pybind.cc 125.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
33 34
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
35
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
36
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
37
#include "paddle/fluid/framework/io/fs.h"
38
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
39
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
40 41 42
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
43
#include "paddle/fluid/framework/op_info.h"
44
#include "paddle/fluid/framework/op_registry.h"
45
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
46
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
47
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
48
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
49
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
50
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
51
#include "paddle/fluid/framework/selected_rows.h"
52
#include "paddle/fluid/framework/tensor_util.h"
53
#include "paddle/fluid/framework/trainer.h"
54
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
55
#include "paddle/fluid/framework/version.h"
H
hong 已提交
56
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
57
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
58
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
59
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
60
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
61
#include "paddle/fluid/operators/py_func_op.h"
62
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
63
#include "paddle/fluid/platform/cpu_info.h"
64
#include "paddle/fluid/platform/device_context.h"
65
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
66
#include "paddle/fluid/platform/enforce.h"
67
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
68
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
69 70
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
71 72 73
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
hutuxian 已提交
74
#include "paddle/fluid/pybind/box_helper_py.h"
75
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
76
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
77
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
78
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
79
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
80
#include "paddle/fluid/pybind/generator_py.h"
81
#include "paddle/fluid/pybind/global_value_getter_setter.h"
82
#include "paddle/fluid/pybind/gloo_context_py.h"
83
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
84
#include "paddle/fluid/pybind/heter_wrapper_py.h"
85
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
86
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
87
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
88
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
89
#include "paddle/fluid/pybind/pybind_boost_headers.h"
90

91
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
92
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
93
#endif
94
#include "paddle/fluid/framework/data_type.h"
95 96
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
97
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
98
#include "paddle/fluid/pybind/tensor_py.h"
99
#include "paddle/fluid/string/to_string.h"
100 101
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
102
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
103
#endif
104
#ifndef PADDLE_WITH_HIP
Y
Yi Wang 已提交
105
#include "paddle/fluid/platform/cuda_profiler.h"
106
#endif
Y
Yi Wang 已提交
107
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
108 109
#endif

110 111
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/npu_info.h"
112
#include "paddle/fluid/platform/npu_profiler.h"
113 114
#endif

115 116 117 118
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_info.h"
#endif

Y
Yanghello 已提交
119 120 121 122
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
123
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
124 125 126
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
127 128
#include "pybind11/stl.h"

129
DECLARE_bool(use_mkldnn);
130

Q
Qiao Longfei 已提交
131 132
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
133 134 135
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
136

137
namespace paddle {
138
namespace pybind {
139
bool IsCompiledWithCUDA() {
140 141 142 143 144 145 146 147 148
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
149 150 151 152 153 154
  return false;
#else
  return true;
#endif
}

155 156 157 158 159 160 161 162
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

163 164 165 166 167 168 169 170
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

171 172 173 174 175 176 177 178
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

179 180 181 182 183 184 185 186
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

187 188 189 190 191 192 193 194 195 196 197
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

198 199 200 201 202 203 204 205 206 207 208
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
T
taixiurong 已提交
227 228 229
      {"GPU", &platform::is_gpu_place},
      {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place},
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

269
bool IsCompiledWithBrpc() {
270
#ifndef PADDLE_WITH_DISTRIBUTE
271 272
  return false;
#endif
273
  return true;
274 275
}

Y
update  
Yancey1989 已提交
276
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
277
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
278 279 280 281 282 283
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
284 285 286 287 288 289 290 291 292 293
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
316 317 318
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
319 320 321 322 323 324 325 326 327 328 329 330 331
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
332 333
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
334 335
    }
    vec_res.emplace_back(
336
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
337 338 339 340 341 342 343 344 345 346 347 348
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
349 350
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
351 352 353 354 355 356 357 358 359 360 361 362
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
363 364 365
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
366 367 368 369
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
370 371
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
372 373 374 375
  }
  return vec_res;
}

376 377 378 379 380 381 382 383
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
384 385
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
386 387 388 389 390 391 392 393 394 395 396 397 398
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
399 400 401
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
402 403 404 405 406
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
407 408 409 410 411
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
412 413
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
414 415 416
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
417 418 419 420 421 422 423 424 425
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
426 427
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
428 429 430 431 432
  }

  return;
}

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

457 458 459 460 461 462
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
463 464 465
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
466
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
467

468 469
  AssertStaticGraphAndDygraphGradMakerNoDiff();

470
  m.doc() = "C++ core of PaddlePaddle";
471

472 473 474 475
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

476
  BindException(&m);
Y
Yu Yang 已提交
477

478 479
  m.def("set_num_threads", &platform::SetNumThreads);

480
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
481 482 483
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

6
633WHU 已提交
484 485 486 487 488
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
489
    framework::Tensor tensor;
6
633WHU 已提交
490 491 492 493

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
494
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
6
633WHU 已提交
495 496 497 498 499 500
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
  m.def("_save_lod_tensor", [](const LoDTensor &tensor,
                               const std::string &str_file_name) {
    std::ofstream fout(str_file_name, std::ios::binary);
    PADDLE_ENFORCE_EQ(static_cast<bool>(fout), true,
                      platform::errors::Unavailable(
                          "Cannot open %s to save variables.", str_file_name));
    SerializeToStream(fout, tensor);

    int64_t tellp = fout.tellp();
    fout.close();
    return tellp;
  });
  m.def("_load_lod_tensor", [](LoDTensor &tensor,
                               const std::string &str_file_name) {
    std::ifstream fin(str_file_name, std::ios::binary);
    PADDLE_ENFORCE_EQ(static_cast<bool>(fin), true,
                      platform::errors::Unavailable(
                          "Cannot open %s to load variables.", str_file_name));

    DeserializeFromStream(fin, &tensor);
    int64_t tellg = fin.tellg();
    fin.close();
    return tellg;
  });
  m.def("_save_selected_rows", [](const SelectedRows &selected_rows,
                                  const std::string &str_file_name) {
    std::ofstream fout(str_file_name, std::ios::binary);
    PADDLE_ENFORCE_EQ(
        static_cast<bool>(fout), true,
        platform::errors::Unavailable("Cannot open %s to save SelectedRows.",
                                      str_file_name));

    SerializeToStream(fout, selected_rows);
    int64_t tellp = fout.tellp();
    fout.close();
    return tellp;
  });
  m.def("_load_selected_rows",
        [](SelectedRows &selected_rows, const std::string &str_file_name) {
          std::ifstream fin(str_file_name, std::ios::binary);
          PADDLE_ENFORCE_EQ(
              static_cast<bool>(fin), true,
              platform::errors::Unavailable(
                  "Cannot open %s to load SelectedRows.", str_file_name));

          DeserializeFromStream(fin, &selected_rows);
          int64_t tellg = fin.tellg();
          fin.close();
          return tellg;
        });
H
hong 已提交
551 552 553 554 555 556 557 558 559
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
560
           const Scope &scope, const Executor *executor) {
H
hong 已提交
561
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
562
          CreateVariableIfNotExit(vec_var_list, scope, executor);
H
hong 已提交
563 564 565
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

566 567 568 569 570 571
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

H
hong 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
6
633WHU 已提交
591

592 593 594 595 596 597
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
598 599
  });

600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
625 626 627 628 629 630
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
631
  m.def(
S
sneaxiy 已提交
632
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
633 634 635 636
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
637 638 639
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
656 657 658
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
659
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
660

661
  m.def("_set_fuse_parameter_group_size",
662
        &paddle::framework::ir::SetFuseParameterGroupsSize);
663
  m.def("_set_fuse_parameter_memory_size",
664
        &paddle::framework::ir::SetFuseParameterMemorySize);
665

S
sneaxiy 已提交
666 667 668
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

669 670
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

671 672 673
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

674
  BindImperative(&m);
675

676 677 678
  py::class_<framework::Tensor>(m, "Tensor", py::buffer_protocol())
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
679
      .def("_is_initialized",
680
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
681
      .def("_get_dims",
682
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
683
      .def("_set_dims",
684
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
685
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
686
           })
Y
yuyang18 已提交
687
      .def("_set_layout",
688
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
689 690
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
691
      .def("_alloc_float",
692
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
693
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
694
           })
695
      .def("_alloc_float",
696
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
697 698
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
699
      .def("_alloc_float",
700
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
701
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
702
           })
703 704 705 706
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
707
      .def("_alloc_double",
708
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
709 710
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
711
      .def("_alloc_int",
712
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
713
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
714
           })
715
      .def("_alloc_int",
716
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
717 718
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
719
      .def("_alloc_int",
720
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
721
             self.mutable_data<int>(place);
Q
qijun 已提交
722
           })
Y
yuyang18 已提交
723
      .def("_alloc_int",
724 725
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
726 727
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
728
      .def("_alloc_float",
729 730
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
731 732
             self.mutable_data<float>(place);
           })
733
      .def("_mutable_data",
734
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
735 736 737
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
738
      .def("_mutable_data",
739
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
740 741 742
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
743
      .def("_mutable_data",
744
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
745 746 747 748
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
749
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
750 751 752
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
753
      .def("_clear", &framework::Tensor::clear)
754 755 756 757 758
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
759
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
760
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
761 762
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
763
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
764
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
765 766
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
767
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
768 769
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
770 771 772 773
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
774
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace|NPUPlace): The place where the
L
Leo Chen 已提交
775
          LoDTensor is to be set.
776 777
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
778 779 780 781 782 783 784 785 786 787 788 789 790

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
791

792 793 794
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
L
Leo Chen 已提交
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
811
      .def("_to_dlpack",
812
           [](framework::Tensor &self) {
6
633WHU 已提交
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
833 834 835 836
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
837 838
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
839
      .def("_layout",
840 841 842 843
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
844
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
845
      .def("__str__", [](const framework::Tensor &self) {
846 847 848 849
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
850

L
Leo Chen 已提交
851
  // TODO(cql): add reference: en_user_guide_lod_tensor
852
  py::class_<LoDTensor, framework::Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
927 928 929 930 931 932 933

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
934 935

        )DOC")
936 937
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
938 939 940 941 942 943 944 945 946
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
947 948
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
949 950 951 952
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
953 954
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
955
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
956
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
957 958
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
959 960 961
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
962
      .def("set_lod",
963
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
964
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
965
             LoD new_lod;
966 967
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
968 969
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
970 971
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
972
             self.set_lod(new_lod);
S
sneaxiy 已提交
973 974 975 976 977
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
978 979 980 981
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
982 983 984 985 986 987 988 989 990 991

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
992
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
993
           )DOC")
994 995 996 997 998 999 1000 1001 1002 1003 1004
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
1005 1006
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
1007 1008 1009 1010 1011
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
1012
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
1013 1014
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
1015
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
1016

L
Leo Chen 已提交
1017
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1018
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1019
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1020 1021

           Args:
L
Leo Chen 已提交
1022 1023 1024 1025
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
1036 1037
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1038
           )DOC")
1039 1040 1041 1042 1043 1044 1045 1046
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1047 1048 1049 1050 1051
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
1052 1053
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1064
           )DOC")
G
gongweibao 已提交
1065
      // Set above comments of set_lod.
1066 1067 1068 1069 1070 1071 1072 1073
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1074 1075
           },
           R"DOC(
L
Leo Chen 已提交
1076 1077
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
1078 1079

           Returns:
L
Leo Chen 已提交
1080
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1092 1093 1094 1095 1096 1097 1098 1099
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
1100
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
1101 1102

           Returns:
L
Leo Chen 已提交
1103
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1115 1116 1117 1118 1119 1120 1121
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
1122
           )DOC")
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
1141
#ifdef _WIN32
1142
      });
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1193

Q
qijun 已提交
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1205 1206
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1207 1208
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1209 1210
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
1211
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1212 1213 1214 1215 1216 1217
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1218
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1219
      .def("rows", [](SelectedRows &self) {
1220 1221 1222 1223 1224
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1225
      });
Q
qijun 已提交
1226

1227
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1228 1229 1230

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1231
      .def(py::init<>())
1232
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1233
      .def("set_int",
1234 1235
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1236 1237 1238 1239 1240 1241 1242
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1243
      .def("get_tensor",
1244 1245
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1246 1247
           },
           py::return_value_policy::reference)
1248 1249 1250 1251
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1252 1253 1254
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1255 1256 1257 1258 1259
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1260 1261 1262
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1263 1264 1265
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1266
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1267 1268 1269 1270 1271
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1272
#endif
Y
Refine  
Yu Yang 已提交
1273 1274
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1275 1276 1277 1278
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1279 1280
             return self.GetMutable<framework::ReaderHolder>();
           },
1281 1282 1283 1284 1285
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1286

S
sneaxiy 已提交
1287
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1288

S
sneaxiy 已提交
1289
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1303
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1304 1305 1306 1307 1308 1309
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1310 1311
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1312
      .def("var",
1313
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1314
             return self.Var(name);
Y
Yu Yang 已提交
1315
           },
S
sneaxiy 已提交
1316 1317
           py::arg("name"),
           R"DOC(
1318
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1319

1320
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1321
           current scope, the variable would be created. Otherwise,
1322
           return the existing variable.
S
sneaxiy 已提交
1323 1324

           Args:
1325 1326
               name (str): the variable name.

S
sneaxiy 已提交
1327
           Returns:
1328
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1329 1330 1331 1332
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1333
           Find variable named :code:`name` in the current scope or
1334
           its parent scope. Return None if not found. 
1335

S
sneaxiy 已提交
1336 1337
           Args:
               name (str): the variable name.
1338

S
sneaxiy 已提交
1339
           Returns:
1340
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1341
           )DOC",
1342
           py::return_value_policy::reference)
1343
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1344 1345 1346 1347 1348 1349
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1350
           py::return_value_policy::reference)
S
sneaxiy 已提交
1351 1352 1353
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1354 1355
           )DOC")
      .def("_kids", &Scope::kids);
1356

S
sneaxiy 已提交
1357 1358 1359 1360 1361 1362
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1363 1364
        R"DOC(
        Create a new scope.
1365

S
sneaxiy 已提交
1366 1367 1368
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1369 1370
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1371 1372
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1373 1374
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1375 1376 1377 1378
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1379 1380
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1381 1382
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1383 1384 1385
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1386 1387
    return ret_values;
  });
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
              res = op_checker->GetAttrsDefaultValuesMap();
            }
          }
          return res;
        });
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1417 1418 1419
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1420 1421 1422 1423 1424
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1425 1426 1427
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1442
  m.def("prune", [](const ProgramDesc &origin,
1443
                    const std::set<std::string> &feeded_var_names,
1444
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1445
    ProgramDesc prog_with_targets(origin);
1446

1447
    for (const auto &t : targets) {
1448
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1449
    }
1450
    proto::ProgramDesc pruned_desc;
1451 1452 1453 1454
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1455
  });
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1473 1474 1475 1476
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1477 1478 1479
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1480 1481
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1482

Q
qijun 已提交
1483
  // clang-format off
Y
Yu Yang 已提交
1484
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1485 1486
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1487
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1488 1489
                    return new paddle::platform::CPUDeviceContext();
                  })
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1514
      .def_static("create",
D
dzhwinter 已提交
1515
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1516
                      -> paddle::platform::DeviceContext* {
1517
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1518 1519 1520 1521
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1522
#else
Q
qijun 已提交
1523
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1524
#endif
C
chengduoZH 已提交
1525 1526 1527 1528
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1529
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1530 1531 1532 1533
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1534 1535 1536 1537
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1538
// clang-format on
1539
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1540 1541
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1542
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1543 1544 1545 1546 1547

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1548
    The memory of CUDAPlace with different dev_id is not accessible.
1549 1550 1551 1552 1553 1554 1555 1556
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1557 1558 1559 1560

    Examples:
        .. code-block:: python

1561 1562 1563
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1564

1565
        )DOC")
S
sneaxiy 已提交
1566 1567
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1568
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1593 1594
             new (&self) platform::CUDAPlace(dev_id);
#else
1595 1596 1597 1598 1599 1600 1601 1602 1603
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1604 1605
#endif
           })
1606
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1607 1608
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1609 1610 1611 1612
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1613
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1614
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1615 1616
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1617 1618 1619
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1620
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1621
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1622

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1668
#ifdef PADDLE_WITH_XPU
1669 1670 1671 1672 1673 1674 1675
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1676 1677 1678
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1679
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1680
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1681 1682 1683
#ifdef PADDLE_WITH_XPU
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
#endif
1684

1685
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1686
    CPUPlace is a descriptor of a device.
1687
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1688 1689 1690 1691

    Examples:
        .. code-block:: python

1692 1693
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1694

1695
        )DOC")
1696
      .def(py::init<>())
S
sneaxiy 已提交
1697 1698
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1699
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1700
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1701 1702 1703 1704
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1705
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1706
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1707

1708
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1709 1710 1711 1712 1713 1714
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1715 1716 1717 1718

    Examples:
        .. code-block:: python

1719 1720
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1721

1722
        )DOC")
S
sneaxiy 已提交
1723
      .def("__init__",
S
sneaxiy 已提交
1724
           [](platform::CUDAPinnedPlace &self) {
1725
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1726 1727 1728
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1729
#endif
S
sneaxiy 已提交
1730
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1731
           })
S
sneaxiy 已提交
1732 1733 1734 1735
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1736 1737
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1738 1739
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1740 1741 1742 1743
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1744
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1745 1746
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
  // NPUPlace
  py::class_<platform::NPUPlace>(m, "NPUPlace", R"DOC(
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

        )DOC")
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1789
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
      .def("__str__", string::to_string<const platform::NPUPlace &>);

Y
Yu Yang 已提交
1806 1807
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1808 1809 1810 1811
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1812
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
1813
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
S
sneaxiy 已提交
1814
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1815 1816
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1817 1818
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1819 1820
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
1821 1822
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
S
sneaxiy 已提交
1823 1824 1825 1826
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1827 1828
      .def("gpu_device_id",
           [](platform::Place &self) {
1829
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1830
           })
1831 1832 1833 1834
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
1835 1836 1837 1838
      .def("npu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::NPUPlace, self).device;
           })
S
sneaxiy 已提交
1839 1840
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1841 1842 1843 1844
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1845 1846 1847 1848
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1849
      .def("set_place",
D
dzhwinter 已提交
1850
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1851
             self = gpu_place;
C
chengduoZH 已提交
1852
           })
1853 1854 1855 1856 1857
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
1858 1859 1860 1861
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
1862 1863
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1864

Y
Yu Yang 已提交
1865
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1866 1867 1868 1869 1870
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
1871 1872 1873 1874 1875 1876 1877
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
C
chengduo 已提交
1878 1879
            return OpRegistry::CreateOp(desc);
          })
1880
      .def("run",
1881
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1882
              const platform::CPUPlace &place) { self.Run(scope, place); })
1883 1884 1885
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::XPUPlace &place) { self.Run(scope, place); })
1886 1887 1888
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::NPUPlace &place) { self.Run(scope, place); })
D
dzhwinter 已提交
1889 1890
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1891
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1892 1893 1894 1895 1896
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1897 1898 1899 1900 1901 1902 1903
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1904 1905
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1906
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1907
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1908 1909 1910 1911
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1912

1913 1914 1915
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1916 1917 1918 1919 1920 1921 1922 1923 1924
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1925
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1926
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1927
      .def("close", &Executor::Close)
1928 1929
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1930 1931
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1932 1933 1934 1935
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1936
             pybind11::gil_scoped_release release;
1937 1938 1939 1940 1941 1942 1943
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1944 1945 1946
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1947
              std::map<std::string, FetchType *> *fetch_targets,
1948 1949 1950 1951 1952 1953 1954 1955
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1956
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1957 1958 1959 1960 1961 1962 1963
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1974
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1975 1976
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1977
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1978 1979
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1980
      });
S
sneaxiy 已提交
1981

D
dzhwinter 已提交
1982
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1983
  m.def("init_glog", framework::InitGLOG);
1984 1985
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
1986
  m.def("init_devices", []() { framework::InitDevices(); });
1987

1988
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1989
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1990
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1991
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
1992
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1993
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1994
  m.def("supports_bfloat16", SupportsBfloat16);
1995
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1996
  m.def("op_supported_infos", OpSupportedInfos);
1997
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1998
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1999 2000 2001
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2021 2022 2023 2024 2025 2026 2027
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2028 2029 2030 2031 2032 2033 2034 2035 2036
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2037
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2038 2039 2040 2041 2042
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
2043

2044
  m.def("set_feed_variable", framework::SetFeedVariable);
2045 2046 2047 2048 2049
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2050
            return py::cast(BOOST_GET(LoDTensor, var));
2051
          } else {
2052
            return py::cast(BOOST_GET(LoDTensorArray, var));
2053 2054
          }
        });
2055
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2056

X
Xin Pan 已提交
2057 2058
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2059 2060 2061 2062 2063
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
2064
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
2065

Y
Yu Yang 已提交
2066 2067 2068 2069 2070 2071 2072 2073 2074
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
2075
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
2076
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2077 2078 2079

    Examples:
        .. code-block:: python
2080

Z
Zeng Jinle 已提交
2081 2082 2083 2084
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
2085 2086
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2087 2088 2089 2090 2091 2092
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2093 2094 2095 2096
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2097 2098 2099
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2100 2101 2102 2103 2104 2105
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2106 2107
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2108 2109 2110 2111 2112 2113
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2136

2137 2138 2139 2140 2141 2142 2143 2144
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2145
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2146 2147
                 res[i] = py::cast(std::move(data));
               } else {
2148
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2164
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2165 2166 2167 2168 2169 2170 2171 2172
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2173
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2174 2175 2176 2177 2178 2179 2180 2181 2182
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2183 2184
        )DOC")
      .def("_move_to_list",
2185
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2186 2187 2188 2189
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2190
                 if (data_is_lod_tensor(self[i][j])) {
2191
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2192 2193
                   tmp[j] = py::cast(std::move(var));
                 } else {
2194
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2195 2196 2197 2198 2199 2200
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2201 2202 2203 2204 2205 2206 2207 2208 2209
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2210
  m.def("op_support_gpu", OpSupportGPU);
2211
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
Dong Zhihong 已提交
2212
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
2213

2214
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2215 2216 2217
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2218 2219 2220 2221
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2222
#endif
P
peizhilin 已提交
2223
#endif
Y
Yu Yang 已提交
2224

2225 2226
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2227
  m.def("npu_finalize", []() { platform::AclInstance::Instance().Finalize(); });
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

2248 2249 2250 2251 2252 2253
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2254 2255 2256 2257
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2258
      .value("kAll", platform::ProfilerState::kAll)
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2270
  m.def("set_tracer_option", platform::SetTracerOption);
2271 2272
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2273
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2274
  m.def("reset_profiler", platform::ResetProfiler);
2275
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2276 2277 2278
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2279

2280 2281
  m.def("size_of_dtype", framework::SizeOfType);

2282
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2283 2284
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2285 2286
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2287 2288
#endif  // PADDLE_WITH_CUDA

2289 2290 2291
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2292 2293
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2294
      .def("has", &ir::Pass::Has)
2295 2296 2297
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2298
           })
2299
      .def(
2300
          "set",
2301 2302 2303
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2304 2305
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2306 2307
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2322 2323
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2324
        self.Apply(graph.get());
F
flame 已提交
2325
      });
2326

X
fix  
Xin Pan 已提交
2327 2328
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2343
  // -- python binds for parallel executor.
X
Xin Pan 已提交
2344

Y
yuyang18 已提交
2345
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2346 2347 2348 2349
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2350 2351 2352
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2353 2354 2355
    Examples:
        .. code-block:: python

2356 2357 2358 2359 2360 2361 2362 2363 2364
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2365

2366 2367
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2368

2369
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2370 2371
          sgd_optimizer.minimize(avg_loss)

2372
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2373 2374
          exec_strategy.num_threads = 4

2375 2376 2377
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2378 2379
        )DOC");

2380 2381 2382 2383
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2384

Y
yuyang18 已提交
2385
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2386 2387 2388 2389 2390
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2391
          },
2392 2393
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2394 2395 2396 2397 2398 2399 2400
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2414
      .def_property(
2415 2416
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2417
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2418 2419 2420
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2421 2422 2423 2424 2425
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2426 2427 2428
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2429 2430
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2431 2432 2433 2434 2435 2436 2437
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2438 2439 2440 2441
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2442
                because the temp variable's shape maybe the same between two iterations.
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2453

2454 2455 2456 2457 2458 2459 2460
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2461
              )DOC")
Q
Qiao Longfei 已提交
2462 2463 2464 2465 2466 2467 2468 2469 2470
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2483
              )DOC")
2484 2485 2486 2487 2488 2489 2490 2491
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2492 2493 2494 2495 2496
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2497

Y
yuyang18 已提交
2498
  exec_strategy.def_property(
Y
yuyang18 已提交
2499 2500 2501 2502 2503 2504 2505
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2506 2507
      });

C
chengduo 已提交
2508 2509 2510 2511
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2512 2513 2514
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2515 2516 2517
    Examples:
        .. code-block:: python

2518
            import os
2519 2520 2521 2522
            import paddle
            import paddle.static as static

            paddle.enable_static()
2523

2524 2525
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2526

2527 2528 2529 2530
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2531

2532
            build_strategy = static.BuildStrategy()
2533 2534
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2535 2536
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2537
            program = program.with_data_parallel(loss_name=loss.name,
2538 2539
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2540
)DOC");
Y
yuyang18 已提交
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2557 2558 2559 2560
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2561
            self.reduce_ = strategy;
C
chengduo 已提交
2562
          },
2563
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2564 2565
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2566
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2567 2568
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2569
                Default is 'AllReduce'.
F
flame 已提交
2570 2571 2572 2573

                Examples:
                    .. code-block:: python

2574 2575 2576 2577 2578 2579 2580
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2581
                  )DOC")
Y
yuyang18 已提交
2582 2583 2584 2585 2586
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2587 2588 2589 2590
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2591
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2592
          },
2593
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2594
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2595 2596
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2597
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2598 2599 2600 2601

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2602 2603
                        import numpy
                        import os
2604 2605 2606 2607
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2608 2609

                        use_cuda = True
2610 2611
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2612 2613

                        # NOTE: If you use CPU to run the program, you need
2614
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2615 2616 2617 2618 2619 2620
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2621
                            places = static.cpu_places()
C
chengduo 已提交
2622
                        else:
2623
                            places = static.cuda_places()
C
chengduo 已提交
2624

2625 2626 2627 2628
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2629

2630
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2631

2632
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2633
                        build_strategy.gradient_scale_strategy = \
2634 2635 2636
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2637
                                          loss_name=loss.name, build_strategy=build_strategy,
2638
                                          places=places)
C
chengduo 已提交
2639 2640 2641 2642 2643 2644

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2645 2646
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2647
                   )DOC")
Y
yuyang18 已提交
2648 2649 2650 2651
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2652 2653 2654 2655
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2656
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2657
          },
2658
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2659
                writing the SSA Graph to file in the form of graphviz.
2660
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2661 2662 2663 2664

                Examples:
                    .. code-block:: python

2665 2666 2667 2668
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2669

2670 2671
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2672
                    )DOC")
S
sneaxiy 已提交
2673 2674 2675 2676 2677 2678
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2679 2680 2681 2682
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2683 2684
            self.enable_sequential_execution_ = b;
          },
2685 2686
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2687 2688 2689 2690

                Examples:
                    .. code-block:: python

2691 2692 2693 2694 2695 2696
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2697 2698
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2699 2700 2701 2702 2703 2704
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2705 2706 2707 2708
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2709 2710
            self.remove_unnecessary_lock_ = b;
          },
2711 2712
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2713 2714 2715 2716

                Examples:
                    .. code-block:: python

2717 2718 2719 2720 2721 2722
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2723 2724
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2725 2726 2727 2728
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2729
#ifdef WIN32
2730
            PADDLE_THROW(platform::errors::Unavailable(
2731
                "Distribution mode is not supported on Windows platform."));
2732
#endif
2733 2734
            self.num_trainers_ = num_trainers;
          })
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2747 2748 2749 2750 2751 2752
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2753 2754 2755 2756 2757 2758
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
2759
      .def_property("use_hierarchical_allreduce",
2760 2761 2762 2763 2764 2765
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2766
      .def_property("hierarchical_allreduce_inter_nranks",
2767 2768 2769 2770 2771 2772 2773
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2774 2775 2776 2777 2778 2779
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2780 2781 2782 2783
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2784 2785
            self.fuse_elewise_add_act_ops_ = b;
          },
2786
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2787
                to fuse elementwise_add_op and activation_op,
2788
                it may make the execution faster. Default is False.
F
flame 已提交
2789 2790 2791 2792

                Examples:
                    .. code-block:: python

2793 2794 2795 2796 2797 2798
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2799 2800
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2801 2802 2803 2804
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2805
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2806
                              platform::errors::PreconditionNotMet(
2807 2808
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2809 2810 2811 2812 2813 2814 2815 2816 2817
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2818 2819 2820 2821 2822 2823
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2824 2825
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
2851 2852 2853 2854
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2855
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2856
                              platform::errors::PreconditionNotMet(
2857 2858
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

2869 2870 2871 2872 2873 2874
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
2875 2876
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2877 2878 2879 2880 2881 2882
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2883 2884 2885 2886
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2887 2888
            self.fuse_relu_depthwise_conv_ = b;
          },
2889
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2890 2891 2892
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2893
                Default is False.
F
flame 已提交
2894 2895 2896 2897

                Examples:
                    .. code-block:: python

2898 2899 2900 2901 2902 2903
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2904 2905
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2906 2907 2908 2909 2910 2911
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
2912 2913 2914 2915
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2916 2917
                      self.fuse_broadcast_ops_ = b;
                    },
2918
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2919 2920 2921 2922
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2923 2924 2925 2926 2927
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

2928 2929 2930 2931 2932 2933
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
2934 2935
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2936 2937
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2938 2939
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2940 2941
                    },
                    [](BuildStrategy &self, bool b) {
2942 2943 2944 2945
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2946 2947
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2948 2949 2950 2951
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2952 2953 2954 2955
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2956 2957
            self.sync_batch_norm_ = b;
          },
2958
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2959 2960 2961
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2962 2963
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2964 2965 2966 2967

                Examples:
                    .. code-block:: python

2968 2969 2970 2971 2972 2973
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2974 2975
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2976 2977
      .def_property(
          "memory_optimize",
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2992 2993 2994
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "BuildStrategy.memory_optimize must be set to None, False or "
                  "True"));
2995 2996
            }
          },
2997
          R"DOC((bool, optional): memory opitimize aims to save total memory
2998
                consumption, set to True to enable it.
2999

3000 3001 3002
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3017 3018 3019
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3020 3021 3022
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3023
              PADDLE_THROW(platform::errors::Unavailable(
3024
                  "Distribution mode is not supported on Windows platform."));
3025 3026 3027 3028 3029
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3030 3031 3032
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3033
      .def_property(
D
dzhwinter 已提交
3034 3035 3036
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3037 3038 3039 3040
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3041 3042
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3043 3044 3045 3046
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
3047
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3048 3049 3050 3051 3052 3053 3054
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3055 3056 3057 3058
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3059 3060 3061 3062 3063 3064 3065 3066 3067
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
3068
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3069
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3070 3071 3072 3073 3074
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3075 3076

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3077
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3078
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3079
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3080 3081 3082 3083
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3084 3085 3086 3087 3088
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3089 3090 3091
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3092 3093 3094 3095
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3096 3097
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3098 3099 3100 3101 3102 3103 3104 3105
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3106
               return py::cast(
3107
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3108 3109
             } else {
               return py::cast(std::move(
3110
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3111
             }
3112 3113
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3114

D
dongdaxiang 已提交
3115
  BindFleetWrapper(&m);
T
Thunderbrook 已提交
3116

T
Thunderbrook 已提交
3117 3118
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
3119
#endif
T
Thunderbrook 已提交
3120
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3121
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3122
#endif
3123
  BindGlooWrapper(&m);
H
hutuxian 已提交
3124
  BindBoxHelper(&m);
H
hutuxian 已提交
3125 3126 3127
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3128
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3129
  BindNCCLWrapper(&m);
3130 3131 3132
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3133
#endif
F
flame 已提交
3134 3135
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
3136
  BindInferenceApi(&m);
3137
  BindCompatible(&m);
3138
  BindDataset(&m);
Y
yaoxuefeng 已提交
3139
  BindGenerator(&m);
3140 3141 3142
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3143
  BindAscendDevice(&m);
3144
#endif
Y
Yanghello 已提交
3145 3146 3147
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3148

T
tangwei12 已提交
3149
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3150 3151
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3152
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3153 3154
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3155 3156 3157 3158 3159
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3160 3161 3162 3163 3164
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);

3165
#endif
L
Luo Tao 已提交
3166
}
3167
}  // namespace pybind
3168
}  // namespace paddle