op_param.h 93.0 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26 27 28 29 30 31 32

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
33
#endif
朔-望's avatar
朔-望 已提交
34

L
liuruilong 已提交
35 36
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
37
#endif
朔-望's avatar
朔-望 已提交
38 39

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
40 41
namespace operators {

W
wangliu 已提交
42 43 44 45 46
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
47
using framework::Variable;
W
wangliu 已提交
48 49
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
50

N
nhzlx 已提交
51 52 53 54 55 56 57 58 59
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
update  
liuruilong 已提交
60
#ifdef PADDLE_MOBILE_CL
L
liuruilong 已提交
61 62 63 64 65 66 67 68
template <>
struct DtypeTensorTrait<GPU_CL> {
  // This is the type we obtained in variable.
  typedef framework::CLImage gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::CLImage rtype;
};
L
update  
liuruilong 已提交
69
#endif
L
liuruilong 已提交
70

L
liuruilong 已提交
71
class OpParam {
朔-望's avatar
朔-望 已提交
72
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
73 74 75 76
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
Z
zhaojiaying01 已提交
77 78 79 80 81 82 83

  template <typename T>
  static T *InputHiddenPrevFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("HiddenPrev", inputs, scope);
  }

84 85 86 87 88
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

89 90 91 92 93 94 95 96 97
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
98 99 100 101 102
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

130 131 132 133
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
134 135 136 137 138 139

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

140 141 142 143 144
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
145 146 147 148 149
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

150 151 152 153 154
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
155 156 157 158
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
159 160 161 162 163 164 165 166 167 168 169 170
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
171 172 173 174
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
191

E
eclipsess 已提交
192 193 194 195 196 197 198 199 200 201
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
202 203 204 205
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
206

207
  template <typename T>
W
wangliu 已提交
208 209
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
210 211 212
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
213 214 215 216 217
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
218 219 220 221 222 223
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

Z
zhaojiaying01 已提交
224 225 226 227 228
  template <typename T>
  static T *OutputGateFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Gate", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
229 230 231 232 233 234 235 236 237 238 239
  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

Z
zhaojiaying01 已提交
240 241 242 243 244 245
  template <typename T>
  static T *OutputResetHiddenPrevFrom(const VariableNameMap &outputs,
                                      const Scope &scope) {
    return GetVarValue<T>("ResetHiddenPrev", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
246 247 248 249 250 251 252 253 254 255 256 257
  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

258 259 260 261 262
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
263 264 265 266 267
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

268 269 270 271 272
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
273 274 275 276 277 278
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

279 280 281 282 283
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
284 285 286 287 288 289
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
290 291 292 293 294 295
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
296 297 298 299 300
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

Z
zhaojiaying01 已提交
301 302 303 304 305
  template <typename T>
  static T *OutputNormFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Norm", outputs, scope);
  }

E
eclipsess 已提交
306 307 308 309 310 311
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

312 313 314 315 316 317 318 319 320 321 322
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
323
  static const T GetAttr(const string &key, const AttributeMap &map) {
324 325
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
326 327
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
328 329
    return ((Attribute)map.at(key)).GetString();
  }
330

331 332 333 334
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

335
  template <typename T>
W
wangliu 已提交
336
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
337
                        const Scope &scope) {
W
wangliu 已提交
338 339
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
340 341 342 343 344 345
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
346
    }
347
  }
朔-望's avatar
朔-望 已提交
348

E
eclipsess 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

382
  template <typename T>
W
wangliu 已提交
383 384 385
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
386 387
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
388
    vector<T *> var_res;
389 390 391
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
392
    }
393 394
    return var_res;
  }
E
eclipsess 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
408 409
};

N
nhzlx 已提交
410
template <typename Dtype>
411
class ConvParam : public OpParam {
N
nhzlx 已提交
412 413 414
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
415
 public:
416
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
417
            const AttributeMap &attrs, const Scope &scope) {
418 419 420 421 422 423 424 425 426
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
427
  }
朔-望's avatar
朔-望 已提交
428

N
nhzlx 已提交
429
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
430

431
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
432

433
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
434

W
wangliu 已提交
435
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
436

W
wangliu 已提交
437
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
438

W
wangliu 已提交
439
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
440

H
hjchen2 已提交
441 442 443 444
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
    EXEC_DEPTHWISE3x3S1P1_FLOAT,
445 446
    EXEC_DEPTHWISE3x3S2P0_FLOAT,
    EXEC_DEPTHWISE3x3S2P1_FLOAT,
H
hjchen2 已提交
447 448 449
    EXEC_DEPTHWISE3x3_FLOAT,
    EXEC_WINOGRAD3X3_FLOAT,
    EXEC_WINOGRAD5X5_FLOAT,
450
    EXEC_DEPTHWISE5x5_FLOAT,
H
hjchen2 已提交
451
    EXEC_GEMM_INT8,
H
hjchen2 已提交
452
    EXEC_DEPTHWISE3x3_INT8,
453
    EXEC_DEPTHWISE5x5_INT8,
H
hjchen2 已提交
454 455 456 457
  };

  ExecMode &ExecMode() const { return exec_mode_; }

458
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
459

460 461 462 463 464 465 466
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

H
hjchen2 已提交
467
 public:
N
nhzlx 已提交
468
  RType *input_;
469 470
  RType *output_;
  RType *filter_;
H
hjchen2 已提交
471
  RType *transformed_filter_;
W
wangliu 已提交
472 473 474
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
H
hjchen2 已提交
475
  mutable enum ExecMode exec_mode_;
476
  int groups;
477 478 479 480

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
481 482 483

#ifdef PADDLE_MOBILE_FPGA

H
hjchen2 已提交
484
 public:
Z
zhangyang 已提交
485 486 487 488 489
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
490 491 492 493 494 495 496

 public:
  fpga::DWconvArgs fpga_dwconv_args;

 public:
  const fpga::DWconvArgs &FpgaDwconvArgs() const { return fpga_dwconv_args; }
  void SetFpgaArgs(const fpga::DWconvArgs &args) { fpga_dwconv_args = args; }
Z
zhangyang 已提交
497
#endif
朔-望's avatar
朔-望 已提交
498
};
N
nhzlx 已提交
499 500
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
501

N
nhzlx 已提交
502
template <typename Dtype>
朔-望's avatar
朔-望 已提交
503
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
504 505 506
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
507
 public:
508
  ElementwiseAddParam(const VariableNameMap &inputs,
509 510
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
511 512 513
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
514 515 516
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
517
  const GType *InputX() const { return input_x_; }
518

xiebaiyuan's avatar
xiebaiyuan 已提交
519
  const GType *InputY() const { return input_y_; }
520

xiebaiyuan's avatar
xiebaiyuan 已提交
521
  GType *Out() const { return out_; }
522 523 524

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
525
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
526 527 528
  GType *input_x_;
  GType *input_y_;
  GType *out_;
529
  int axis_;
Z
zhangyang 已提交
530 531 532
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
533
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
534 535

 public:
H
hanbuhe 已提交
536 537
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
538
#endif
朔-望's avatar
朔-望 已提交
539 540
};

E
eclipsess 已提交
541
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
template <typename Dtype>
class ElementwiseMulParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
S
suiyang 已提交
571
#endif
E
eclipsess 已提交
572

573
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
574 575
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
576 577
#endif

578
#ifdef ELEMENTWISESUB_OP
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
template <typename Dtype>
class ElementwiseSubParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
608
#endif
609

L
liuruilong 已提交
610
#ifdef MUL_OP
N
nhzlx 已提交
611
template <typename Dtype>
朔-望's avatar
朔-望 已提交
612
class MulParam : OpParam {
N
nhzlx 已提交
613 614 615
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
616
 public:
617
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
618
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
619 620 621
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
622 623 624
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
625

xiebaiyuan's avatar
xiebaiyuan 已提交
626
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
627

xiebaiyuan's avatar
xiebaiyuan 已提交
628
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
629

xiebaiyuan's avatar
xiebaiyuan 已提交
630
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
631

632
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
633

634
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
635

朔-望's avatar
朔-望 已提交
636
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
637 638 639
  GType *input_x_;
  GType *input_y_;
  GType *out_;
640 641
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
642
};
L
liuruilong 已提交
643
#endif
朔-望's avatar
朔-望 已提交
644

L
liuruilong 已提交
645
#ifdef CONCAT_OP
N
nhzlx 已提交
646
template <typename Dtype>
朔-望's avatar
朔-望 已提交
647
class ConcatParam : public OpParam {
N
nhzlx 已提交
648 649 650
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
651
 public:
652
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
653
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
654 655
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
656 657
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
658

N
nhzlx 已提交
659
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
660

xiebaiyuan's avatar
xiebaiyuan 已提交
661
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
662

663
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
664

朔-望's avatar
朔-望 已提交
665
 private:
N
nhzlx 已提交
666
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
667
  GType *out_;
668
  int axis_;
Z
zhangyang 已提交
669 670 671 672 673 674 675 676 677
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
678
};
L
liuruilong 已提交
679
#endif
朔-望's avatar
朔-望 已提交
680

E
eclipsess 已提交
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, scope);
    out_var_ = OutVarFrom(outputs, scope);
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
712
#ifdef LRN_OP
N
nhzlx 已提交
713
template <typename Dtype>
E
eclipsess 已提交
714
class LrnParam : public OpParam {
N
nhzlx 已提交
715 716 717
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
718
 public:
719
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
720
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
721 722 723
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
724 725 726 727
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
728
    data_format_ = GetStringAttr("data_format", attrs);
729
  }
E
eclipsess 已提交
730

N
nhzlx 已提交
731
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
732

N
nhzlx 已提交
733
  RType *Out() const { return out_; }
E
eclipsess 已提交
734

N
nhzlx 已提交
735
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
736

737
  const int &N() const { return n_; }
E
eclipsess 已提交
738

739
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
740

741
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
742

743
  const float &K() const { return k_; }
E
eclipsess 已提交
744

W
wangliu 已提交
745
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
746

朔-望's avatar
朔-望 已提交
747
 private:
N
nhzlx 已提交
748 749 750
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
751 752 753 754
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
755
  string data_format_;
E
eclipsess 已提交
756
};
L
liuruilong 已提交
757 758
#endif

Z
zhaojiaying01 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
#ifdef NORM_OP
template <typename Dtype>
class NormParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_norm_ = OutputNormFrom<GType>(outputs, scope);
    epsilon_ = GetAttr<float>("epsilon", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const RType *InputX() const { return input_x_; }

  RType *Out() const { return out_; }

  RType *OutputNorm() const { return output_norm_; }

  const float &Epsilon() const { return epsilon_; }

  const int &Axis() const { return axis_; }

 private:
  RType *input_x_;
  RType *out_;
  RType *output_norm_;
  float epsilon_;
  int axis_;
};
#endif

L
liuruilong 已提交
794
#ifdef BATCHNORM_OP
N
nhzlx 已提交
795
template <typename Dtype>
E
eclipsess 已提交
796
class BatchNormParam : OpParam {
N
nhzlx 已提交
797 798 799
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
800
 public:
801
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
802
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
803 804 805 806 807 808
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
809 810
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
811
    //    is_test_ = GetAttr<bool>("is_test", attrs);
812
  }
E
eclipsess 已提交
813

N
nhzlx 已提交
814
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
815

N
nhzlx 已提交
816
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
817

N
nhzlx 已提交
818
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
819

N
nhzlx 已提交
820
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
821

N
nhzlx 已提交
822
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
823

N
nhzlx 已提交
824
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
825

826
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
827

828
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
829

830
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
831

W
wangliu 已提交
832
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
833

834 835 836 837 838 839 840 841
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

朔-望's avatar
朔-望 已提交
842
 private:
N
nhzlx 已提交
843 844 845 846 847 848
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
849 850 851
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
852
  string data_format_;
853 854
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
855
};
L
liuruilong 已提交
856 857 858
#endif

#ifdef POOL_OP
N
nhzlx 已提交
859
template <typename Dtype>
860
class PoolParam : public OpParam {
N
nhzlx 已提交
861 862 863
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
864
 public:
865
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
866
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
867
    input_ = InputXFrom<GType>(inputs, scope);
868

N
nhzlx 已提交
869
    output_ = OutFrom<GType>(outputs, scope);
870
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
871 872 873
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
874
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
875
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
876
  }
877

N
nhzlx 已提交
878
  const RType *Input() const { return input_; }
879

N
nhzlx 已提交
880
  RType *Output() const { return output_; }
881

W
wangliu 已提交
882
  const string &PoolingType() const { return pooling_type_; }
883

W
wangliu 已提交
884
  const vector<int> &Ksize() const { return ksize_; }
885

W
wangliu 已提交
886
  const vector<int> &Strides() const { return strides_; }
887

W
wangliu 已提交
888
  const vector<int> &Paddings() const { return paddings_; }
889

890
  bool isCeilMode() const { return ceil_mode_; }
891

Z
zhangyang 已提交
892
  bool isGlobalPooling() const { return global_pooling_; }
893

朔-望's avatar
朔-望 已提交
894
 private:
N
nhzlx 已提交
895 896
  RType *input_;
  RType *output_;
W
wangliu 已提交
897 898 899 900
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
901
  bool ceil_mode_;
902
  bool global_pooling_ = false;
Z
zhangyang 已提交
903
#ifdef PADDLE_MOBILE_FPGA
904 905

 private:
H
hanbuhe 已提交
906
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
907 908

 public:
H
hanbuhe 已提交
909 910
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
911
#endif
912
};
L
liuruilong 已提交
913 914 915
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
916
template <typename Dtype>
E
eclipsess 已提交
917
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
918 919 920
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
921 922
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
923
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
924 925 926 927
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
928 929 930 931
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
932 933 934 935

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
Y
yangfei 已提交
936 937
    } else {
      min_max_aspect_ratios_order_ = false;
938
    }
E
eclipsess 已提交
939 940 941 942 943 944
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
945
  const RType *Input() const { return input_; }
E
eclipsess 已提交
946

N
nhzlx 已提交
947
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
948

N
nhzlx 已提交
949
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
950

N
nhzlx 已提交
951
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
952

W
wangliu 已提交
953
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
954

W
wangliu 已提交
955
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
956

W
wangliu 已提交
957
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
958

W
wangliu 已提交
959
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
960 961 962 963 964 965 966 967 968 969 970

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

971 972 973 974
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
975
 private:
N
nhzlx 已提交
976 977 978 979
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
980 981 982 983
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
984 985 986 987 988
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
989
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
990
};
L
liuruilong 已提交
991
#endif
E
eclipsess 已提交
992

L
liuruilong 已提交
993
#ifdef BOXCODER_OP
N
nhzlx 已提交
994
template <typename Dtype>
E
eclipsess 已提交
995
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
996 997 998
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
999 1000
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1001
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1002 1003 1004 1005
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
1006
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
1007
  }
N
nhzlx 已提交
1008
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
1009

N
nhzlx 已提交
1010
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
1011

N
nhzlx 已提交
1012
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
1013

N
nhzlx 已提交
1014
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
1015 1016 1017 1018

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
1019 1020 1021 1022
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
1023 1024
  std::string code_type_;
};
L
liuruilong 已提交
1025
#endif
W
wangliu 已提交
1026

L
liuruilong 已提交
1027
#ifdef SOFTMAX_OP
N
nhzlx 已提交
1028
template <typename Dtype>
W
wangliu 已提交
1029
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
1030 1031 1032
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1033 1034
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1035
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1036 1037
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1038
  }
H
hjchen2 已提交
1039 1040
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1041 1042

 private:
H
hjchen2 已提交
1043 1044
  GType *input_x_;
  GType *out_;
H
hanbuhe 已提交
1045 1046 1047 1048

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
1049
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
1050 1051 1052
  fpga::BypassArgs fpga_bypass_args;

 public:
1053
  RType *FloatInput() const {
H
hanbuhe 已提交
1054 1055 1056 1057 1058 1059
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1060
};
L
liuruilong 已提交
1061
#endif
W
wangliu 已提交
1062

L
liuruilong 已提交
1063
#ifdef SIGMOID_OP
N
nhzlx 已提交
1064
template <typename Dtype>
W
wangliu 已提交
1065
class SigmoidParam : public OpParam {
N
nhzlx 已提交
1066 1067 1068
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1069 1070
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1071
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1072 1073
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1074
  }
N
nhzlx 已提交
1075 1076
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
1077 1078

 private:
N
nhzlx 已提交
1079 1080
  RType *input_x_;
  RType *out_;
1081 1082 1083 1084 1085 1086 1087 1088 1089
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1090
};
L
liuruilong 已提交
1091 1092 1093
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1094
template <typename Dtype>
E
eclipsess 已提交
1095
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1096 1097 1098
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1099 1100 1101 1102
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1103 1104 1105
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1106 1107 1108 1109 1110 1111 1112 1113
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

Y
yangfei 已提交
1114
  RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1115

Y
yangfei 已提交
1116
  RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1117

N
nhzlx 已提交
1118
  RType *Out() const { return out_; }
E
eclipsess 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
1133 1134 1135
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
1136 1137 1138 1139 1140 1141 1142
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1143
#endif
W
wangliu 已提交
1144

L
lijiancheng0614 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
  }
  const RType *Input() const { return input_; }
  RType *Output() const { return output_; }

 private:
  RType *input_;
  RType *output_;
};
#endif

N
nhzlx 已提交
1167
template <typename Dtype>
L
liuruilong 已提交
1168
class FeedParam : public OpParam {
N
nhzlx 已提交
1169 1170 1171
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1172 1173
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
Y
yangfei 已提交
1174
            const AttributeMap &attrs, const Scope &scope) {
1175 1176 1177 1178 1179 1180
#ifdef PADDLE_MOBILE_FPGA
    static int feed_num = 0;
    auto new_name = std::string("feed") + std::to_string(feed_num++);
    const_cast<VariableNameMap &>(inputs).at("X") = {string(new_name)};
#endif

Y
yangfei 已提交
1181 1182 1183
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    auto var = scope.FindVar("batch_size");
W
wangliu 已提交
1184
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1185
  }
Y
yangfei 已提交
1186
  const LoDTensor *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1187
  GType *Out() const { return out_; }
W
wangliu 已提交
1188
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1189

L
liuruilong 已提交
1190
 private:
Y
yangfei 已提交
1191
  LoDTensor *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1192
  GType *out_;
W
wangliu 已提交
1193
  int batch_size;
L
liuruilong 已提交
1194 1195
};

N
nhzlx 已提交
1196
template <typename Dtype>
L
liuruilong 已提交
1197
class FetchParam : public OpParam {
N
nhzlx 已提交
1198 1199 1200
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1201 1202
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1203
             const AttributeMap &attrs, const Scope &scope) {
1204 1205 1206 1207 1208
#ifdef PADDLE_MOBILE_FPGA
    static int fetch_num = 0;
    auto new_name = std::string("fetch") + std::to_string(fetch_num++);
    const_cast<VariableNameMap &>(outputs).at("Out") = {string(new_name)};
#endif
N
nhzlx 已提交
1209
    input_x_ = InputXFrom<GType>(inputs, scope);
1210
    out_ = OutFrom(outputs, scope);
L
liuruilong 已提交
1211
  }
L
liuruilong 已提交
1212

N
nhzlx 已提交
1213
  const RType *InputX() const { return input_x_; }
1214 1215 1216
  Tensor *Out() const { return out_; }

  static Tensor *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
Z
zhaojiaying01 已提交
1217
    return GetVarValue<LoDTensor>("Out", outputs, scope);
1218
  }
L
liuruilong 已提交
1219

L
liuruilong 已提交
1220
 private:
N
nhzlx 已提交
1221
  RType *input_x_;
Y
yangfei 已提交
1222
  Tensor *out_;
qnqinan's avatar
qnqinan 已提交
1223
#ifdef PADDLE_MOBILE_FPGA
1224
 public:
qnqinan's avatar
qnqinan 已提交
1225 1226 1227
  fpga::BypassArgs fpga_bypass_args;

#endif
L
liuruilong 已提交
1228 1229
};

L
lijiancheng0614 已提交
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
    out_var_ = OutVarFrom(outputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

  RType *Out() const { return out_; }

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
  RType *out_;
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1266
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1267
template <typename Dtype>
E
eclipsess 已提交
1268
class TransposeParam : public OpParam {
N
nhzlx 已提交
1269 1270 1271
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1272 1273 1274
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1275 1276
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1277 1278 1279
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
1280
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1281

N
nhzlx 已提交
1282
  RType *Out() const { return out_; }
E
eclipsess 已提交
1283 1284 1285 1286

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
1287 1288
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1289 1290
  vector<int> axis_;
};
L
liuruilong 已提交
1291
#endif
E
eclipsess 已提交
1292

L
lijiancheng0614 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

  const RType *InputX() const { return input_x_; }

  RType *Out() const { return out_; }

  RType *OutputXShape() const { return output_xshape_; }

  const vector<int> &Axis() const { return axis_; }

 private:
  RType *input_x_;
  RType *out_;
  RType *output_xshape_;
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1390
#ifdef RESHAPE_OP
N
nhzlx 已提交
1391
template <typename Dtype>
E
eclipsess 已提交
1392
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1393 1394 1395
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1396 1397 1398
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1399 1400 1401
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1402
    shape_ = GetAttr<vector<int>>("shape", attrs);
1403 1404 1405 1406 1407 1408 1409

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1410 1411
  }

N
nhzlx 已提交
1412
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1413

N
nhzlx 已提交
1414
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1415

N
nhzlx 已提交
1416
  RType *Out() const { return out_; }
E
eclipsess 已提交
1417 1418 1419 1420 1421 1422

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1423 1424 1425
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1426 1427 1428
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1429
#endif
E
eclipsess 已提交
1430

L
lijiancheng0614 已提交
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

E
eclipsess 已提交
1452
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1453

E
eclipsess 已提交
1454
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1455

E
eclipsess 已提交
1456
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1457

E
eclipsess 已提交
1458
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1459 1460 1461 1462 1463 1464

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1465 1466 1467 1468
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1469 1470 1471 1472 1473
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1474
#ifdef SCALE_OP
N
nhzlx 已提交
1475
template <typename Dtype>
I
itminner 已提交
1476
class ScaleParam : public OpParam {
N
nhzlx 已提交
1477 1478 1479
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1480 1481 1482
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1483 1484 1485
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1486 1487 1488 1489 1490 1491
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1492
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1493

N
nhzlx 已提交
1494
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1495

N
nhzlx 已提交
1496
  RType *Out() const { return out_; }
I
itminner 已提交
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1507 1508 1509
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1510 1511 1512 1513 1514
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1515 1516 1517
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1518
template <typename Dtype>
I
itminner 已提交
1519
class SliceParam : public OpParam {
N
nhzlx 已提交
1520 1521 1522
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1523 1524 1525
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1526 1527
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1528

1529 1530 1531 1532
    axes_ = GetAttr<std::vector<int>>("axes", attrs);
    starts_ = GetAttr<std::vector<int>>("starts", attrs);
    ends_ = GetAttr<std::vector<int>>("ends", attrs);
  }
I
itminner 已提交
1533

1534 1535 1536 1537 1538 1539
 public:
  GType *input_;
  GType *output_;
  std::vector<int> axes_;
  std::vector<int> starts_;
  std::vector<int> ends_;
I
itminner 已提交
1540
};
T
Tian 已提交
1541 1542 1543
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1544
template <typename Dtype>
T
Tian 已提交
1545
class ResizeParam : public OpParam {
N
nhzlx 已提交
1546 1547 1548
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1549 1550 1551
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1552 1553 1554
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1555 1556 1557 1558 1559 1560
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1561

N
nhzlx 已提交
1562
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1563

N
nhzlx 已提交
1564
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1565

N
nhzlx 已提交
1566
  RType *Out() const { return out_; }
T
Tian 已提交
1567

I
itminner 已提交
1568
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1569

I
itminner 已提交
1570
  const int &Height() const { return height_; }
T
Tian 已提交
1571

I
itminner 已提交
1572
  const int &Width() const { return width_; }
T
Tian 已提交
1573

I
itminner 已提交
1574
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1575

I
itminner 已提交
1576
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1577

I
itminner 已提交
1578
 private:
N
nhzlx 已提交
1579 1580 1581
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1582 1583 1584 1585 1586
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1587 1588 1589
};
#endif

L
liuruilong 已提交
1590
#ifdef RELU_OP
L
liuruilong 已提交
1591 1592 1593
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1594
template <typename Dtype>
D
relu  
dolphin8 已提交
1595
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1596 1597 1598
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1599
 public:
D
relu  
dolphin8 已提交
1600
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
Y
yangfei 已提交
1601
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1602 1603
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1604 1605
  }

N
nhzlx 已提交
1606
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1607

N
nhzlx 已提交
1608
  RType *Out() const { return out_; }
E
eclipsess 已提交
1609 1610

 private:
N
nhzlx 已提交
1611 1612
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1613
};
D
relu  
dolphin8 已提交
1614 1615 1616

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1617
 public:
D
relu  
dolphin8 已提交
1618 1619 1620
  using ReluParamBase<Dtype>::ReluParamBase;
};

Y
yangfei 已提交
1621
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1622 1623
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1624
 public:
D
relu  
dolphin8 已提交
1625
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1626 1627 1628
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1629 1630
  framework::CLImage midImage;
};
Y
yangfei 已提交
1631
#endif
D
relu  
dolphin8 已提交
1632

L
liuruilong 已提交
1633
#endif
E
eclipsess 已提交
1634

Z
zhangyang 已提交
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }

 private:
  RType *input_x_;
  RType *out_;
qnqinan's avatar
qnqinan 已提交
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
#ifdef PADDLE_MOBILE_FPGA

 private:
  std::shared_ptr<RType> float_input_x_;
  fpga::BypassArgs fpga_bypass_args;

 public:
  RType *FloatInput() const {
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
Z
zhangyang 已提交
1667
};
L
liuruilong 已提交
1668
#endif
E
eclipsess 已提交
1669

T
Tian 已提交
1670
#ifdef PRELU_OP
N
nhzlx 已提交
1671
template <typename Dtype>
T
Tian 已提交
1672
class PReluParam : public OpParam {
N
nhzlx 已提交
1673 1674 1675
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1676 1677 1678
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1679
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1680
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1681
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1682
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1683
    out_ = OutFrom<GType>(outputs, scope);
1684
    mode_ = GetStringAttr("mode", attrs);
1685
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1686
  }
N
nhzlx 已提交
1687
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1688
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1689
  RType *Out() const { return out_; }
1690
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1691

I
itminner 已提交
1692
 private:
N
nhzlx 已提交
1693 1694
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1695
  RType *alpha_;
1696
  std::string mode_;
T
Tian 已提交
1697 1698 1699
};
#endif

N
nhzlx 已提交
1700
template <typename Dtype>
L
liuruilong 已提交
1701
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1702 1703 1704
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1705
 public:
L
liuruilong 已提交
1706
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1707
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1708 1709 1710 1711
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1712 1713 1714 1715
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
Y
yangfei 已提交
1716
  GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1717

Y
yangfei 已提交
1718
  RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1719

Y
yangfei 已提交
1720
  RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1721

xiebaiyuan's avatar
xiebaiyuan 已提交
1722
  GType *Out() const { return out_; }
E
eclipsess 已提交
1723 1724 1725 1726 1727 1728 1729 1730

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1731
  GType *input_x_;
N
nhzlx 已提交
1732 1733
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1734
  GType *out_;
E
eclipsess 已提交
1735 1736 1737
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1738

Z
ZhenWang 已提交
1739
#ifdef PADDLE_MOBILE_FPGA
1740
 private:  // NOLINT
Z
zhangyang 已提交
1741
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1742 1743

 public:
Z
zhangyang 已提交
1744 1745
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1746
#endif
E
eclipsess 已提交
1747
};
1748 1749

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1750 1751
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1752
#endif
E
eclipsess 已提交
1753

N
nhzlx 已提交
1754
template <typename Dtype>
1755
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1756 1757 1758
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1759
 public:
L
liuruilong 已提交
1760
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1761
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1762 1763 1764 1765 1766
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1767
  }
N
nhzlx 已提交
1768
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1769 1770 1771

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1772
  RType *Output() const { return output_; }
W
wangliu 已提交
1773

L
liuruilong 已提交
1774
 protected:
N
nhzlx 已提交
1775
  RType *bias_;
W
wangliu 已提交
1776
  int axis_;
N
nhzlx 已提交
1777
  RType *output_;
W
wangliu 已提交
1778 1779
};

N
nhzlx 已提交
1780 1781
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1782

Z
zhangyang 已提交
1783
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1784 1785
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1786
 public:
L
liuruilong 已提交
1787
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1788 1789
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
1790
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1791 1792 1793
};
#endif

1794
#ifdef FUSION_CONVADDPRELU_OP
1795 1796 1797 1798
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1799 1800 1801 1802

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1803 1804 1805
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1806
    mode_ = OpParam::GetStringAttr("mode", attrs);
1807
    framework::DDim dims = alpha_->dims();
1808 1809 1810
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1828 1829 1830 1831
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1832 1833 1834 1835

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1836 1837 1838 1839
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1840
    mode_ = OpParam::GetStringAttr("mode", attrs);
1841
    framework::DDim dims = alpha_->dims();
1842 1843 1844 1845 1846 1847
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1848
    if (keyX1_ == keyOutput_) {
1849
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1850
    } else if (keyY1_ == keyOutput_) {
1851
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
1876
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1877
template <typename Dtype>
1878
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1879 1880 1881
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1882 1883 1884
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1897
  }
N
nhzlx 已提交
1898
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1899 1900 1901

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1902
  RType *Output() const { return output_; }
E
eclipsess 已提交
1903

N
nhzlx 已提交
1904
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1905

N
nhzlx 已提交
1906
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1907

N
nhzlx 已提交
1908
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1909

N
nhzlx 已提交
1910
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1911 1912 1913 1914 1915 1916 1917

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1918
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1919

N
nhzlx 已提交
1920
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1921

N
nhzlx 已提交
1922
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1923

N
nhzlx 已提交
1924
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1925 1926

 protected:
N
nhzlx 已提交
1927
  RType *bias_;
E
eclipsess 已提交
1928
  int axis_;
N
nhzlx 已提交
1929 1930 1931 1932 1933
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1934 1935 1936
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1937 1938
  RType *new_bias_;
  RType *new_scale_;
1939 1940 1941 1942 1943
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1944
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1945 1946 1947 1948 1949 1950
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1965
    if (keyX_ == keyBNY_) {
1966
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1967
    } else if (keyY_ == keyBNY_) {
1968
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1969
    }
1970
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
2016
};
2017
#endif
E
eclipsess 已提交
2018

Z
zhangyang 已提交
2019
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
2020
template <typename Dtype>
2021
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2022 2023 2024
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
2025 2026 2027
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
2038
  }
N
nhzlx 已提交
2039
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
2040

N
nhzlx 已提交
2041
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
2042

N
nhzlx 已提交
2043
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
2044

N
nhzlx 已提交
2045
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
2046

N
nhzlx 已提交
2047
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
2048 2049 2050 2051 2052 2053 2054

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2055
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
2056

N
nhzlx 已提交
2057
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
2058

N
nhzlx 已提交
2059
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
2060

N
nhzlx 已提交
2061
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
2062 2063

 protected:
N
nhzlx 已提交
2064 2065 2066 2067 2068
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
2069 2070 2071
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2072 2073
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
2074 2075 2076
};
#endif

2077
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
2078
template <typename Dtype>
2079
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2080 2081 2082
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2083 2084 2085
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2098
  }
N
nhzlx 已提交
2099
  RType *Bias() const { return bias_; }
2100 2101 2102

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
2103
  RType *Output() const { return output_y_; }
2104

N
nhzlx 已提交
2105
  const RType *InputBias() const { return input_bias_; }
2106

N
nhzlx 已提交
2107
  const RType *InputMean() const { return input_mean_; }
2108

N
nhzlx 已提交
2109
  const RType *InputScale() const { return input_scale_; }
2110

N
nhzlx 已提交
2111
  const RType *InputVariance() const { return input_variance_; }
2112 2113 2114 2115 2116 2117 2118

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2119
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2120

N
nhzlx 已提交
2121
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2122

N
nhzlx 已提交
2123
  const RType *NewScale() const { return new_scale_; }
2124

N
nhzlx 已提交
2125
  const RType *NewBias() const { return new_bias_; }
2126 2127

 protected:
N
nhzlx 已提交
2128
  RType *bias_;
2129
  int axis_;
N
nhzlx 已提交
2130 2131 2132 2133 2134
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2135 2136 2137
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2138 2139
  RType *new_bias_;
  RType *new_scale_;
2140
};
E
eclipsess 已提交
2141
#endif
Y
Yao,kun 已提交
2142

E
eclipsess 已提交
2143
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2144
template <typename Dtype>
2145
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2146 2147 2148
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2149 2150 2151
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
2162
  }
N
nhzlx 已提交
2163
  RType *Output() const { return output_; }
E
eclipsess 已提交
2164

N
nhzlx 已提交
2165
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2166

N
nhzlx 已提交
2167
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2168

N
nhzlx 已提交
2169
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2170

N
nhzlx 已提交
2171
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2172 2173 2174 2175 2176 2177 2178

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2179
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2180

N
nhzlx 已提交
2181
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2182

N
nhzlx 已提交
2183
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2184

N
nhzlx 已提交
2185
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2186 2187

 protected:
N
nhzlx 已提交
2188 2189 2190 2191 2192
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
2193 2194 2195
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2196 2197
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
2198 2199 2200 2201
};

#endif

2202
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2203
template <typename Dtype>
2204
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2205 2206 2207
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2208 2209 2210
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2221
  }
N
nhzlx 已提交
2222
  RType *Output() const { return output_; }
2223

N
nhzlx 已提交
2224
  const RType *InputBias() const { return input_bias_; }
2225

N
nhzlx 已提交
2226
  const RType *InputMean() const { return input_mean_; }
2227

N
nhzlx 已提交
2228
  const RType *InputScale() const { return input_scale_; }
2229

N
nhzlx 已提交
2230
  const RType *InputVariance() const { return input_variance_; }
2231 2232 2233 2234 2235 2236 2237

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2238
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2239

N
nhzlx 已提交
2240
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2241

N
nhzlx 已提交
2242
  const RType *NewScale() const { return new_scale_; }
2243

N
nhzlx 已提交
2244
  const RType *NewBias() const { return new_bias_; }
2245 2246

 protected:
N
nhzlx 已提交
2247 2248 2249 2250 2251
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2252 2253 2254
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2255 2256
  RType *new_bias_;
  RType *new_scale_;
2257 2258 2259
};
#endif

Y
Yao,kun 已提交
2260
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2261
template <typename Dtype>
Y
Yao,kun 已提交
2262
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2263 2264 2265
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2266 2267 2268 2269
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
2270 2271
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
2272 2273 2274 2275 2276
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2277
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2278

E
eclipsess 已提交
2279
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2280 2281 2282 2283 2284 2285 2286 2287

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2288 2289
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2290 2291 2292 2293
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2294
#endif
Y
Yao,kun 已提交
2295

2296
#ifdef DROPOUT_OP
N
nhzlx 已提交
2297
template <typename Dtype>
Y
Yao,kun 已提交
2298
class DropoutParam : public OpParam {
N
nhzlx 已提交
2299 2300 2301
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2302 2303 2304
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2305 2306
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
2307 2308

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2309 2310
  }

N
nhzlx 已提交
2311
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2312

N
nhzlx 已提交
2313
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
2314

Y
yangfei 已提交
2315 2316
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2317
 private:
N
nhzlx 已提交
2318 2319
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
2320
  float dropout_prob_;
Y
Yao,kun 已提交
2321
};
2322
#endif
Y
Yao,kun 已提交
2323

N
nhzlx 已提交
2324
template <typename Dtype>
L
liuruilong 已提交
2325
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2326 2327 2328
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2329 2330 2331 2332
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
2333 2334
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
2335
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2336
    if (outputs.count("Output")) {
2337
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2338
    }
L
liuruilong 已提交
2339 2340 2341 2342 2343 2344
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
2345
  const RType *Input() const { return input_; }
L
liuruilong 已提交
2346

N
nhzlx 已提交
2347
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
2348

N
nhzlx 已提交
2349
  RType *Output() const { return output_; }
L
liuruilong 已提交
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
2360 2361 2362
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
2363 2364 2365 2366
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
Z
zhangyang 已提交
2367 2368 2369 2370 2371

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;
qnqinan's avatar
qnqinan 已提交
2372
  fpga::DWDeconvArgs fpga_DWDeconv_args;
Z
zhangyang 已提交
2373 2374 2375

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
qnqinan's avatar
qnqinan 已提交
2376 2377 2378
  const fpga::DWDeconvArgs &FpgaDWDconvArgs() const {
    return fpga_DWDeconv_args;
  }
Z
zhangyang 已提交
2379
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
qnqinan's avatar
qnqinan 已提交
2380 2381 2382
  void SetFpgaArgs(const fpga::DWDeconvArgs &args) {
    fpga_DWDeconv_args = args;
  }
Z
zhangyang 已提交
2383
#endif
L
liuruilong 已提交
2384
};
Z
zhangyang 已提交
2385

qnqinan's avatar
qnqinan 已提交
2386 2387 2388 2389 2390
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2391 2392

 public:
qnqinan's avatar
qnqinan 已提交
2393
  FusionDeconvAddParam(const VariableNameMap &inputs,
2394 2395 2396
                       const VariableNameMap &outputs,
                       const AttributeMap &attrs, const Scope &scope)
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
qnqinan's avatar
qnqinan 已提交
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
L
liuruilong 已提交
2418

Z
zhangyang 已提交
2419 2420 2421 2422 2423
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
2449 2450
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

Z
zhaojiaying01 已提交
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
#ifdef GRU_UNIT_OP
template <typename Dtype>
class GruUnitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  GruUnitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_hidden_prev_ = InputHiddenPrevFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_gate_ = OutputGateFrom<GType>(outputs, scope);
    output_reset_hidden_prev_ =
        OutputResetHiddenPrevFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
    activation_ = GetAttr<int>("activation", attrs);
    gate_activation_ = GetAttr<int>("gate_activation", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputHiddenPrev() const { return input_hidden_prev_; }
  const GType *InputBias() const { return input_bias_; }
  const int &Activation() const { return activation_; }
  const int &GateActivation() const { return gate_activation_; }

  GType *OutGate() const { return output_gate_; }
  GType *OutResetHiddenPrev() const { return output_reset_hidden_prev_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_hidden_prev_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_gate_;
  GType *output_reset_hidden_prev_;
  GType *output_hidden_;
  int activation_;
  int gate_activation_;
};
#endif

2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2540
    axis = GetAttr<int>("axis", attrs);
2541 2542 2543
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2544
  const int &Axis() const { return axis; }
2545 2546 2547 2548

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2549
  int axis;
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2563
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2564
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2565 2566 2567 2568 2569 2570
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2571 2572
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2573 2574 2575 2576 2577
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2578 2579 2580

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2581
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2582
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2583 2584 2585
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2586 2587 2588 2589 2590 2591 2592 2593 2594
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitArgs fpga_split_args;

 public:
  const fpga::SplitArgs &FpgaArgs() const { return fpga_split_args; }
  void SetFpgaArgs(const fpga::SplitArgs &args) { fpga_split_args = args; }
#endif
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2611 2612
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2613 2614
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2615
  const RType *InputOutPutSize() const { return input_outsize_; }
2616
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2617 2618
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2619 2620 2621 2622 2623

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2624 2625
  int out_h_;
  int out_w_;
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2641
  const RType *Input() const { return input_; }
2642 2643 2644 2645 2646 2647 2648 2649
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

H
hjchen2 已提交
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
#ifdef TOP_K_OP
template <typename Dtype>
class TopKParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TopKParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, scope);
    indices_ = OpParam::GetVarValue<GType>("Indices", outputs, scope);
    k_ = OpParam::GetAttr<int>("k", attrs);
  }

 public:
  RType *input_;
  RType *output_;
  RType *indices_;
  int k_;
};
#endif  // TOP_K_OP

#ifdef CAST_OP
template <typename Dtype>
class CastParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CastParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, scope);
    input_type_ = OpParam::GetAttr<int>("in_dtype", attrs);
    output_type_ = OpParam::GetAttr<int>("out_dtype", attrs);
  }

 public:
  RType *input_;
  RType *output_;
  int input_type_;
  int output_type_;
};
#endif  // CAST_OP

2696
#ifdef QUANT_OP
2697
template <typename Dtype>
2698 2699 2700 2701 2702
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2703 2704
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
2705
    input_ = InputXFrom<GType>(inputs, scope);
H
hjchen2 已提交
2706
    output_ = OutFrom<GType>(outputs, scope);
2707 2708
    // online
    // scale = max(abs(x))
H
hjchen2 已提交
2709
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, scope);
2710
    // offline
2711
    if (inputs.count("InScale")) {
2712 2713
      offline_ = true;
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, scope);
2714 2715
    }
    // x = round(scale * x)
2716 2717
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
H
hjchen2 已提交
2718
    }
2719 2720 2721 2722
  }

 public:
  // op input
2723
  GType *input_;
2724
  // op output
2725
  GType *output_;
2726
  RType *online_scale_;
2727 2728 2729 2730
  // quantize offline scale
  RType *offline_scale_;
  // if offine scale or not
  bool offline_ = false;
2731
  // round method type
2732 2733
  RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  // RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
2734
};
2735
#endif
2736

2737
#ifdef DEQUANT_OP
2738
template <typename Dtype>
2739 2740 2741 2742 2743
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2744 2745
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
2746
    input_ = InputXFrom<GType>(inputs, scope);
2747
    output_ = OutFrom<GType>(outputs, scope);
H
hjchen2 已提交
2748
    activation_scale_ = OpParam::GetVarValue<GType>("Scale", inputs, scope);
2749
    // dequantization is performed as x = x / static_scale / online_scale
2750 2751
    if (OpParam::HasAttr("weight_scale", attrs)) {
      weight_scale_ = OpParam::GetAttr<float>("weight_scale", attrs);
2752
    } else {
2753
      weight_scale_ = OpParam::GetAttr<float>("max_range", attrs);
2754 2755 2756 2757 2758
    }
  }

 public:
  // op input
2759
  GType *input_;
2760
  // op output
2761
  GType *output_;
2762 2763 2764
  RType *activation_scale_;
  float weight_scale_;
};
2765
#endif
2766

2767 2768 2769 2770
#if defined(FUSION_DEQUANT_BN_OP) || defined(FUSION_DEQUANT_ADD_BN_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||                             \
    defined(FUSION_DEQUANT_BN_RELU_OP) ||                                 \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) ||                            \
2771
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
H
hjchen2 已提交
2772
template <typename Dtype>
2773
class FusionDequantBNParam : public DequantizeParam<Dtype> {
H
hjchen2 已提交
2774 2775 2776 2777
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2778 2779 2780
  FusionDequantBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
                       const AttributeMap &attrs, const Scope &scope)
H
hjchen2 已提交
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
      : DequantizeParam<Dtype>(inputs, outputs, attrs, scope) {
    // batch norm params
    bn_mean_ = OpParam::GetVarValue<GType>("BNMean", inputs, scope);
    bn_variance_ = OpParam::GetVarValue<GType>("BNVariance", inputs, scope);
    bn_scale_ = OpParam::GetVarValue<GType>("BNScale", inputs, scope);
    bn_bias_ = OpParam::GetVarValue<GType>("BNBias", inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
  }

 public:
  // batch norm
  RType *bn_mean_;
  RType *bn_variance_;
  RType *bn_scale_;
  RType *bn_bias_;
  float epsilon_;
2797 2798 2799
};
#endif

2800 2801 2802 2803
#if defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||  \
    defined(FUSION_DEQUANT_ADD_BN_OP) ||       \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
template <typename Dtype>
class FusionDequantAddBNParam : public FusionDequantBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
                          const AttributeMap &attrs, const Scope &scope)
      : FusionDequantBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // element wise add params
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
  }

 public:
  // elementwise add
  int axis_;
  RType *bias_;
};
#endif

2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
#ifdef FUSION_DEQUANT_ADD_BN_QUANT_OP
template <typename Dtype>
class FusionDequantAddBNQuantParam : public FusionDequantAddBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNQuantParam(const VariableNameMap &inputs,
                               const VariableNameMap &outputs,
                               const AttributeMap &attrs, const Scope &scope)
      : FusionDequantAddBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // scale output
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, scope);
    // offline
2840 2841 2842
    if (inputs.count("InScale")) {
      offline_ = true;
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, scope);
2843 2844 2845 2846 2847 2848 2849 2850 2851
    }
    // x = round(scale * x)
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
  RType *online_scale_;
2852 2853 2854 2855
  // quantize offline scale
  RType *offline_scale_;
  // if offine scale or not
  bool offline_ = false;
2856 2857 2858 2859 2860 2861
  // round method type
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
};
#endif

2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
#ifdef SEQUENCE_EXPAND_OP
template <typename Dtype>
class SequenceExpandParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequenceExpandParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    ref_level_ = -1;
    if (OpParam::HasAttr("ref_level", attrs)) {
      ref_level_ = OpParam::GetAttr<int>("ref_level", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int ref_level_;
};
#endif  // SEQUENCE_EXPAND_OP

#ifdef SEQUENCE_POOL_OP
template <typename Dtype>
class SequencePoolParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequencePoolParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
    input_ = InputXFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    pool_type_ = "MAX";
    if (OpParam::HasAttr("pooltype", attrs)) {
H
hjchen2 已提交
2903
      pool_type_ = OpParam::GetStringAttr("pooltype", attrs);
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
    }
  }

 public:
  GType *input_;
  GType *output_;
  std::string pool_type_;
};
#endif  // SEQUENCE_EXPAND_OP

2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
#ifdef LOD_RESET_OP
template <typename Dtype>
class LodResetParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LodResetParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    input_y_ = nullptr;
    if (inputs.count("Y")) {
      input_y_ = InputYFrom<GType>(inputs, scope);
    } else {
      target_lod_ = OpParam::GetAttr<vector<int>>("target_lod", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  std::vector<int> target_lod_;
};
#endif  // LOD_RESET_OP

2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
#ifdef LESS_THAN_OP
template <typename Dtype>
class CompareParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CompareParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int axis_;
};
#endif  // LESS_THAN_OP

Z
zhaojiaying01 已提交
2964
#if defined(LOGICAL_AND_OP) || defined(LOGICAL_OR_OP) || defined(LOGICAL_XOR_OP)
2965
template <typename Dtype>
Z
zhaojiaying01 已提交
2966
class LogicalBinaryParam : public OpParam {
2967 2968 2969 2970
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
2971 2972 2973
  LogicalBinaryParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
  }

  const GType *InputX() const { return input_x_; }
  const GType *InputY() const { return input_y_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
};
Z
zhaojiaying01 已提交
2988
#endif  // LOGICAL_AND_OP LOGICAL_OR_OP LOGICAL_XOR_OP
2989 2990 2991

#ifdef LOGICAL_NOT_OP
template <typename Dtype>
Z
zhaojiaying01 已提交
2992
class LogicalUnaryParam : public OpParam {
2993 2994 2995 2996
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
2997 2998 2999
  LogicalUnaryParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // LOGICAL_NOT_OP

3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
// #ifdef WHILE_OP
// template <typename Dtype>
// class WhileParam : public OpParam {
//  public:
//   WhileParam(const VariableNameMap &inputs,
//              const VariableNameMap &outputs, const AttributeMap &attrs,
//              const Scope &scope) {
//     cond_ = OpParam::GetVarValue<framework::LoDTensor>("Condition", inputs,
//     scope); block_desc_ = OpParam::GetAttr<framework::BlockDesc
//     *>("sub_block", attrs);
//   }
//
//  public:
//   framework::LoDTensor *cond_;
//   const framework::BlockDesc *block_desc_;
// };
// #endif  // WHILE_OP

#ifdef WRITE_TO_ARRAY_OP
template <typename Dtype>
class WriteToArrayParam : public OpParam {
 public:
  WriteToArrayParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
    input_ = OpParam::GetVarValue<framework::LoDTensor>("X", inputs, scope);
    index_ = OpParam::GetVarValue<framework::LoDTensor>("I", inputs, scope);
    output_ =
        OpParam::GetVarValue<framework::LoDTensorArray>("Out", outputs, scope);
  }

 public:
  framework::LoDTensor *input_;
  framework::LoDTensor *index_;
  framework::LoDTensorArray *output_;
};
#endif

#ifdef READ_FROM_ARRAY_OP
template <typename Dtype>
class ReadFromArrayParam : public OpParam {
 public:
  ReadFromArrayParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
    input_ =
        OpParam::GetVarValue<framework::LoDTensorArray>("X", inputs, scope);
    index_ = OpParam::GetVarValue<framework::LoDTensor>("I", inputs, scope);
    output_ = OpParam::GetVarValue<framework::LoDTensor>("Out", outputs, scope);
  }

 public:
  framework::LoDTensorArray *input_;
  framework::LoDTensor *index_;
  framework::LoDTensor *output_;
};
#endif

Z
zhaojiaying01 已提交
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
#ifdef IS_EMPTY_OP
template <typename Dtype>
class IsEmptyParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IsEmptyParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // IS_EMPTY_OP

#ifdef INCREMENT_OP
template <typename Dtype>
class IncrementParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IncrementParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    step_ = OpParam::GetAttr<int>("step", attrs);
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }
  int Step() const { return step_; }

 public:
  GType *input_x_;
  GType *output_;
  int step_;
};
#endif  // INCREMENT_OP

朔-望's avatar
朔-望 已提交
3118 3119
}  // namespace operators
}  // namespace paddle_mobile