
778
      }
779

780
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
781 782 783 784
                        platform::errors::PreconditionNotMet(
                            "variables' buffer size to bcast is %d, which is "
                            "NOT equal to places size %d",
                            buffers.size(), member_->places_.size()));
785
      {
786
        auto *nccl_ctxs = member_->nccl_ctxs_->DefaultFlatCtx();
787 788
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
789
          auto &nccl_ctx = nccl_ctxs->at(member_->places_[i]);
X
Xin Pan 已提交
790 791
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
792
        }
793
        nccl_ctxs->WaitAll();
794
      }
C
chengduoZH 已提交
795
#endif
796 797
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
798
      for (size_t i = 1; i < member_->places_.size(); ++i) {
799 800
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
801

Q
Qiao Longfei 已提交
802
        auto copy_memory = [&] {
803 804 805
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
806 807
        };

Q
Qiao Longfei 已提交
808
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
809 810 811 812 813 814 815

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
        } else if (member_->use_all_reduce_ || member_->use_cuda_ ||
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
816
        } else {
Q
can run  
Qiao Longfei 已提交
817
          share_memory();
818
        }
Y
Yu Yang 已提交
819
      }
Y
Stash  
Yu Yang 已提交
820 821
    }
  }
Y
Yu Yang 已提交
822
}
Y
Yu Yang 已提交
823

Z
Zhen Wang 已提交
824 825
FetchResultType ParallelExecutor::Run(
    const std::vector<std::string> &fetch_tensors, bool return_merged) {
826
  VLOG(3) << "enter ParallelExecutor Run";
W
wangchaochaohu 已提交
827 828
  platform::RecordEvent parallel_executor_event(
      "ParallelExecutor::Run", paddle::platform::EventRole::kSpecial);
Y
Yu Yang 已提交
829 830 831
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
832 833
  }
#endif
Y
Yu Yang 已提交
834

X
Xin Pan 已提交
835
  platform::RecordBlock b(0);
836

837 838
  ResetHasFeedGuard reset_has_feed_guard(member_);

839 840
  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_), fetch_tensors,
                                member_->HasGarbageCollectors());
841 842

  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
Z
Zhen Wang 已提交
843
  auto fetch_data = member_->executor_->Run(fetch_tensors, return_merged);
844
  return fetch_data;
Y
Yu Yang 已提交
845
}
Y
Yu Yang 已提交
846

Y
Yu Yang 已提交
847 848
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
  if (!member_->AllowPartialFeed()) {
    PADDLE_ENFORCE_EQ(tensors.size(), member_->local_scopes_.size(),
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
                          tensors.size(), member_->local_scopes_.size()));
  } else {
    PADDLE_ENFORCE_GE(member_->local_scopes_.size(), tensors.size(),
                      platform::errors::InvalidArgument(
                          "The feed tensor number exceeds the device number"));
  }
Y
Yu Yang 已提交
864

865
  size_t feed_num = 0;
Y
Yu Yang 已提交
866 867
  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
868 869 870 871 872 873
    if (map.empty()) {
      continue;
    }

    member_->SetHasFeed(i);
    ++feed_num;
Y
Yu Yang 已提交
874
    for (auto &pair : map) {
875
      bool is_persistable = member_->IsPersistable(pair.first);
876 877 878
      if (!is_persistable) {
        member_->SetSkipMemoryReuse(i, pair.first);
      }
879 880 881 882 883
      auto *feed_scope = is_persistable ? member_->local_scopes_[i]
                                        : member_->local_exec_scopes_[i];
      auto *feed_var = feed_scope->Var(pair.first);

      auto *trg = feed_var->GetMutable<LoDTensor>();
Y
Yu Yang 已提交
884 885 886 887
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
888 889 890 891 892 893 894 895 896 897 898 899

  if (!member_->AllowPartialFeed()) {
    PADDLE_ENFORCE_EQ(feed_num, member_->local_scopes_.size(),
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
                          feed_num, member_->local_scopes_.size()));
  }
Y
Yu Yang 已提交
900 901 902 903
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
904
  size_t num_places = member_->places_.size();
905 906 907 908 909
  bool allow_partial_feed = member_->AllowPartialFeed();

  size_t persistable_feed_len = -1UL;
  size_t non_persistable_feed_len = -1UL;

910
  for (auto &pair : tensors) {
911 912 913 914
    bool is_persistable = member_->IsPersistable(pair.first);
    VLOG(3) << "Split " << (is_persistable ? "persistable" : "no persistable")
            << " data (" << pair.first << "), dim:" << pair.second.dims()
            << ", place: " << pair.second.place();
Y
Yu Yang 已提交
915
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
916
    bool is_cpu_place = platform::is_cpu_place(member_->places_.front());
917 918
    if (!is_persistable && num_places != lod_tensors.size() &&
        !allow_partial_feed) {
C
chengduo 已提交
919
      auto error_info = string::Sprintf(
920 921 922
          "The number(%d) of samples[%s] of current batch is less than the "
          "count(%d) of devices(%s), currently, it is not allowed. ",
          lod_tensors.size(), pair.first, num_places,
C
chengduo 已提交
923 924 925 926 927 928
          (is_cpu_place ? "CPU" : "GPU"));
      if (is_cpu_place) {
        error_info +=
            "You should set the environment variable CPU_NUM in the system "
            "to determine the number of devices you need.";
      }
929
      PADDLE_THROW(platform::errors::PreconditionNotMet(error_info));
930 931 932 933
    } else if (is_persistable) {
      if (lod_tensors.size() == 1) {
        lod_tensors.reserve(num_places);
        auto &tensor = lod_tensors.front();
934 935 936 937 938 939
        PADDLE_ENFORCE_EQ(
            tensor.dims(), pair.second.dims(),
            platform::errors::PreconditionNotMet("The dim doesn't match."));
        PADDLE_ENFORCE_EQ(
            tensor.place(), member_->places_.at(0),
            platform::errors::PreconditionNotMet("The place doesn't match."));
940 941 942 943 944 945
        for (size_t i = 1; i < num_places; ++i) {
          lod_tensors.emplace_back();
          auto &tmp = lod_tensors.back();
          framework::TensorCopy(pair.second, member_->places_.at(i), &tmp);
        }
      }
946
      if (lod_tensors.size() != num_places && !allow_partial_feed) {
947 948 949 950 951 952 953 954 955
        auto error_info = string::Sprintf(
            "The number(%d) of samples[%s] of the current batch does not match "
            "the count(%d) of devices(%s). Because that %s is a persistable "
            "variable, you can feed just one sample, in that case, the input "
            "sample will be copied in %d copies and be sent to different "
            "places separately. If you need that different place has different "
            "value, you should feed %d samples.",
            lod_tensors.size(), pair.first, num_places,
            (is_cpu_place ? "CPU" : "GPU"), pair.first, num_places, num_places);
956
        PADDLE_THROW(platform::errors::PreconditionNotMet(error_info));
957
      }
C
chengduo 已提交
958
    }
959

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
    if (allow_partial_feed) {
      if (is_persistable) {
        if (persistable_feed_len == -1UL) {
          persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
              persistable_feed_len, lod_tensors.size(),
              platform::errors::InvalidArgument(
                  "The feeded number of different persistable variables "
                  "should be the same"));
        }
      } else {
        if (non_persistable_feed_len == -1UL) {
          non_persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
              non_persistable_feed_len, lod_tensors.size(),
              platform::errors::InvalidArgument(
                  "The feeded number of different non-persistable variables "
                  "should be the same"));
        }
      }
    }

    for (size_t j = 0; j < lod_tensors.size(); ++j) {
985 986 987 988 989
      auto *feed_scope = is_persistable ? member_->local_scopes_[j]
                                        : member_->local_exec_scopes_[j];
      auto *feed_var = feed_scope->Var(pair.first);

      auto t = feed_var->GetMutable<LoDTensor>();
990 991
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
992 993
    }
  }
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009

  if (allow_partial_feed && persistable_feed_len != -1UL &&
      non_persistable_feed_len != -1UL) {
    VLOG(10) << "Persistable len " << persistable_feed_len;
    VLOG(10) << "Non persistable len " << non_persistable_feed_len;
    PADDLE_ENFORCE_GE(persistable_feed_len, non_persistable_feed_len,
                      platform::errors::InvalidArgument(
                          "The feeded number of persistable variables should "
                          "not be less than non-persistable variables"));
  }

  if (non_persistable_feed_len != -1UL) {
    for (size_t i = 0; i < non_persistable_feed_len; ++i) {
      member_->SetHasFeed(i);
    }
  }
X
Xin Pan 已提交
1010 1011
}

X
Xin Pan 已提交
1012 1013 1014 1015 1016 1017 1018
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

1019
bool ParallelExecutor::EnableParallelGraphExecution(
X
Xin Pan 已提交
1020
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
1021
    const BuildStrategy &build_strategy) const {
1022 1023 1024
  if (!FLAGS_enable_parallel_graph) {
    return false;
  }
1025

Y
Yancey1989 已提交
1026
  bool enable_parallel_graph = true;
1027

X
Xin Pan 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
1041 1042 1043
    }
  }

1044
  if (!member_->use_all_reduce_ || !member_->use_cuda_) {
Y
Yancey1989 已提交
1045
    if (build_strategy.enable_sequential_execution_ ||
1046
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental) {
Y
Yancey1989 已提交
1047
      enable_parallel_graph = false;
1048 1049 1050 1051 1052 1053 1054 1055 1056
    }
  }

#ifdef WIN32
  VLOG(1) << "Windows has no support to parallel graph, enable_parallel_graph "
             "would be forced to false.";
  enable_parallel_graph = false;
#endif

Y
Yancey1989 已提交
1057
  return enable_parallel_graph;
1058 1059
}

1060 1061 1062 1063
const ir::Graph &ParallelExecutor::Graph() const {
  return member_->executor_->Graph();
}

Y
Yu Yang 已提交
1064
}  // namespace framework
Y
Yang Yang 已提交
1065
}  // namespace paddle
S
sneaxiy 已提交
1066

S
sneaxiy 已提交
1067
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
1068
USE_PASS(eager_deletion_pass);
1069
USE_PASS(buffer_shared_inplace_pass);
1070
USE_PASS(buffer_shared_cross_op_memory_reuse_pass);