pybind.cc 123.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
33 34
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
35
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
36
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
37
#include "paddle/fluid/framework/io/fs.h"
38
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
39
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
40 41 42
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
43
#include "paddle/fluid/framework/op_info.h"
44
#include "paddle/fluid/framework/op_registry.h"
45
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
46
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
47
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
48
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
49
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
50
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
51
#include "paddle/fluid/framework/selected_rows.h"
52
#include "paddle/fluid/framework/tensor_util.h"
53
#include "paddle/fluid/framework/trainer.h"
54
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
55
#include "paddle/fluid/framework/version.h"
H
hong 已提交
56
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
57
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
58
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
59
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
60
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
61
#include "paddle/fluid/operators/py_func_op.h"
62
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
63
#include "paddle/fluid/platform/cpu_info.h"
64
#include "paddle/fluid/platform/device_context.h"
65
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
66
#include "paddle/fluid/platform/enforce.h"
67
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
68
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
69 70
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
71 72 73
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
hutuxian 已提交
74
#include "paddle/fluid/pybind/box_helper_py.h"
75
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
76
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
77
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
78
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
79
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
80
#include "paddle/fluid/pybind/generator_py.h"
81
#include "paddle/fluid/pybind/global_value_getter_setter.h"
82
#include "paddle/fluid/pybind/gloo_context_py.h"
83
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
84
#include "paddle/fluid/pybind/heter_wrapper_py.h"
85
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
86
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
87
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
88
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
89
#include "paddle/fluid/pybind/pybind_boost_headers.h"
90

91
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
92
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
93
#endif
94
#include "paddle/fluid/framework/data_type.h"
95 96
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
97
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
98
#include "paddle/fluid/pybind/tensor_py.h"
99
#include "paddle/fluid/string/to_string.h"
100 101
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
102
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
103
#endif
104
#ifndef PADDLE_WITH_HIP
Y
Yi Wang 已提交
105
#include "paddle/fluid/platform/cuda_profiler.h"
106
#endif
Y
Yi Wang 已提交
107
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
108 109
#endif

110 111
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/npu_info.h"
112
#include "paddle/fluid/platform/npu_profiler.h"
113 114
#endif

115 116 117 118
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_info.h"
#endif

Y
Yanghello 已提交
119 120 121 122
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
123
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
124 125 126
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
127 128
#include "pybind11/stl.h"

129
DECLARE_bool(use_mkldnn);
130

Q
Qiao Longfei 已提交
131 132
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
133 134 135
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
136

137
namespace paddle {
138
namespace pybind {
139
bool IsCompiledWithCUDA() {
140 141 142 143 144 145 146 147 148
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
149 150 151 152 153 154
  return false;
#else
  return true;
#endif
}

155 156 157 158 159 160 161 162
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

163 164 165 166 167 168 169 170
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

171 172 173 174 175 176 177 178
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

179 180 181 182 183 184 185 186
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

187 188 189 190 191 192 193 194 195 196 197
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

198 199 200 201 202 203 204 205 206 207 208
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
      {"GPU", &platform::is_gpu_place}, {"CPU", &platform::is_cpu_place},
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

267
bool IsCompiledWithBrpc() {
268
#ifndef PADDLE_WITH_DISTRIBUTE
269 270
  return false;
#endif
271
  return true;
272 273
}

Y
update  
Yancey1989 已提交
274
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
275
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
276 277 278 279 280 281
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
282 283 284 285 286 287 288 289 290 291
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
314 315 316
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
330 331
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
332 333
    }
    vec_res.emplace_back(
334
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
335 336 337 338 339 340 341 342 343 344 345 346
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
347 348
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
349 350 351 352 353 354 355 356 357 358 359 360
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
361 362 363
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
364 365 366 367
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
368 369
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
370 371 372 373
  }
  return vec_res;
}

374 375 376 377 378 379 380 381
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
382 383
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
384 385 386 387 388 389 390 391 392 393 394 395 396
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
397 398 399
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
400 401 402 403 404
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
405 406 407 408 409
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
410 411
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
412 413 414
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
415 416 417 418 419 420 421 422 423
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
424 425
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
426 427 428 429 430
  }

  return;
}

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

455 456 457 458 459 460
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
461 462 463
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
464
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
465

466 467
  AssertStaticGraphAndDygraphGradMakerNoDiff();

468
  m.doc() = "C++ core of PaddlePaddle";
469

470 471 472 473
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

474
  BindException(&m);
Y
Yu Yang 已提交
475

476 477
  m.def("set_num_threads", &platform::SetNumThreads);

478
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
479 480 481
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

6
633WHU 已提交
482 483 484 485 486
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
487
    framework::Tensor tensor;
6
633WHU 已提交
488 489 490 491

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
492
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
6
633WHU 已提交
493 494 495 496 497 498 499
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });

H
hong 已提交
500 501 502 503 504 505 506 507 508
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
509
           const Scope &scope, const Executor *executor) {
H
hong 已提交
510
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
511
          CreateVariableIfNotExit(vec_var_list, scope, executor);
H
hong 已提交
512 513 514
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

515 516 517 518 519 520
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

H
hong 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
6
633WHU 已提交
540

541 542 543 544 545 546
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
547 548
  });

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
574 575 576 577 578 579
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
580
  m.def(
S
sneaxiy 已提交
581
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
582 583 584 585
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
586 587 588
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
605 606 607
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
608
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
609

610
  m.def("_set_fuse_parameter_group_size",
611
        &paddle::framework::ir::SetFuseParameterGroupsSize);
612
  m.def("_set_fuse_parameter_memory_size",
613
        &paddle::framework::ir::SetFuseParameterMemorySize);
614

S
sneaxiy 已提交
615 616 617
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

618 619
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

620 621 622
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

623
  BindImperative(&m);
624

625 626 627
  py::class_<framework::Tensor>(m, "Tensor", py::buffer_protocol())
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
628
      .def("_is_initialized",
629
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
630
      .def("_get_dims",
631
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
632
      .def("_set_dims",
633
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
634
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
635
           })
Y
yuyang18 已提交
636
      .def("_set_layout",
637
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
638 639
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
640
      .def("_alloc_float",
641
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
642
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
643
           })
644
      .def("_alloc_float",
645
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
646 647
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
648
      .def("_alloc_float",
649
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
650
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
651
           })
652 653 654 655
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
656
      .def("_alloc_double",
657
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
658 659
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
660
      .def("_alloc_int",
661
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
662
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
663
           })
664
      .def("_alloc_int",
665
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
666 667
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
668
      .def("_alloc_int",
669
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
670
             self.mutable_data<int>(place);
Q
qijun 已提交
671
           })
Y
yuyang18 已提交
672
      .def("_alloc_int",
673 674
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
675 676
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
677
      .def("_alloc_float",
678 679
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
680 681
             self.mutable_data<float>(place);
           })
682
      .def("_mutable_data",
683
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
684 685 686
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
687
      .def("_mutable_data",
688
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
689 690 691
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
692
      .def("_mutable_data",
693
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
694 695 696 697
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
698
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
699 700 701
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
702
      .def("_clear", &framework::Tensor::clear)
703 704 705 706 707
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
708
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
709
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
710 711
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
712
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
713
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
714 715
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
716
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
717 718
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
719 720 721 722
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
723
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace|NPUPlace): The place where the
L
Leo Chen 已提交
724
          LoDTensor is to be set.
725 726
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
727 728 729 730 731 732 733 734 735 736 737 738 739

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
740

741 742 743
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
L
Leo Chen 已提交
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
760
      .def("_to_dlpack",
761
           [](framework::Tensor &self) {
6
633WHU 已提交
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
782 783 784 785
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
786 787
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
788
      .def("_layout",
789 790 791 792
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
793
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
794
      .def("__str__", [](const framework::Tensor &self) {
795 796 797 798
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
799

L
Leo Chen 已提交
800
  // TODO(cql): add reference: en_user_guide_lod_tensor
801
  py::class_<LoDTensor, framework::Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
876 877 878 879 880 881 882

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
883 884

        )DOC")
885 886
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
887 888 889 890 891 892 893 894 895
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
896 897
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
898 899 900 901
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
902 903
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
904
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
905
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
906 907
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
908 909 910
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
911
      .def("set_lod",
912
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
913
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
914
             LoD new_lod;
915 916
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
917 918
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
919 920
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
921
             self.set_lod(new_lod);
S
sneaxiy 已提交
922 923 924 925 926
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
927 928 929 930
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
931 932 933 934 935 936 937 938 939 940

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
941
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
942
           )DOC")
943 944 945 946 947 948 949 950 951 952 953
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
954 955
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
956 957 958 959 960
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
961
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
962 963
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
964
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
965

L
Leo Chen 已提交
966
           For example, if recursive_sequence_lengths=[[2, 3]], which means
967
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
968
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
969 970

           Args:
L
Leo Chen 已提交
971 972 973 974
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
975 976 977 978 979 980 981 982 983 984

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
985 986
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
987
           )DOC")
988 989 990 991 992 993 994 995
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
996 997 998 999 1000
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
1001 1002
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1013
           )DOC")
G
gongweibao 已提交
1014
      // Set above comments of set_lod.
1015 1016 1017 1018 1019 1020 1021 1022
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1023 1024
           },
           R"DOC(
L
Leo Chen 已提交
1025 1026
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
1027 1028

           Returns:
L
Leo Chen 已提交
1029
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1041 1042 1043 1044 1045 1046 1047 1048
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
1049
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
1050 1051

           Returns:
L
Leo Chen 已提交
1052
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1064 1065 1066 1067 1068 1069 1070
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
1071
           )DOC")
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
1090
#ifdef _WIN32
1091
      });
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1142

Q
qijun 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1154 1155
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1156 1157
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1158 1159
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
1160
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1161 1162 1163 1164 1165 1166
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1167
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1168
      .def("rows", [](SelectedRows &self) {
1169 1170 1171 1172 1173
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1174
      });
Q
qijun 已提交
1175

1176
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1177 1178 1179

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1180
      .def(py::init<>())
1181
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1182
      .def("set_int",
1183 1184
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1185 1186 1187 1188 1189 1190 1191
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1192
      .def("get_tensor",
1193 1194
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1195 1196
           },
           py::return_value_policy::reference)
1197 1198 1199 1200
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1201 1202 1203
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1204 1205 1206 1207 1208
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1209 1210 1211
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1212 1213 1214
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1215
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1216 1217 1218 1219 1220
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1221
#endif
Y
Refine  
Yu Yang 已提交
1222 1223
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1224 1225 1226 1227
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1228 1229
             return self.GetMutable<framework::ReaderHolder>();
           },
1230 1231 1232 1233 1234
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1235

S
sneaxiy 已提交
1236
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1237

S
sneaxiy 已提交
1238
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1252
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1253 1254 1255 1256 1257 1258
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1259 1260
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1261
      .def("var",
1262
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1263
             return self.Var(name);
Y
Yu Yang 已提交
1264
           },
S
sneaxiy 已提交
1265 1266
           py::arg("name"),
           R"DOC(
1267
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1268

1269
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1270
           current scope, the variable would be created. Otherwise,
1271
           return the existing variable.
S
sneaxiy 已提交
1272 1273

           Args:
1274 1275
               name (str): the variable name.

S
sneaxiy 已提交
1276
           Returns:
1277
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1278 1279 1280 1281
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1282
           Find variable named :code:`name` in the current scope or
1283
           its parent scope. Return None if not found. 
1284

S
sneaxiy 已提交
1285 1286
           Args:
               name (str): the variable name.
1287

S
sneaxiy 已提交
1288
           Returns:
1289
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1290
           )DOC",
1291
           py::return_value_policy::reference)
1292
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1293 1294 1295 1296 1297 1298
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1299
           py::return_value_policy::reference)
S
sneaxiy 已提交
1300 1301 1302
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1303 1304
           )DOC")
      .def("_kids", &Scope::kids);
1305

S
sneaxiy 已提交
1306 1307 1308 1309 1310 1311
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1312 1313
        R"DOC(
        Create a new scope.
1314

S
sneaxiy 已提交
1315 1316 1317
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1318 1319
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1320 1321
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1322 1323
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1324 1325 1326 1327
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1328 1329
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1330 1331
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1332 1333 1334
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1335 1336
    return ret_values;
  });
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
              res = op_checker->GetAttrsDefaultValuesMap();
            }
          }
          return res;
        });
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1366 1367 1368
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1369 1370 1371 1372 1373
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1374 1375 1376
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1391
  m.def("prune", [](const ProgramDesc &origin,
1392
                    const std::set<std::string> &feeded_var_names,
1393
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1394
    ProgramDesc prog_with_targets(origin);
1395

1396
    for (const auto &t : targets) {
1397
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1398
    }
1399
    proto::ProgramDesc pruned_desc;
1400 1401 1402 1403
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1404
  });
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1422 1423 1424 1425
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1426 1427 1428
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1429 1430
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1431

Q
qijun 已提交
1432
  // clang-format off
Y
Yu Yang 已提交
1433
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1434 1435
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1436
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1437 1438
                    return new paddle::platform::CPUDeviceContext();
                  })
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1463
      .def_static("create",
D
dzhwinter 已提交
1464
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1465
                      -> paddle::platform::DeviceContext* {
1466
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1467 1468 1469 1470
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1471
#else
Q
qijun 已提交
1472
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1473
#endif
C
chengduoZH 已提交
1474 1475 1476 1477
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1478
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1479 1480 1481 1482
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1483 1484 1485 1486
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1487
// clang-format on
1488
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1489 1490
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1491
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1492 1493 1494 1495 1496

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1497
    The memory of CUDAPlace with different dev_id is not accessible.
1498 1499 1500 1501 1502 1503 1504 1505
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1506 1507 1508 1509

    Examples:
        .. code-block:: python

1510 1511 1512
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1513

1514
        )DOC")
S
sneaxiy 已提交
1515 1516
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1517
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1542 1543
             new (&self) platform::CUDAPlace(dev_id);
#else
1544 1545 1546 1547 1548 1549 1550 1551 1552
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1553 1554
#endif
           })
1555
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1556 1557
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1558 1559 1560 1561
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1562
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1563
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1564 1565
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1566 1567 1568
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1569
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1570
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1571

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1617
#ifdef PADDLE_WITH_XPU
1618 1619 1620 1621 1622 1623 1624
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1625 1626 1627
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1628
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1629
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1630 1631 1632
#ifdef PADDLE_WITH_XPU
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
#endif
1633

1634
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1635
    CPUPlace is a descriptor of a device.
1636
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1637 1638 1639 1640

    Examples:
        .. code-block:: python

1641 1642
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1643

1644
        )DOC")
1645
      .def(py::init<>())
S
sneaxiy 已提交
1646 1647
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1648
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1649
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1650 1651 1652 1653
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1654
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1655
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1656

1657
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1658 1659 1660 1661 1662 1663
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1664 1665 1666 1667

    Examples:
        .. code-block:: python

1668 1669
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1670

1671
        )DOC")
S
sneaxiy 已提交
1672
      .def("__init__",
S
sneaxiy 已提交
1673
           [](platform::CUDAPinnedPlace &self) {
1674
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1675 1676 1677
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1678
#endif
S
sneaxiy 已提交
1679
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1680
           })
S
sneaxiy 已提交
1681 1682 1683 1684
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1685 1686
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1687 1688
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1689 1690 1691 1692
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1693
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1694 1695
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
  // NPUPlace
  py::class_<platform::NPUPlace>(m, "NPUPlace", R"DOC(
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

        )DOC")
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1738
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
      .def("__str__", string::to_string<const platform::NPUPlace &>);

Y
Yu Yang 已提交
1755 1756
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1757 1758 1759 1760
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1761
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
1762
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
S
sneaxiy 已提交
1763
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1764 1765
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1766 1767
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1768 1769
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
1770 1771
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
S
sneaxiy 已提交
1772 1773 1774 1775
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1776 1777
      .def("gpu_device_id",
           [](platform::Place &self) {
1778
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1779
           })
1780 1781 1782 1783
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
1784 1785 1786 1787
      .def("npu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::NPUPlace, self).device;
           })
S
sneaxiy 已提交
1788 1789
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1790 1791 1792 1793
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1794 1795 1796 1797
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1798
      .def("set_place",
D
dzhwinter 已提交
1799
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1800
             self = gpu_place;
C
chengduoZH 已提交
1801
           })
1802 1803 1804 1805 1806
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
1807 1808 1809 1810
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
1811 1812
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1813

Y
Yu Yang 已提交
1814
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1815 1816 1817 1818 1819
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
1820 1821 1822 1823 1824 1825 1826
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
C
chengduo 已提交
1827 1828
            return OpRegistry::CreateOp(desc);
          })
1829
      .def("run",
1830
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1831
              const platform::CPUPlace &place) { self.Run(scope, place); })
1832 1833 1834
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::XPUPlace &place) { self.Run(scope, place); })
1835 1836 1837
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::NPUPlace &place) { self.Run(scope, place); })
D
dzhwinter 已提交
1838 1839
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1840
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1841 1842 1843 1844 1845
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1846 1847 1848 1849 1850 1851 1852
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1853 1854
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1855
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1856
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1857 1858 1859 1860
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1861

1862 1863 1864
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1865 1866 1867 1868 1869 1870 1871 1872 1873
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1874
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1875
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1876
      .def("close", &Executor::Close)
1877 1878
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1879 1880
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1881 1882 1883 1884
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1885
             pybind11::gil_scoped_release release;
1886 1887 1888 1889 1890 1891 1892
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1893 1894 1895
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1896
              std::map<std::string, FetchType *> *fetch_targets,
1897 1898 1899 1900 1901 1902 1903 1904
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1905
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1906 1907 1908 1909 1910 1911 1912
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1923
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1924 1925
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1926
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1927 1928
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1929
      });
S
sneaxiy 已提交
1930

D
dzhwinter 已提交
1931
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1932
  m.def("init_glog", framework::InitGLOG);
1933 1934
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
1935
  m.def("init_devices", []() { framework::InitDevices(); });
1936

1937
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1938
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1939
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1940
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
1941
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1942
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1943
  m.def("supports_bfloat16", SupportsBfloat16);
1944
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1945
  m.def("op_supported_infos", OpSupportedInfos);
1946
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1947
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1948 1949 1950
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
1970 1971 1972 1973 1974 1975 1976
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
1977 1978 1979 1980 1981 1982 1983 1984 1985
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

1986
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1987 1988 1989 1990 1991
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1992

1993
  m.def("set_feed_variable", framework::SetFeedVariable);
1994 1995 1996 1997 1998
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1999
            return py::cast(BOOST_GET(LoDTensor, var));
2000
          } else {
2001
            return py::cast(BOOST_GET(LoDTensorArray, var));
2002 2003
          }
        });
2004
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2005

X
Xin Pan 已提交
2006 2007
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2008 2009 2010 2011 2012
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
2013
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
2014

Y
Yu Yang 已提交
2015 2016 2017 2018 2019 2020 2021 2022 2023
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
2024
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
2025
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2026 2027 2028

    Examples:
        .. code-block:: python
2029

Z
Zeng Jinle 已提交
2030 2031 2032 2033
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
2034 2035
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2036 2037 2038 2039 2040 2041
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2042 2043 2044 2045
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2046 2047 2048
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2049 2050 2051 2052 2053 2054
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2055 2056
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2057 2058 2059 2060 2061 2062
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2085

2086 2087 2088 2089 2090 2091 2092 2093
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2094
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2095 2096
                 res[i] = py::cast(std::move(data));
               } else {
2097
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2113
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2114 2115 2116 2117 2118 2119 2120 2121
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2122
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2123 2124 2125 2126 2127 2128 2129 2130 2131
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2132 2133
        )DOC")
      .def("_move_to_list",
2134
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2135 2136 2137 2138
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2139
                 if (data_is_lod_tensor(self[i][j])) {
2140
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2141 2142
                   tmp[j] = py::cast(std::move(var));
                 } else {
2143
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2144 2145 2146 2147 2148 2149
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2150 2151 2152 2153 2154 2155 2156 2157 2158
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2159
  m.def("op_support_gpu", OpSupportGPU);
2160
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
Dong Zhihong 已提交
2161
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
2162

2163
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2164 2165 2166
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2167 2168 2169 2170
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2171
#endif
P
peizhilin 已提交
2172
#endif
Y
Yu Yang 已提交
2173

2174 2175
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2176
  m.def("npu_finalize", []() { platform::AclInstance::Instance().Finalize(); });
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

2197 2198 2199 2200 2201 2202
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2203 2204 2205 2206
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2207
      .value("kAll", platform::ProfilerState::kAll)
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2219
  m.def("set_tracer_option", platform::SetTracerOption);
2220 2221
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2222
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2223
  m.def("reset_profiler", platform::ResetProfiler);
2224
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2225 2226 2227
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2228

2229 2230
  m.def("size_of_dtype", framework::SizeOfType);

2231
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2232 2233
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2234 2235
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2236 2237
#endif  // PADDLE_WITH_CUDA

2238 2239 2240
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2241 2242
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2243
      .def("has", &ir::Pass::Has)
2244 2245 2246
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2247
           })
2248
      .def(
2249
          "set",
2250 2251 2252
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2253 2254
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2255 2256
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2271 2272
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2273
        self.Apply(graph.get());
F
flame 已提交
2274
      });
2275

X
fix  
Xin Pan 已提交
2276 2277
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2292
  // -- python binds for parallel executor.
X
Xin Pan 已提交
2293

Y
yuyang18 已提交
2294
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2295 2296 2297 2298
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2299 2300 2301
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2302 2303 2304
    Examples:
        .. code-block:: python

2305 2306 2307 2308 2309 2310 2311 2312 2313
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2314

2315 2316
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2317

2318
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2319 2320
          sgd_optimizer.minimize(avg_loss)

2321
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2322 2323
          exec_strategy.num_threads = 4

2324 2325 2326
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2327 2328
        )DOC");

2329 2330 2331 2332
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2333

Y
yuyang18 已提交
2334
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2335 2336 2337 2338 2339
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2340
          },
2341 2342
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2343 2344 2345 2346 2347 2348 2349
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2363
      .def_property(
2364 2365
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2366
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2367 2368 2369
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2370 2371 2372 2373 2374
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2375 2376 2377
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2378 2379
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2380 2381 2382 2383 2384 2385 2386
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2387 2388 2389 2390
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2391
                because the temp variable's shape maybe the same between two iterations.
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2402

2403 2404 2405 2406 2407 2408 2409
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2410
              )DOC")
Q
Qiao Longfei 已提交
2411 2412 2413 2414 2415 2416 2417 2418 2419
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2432
              )DOC")
2433 2434 2435 2436 2437 2438 2439 2440
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2441 2442 2443 2444 2445
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2446

Y
yuyang18 已提交
2447
  exec_strategy.def_property(
Y
yuyang18 已提交
2448 2449 2450 2451 2452 2453 2454
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2455 2456
      });

C
chengduo 已提交
2457 2458 2459 2460
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2461 2462 2463
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2464 2465 2466
    Examples:
        .. code-block:: python

2467
            import os
2468 2469 2470 2471
            import paddle
            import paddle.static as static

            paddle.enable_static()
2472

2473 2474
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2475

2476 2477 2478 2479
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2480

2481
            build_strategy = static.BuildStrategy()
2482 2483
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2484 2485
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2486
            program = program.with_data_parallel(loss_name=loss.name,
2487 2488
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2489
)DOC");
Y
yuyang18 已提交
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2506 2507 2508 2509
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2510
            self.reduce_ = strategy;
C
chengduo 已提交
2511
          },
2512
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2513 2514
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2515
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2516 2517
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2518
                Default is 'AllReduce'.
F
flame 已提交
2519 2520 2521 2522

                Examples:
                    .. code-block:: python

2523 2524 2525 2526 2527 2528 2529
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2530
                  )DOC")
Y
yuyang18 已提交
2531 2532 2533 2534 2535
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2536 2537 2538 2539
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2540
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2541
          },
2542
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2543
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2544 2545
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2546
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2547 2548 2549 2550

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2551 2552
                        import numpy
                        import os
2553 2554 2555 2556
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2557 2558

                        use_cuda = True
2559 2560
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2561 2562

                        # NOTE: If you use CPU to run the program, you need
2563
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2564 2565 2566 2567 2568 2569
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2570
                            places = static.cpu_places()
C
chengduo 已提交
2571
                        else:
2572
                            places = static.cuda_places()
C
chengduo 已提交
2573

2574 2575 2576 2577
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2578

2579
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2580

2581
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2582
                        build_strategy.gradient_scale_strategy = \
2583 2584 2585
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2586
                                          loss_name=loss.name, build_strategy=build_strategy,
2587
                                          places=places)
C
chengduo 已提交
2588 2589 2590 2591 2592 2593

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2594 2595
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2596
                   )DOC")
Y
yuyang18 已提交
2597 2598 2599 2600
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2601 2602 2603 2604
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2605
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2606
          },
2607
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2608
                writing the SSA Graph to file in the form of graphviz.
2609
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2610 2611 2612 2613

                Examples:
                    .. code-block:: python

2614 2615 2616 2617
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2618

2619 2620
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2621
                    )DOC")
S
sneaxiy 已提交
2622 2623 2624 2625 2626 2627
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2628 2629 2630 2631
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2632 2633
            self.enable_sequential_execution_ = b;
          },
2634 2635
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2636 2637 2638 2639

                Examples:
                    .. code-block:: python

2640 2641 2642 2643 2644 2645
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2646 2647
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2648 2649 2650 2651 2652 2653
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2654 2655 2656 2657
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2658 2659
            self.remove_unnecessary_lock_ = b;
          },
2660 2661
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2662 2663 2664 2665

                Examples:
                    .. code-block:: python

2666 2667 2668 2669 2670 2671
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2672 2673
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2674 2675 2676 2677
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2678
#ifdef WIN32
2679
            PADDLE_THROW(platform::errors::Unavailable(
2680
                "Distribution mode is not supported on Windows platform."));
2681
#endif
2682 2683
            self.num_trainers_ = num_trainers;
          })
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2696 2697 2698 2699 2700 2701
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2702 2703 2704 2705 2706 2707
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
2708
      .def_property("use_hierarchical_allreduce",
2709 2710 2711 2712 2713 2714
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2715
      .def_property("hierarchical_allreduce_inter_nranks",
2716 2717 2718 2719 2720 2721 2722
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2723 2724 2725 2726 2727 2728
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2729 2730 2731 2732
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2733 2734
            self.fuse_elewise_add_act_ops_ = b;
          },
2735
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2736
                to fuse elementwise_add_op and activation_op,
2737
                it may make the execution faster. Default is False.
F
flame 已提交
2738 2739 2740 2741

                Examples:
                    .. code-block:: python

2742 2743 2744 2745 2746 2747
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2748 2749
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2750 2751 2752 2753
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2754
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2755
                              platform::errors::PreconditionNotMet(
2756 2757
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2758 2759 2760 2761 2762 2763 2764 2765 2766
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2767 2768 2769 2770 2771 2772
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2773 2774
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
2800 2801 2802 2803
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2804
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2805
                              platform::errors::PreconditionNotMet(
2806 2807
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

2818 2819 2820 2821 2822 2823
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
2824 2825
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2826 2827 2828 2829 2830 2831
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2832 2833 2834 2835
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2836 2837
            self.fuse_relu_depthwise_conv_ = b;
          },
2838
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2839 2840 2841
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2842
                Default is False.
F
flame 已提交
2843 2844 2845 2846

                Examples:
                    .. code-block:: python

2847 2848 2849 2850 2851 2852
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2853 2854
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2855 2856 2857 2858 2859 2860
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
2861 2862 2863 2864
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2865 2866
                      self.fuse_broadcast_ops_ = b;
                    },
2867
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2868 2869 2870 2871
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2872 2873 2874 2875 2876
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

2877 2878 2879 2880 2881 2882
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
2883 2884
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2885 2886
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2887 2888
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2889 2890
                    },
                    [](BuildStrategy &self, bool b) {
2891 2892 2893 2894
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2895 2896
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2897 2898 2899 2900
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2901 2902 2903 2904
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2905 2906
            self.sync_batch_norm_ = b;
          },
2907
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2908 2909 2910
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2911 2912
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2913 2914 2915 2916

                Examples:
                    .. code-block:: python

2917 2918 2919 2920 2921 2922
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2923 2924
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2925 2926
      .def_property(
          "memory_optimize",
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2941 2942 2943
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "BuildStrategy.memory_optimize must be set to None, False or "
                  "True"));
2944 2945
            }
          },
2946
          R"DOC((bool, optional): memory opitimize aims to save total memory
2947
                consumption, set to True to enable it.
2948

2949 2950 2951
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
2966 2967 2968
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2969 2970 2971
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
2972
              PADDLE_THROW(platform::errors::Unavailable(
2973
                  "Distribution mode is not supported on Windows platform."));
2974 2975 2976 2977 2978
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2979 2980 2981
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2982
      .def_property(
D
dzhwinter 已提交
2983 2984 2985
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
2986 2987 2988 2989
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
2990 2991
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2992 2993 2994 2995
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2996
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2997 2998 2999 3000 3001 3002 3003
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3004 3005 3006 3007
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3008 3009 3010 3011 3012 3013 3014 3015 3016
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
3017
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3018
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3019 3020 3021 3022 3023
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3024 3025

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3026
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3027
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3028
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3029 3030 3031 3032
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3033 3034 3035 3036 3037
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3038 3039 3040
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3041 3042 3043 3044
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3045 3046
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3047 3048 3049 3050 3051 3052 3053 3054
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3055
               return py::cast(
3056
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3057 3058
             } else {
               return py::cast(std::move(
3059
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3060
             }
3061 3062
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3063

D
dongdaxiang 已提交
3064
  BindFleetWrapper(&m);
T
Thunderbrook 已提交
3065

T
Thunderbrook 已提交
3066 3067
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
3068
#endif
T
Thunderbrook 已提交
3069
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3070
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3071
#endif
3072
  BindGlooWrapper(&m);
H
hutuxian 已提交
3073
  BindBoxHelper(&m);
H
hutuxian 已提交
3074 3075 3076
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3077
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3078
  BindNCCLWrapper(&m);
3079 3080 3081
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3082
#endif
F
flame 已提交
3083 3084
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
3085
  BindInferenceApi(&m);
3086
  BindCompatible(&m);
3087
  BindDataset(&m);
Y
yaoxuefeng 已提交
3088
  BindGenerator(&m);
3089 3090 3091
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3092
  BindAscendDevice(&m);
3093
#endif
Y
Yanghello 已提交
3094 3095 3096
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3097

T
tangwei12 已提交
3098
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3099 3100
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3101
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3102 3103
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3104 3105 3106 3107 3108
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3109 3110 3111 3112 3113
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);

3114
#endif
L
Luo Tao 已提交
3115
}
3116
}  // namespace pybind
3117
}  // namespace paddle