core.c 159.6 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
T
Thomas Gleixner 已提交
21
#include <linux/sysfs.h>
22
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
23
#include <linux/percpu.h>
24
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
25
#include <linux/reboot.h>
26
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
27
#include <linux/device.h>
28
#include <linux/vmalloc.h>
29 30
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
31 32 33
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
34
#include <linux/kernel_stat.h>
35
#include <linux/perf_event.h>
L
Li Zefan 已提交
36
#include <linux/ftrace_event.h>
37
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
38

39 40
#include "internal.h"

41 42
#include <asm/irq_regs.h>

43
struct remote_function_call {
44 45 46 47
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
81 82 83 84
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
105 106 107 108
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
109 110 111 112 113 114 115
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
116 117 118 119
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

120 121 122 123 124 125
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
126 127 128 129
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
130
struct jump_label_key perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
131 132
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);

133 134 135
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
136

P
Peter Zijlstra 已提交
137 138 139 140
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

141
/*
142
 * perf event paranoia level:
143 144
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
145
 *   1 - disallow cpu events for unpriv
146
 *   2 - disallow kernel profiling for unpriv
147
 */
148
int sysctl_perf_event_paranoid __read_mostly = 1;
149

150 151
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
152 153

/*
154
 * max perf event sample rate
155
 */
P
Peter Zijlstra 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
174

175
static atomic64_t perf_event_id;
176

177 178 179 180
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
181 182 183 184 185
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
186

187
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
188

189
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
190
{
191
	return "pmu";
T
Thomas Gleixner 已提交
192 193
}

194 195 196 197 198
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
199 200 201 202 203 204
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
221 222
#ifdef CONFIG_CGROUP_PERF

223 224 225 226 227
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

	return !event->cgrp || event->cgrp == cpuctx->cgrp;
}

static inline void perf_get_cgroup(struct perf_event *event)
{
	css_get(&event->cgrp->css);
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
295 296
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
297
	/*
298 299
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
300
	 */
301
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
302 303
		return;

304 305 306 307 308 309
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
310 311 312
}

static inline void
313 314
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
315 316 317 318
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

319 320 321 322 323 324
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
325 326 327 328
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
329
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
371 372
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
373 374 375 376 377 378 379 380 381 382 383

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
384
				WARN_ON_ONCE(cpuctx->cgrp);
S
Stephane Eranian 已提交
385 386 387 388 389 390 391
				/* set cgrp before ctxsw in to
				 * allow event_filter_match() to not
				 * have to pass task around
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
392 393
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static inline void perf_cgroup_sched_out(struct task_struct *task)
{
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
}

static inline void perf_cgroup_sched_in(struct task_struct *task)
{
	perf_cgroup_switch(task, PERF_CGROUP_SWIN);
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
	struct file *file;
	int ret = 0, fput_needed;

	file = fget_light(fd, &fput_needed);
	if (!file)
		return -EBADF;

	css = cgroup_css_from_dir(file, perf_subsys_id);
426 427 428 429
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
430 431 432 433

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

434 435 436
	/* must be done before we fput() the file */
	perf_get_cgroup(event);

S
Stephane Eranian 已提交
437 438 439 440 441 442 443 444 445
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
446
out:
S
Stephane Eranian 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
	fput_light(file, fput_needed);
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

static inline void perf_cgroup_sched_out(struct task_struct *task)
{
}

static inline void perf_cgroup_sched_in(struct task_struct *task)
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
537 538
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
569
void perf_pmu_disable(struct pmu *pmu)
570
{
P
Peter Zijlstra 已提交
571 572 573
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
574 575
}

P
Peter Zijlstra 已提交
576
void perf_pmu_enable(struct pmu *pmu)
577
{
P
Peter Zijlstra 已提交
578 579 580
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
581 582
}

583 584 585 586 587 588 589
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
590
static void perf_pmu_rotate_start(struct pmu *pmu)
591
{
P
Peter Zijlstra 已提交
592
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
593
	struct list_head *head = &__get_cpu_var(rotation_list);
594

595
	WARN_ON(!irqs_disabled());
596

597 598
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
599 600
}

601
static void get_ctx(struct perf_event_context *ctx)
602
{
603
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
604 605
}

606
static void put_ctx(struct perf_event_context *ctx)
607
{
608 609 610
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
611 612
		if (ctx->task)
			put_task_struct(ctx->task);
613
		kfree_rcu(ctx, rcu_head);
614
	}
615 616
}

617
static void unclone_ctx(struct perf_event_context *ctx)
618 619 620 621 622 623 624
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

647
/*
648
 * If we inherit events we want to return the parent event id
649 650
 * to userspace.
 */
651
static u64 primary_event_id(struct perf_event *event)
652
{
653
	u64 id = event->id;
654

655 656
	if (event->parent)
		id = event->parent->id;
657 658 659 660

	return id;
}

661
/*
662
 * Get the perf_event_context for a task and lock it.
663 664 665
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
666
static struct perf_event_context *
P
Peter Zijlstra 已提交
667
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
668
{
669
	struct perf_event_context *ctx;
670 671

	rcu_read_lock();
P
Peter Zijlstra 已提交
672
retry:
P
Peter Zijlstra 已提交
673
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
674 675 676 677
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
678
		 * perf_event_task_sched_out, though the
679 680 681 682 683 684
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
685
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
686
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
687
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
688 689
			goto retry;
		}
690 691

		if (!atomic_inc_not_zero(&ctx->refcount)) {
692
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
693 694
			ctx = NULL;
		}
695 696 697 698 699 700 701 702 703 704
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
705 706
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
707
{
708
	struct perf_event_context *ctx;
709 710
	unsigned long flags;

P
Peter Zijlstra 已提交
711
	ctx = perf_lock_task_context(task, ctxn, &flags);
712 713
	if (ctx) {
		++ctx->pin_count;
714
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
715 716 717 718
	}
	return ctx;
}

719
static void perf_unpin_context(struct perf_event_context *ctx)
720 721 722
{
	unsigned long flags;

723
	raw_spin_lock_irqsave(&ctx->lock, flags);
724
	--ctx->pin_count;
725
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
726 727
}

728 729 730 731 732 733 734 735 736 737 738
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

739 740 741
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
742 743 744 745

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

746 747 748
	return ctx ? ctx->time : 0;
}

749 750 751 752 753 754 755 756 757 758 759
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
760 761 762 763 764 765 766 767 768 769 770
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
771
		run_end = perf_event_time(event);
S
Stephane Eranian 已提交
772 773
	else if (ctx->is_active)
		run_end = ctx->time;
774 775 776 777
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
778 779 780 781

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
782
		run_end = perf_event_time(event);
783 784

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
785

786 787
}

788 789 790 791 792 793 794 795 796 797 798 799
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

800 801 802 803 804 805 806 807 808
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

809
/*
810
 * Add a event from the lists for its context.
811 812
 * Must be called with ctx->mutex and ctx->lock held.
 */
813
static void
814
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
815
{
816 817
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
818 819

	/*
820 821 822
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
823
	 */
824
	if (event->group_leader == event) {
825 826
		struct list_head *list;

827 828 829
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

830 831
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
832
	}
P
Peter Zijlstra 已提交
833

834
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
835 836
		ctx->nr_cgroups++;

837
	list_add_rcu(&event->event_entry, &ctx->event_list);
838
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
839
		perf_pmu_rotate_start(ctx->pmu);
840 841
	ctx->nr_events++;
	if (event->attr.inherit_stat)
842
		ctx->nr_stat++;
843 844
}

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

917
	event->id_header_size = size;
918 919
}

920 921
static void perf_group_attach(struct perf_event *event)
{
922
	struct perf_event *group_leader = event->group_leader, *pos;
923

P
Peter Zijlstra 已提交
924 925 926 927 928 929
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

930 931 932 933 934 935 936 937 938 939 940
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
941 942 943 944 945

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
946 947
}

948
/*
949
 * Remove a event from the lists for its context.
950
 * Must be called with ctx->mutex and ctx->lock held.
951
 */
952
static void
953
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
954
{
955
	struct perf_cpu_context *cpuctx;
956 957 958 959
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
960
		return;
961 962 963

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

964
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
965
		ctx->nr_cgroups--;
966 967 968 969 970 971 972 973 974
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
975

976 977
	ctx->nr_events--;
	if (event->attr.inherit_stat)
978
		ctx->nr_stat--;
979

980
	list_del_rcu(&event->event_entry);
981

982 983
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
984

985
	update_group_times(event);
986 987 988 989 990 991 992 993 994 995

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
996 997
}

998
static void perf_group_detach(struct perf_event *event)
999 1000
{
	struct perf_event *sibling, *tmp;
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1017
		goto out;
1018 1019 1020 1021
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1022

1023
	/*
1024 1025
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1026
	 * to whatever list we are on.
1027
	 */
1028
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1029 1030
		if (list)
			list_move_tail(&sibling->group_entry, list);
1031
		sibling->group_leader = sibling;
1032 1033 1034

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1035
	}
1036 1037 1038 1039 1040 1041

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1042 1043
}

1044 1045 1046
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1047 1048
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1049 1050
}

1051 1052
static void
event_sched_out(struct perf_event *event,
1053
		  struct perf_cpu_context *cpuctx,
1054
		  struct perf_event_context *ctx)
1055
{
1056
	u64 tstamp = perf_event_time(event);
1057 1058 1059 1060 1061 1062 1063 1064 1065
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1066
		delta = tstamp - event->tstamp_stopped;
1067
		event->tstamp_running += delta;
1068
		event->tstamp_stopped = tstamp;
1069 1070
	}

1071
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1072
		return;
1073

1074 1075 1076 1077
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1078
	}
1079
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1080
	event->pmu->del(event, 0);
1081
	event->oncpu = -1;
1082

1083
	if (!is_software_event(event))
1084 1085
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1086
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1087 1088 1089
		cpuctx->exclusive = 0;
}

1090
static void
1091
group_sched_out(struct perf_event *group_event,
1092
		struct perf_cpu_context *cpuctx,
1093
		struct perf_event_context *ctx)
1094
{
1095
	struct perf_event *event;
1096
	int state = group_event->state;
1097

1098
	event_sched_out(group_event, cpuctx, ctx);
1099 1100 1101 1102

	/*
	 * Schedule out siblings (if any):
	 */
1103 1104
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1105

1106
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1107 1108 1109
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1110
/*
1111
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1112
 *
1113
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1114 1115
 * remove it from the context list.
 */
1116
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1117
{
1118 1119
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1120
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1121

1122
	raw_spin_lock(&ctx->lock);
1123 1124
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1125 1126 1127 1128
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1129
	raw_spin_unlock(&ctx->lock);
1130 1131

	return 0;
T
Thomas Gleixner 已提交
1132 1133 1134 1135
}


/*
1136
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1137
 *
1138
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1139
 * call when the task is on a CPU.
1140
 *
1141 1142
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1143 1144
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1145
 * When called from perf_event_exit_task, it's OK because the
1146
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1147
 */
1148
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1149
{
1150
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1151 1152
	struct task_struct *task = ctx->task;

1153 1154
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1155 1156
	if (!task) {
		/*
1157
		 * Per cpu events are removed via an smp call and
1158
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1159
		 */
1160
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1161 1162 1163 1164
		return;
	}

retry:
1165 1166
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1167

1168
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1169
	/*
1170 1171
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1172
	 */
1173
	if (ctx->is_active) {
1174
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1175 1176 1177 1178
		goto retry;
	}

	/*
1179 1180
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1181
	 */
1182
	list_del_event(event, ctx);
1183
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1184 1185
}

1186
/*
1187
 * Cross CPU call to disable a performance event
1188
 */
1189
static int __perf_event_disable(void *info)
1190
{
1191 1192
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1193
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1194 1195

	/*
1196 1197
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1198 1199 1200
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1201
	 */
1202
	if (ctx->task && cpuctx->task_ctx != ctx)
1203
		return -EINVAL;
1204

1205
	raw_spin_lock(&ctx->lock);
1206 1207

	/*
1208
	 * If the event is on, turn it off.
1209 1210
	 * If it is in error state, leave it in error state.
	 */
1211
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1212
		update_context_time(ctx);
S
Stephane Eranian 已提交
1213
		update_cgrp_time_from_event(event);
1214 1215 1216
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1217
		else
1218 1219
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1220 1221
	}

1222
	raw_spin_unlock(&ctx->lock);
1223 1224

	return 0;
1225 1226 1227
}

/*
1228
 * Disable a event.
1229
 *
1230 1231
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1232
 * remains valid.  This condition is satisifed when called through
1233 1234 1235 1236
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1237
 * is the current context on this CPU and preemption is disabled,
1238
 * hence we can't get into perf_event_task_sched_out for this context.
1239
 */
1240
void perf_event_disable(struct perf_event *event)
1241
{
1242
	struct perf_event_context *ctx = event->ctx;
1243 1244 1245 1246
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1247
		 * Disable the event on the cpu that it's on
1248
		 */
1249
		cpu_function_call(event->cpu, __perf_event_disable, event);
1250 1251 1252
		return;
	}

P
Peter Zijlstra 已提交
1253
retry:
1254 1255
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1256

1257
	raw_spin_lock_irq(&ctx->lock);
1258
	/*
1259
	 * If the event is still active, we need to retry the cross-call.
1260
	 */
1261
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1262
		raw_spin_unlock_irq(&ctx->lock);
1263 1264 1265 1266 1267
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1268 1269 1270 1271 1272 1273 1274
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1275 1276 1277
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1278
	}
1279
	raw_spin_unlock_irq(&ctx->lock);
1280 1281
}

S
Stephane Eranian 已提交
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1317 1318 1319 1320
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1321
static int
1322
event_sched_in(struct perf_event *event,
1323
		 struct perf_cpu_context *cpuctx,
1324
		 struct perf_event_context *ctx)
1325
{
1326 1327
	u64 tstamp = perf_event_time(event);

1328
	if (event->state <= PERF_EVENT_STATE_OFF)
1329 1330
		return 0;

1331
	event->state = PERF_EVENT_STATE_ACTIVE;
1332
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1344 1345 1346 1347 1348
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1349
	if (event->pmu->add(event, PERF_EF_START)) {
1350 1351
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1352 1353 1354
		return -EAGAIN;
	}

1355
	event->tstamp_running += tstamp - event->tstamp_stopped;
1356

S
Stephane Eranian 已提交
1357
	perf_set_shadow_time(event, ctx, tstamp);
1358

1359
	if (!is_software_event(event))
1360
		cpuctx->active_oncpu++;
1361 1362
	ctx->nr_active++;

1363
	if (event->attr.exclusive)
1364 1365
		cpuctx->exclusive = 1;

1366 1367 1368
	return 0;
}

1369
static int
1370
group_sched_in(struct perf_event *group_event,
1371
	       struct perf_cpu_context *cpuctx,
1372
	       struct perf_event_context *ctx)
1373
{
1374
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1375
	struct pmu *pmu = group_event->pmu;
1376 1377
	u64 now = ctx->time;
	bool simulate = false;
1378

1379
	if (group_event->state == PERF_EVENT_STATE_OFF)
1380 1381
		return 0;

P
Peter Zijlstra 已提交
1382
	pmu->start_txn(pmu);
1383

1384
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1385
		pmu->cancel_txn(pmu);
1386
		return -EAGAIN;
1387
	}
1388 1389 1390 1391

	/*
	 * Schedule in siblings as one group (if any):
	 */
1392
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1393
		if (event_sched_in(event, cpuctx, ctx)) {
1394
			partial_group = event;
1395 1396 1397 1398
			goto group_error;
		}
	}

1399
	if (!pmu->commit_txn(pmu))
1400
		return 0;
1401

1402 1403 1404 1405
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1416
	 */
1417 1418
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1419 1420 1421 1422 1423 1424 1425 1426
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1427
	}
1428
	event_sched_out(group_event, cpuctx, ctx);
1429

P
Peter Zijlstra 已提交
1430
	pmu->cancel_txn(pmu);
1431

1432 1433 1434
	return -EAGAIN;
}

1435
/*
1436
 * Work out whether we can put this event group on the CPU now.
1437
 */
1438
static int group_can_go_on(struct perf_event *event,
1439 1440 1441 1442
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1443
	 * Groups consisting entirely of software events can always go on.
1444
	 */
1445
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1446 1447 1448
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1449
	 * events can go on.
1450 1451 1452 1453 1454
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1455
	 * events on the CPU, it can't go on.
1456
	 */
1457
	if (event->attr.exclusive && cpuctx->active_oncpu)
1458 1459 1460 1461 1462 1463 1464 1465
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1466 1467
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1468
{
1469 1470
	u64 tstamp = perf_event_time(event);

1471
	list_add_event(event, ctx);
1472
	perf_group_attach(event);
1473 1474 1475
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1476 1477
}

1478 1479 1480 1481 1482 1483
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1484

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1497
/*
1498
 * Cross CPU call to install and enable a performance event
1499 1500
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1501
 */
1502
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1503
{
1504 1505
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1506
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1507 1508 1509
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1510
	perf_ctx_lock(cpuctx, task_ctx);
1511
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1512 1513

	/*
1514
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1515
	 */
1516
	if (task_ctx)
1517
		task_ctx_sched_out(task_ctx);
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1532 1533
		task = task_ctx->task;
	}
1534

1535
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1536

1537
	update_context_time(ctx);
S
Stephane Eranian 已提交
1538 1539 1540 1541 1542 1543
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1544

1545
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1546

1547
	/*
1548
	 * Schedule everything back in
1549
	 */
1550
	perf_event_sched_in(cpuctx, task_ctx, task);
1551 1552 1553

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1554 1555

	return 0;
T
Thomas Gleixner 已提交
1556 1557 1558
}

/*
1559
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1560
 *
1561 1562
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1563
 *
1564
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1565 1566 1567 1568
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1569 1570
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1571 1572 1573 1574
			int cpu)
{
	struct task_struct *task = ctx->task;

1575 1576
	lockdep_assert_held(&ctx->mutex);

1577 1578
	event->ctx = ctx;

T
Thomas Gleixner 已提交
1579 1580
	if (!task) {
		/*
1581
		 * Per cpu events are installed via an smp call and
1582
		 * the install is always successful.
T
Thomas Gleixner 已提交
1583
		 */
1584
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1585 1586 1587 1588
		return;
	}

retry:
1589 1590
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1591

1592
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1593
	/*
1594 1595
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1596
	 */
1597
	if (ctx->is_active) {
1598
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1599 1600 1601 1602
		goto retry;
	}

	/*
1603 1604
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1605
	 */
1606
	add_event_to_ctx(event, ctx);
1607
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1608 1609
}

1610
/*
1611
 * Put a event into inactive state and update time fields.
1612 1613 1614 1615 1616 1617
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1618 1619
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
1620
{
1621
	struct perf_event *sub;
1622
	u64 tstamp = perf_event_time(event);
1623

1624
	event->state = PERF_EVENT_STATE_INACTIVE;
1625
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1626
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1627 1628
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1629
	}
1630 1631
}

1632
/*
1633
 * Cross CPU call to enable a performance event
1634
 */
1635
static int __perf_event_enable(void *info)
1636
{
1637 1638 1639
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1640
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1641
	int err;
1642

1643 1644
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1645

1646
	raw_spin_lock(&ctx->lock);
1647
	update_context_time(ctx);
1648

1649
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1650
		goto unlock;
S
Stephane Eranian 已提交
1651 1652 1653 1654

	/*
	 * set current task's cgroup time reference point
	 */
1655
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1656

1657
	__perf_event_mark_enabled(event, ctx);
1658

S
Stephane Eranian 已提交
1659 1660 1661
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1662
		goto unlock;
S
Stephane Eranian 已提交
1663
	}
1664

1665
	/*
1666
	 * If the event is in a group and isn't the group leader,
1667
	 * then don't put it on unless the group is on.
1668
	 */
1669
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1670
		goto unlock;
1671

1672
	if (!group_can_go_on(event, cpuctx, 1)) {
1673
		err = -EEXIST;
1674
	} else {
1675
		if (event == leader)
1676
			err = group_sched_in(event, cpuctx, ctx);
1677
		else
1678
			err = event_sched_in(event, cpuctx, ctx);
1679
	}
1680 1681 1682

	if (err) {
		/*
1683
		 * If this event can't go on and it's part of a
1684 1685
		 * group, then the whole group has to come off.
		 */
1686
		if (leader != event)
1687
			group_sched_out(leader, cpuctx, ctx);
1688
		if (leader->attr.pinned) {
1689
			update_group_times(leader);
1690
			leader->state = PERF_EVENT_STATE_ERROR;
1691
		}
1692 1693
	}

P
Peter Zijlstra 已提交
1694
unlock:
1695
	raw_spin_unlock(&ctx->lock);
1696 1697

	return 0;
1698 1699 1700
}

/*
1701
 * Enable a event.
1702
 *
1703 1704
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1705
 * remains valid.  This condition is satisfied when called through
1706 1707
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1708
 */
1709
void perf_event_enable(struct perf_event *event)
1710
{
1711
	struct perf_event_context *ctx = event->ctx;
1712 1713 1714 1715
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1716
		 * Enable the event on the cpu that it's on
1717
		 */
1718
		cpu_function_call(event->cpu, __perf_event_enable, event);
1719 1720 1721
		return;
	}

1722
	raw_spin_lock_irq(&ctx->lock);
1723
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1724 1725 1726
		goto out;

	/*
1727 1728
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1729 1730 1731 1732
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1733 1734
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1735

P
Peter Zijlstra 已提交
1736
retry:
1737 1738 1739 1740 1741
	if (!ctx->is_active) {
		__perf_event_mark_enabled(event, ctx);
		goto out;
	}

1742
	raw_spin_unlock_irq(&ctx->lock);
1743 1744 1745

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1746

1747
	raw_spin_lock_irq(&ctx->lock);
1748 1749

	/*
1750
	 * If the context is active and the event is still off,
1751 1752
	 * we need to retry the cross-call.
	 */
1753 1754 1755 1756 1757 1758
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1759
		goto retry;
1760
	}
1761

P
Peter Zijlstra 已提交
1762
out:
1763
	raw_spin_unlock_irq(&ctx->lock);
1764 1765
}

1766
static int perf_event_refresh(struct perf_event *event, int refresh)
1767
{
1768
	/*
1769
	 * not supported on inherited events
1770
	 */
1771
	if (event->attr.inherit || !is_sampling_event(event))
1772 1773
		return -EINVAL;

1774 1775
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1776 1777

	return 0;
1778 1779
}

1780 1781 1782
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1783
{
1784
	struct perf_event *event;
1785
	int is_active = ctx->is_active;
1786

1787
	ctx->is_active &= ~event_type;
1788
	if (likely(!ctx->nr_events))
1789 1790
		return;

1791
	update_context_time(ctx);
S
Stephane Eranian 已提交
1792
	update_cgrp_time_from_cpuctx(cpuctx);
1793
	if (!ctx->nr_active)
1794
		return;
1795

P
Peter Zijlstra 已提交
1796
	perf_pmu_disable(ctx->pmu);
1797
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1798 1799
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1800
	}
1801

1802
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1803
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1804
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1805
	}
P
Peter Zijlstra 已提交
1806
	perf_pmu_enable(ctx->pmu);
1807 1808
}

1809 1810 1811
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1812 1813 1814 1815
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1816
 * in them directly with an fd; we can only enable/disable all
1817
 * events via prctl, or enable/disable all events in a family
1818 1819
 * via ioctl, which will have the same effect on both contexts.
 */
1820 1821
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1822 1823
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1824
		&& ctx1->parent_gen == ctx2->parent_gen
1825
		&& !ctx1->pin_count && !ctx2->pin_count;
1826 1827
}

1828 1829
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1830 1831 1832
{
	u64 value;

1833
	if (!event->attr.inherit_stat)
1834 1835 1836
		return;

	/*
1837
	 * Update the event value, we cannot use perf_event_read()
1838 1839
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1840
	 * we know the event must be on the current CPU, therefore we
1841 1842
	 * don't need to use it.
	 */
1843 1844
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1845 1846
		event->pmu->read(event);
		/* fall-through */
1847

1848 1849
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1850 1851 1852 1853 1854 1855 1856
		break;

	default:
		break;
	}

	/*
1857
	 * In order to keep per-task stats reliable we need to flip the event
1858 1859
	 * values when we flip the contexts.
	 */
1860 1861 1862
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1863

1864 1865
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1866

1867
	/*
1868
	 * Since we swizzled the values, update the user visible data too.
1869
	 */
1870 1871
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1872 1873 1874 1875 1876
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1877 1878
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1879
{
1880
	struct perf_event *event, *next_event;
1881 1882 1883 1884

	if (!ctx->nr_stat)
		return;

1885 1886
	update_context_time(ctx);

1887 1888
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1889

1890 1891
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1892

1893 1894
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1895

1896
		__perf_event_sync_stat(event, next_event);
1897

1898 1899
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1900 1901 1902
	}
}

1903 1904
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
1905
{
P
Peter Zijlstra 已提交
1906
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1907 1908
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1909
	struct perf_cpu_context *cpuctx;
1910
	int do_switch = 1;
T
Thomas Gleixner 已提交
1911

P
Peter Zijlstra 已提交
1912 1913
	if (likely(!ctx))
		return;
1914

P
Peter Zijlstra 已提交
1915 1916
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1917 1918
		return;

1919 1920
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1921
	next_ctx = next->perf_event_ctxp[ctxn];
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1933 1934
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1935
		if (context_equiv(ctx, next_ctx)) {
1936 1937
			/*
			 * XXX do we need a memory barrier of sorts
1938
			 * wrt to rcu_dereference() of perf_event_ctxp
1939
			 */
P
Peter Zijlstra 已提交
1940 1941
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
1942 1943 1944
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1945

1946
			perf_event_sync_stat(ctx, next_ctx);
1947
		}
1948 1949
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1950
	}
1951
	rcu_read_unlock();
1952

1953
	if (do_switch) {
1954
		raw_spin_lock(&ctx->lock);
1955
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1956
		cpuctx->task_ctx = NULL;
1957
		raw_spin_unlock(&ctx->lock);
1958
	}
T
Thomas Gleixner 已提交
1959 1960
}

P
Peter Zijlstra 已提交
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
1975 1976
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
1977 1978 1979 1980 1981
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
1982 1983 1984 1985 1986 1987 1988 1989

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
		perf_cgroup_sched_out(task);
P
Peter Zijlstra 已提交
1990 1991
}

1992
static void task_ctx_sched_out(struct perf_event_context *ctx)
1993
{
P
Peter Zijlstra 已提交
1994
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1995

1996 1997
	if (!cpuctx->task_ctx)
		return;
1998 1999 2000 2001

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2002
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2003 2004 2005
	cpuctx->task_ctx = NULL;
}

2006 2007 2008 2009 2010 2011 2012
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2013 2014
}

2015
static void
2016
ctx_pinned_sched_in(struct perf_event_context *ctx,
2017
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2018
{
2019
	struct perf_event *event;
T
Thomas Gleixner 已提交
2020

2021 2022
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2023
			continue;
2024
		if (!event_filter_match(event))
2025 2026
			continue;

S
Stephane Eranian 已提交
2027 2028 2029 2030
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2031
		if (group_can_go_on(event, cpuctx, 1))
2032
			group_sched_in(event, cpuctx, ctx);
2033 2034 2035 2036 2037

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2038 2039 2040
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2041
		}
2042
	}
2043 2044 2045 2046
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2047
		      struct perf_cpu_context *cpuctx)
2048 2049 2050
{
	struct perf_event *event;
	int can_add_hw = 1;
2051

2052 2053 2054
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2055
			continue;
2056 2057
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2058
		 * of events:
2059
		 */
2060
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2061 2062
			continue;

S
Stephane Eranian 已提交
2063 2064 2065 2066
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2067
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2068
			if (group_sched_in(event, cpuctx, ctx))
2069
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2070
		}
T
Thomas Gleixner 已提交
2071
	}
2072 2073 2074 2075 2076
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2077 2078
	     enum event_type_t event_type,
	     struct task_struct *task)
2079
{
S
Stephane Eranian 已提交
2080
	u64 now;
2081
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2082

2083
	ctx->is_active |= event_type;
2084
	if (likely(!ctx->nr_events))
2085
		return;
2086

S
Stephane Eranian 已提交
2087 2088
	now = perf_clock();
	ctx->timestamp = now;
2089
	perf_cgroup_set_timestamp(task, ctx);
2090 2091 2092 2093
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2094
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2095
		ctx_pinned_sched_in(ctx, cpuctx);
2096 2097

	/* Then walk through the lower prio flexible groups */
2098
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2099
		ctx_flexible_sched_in(ctx, cpuctx);
2100 2101
}

2102
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2103 2104
			     enum event_type_t event_type,
			     struct task_struct *task)
2105 2106 2107
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2108
	ctx_sched_in(ctx, cpuctx, event_type, task);
2109 2110
}

S
Stephane Eranian 已提交
2111 2112
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2113
{
P
Peter Zijlstra 已提交
2114
	struct perf_cpu_context *cpuctx;
2115

P
Peter Zijlstra 已提交
2116
	cpuctx = __get_cpu_context(ctx);
2117 2118 2119
	if (cpuctx->task_ctx == ctx)
		return;

2120
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2121
	perf_pmu_disable(ctx->pmu);
2122 2123 2124 2125 2126 2127 2128
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2129
	perf_event_sched_in(cpuctx, ctx, task);
2130 2131

	cpuctx->task_ctx = ctx;
2132

2133 2134 2135
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2136 2137 2138 2139
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2140
	perf_pmu_rotate_start(ctx->pmu);
2141 2142
}

P
Peter Zijlstra 已提交
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2154
void __perf_event_task_sched_in(struct task_struct *task)
P
Peter Zijlstra 已提交
2155 2156 2157 2158 2159 2160 2161 2162 2163
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2164
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2165
	}
S
Stephane Eranian 已提交
2166 2167 2168 2169 2170 2171 2172
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
		perf_cgroup_sched_in(task);
2173 2174
}

2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2202
#define REDUCE_FLS(a, b)		\
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2242 2243 2244
	if (!divisor)
		return dividend;

2245 2246 2247 2248
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2249
{
2250
	struct hw_perf_event *hwc = &event->hw;
2251
	s64 period, sample_period;
2252 2253
	s64 delta;

2254
	period = perf_calculate_period(event, nsec, count);
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2265

2266
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
2267
		event->pmu->stop(event, PERF_EF_UPDATE);
2268
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
2269
		event->pmu->start(event, PERF_EF_RELOAD);
2270
	}
2271 2272
}

2273
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2274
{
2275 2276
	struct perf_event *event;
	struct hw_perf_event *hwc;
2277 2278
	u64 interrupts, now;
	s64 delta;
2279

2280
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2281
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2282 2283
			continue;

2284
		if (!event_filter_match(event))
2285 2286
			continue;

2287
		hwc = &event->hw;
2288 2289 2290

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
2291

2292
		/*
2293
		 * unthrottle events on the tick
2294
		 */
2295
		if (interrupts == MAX_INTERRUPTS) {
2296
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2297
			event->pmu->start(event, 0);
2298 2299
		}

2300
		if (!event->attr.freq || !event->attr.sample_freq)
2301 2302
			continue;

2303
		event->pmu->read(event);
2304
		now = local64_read(&event->count);
2305 2306
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2307

2308
		if (delta > 0)
2309
			perf_adjust_period(event, period, delta);
2310 2311 2312
	}
}

2313
/*
2314
 * Round-robin a context's events:
2315
 */
2316
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2317
{
2318 2319 2320 2321 2322 2323
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2324 2325
}

2326
/*
2327 2328 2329
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2330
 */
2331
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2332
{
2333
	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
P
Peter Zijlstra 已提交
2334
	struct perf_event_context *ctx = NULL;
2335
	int rotate = 0, remove = 1;
2336

2337
	if (cpuctx->ctx.nr_events) {
2338
		remove = 0;
2339 2340 2341
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2342

P
Peter Zijlstra 已提交
2343
	ctx = cpuctx->task_ctx;
2344
	if (ctx && ctx->nr_events) {
2345
		remove = 0;
2346 2347 2348
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2349

2350
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2351
	perf_pmu_disable(cpuctx->ctx.pmu);
2352
	perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2353
	if (ctx)
2354
		perf_ctx_adjust_freq(ctx, interval);
2355

2356
	if (!rotate)
2357
		goto done;
2358

2359
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2360
	if (ctx)
2361
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2362

2363
	rotate_ctx(&cpuctx->ctx);
2364 2365
	if (ctx)
		rotate_ctx(ctx);
2366

2367
	perf_event_sched_in(cpuctx, ctx, current);
2368 2369

done:
2370 2371 2372
	if (remove)
		list_del_init(&cpuctx->rotation_list);

P
Peter Zijlstra 已提交
2373
	perf_pmu_enable(cpuctx->ctx.pmu);
2374
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2375 2376 2377 2378 2379 2380
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2381

2382 2383 2384 2385 2386 2387 2388
	WARN_ON(!irqs_disabled());

	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2389 2390
}

2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

2406
/*
2407
 * Enable all of a task's events that have been marked enable-on-exec.
2408 2409
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2410
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2411
{
2412
	struct perf_event *event;
2413 2414
	unsigned long flags;
	int enabled = 0;
2415
	int ret;
2416 2417

	local_irq_save(flags);
2418
	if (!ctx || !ctx->nr_events)
2419 2420
		goto out;

2421 2422 2423 2424 2425 2426 2427 2428
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
	perf_cgroup_sched_out(current);
2429

2430
	raw_spin_lock(&ctx->lock);
2431
	task_ctx_sched_out(ctx);
2432

2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2443 2444 2445
	}

	/*
2446
	 * Unclone this context if we enabled any event.
2447
	 */
2448 2449
	if (enabled)
		unclone_ctx(ctx);
2450

2451
	raw_spin_unlock(&ctx->lock);
2452

2453 2454 2455
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2456
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2457
out:
2458 2459 2460
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2461
/*
2462
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2463
 */
2464
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2465
{
2466 2467
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2468
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2469

2470 2471 2472 2473
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2474 2475
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2476 2477 2478 2479
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2480
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2481
	if (ctx->is_active) {
2482
		update_context_time(ctx);
S
Stephane Eranian 已提交
2483 2484
		update_cgrp_time_from_event(event);
	}
2485
	update_event_times(event);
2486 2487
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2488
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2489 2490
}

P
Peter Zijlstra 已提交
2491 2492
static inline u64 perf_event_count(struct perf_event *event)
{
2493
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2494 2495
}

2496
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2497 2498
{
	/*
2499 2500
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2501
	 */
2502 2503 2504 2505
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2506 2507 2508
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2509
		raw_spin_lock_irqsave(&ctx->lock, flags);
2510 2511 2512 2513 2514
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2515
		if (ctx->is_active) {
2516
			update_context_time(ctx);
S
Stephane Eranian 已提交
2517 2518
			update_cgrp_time_from_event(event);
		}
2519
		update_event_times(event);
2520
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2521 2522
	}

P
Peter Zijlstra 已提交
2523
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2524 2525
}

2526
/*
2527
 * Callchain support
2528
 */
2529 2530 2531 2532 2533 2534

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

2535
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2536 2537 2538 2539 2540 2541 2542
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
2543 2544 2545
{
}

2546 2547
__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
T
Thomas Gleixner 已提交
2548
{
2549
}
T
Thomas Gleixner 已提交
2550

2551 2552 2553 2554
static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;
T
Thomas Gleixner 已提交
2555

2556
	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
T
Thomas Gleixner 已提交
2557

2558 2559
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
T
Thomas Gleixner 已提交
2560

2561 2562
	kfree(entries);
}
T
Thomas Gleixner 已提交
2563

2564 2565 2566
static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2567

2568 2569 2570 2571
	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}
T
Thomas Gleixner 已提交
2572

2573 2574 2575 2576 2577
static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2578

2579
	/*
2580 2581 2582
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
2583
	 */
2584
	size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2585

2586 2587 2588
	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;
2589

2590
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
T
Thomas Gleixner 已提交
2591

2592 2593 2594 2595 2596
	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
2597 2598
	}

2599
	rcu_assign_pointer(callchain_cpus_entries, entries);
T
Thomas Gleixner 已提交
2600

2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

2735
/*
2736
 * Initialize the perf_event context in a task_struct:
2737
 */
2738
static void __perf_event_init_context(struct perf_event_context *ctx)
2739
{
2740
	raw_spin_lock_init(&ctx->lock);
2741
	mutex_init(&ctx->mutex);
2742 2743
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2744 2745
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2761
	}
2762 2763 2764
	ctx->pmu = pmu;

	return ctx;
2765 2766
}

2767 2768 2769 2770 2771
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2772 2773

	rcu_read_lock();
2774
	if (!vpid)
T
Thomas Gleixner 已提交
2775 2776
		task = current;
	else
2777
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2778 2779 2780 2781 2782 2783 2784 2785
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2786 2787 2788 2789
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2790 2791 2792 2793 2794 2795 2796
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2797 2798 2799
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2800
static struct perf_event_context *
M
Matt Helsley 已提交
2801
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2802
{
2803
	struct perf_event_context *ctx;
2804
	struct perf_cpu_context *cpuctx;
2805
	unsigned long flags;
P
Peter Zijlstra 已提交
2806
	int ctxn, err;
T
Thomas Gleixner 已提交
2807

2808
	if (!task) {
2809
		/* Must be root to operate on a CPU event: */
2810
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2811 2812 2813
			return ERR_PTR(-EACCES);

		/*
2814
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2815 2816 2817
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2818
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2819 2820
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2821
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2822
		ctx = &cpuctx->ctx;
2823
		get_ctx(ctx);
2824
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2825 2826 2827 2828

		return ctx;
	}

P
Peter Zijlstra 已提交
2829 2830 2831 2832 2833
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2834
retry:
P
Peter Zijlstra 已提交
2835
	ctx = perf_lock_task_context(task, ctxn, &flags);
2836
	if (ctx) {
2837
		unclone_ctx(ctx);
2838
		++ctx->pin_count;
2839
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2840
	} else {
2841
		ctx = alloc_perf_context(pmu, task);
2842 2843 2844
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2845

2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2856
		else {
2857
			get_ctx(ctx);
2858
			++ctx->pin_count;
2859
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2860
		}
2861 2862 2863
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2864
			put_ctx(ctx);
2865 2866 2867 2868

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2869 2870 2871
		}
	}

T
Thomas Gleixner 已提交
2872
	return ctx;
2873

P
Peter Zijlstra 已提交
2874
errout:
2875
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2876 2877
}

L
Li Zefan 已提交
2878 2879
static void perf_event_free_filter(struct perf_event *event);

2880
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2881
{
2882
	struct perf_event *event;
P
Peter Zijlstra 已提交
2883

2884 2885 2886
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2887
	perf_event_free_filter(event);
2888
	kfree(event);
P
Peter Zijlstra 已提交
2889 2890
}

2891
static void ring_buffer_put(struct ring_buffer *rb);
2892

2893
static void free_event(struct perf_event *event)
2894
{
2895
	irq_work_sync(&event->pending);
2896

2897
	if (!event->parent) {
2898
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
2899
			jump_label_dec(&perf_sched_events);
2900
		if (event->attr.mmap || event->attr.mmap_data)
2901 2902 2903 2904 2905
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2906 2907
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2908 2909 2910 2911
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
			jump_label_dec(&perf_sched_events);
		}
2912
	}
2913

2914 2915 2916
	if (event->rb) {
		ring_buffer_put(event->rb);
		event->rb = NULL;
2917 2918
	}

S
Stephane Eranian 已提交
2919 2920 2921
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2922 2923
	if (event->destroy)
		event->destroy(event);
2924

P
Peter Zijlstra 已提交
2925 2926 2927
	if (event->ctx)
		put_ctx(event->ctx);

2928
	call_rcu(&event->rcu_head, free_event_rcu);
2929 2930
}

2931
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2932
{
2933
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2934

2935
	WARN_ON_ONCE(ctx->parent_ctx);
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2949
	raw_spin_lock_irq(&ctx->lock);
2950
	perf_group_detach(event);
2951
	raw_spin_unlock_irq(&ctx->lock);
2952
	perf_remove_from_context(event);
2953
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2954

2955
	free_event(event);
T
Thomas Gleixner 已提交
2956 2957 2958

	return 0;
}
2959
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2960

2961 2962 2963 2964
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2965
{
2966
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2967
	struct task_struct *owner;
2968

2969
	file->private_data = NULL;
2970

P
Peter Zijlstra 已提交
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3004
	return perf_event_release_kernel(event);
3005 3006
}

3007
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3008
{
3009
	struct perf_event *child;
3010 3011
	u64 total = 0;

3012 3013 3014
	*enabled = 0;
	*running = 0;

3015
	mutex_lock(&event->child_mutex);
3016
	total += perf_event_read(event);
3017 3018 3019 3020 3021 3022
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3023
		total += perf_event_read(child);
3024 3025 3026
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3027
	mutex_unlock(&event->child_mutex);
3028 3029 3030

	return total;
}
3031
EXPORT_SYMBOL_GPL(perf_event_read_value);
3032

3033
static int perf_event_read_group(struct perf_event *event,
3034 3035
				   u64 read_format, char __user *buf)
{
3036
	struct perf_event *leader = event->group_leader, *sub;
3037 3038
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3039
	u64 values[5];
3040
	u64 count, enabled, running;
3041

3042
	mutex_lock(&ctx->mutex);
3043
	count = perf_event_read_value(leader, &enabled, &running);
3044 3045

	values[n++] = 1 + leader->nr_siblings;
3046 3047 3048 3049
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3050 3051 3052
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3053 3054 3055 3056

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3057
		goto unlock;
3058

3059
	ret = size;
3060

3061
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3062
		n = 0;
3063

3064
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3065 3066 3067 3068 3069
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3070
		if (copy_to_user(buf + ret, values, size)) {
3071 3072 3073
			ret = -EFAULT;
			goto unlock;
		}
3074 3075

		ret += size;
3076
	}
3077 3078
unlock:
	mutex_unlock(&ctx->mutex);
3079

3080
	return ret;
3081 3082
}

3083
static int perf_event_read_one(struct perf_event *event,
3084 3085
				 u64 read_format, char __user *buf)
{
3086
	u64 enabled, running;
3087 3088 3089
	u64 values[4];
	int n = 0;

3090 3091 3092 3093 3094
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3095
	if (read_format & PERF_FORMAT_ID)
3096
		values[n++] = primary_event_id(event);
3097 3098 3099 3100 3101 3102 3103

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3104
/*
3105
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3106 3107
 */
static ssize_t
3108
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3109
{
3110
	u64 read_format = event->attr.read_format;
3111
	int ret;
T
Thomas Gleixner 已提交
3112

3113
	/*
3114
	 * Return end-of-file for a read on a event that is in
3115 3116 3117
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3118
	if (event->state == PERF_EVENT_STATE_ERROR)
3119 3120
		return 0;

3121
	if (count < event->read_size)
3122 3123
		return -ENOSPC;

3124
	WARN_ON_ONCE(event->ctx->parent_ctx);
3125
	if (read_format & PERF_FORMAT_GROUP)
3126
		ret = perf_event_read_group(event, read_format, buf);
3127
	else
3128
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3129

3130
	return ret;
T
Thomas Gleixner 已提交
3131 3132 3133 3134 3135
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3136
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3137

3138
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3139 3140 3141 3142
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3143
	struct perf_event *event = file->private_data;
3144
	struct ring_buffer *rb;
3145
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3146 3147

	rcu_read_lock();
3148 3149 3150
	rb = rcu_dereference(event->rb);
	if (rb)
		events = atomic_xchg(&rb->poll, 0);
P
Peter Zijlstra 已提交
3151
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3152

3153
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3154 3155 3156 3157

	return events;
}

3158
static void perf_event_reset(struct perf_event *event)
3159
{
3160
	(void)perf_event_read(event);
3161
	local64_set(&event->count, 0);
3162
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3163 3164
}

3165
/*
3166 3167 3168 3169
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3170
 */
3171 3172
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3173
{
3174
	struct perf_event *child;
P
Peter Zijlstra 已提交
3175

3176 3177 3178 3179
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3180
		func(child);
3181
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3182 3183
}

3184 3185
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3186
{
3187 3188
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3189

3190 3191
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3192
	event = event->group_leader;
3193

3194 3195 3196 3197
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
3198
	mutex_unlock(&ctx->mutex);
3199 3200
}

3201
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3202
{
3203
	struct perf_event_context *ctx = event->ctx;
3204 3205 3206
	int ret = 0;
	u64 value;

3207
	if (!is_sampling_event(event))
3208 3209
		return -EINVAL;

3210
	if (copy_from_user(&value, arg, sizeof(value)))
3211 3212 3213 3214 3215
		return -EFAULT;

	if (!value)
		return -EINVAL;

3216
	raw_spin_lock_irq(&ctx->lock);
3217 3218
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3219 3220 3221 3222
			ret = -EINVAL;
			goto unlock;
		}

3223
		event->attr.sample_freq = value;
3224
	} else {
3225 3226
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3227 3228
	}
unlock:
3229
	raw_spin_unlock_irq(&ctx->lock);
3230 3231 3232 3233

	return ret;
}

3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3255
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3256

3257 3258
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3259 3260
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3261
	u32 flags = arg;
3262 3263

	switch (cmd) {
3264 3265
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3266
		break;
3267 3268
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3269
		break;
3270 3271
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3272
		break;
P
Peter Zijlstra 已提交
3273

3274 3275
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3276

3277 3278
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3279

3280
	case PERF_EVENT_IOC_SET_OUTPUT:
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
3298

L
Li Zefan 已提交
3299 3300 3301
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3302
	default:
P
Peter Zijlstra 已提交
3303
		return -ENOTTY;
3304
	}
P
Peter Zijlstra 已提交
3305 3306

	if (flags & PERF_IOC_FLAG_GROUP)
3307
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3308
	else
3309
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3310 3311

	return 0;
3312 3313
}

3314
int perf_event_task_enable(void)
3315
{
3316
	struct perf_event *event;
3317

3318 3319 3320 3321
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3322 3323 3324 3325

	return 0;
}

3326
int perf_event_task_disable(void)
3327
{
3328
	struct perf_event *event;
3329

3330 3331 3332 3333
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3334 3335 3336 3337

	return 0;
}

3338 3339
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
3340 3341
#endif

3342
static int perf_event_index(struct perf_event *event)
3343
{
P
Peter Zijlstra 已提交
3344 3345 3346
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3347
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3348 3349
		return 0;

3350
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3351 3352
}

3353 3354 3355 3356 3357
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3358
void perf_event_update_userpage(struct perf_event *event)
3359
{
3360
	struct perf_event_mmap_page *userpg;
3361
	struct ring_buffer *rb;
3362 3363

	rcu_read_lock();
3364 3365
	rb = rcu_dereference(event->rb);
	if (!rb)
3366 3367
		goto unlock;

3368
	userpg = rb->user_page;
3369

3370 3371 3372 3373 3374
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3375
	++userpg->lock;
3376
	barrier();
3377
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3378
	userpg->offset = perf_event_count(event);
3379
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3380
		userpg->offset -= local64_read(&event->hw.prev_count);
3381

3382 3383
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3384

3385 3386
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3387

3388
	barrier();
3389
	++userpg->lock;
3390
	preempt_enable();
3391
unlock:
3392
	rcu_read_unlock();
3393 3394
}

3395 3396 3397
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3398
	struct ring_buffer *rb;
3399 3400 3401 3402 3403 3404 3405 3406 3407
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3408 3409
	rb = rcu_dereference(event->rb);
	if (!rb)
3410 3411 3412 3413 3414
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3415
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3430
static void rb_free_rcu(struct rcu_head *rcu_head)
3431
{
3432
	struct ring_buffer *rb;
3433

3434 3435
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3436 3437
}

3438
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3439
{
3440
	struct ring_buffer *rb;
3441

3442
	rcu_read_lock();
3443 3444 3445 3446
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3447 3448 3449
	}
	rcu_read_unlock();

3450
	return rb;
3451 3452
}

3453
static void ring_buffer_put(struct ring_buffer *rb)
3454
{
3455
	if (!atomic_dec_and_test(&rb->refcount))
3456
		return;
3457

3458
	call_rcu(&rb->rcu_head, rb_free_rcu);
3459 3460 3461 3462
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3463
	struct perf_event *event = vma->vm_file->private_data;
3464

3465
	atomic_inc(&event->mmap_count);
3466 3467 3468 3469
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3470
	struct perf_event *event = vma->vm_file->private_data;
3471

3472
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3473
		unsigned long size = perf_data_size(event->rb);
3474
		struct user_struct *user = event->mmap_user;
3475
		struct ring_buffer *rb = event->rb;
3476

3477
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3478
		vma->vm_mm->locked_vm -= event->mmap_locked;
3479
		rcu_assign_pointer(event->rb, NULL);
3480
		mutex_unlock(&event->mmap_mutex);
3481

3482
		ring_buffer_put(rb);
3483
		free_uid(user);
3484
	}
3485 3486
}

3487
static const struct vm_operations_struct perf_mmap_vmops = {
3488 3489 3490 3491
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3492 3493 3494 3495
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3496
	struct perf_event *event = file->private_data;
3497
	unsigned long user_locked, user_lock_limit;
3498
	struct user_struct *user = current_user();
3499
	unsigned long locked, lock_limit;
3500
	struct ring_buffer *rb;
3501 3502
	unsigned long vma_size;
	unsigned long nr_pages;
3503
	long user_extra, extra;
3504
	int ret = 0, flags = 0;
3505

3506 3507 3508
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3509
	 * same rb.
3510 3511 3512 3513
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3514
	if (!(vma->vm_flags & VM_SHARED))
3515
		return -EINVAL;
3516 3517 3518 3519

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3520
	/*
3521
	 * If we have rb pages ensure they're a power-of-two number, so we
3522 3523 3524
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3525 3526
		return -EINVAL;

3527
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3528 3529
		return -EINVAL;

3530 3531
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3532

3533 3534
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3535 3536 3537
	if (event->rb) {
		if (event->rb->nr_pages == nr_pages)
			atomic_inc(&event->rb->refcount);
3538
		else
3539 3540 3541 3542
			ret = -EINVAL;
		goto unlock;
	}

3543
	user_extra = nr_pages + 1;
3544
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3545 3546 3547 3548 3549 3550

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3551
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3552

3553 3554 3555
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3556

3557
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3558
	lock_limit >>= PAGE_SHIFT;
3559
	locked = vma->vm_mm->locked_vm + extra;
3560

3561 3562
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3563 3564 3565
		ret = -EPERM;
		goto unlock;
	}
3566

3567
	WARN_ON(event->rb);
3568

3569
	if (vma->vm_flags & VM_WRITE)
3570
		flags |= RING_BUFFER_WRITABLE;
3571

3572 3573 3574 3575
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

3576
	if (!rb) {
3577
		ret = -ENOMEM;
3578
		goto unlock;
3579
	}
3580
	rcu_assign_pointer(event->rb, rb);
3581

3582 3583 3584 3585 3586
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

3587
unlock:
3588 3589
	if (!ret)
		atomic_inc(&event->mmap_count);
3590
	mutex_unlock(&event->mmap_mutex);
3591 3592 3593

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3594 3595

	return ret;
3596 3597
}

P
Peter Zijlstra 已提交
3598 3599 3600
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3601
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3602 3603 3604
	int retval;

	mutex_lock(&inode->i_mutex);
3605
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3606 3607 3608 3609 3610 3611 3612 3613
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3614
static const struct file_operations perf_fops = {
3615
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3616 3617 3618
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3619 3620
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3621
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3622
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3623 3624
};

3625
/*
3626
 * Perf event wakeup
3627 3628 3629 3630 3631
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3632
void perf_event_wakeup(struct perf_event *event)
3633
{
3634
	wake_up_all(&event->waitq);
3635

3636 3637 3638
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3639
	}
3640 3641
}

3642
static void perf_pending_event(struct irq_work *entry)
3643
{
3644 3645
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3646

3647 3648 3649
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3650 3651
	}

3652 3653 3654
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3655 3656 3657
	}
}

3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3679 3680 3681
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

3709 3710 3711
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

3738 3739 3740
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
3741 3742 3743 3744 3745
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

3746
static void perf_output_read_one(struct perf_output_handle *handle,
3747 3748
				 struct perf_event *event,
				 u64 enabled, u64 running)
3749
{
3750
	u64 read_format = event->attr.read_format;
3751 3752 3753
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3754
	values[n++] = perf_event_count(event);
3755
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3756
		values[n++] = enabled +
3757
			atomic64_read(&event->child_total_time_enabled);
3758 3759
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3760
		values[n++] = running +
3761
			atomic64_read(&event->child_total_time_running);
3762 3763
	}
	if (read_format & PERF_FORMAT_ID)
3764
		values[n++] = primary_event_id(event);
3765

3766
	__output_copy(handle, values, n * sizeof(u64));
3767 3768 3769
}

/*
3770
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3771 3772
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3773 3774
			    struct perf_event *event,
			    u64 enabled, u64 running)
3775
{
3776 3777
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3778 3779 3780 3781 3782 3783
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3784
		values[n++] = enabled;
3785 3786

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3787
		values[n++] = running;
3788

3789
	if (leader != event)
3790 3791
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3792
	values[n++] = perf_event_count(leader);
3793
	if (read_format & PERF_FORMAT_ID)
3794
		values[n++] = primary_event_id(leader);
3795

3796
	__output_copy(handle, values, n * sizeof(u64));
3797

3798
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3799 3800
		n = 0;

3801
		if (sub != event)
3802 3803
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
3804
		values[n++] = perf_event_count(sub);
3805
		if (read_format & PERF_FORMAT_ID)
3806
			values[n++] = primary_event_id(sub);
3807

3808
		__output_copy(handle, values, n * sizeof(u64));
3809 3810 3811
	}
}

3812 3813 3814
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

3815
static void perf_output_read(struct perf_output_handle *handle,
3816
			     struct perf_event *event)
3817
{
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
	u64 enabled = 0, running = 0, now, ctx_time;
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIMES) {
		now = perf_clock();
		ctx_time = event->shadow_ctx_time + now;
		enabled = ctx_time - event->tstamp_enabled;
		running = ctx_time - event->tstamp_running;
	}

3837
	if (event->attr.read_format & PERF_FORMAT_GROUP)
3838
		perf_output_read_group(handle, event, enabled, running);
3839
	else
3840
		perf_output_read_one(handle, event, enabled, running);
3841 3842
}

3843 3844 3845
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3846
			struct perf_event *event)
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3877
		perf_output_read(handle, event);
3878 3879 3880 3881 3882 3883 3884 3885 3886 3887

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

3888
			__output_copy(handle, data->callchain, size);
3889 3890 3891 3892 3893 3894 3895 3896 3897
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
3898 3899
			__output_copy(handle, data->raw->data,
					   data->raw->size);
3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3915
			 struct perf_event *event,
3916
			 struct pt_regs *regs)
3917
{
3918
	u64 sample_type = event->attr.sample_type;
3919

3920
	header->type = PERF_RECORD_SAMPLE;
3921
	header->size = sizeof(*header) + event->header_size;
3922 3923 3924

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3925

3926
	__perf_event_header__init_id(header, data, event);
3927

3928
	if (sample_type & PERF_SAMPLE_IP)
3929 3930
		data->ip = perf_instruction_pointer(regs);

3931
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3932
		int size = 1;
3933

3934 3935 3936 3937 3938 3939
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3940 3941
	}

3942
	if (sample_type & PERF_SAMPLE_RAW) {
3943 3944 3945 3946 3947 3948 3949 3950
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3951
		header->size += size;
3952
	}
3953
}
3954

3955
static void perf_event_output(struct perf_event *event, int nmi,
3956 3957 3958 3959 3960
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3961

3962 3963 3964
	/* protect the callchain buffers */
	rcu_read_lock();

3965
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3966

3967
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3968
		goto exit;
3969

3970
	perf_output_sample(&handle, &header, data, event);
3971

3972
	perf_output_end(&handle);
3973 3974 3975

exit:
	rcu_read_unlock();
3976 3977
}

3978
/*
3979
 * read event_id
3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3990
perf_event_read_event(struct perf_event *event,
3991 3992 3993
			struct task_struct *task)
{
	struct perf_output_handle handle;
3994
	struct perf_sample_data sample;
3995
	struct perf_read_event read_event = {
3996
		.header = {
3997
			.type = PERF_RECORD_READ,
3998
			.misc = 0,
3999
			.size = sizeof(read_event) + event->read_size,
4000
		},
4001 4002
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4003
	};
4004
	int ret;
4005

4006
	perf_event_header__init_id(&read_event.header, &sample, event);
4007
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
4008 4009 4010
	if (ret)
		return;

4011
	perf_output_put(&handle, read_event);
4012
	perf_output_read(&handle, event);
4013
	perf_event__output_id_sample(event, &handle, &sample);
4014

4015 4016 4017
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
4018
/*
P
Peter Zijlstra 已提交
4019 4020
 * task tracking -- fork/exit
 *
4021
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4022 4023
 */

P
Peter Zijlstra 已提交
4024
struct perf_task_event {
4025
	struct task_struct		*task;
4026
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4027 4028 4029 4030 4031 4032

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4033 4034
		u32				tid;
		u32				ptid;
4035
		u64				time;
4036
	} event_id;
P
Peter Zijlstra 已提交
4037 4038
};

4039
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
4040
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4041 4042
{
	struct perf_output_handle handle;
4043
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4044
	struct task_struct *task = task_event->task;
4045
	int ret, size = task_event->event_id.header.size;
4046

4047
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4048

4049 4050
	ret = perf_output_begin(&handle, event,
				task_event->event_id.header.size, 0, 0);
4051
	if (ret)
4052
		goto out;
P
Peter Zijlstra 已提交
4053

4054 4055
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4056

4057 4058
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4059

4060
	perf_output_put(&handle, task_event->event_id);
4061

4062 4063
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4064
	perf_output_end(&handle);
4065 4066
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4067 4068
}

4069
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
4070
{
P
Peter Zijlstra 已提交
4071
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4072 4073
		return 0;

4074
	if (!event_filter_match(event))
4075 4076
		return 0;

4077 4078
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
4079 4080 4081 4082 4083
		return 1;

	return 0;
}

4084
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
4085
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4086
{
4087
	struct perf_event *event;
P
Peter Zijlstra 已提交
4088

4089 4090 4091
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
4092 4093 4094
	}
}

4095
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4096 4097
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
4098
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
4099
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4100
	int ctxn;
P
Peter Zijlstra 已提交
4101

4102
	rcu_read_lock();
P
Peter Zijlstra 已提交
4103
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4104
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4105 4106
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4107
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
4108 4109 4110 4111 4112

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
4113
				goto next;
P
Peter Zijlstra 已提交
4114 4115 4116 4117
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
4118 4119
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4120
	}
P
Peter Zijlstra 已提交
4121 4122 4123
	rcu_read_unlock();
}

4124 4125
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4126
			      int new)
P
Peter Zijlstra 已提交
4127
{
P
Peter Zijlstra 已提交
4128
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4129

4130 4131 4132
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4133 4134
		return;

P
Peter Zijlstra 已提交
4135
	task_event = (struct perf_task_event){
4136 4137
		.task	  = task,
		.task_ctx = task_ctx,
4138
		.event_id    = {
P
Peter Zijlstra 已提交
4139
			.header = {
4140
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4141
				.misc = 0,
4142
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4143
			},
4144 4145
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4146 4147
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4148
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4149 4150 4151
		},
	};

4152
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
4153 4154
}

4155
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4156
{
4157
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4158 4159
}

4160 4161 4162 4163 4164
/*
 * comm tracking
 */

struct perf_comm_event {
4165 4166
	struct task_struct	*task;
	char			*comm;
4167 4168 4169 4170 4171 4172 4173
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4174
	} event_id;
4175 4176
};

4177
static void perf_event_comm_output(struct perf_event *event,
4178 4179 4180
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4181
	struct perf_sample_data sample;
4182
	int size = comm_event->event_id.header.size;
4183 4184 4185 4186 4187
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
				comm_event->event_id.header.size, 0, 0);
4188 4189

	if (ret)
4190
		goto out;
4191

4192 4193
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4194

4195
	perf_output_put(&handle, comm_event->event_id);
4196
	__output_copy(&handle, comm_event->comm,
4197
				   comm_event->comm_size);
4198 4199 4200

	perf_event__output_id_sample(event, &handle, &sample);

4201
	perf_output_end(&handle);
4202 4203
out:
	comm_event->event_id.header.size = size;
4204 4205
}

4206
static int perf_event_comm_match(struct perf_event *event)
4207
{
P
Peter Zijlstra 已提交
4208
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4209 4210
		return 0;

4211
	if (!event_filter_match(event))
4212 4213
		return 0;

4214
	if (event->attr.comm)
4215 4216 4217 4218 4219
		return 1;

	return 0;
}

4220
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4221 4222
				  struct perf_comm_event *comm_event)
{
4223
	struct perf_event *event;
4224

4225 4226 4227
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4228 4229 4230
	}
}

4231
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4232 4233
{
	struct perf_cpu_context *cpuctx;
4234
	struct perf_event_context *ctx;
4235
	char comm[TASK_COMM_LEN];
4236
	unsigned int size;
P
Peter Zijlstra 已提交
4237
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4238
	int ctxn;
4239

4240
	memset(comm, 0, sizeof(comm));
4241
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4242
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4243 4244 4245 4246

	comm_event->comm = comm;
	comm_event->comm_size = size;

4247
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4248
	rcu_read_lock();
P
Peter Zijlstra 已提交
4249
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4250
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4251 4252
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4253
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4254 4255 4256

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4257
			goto next;
P
Peter Zijlstra 已提交
4258 4259 4260 4261

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4262 4263
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4264
	}
4265
	rcu_read_unlock();
4266 4267
}

4268
void perf_event_comm(struct task_struct *task)
4269
{
4270
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4271 4272
	struct perf_event_context *ctx;
	int ctxn;
4273

P
Peter Zijlstra 已提交
4274 4275 4276 4277
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4278

P
Peter Zijlstra 已提交
4279 4280
		perf_event_enable_on_exec(ctx);
	}
4281

4282
	if (!atomic_read(&nr_comm_events))
4283
		return;
4284

4285
	comm_event = (struct perf_comm_event){
4286
		.task	= task,
4287 4288
		/* .comm      */
		/* .comm_size */
4289
		.event_id  = {
4290
			.header = {
4291
				.type = PERF_RECORD_COMM,
4292 4293 4294 4295 4296
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4297 4298 4299
		},
	};

4300
	perf_event_comm_event(&comm_event);
4301 4302
}

4303 4304 4305 4306 4307
/*
 * mmap tracking
 */

struct perf_mmap_event {
4308 4309 4310 4311
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4312 4313 4314 4315 4316 4317 4318 4319 4320

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4321
	} event_id;
4322 4323
};

4324
static void perf_event_mmap_output(struct perf_event *event,
4325 4326 4327
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4328
	struct perf_sample_data sample;
4329
	int size = mmap_event->event_id.header.size;
4330
	int ret;
4331

4332 4333 4334
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
				mmap_event->event_id.header.size, 0, 0);
4335
	if (ret)
4336
		goto out;
4337

4338 4339
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4340

4341
	perf_output_put(&handle, mmap_event->event_id);
4342
	__output_copy(&handle, mmap_event->file_name,
4343
				   mmap_event->file_size);
4344 4345 4346

	perf_event__output_id_sample(event, &handle, &sample);

4347
	perf_output_end(&handle);
4348 4349
out:
	mmap_event->event_id.header.size = size;
4350 4351
}

4352
static int perf_event_mmap_match(struct perf_event *event,
4353 4354
				   struct perf_mmap_event *mmap_event,
				   int executable)
4355
{
P
Peter Zijlstra 已提交
4356
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4357 4358
		return 0;

4359
	if (!event_filter_match(event))
4360 4361
		return 0;

4362 4363
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4364 4365 4366 4367 4368
		return 1;

	return 0;
}

4369
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4370 4371
				  struct perf_mmap_event *mmap_event,
				  int executable)
4372
{
4373
	struct perf_event *event;
4374

4375
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4376
		if (perf_event_mmap_match(event, mmap_event, executable))
4377
			perf_event_mmap_output(event, mmap_event);
4378 4379 4380
	}
}

4381
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4382 4383
{
	struct perf_cpu_context *cpuctx;
4384
	struct perf_event_context *ctx;
4385 4386
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4387 4388 4389
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4390
	const char *name;
P
Peter Zijlstra 已提交
4391
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4392
	int ctxn;
4393

4394 4395
	memset(tmp, 0, sizeof(tmp));

4396
	if (file) {
4397
		/*
4398
		 * d_path works from the end of the rb backwards, so we
4399 4400 4401 4402
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4403 4404 4405 4406
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4407
		name = d_path(&file->f_path, buf, PATH_MAX);
4408 4409 4410 4411 4412
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4413 4414 4415
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4416
			goto got_name;
4417
		}
4418 4419 4420 4421

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4422 4423 4424 4425 4426 4427 4428 4429
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4430 4431
		}

4432 4433 4434 4435 4436
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4437
	size = ALIGN(strlen(name)+1, sizeof(u64));
4438 4439 4440 4441

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4442
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4443

4444
	rcu_read_lock();
P
Peter Zijlstra 已提交
4445
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4446
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4447 4448
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4449 4450
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4451 4452 4453

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4454
			goto next;
P
Peter Zijlstra 已提交
4455 4456 4457 4458 4459 4460

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4461 4462
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4463
	}
4464 4465
	rcu_read_unlock();

4466 4467 4468
	kfree(buf);
}

4469
void perf_event_mmap(struct vm_area_struct *vma)
4470
{
4471 4472
	struct perf_mmap_event mmap_event;

4473
	if (!atomic_read(&nr_mmap_events))
4474 4475 4476
		return;

	mmap_event = (struct perf_mmap_event){
4477
		.vma	= vma,
4478 4479
		/* .file_name */
		/* .file_size */
4480
		.event_id  = {
4481
			.header = {
4482
				.type = PERF_RECORD_MMAP,
4483
				.misc = PERF_RECORD_MISC_USER,
4484 4485 4486 4487
				/* .size */
			},
			/* .pid */
			/* .tid */
4488 4489
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4490
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4491 4492 4493
		},
	};

4494
	perf_event_mmap_event(&mmap_event);
4495 4496
}

4497 4498 4499 4500
/*
 * IRQ throttle logging
 */

4501
static void perf_log_throttle(struct perf_event *event, int enable)
4502 4503
{
	struct perf_output_handle handle;
4504
	struct perf_sample_data sample;
4505 4506 4507 4508 4509
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4510
		u64				id;
4511
		u64				stream_id;
4512 4513
	} throttle_event = {
		.header = {
4514
			.type = PERF_RECORD_THROTTLE,
4515 4516 4517
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4518
		.time		= perf_clock(),
4519 4520
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4521 4522
	};

4523
	if (enable)
4524
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4525

4526 4527 4528 4529
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				throttle_event.header.size, 1, 0);
4530 4531 4532 4533
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4534
	perf_event__output_id_sample(event, &handle, &sample);
4535 4536 4537
	perf_output_end(&handle);
}

4538
/*
4539
 * Generic event overflow handling, sampling.
4540 4541
 */

4542
static int __perf_event_overflow(struct perf_event *event, int nmi,
4543 4544
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4545
{
4546 4547
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4548 4549
	int ret = 0;

4550 4551 4552 4553 4554 4555 4556
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

P
Peter Zijlstra 已提交
4557 4558 4559 4560
	if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
		if (throttle) {
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4561 4562
			ret = 1;
		}
P
Peter Zijlstra 已提交
4563 4564
	} else
		hwc->interrupts++;
4565

4566
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4567
		u64 now = perf_clock();
4568
		s64 delta = now - hwc->freq_time_stamp;
4569

4570
		hwc->freq_time_stamp = now;
4571

4572 4573
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4574 4575
	}

4576 4577
	/*
	 * XXX event_limit might not quite work as expected on inherited
4578
	 * events
4579 4580
	 */

4581 4582
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4583
		ret = 1;
4584
		event->pending_kill = POLL_HUP;
4585
		if (nmi) {
4586
			event->pending_disable = 1;
4587
			irq_work_queue(&event->pending);
4588
		} else
4589
			perf_event_disable(event);
4590 4591
	}

4592 4593 4594 4595 4596
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

P
Peter Zijlstra 已提交
4597 4598 4599 4600 4601 4602 4603 4604
	if (event->fasync && event->pending_kill) {
		if (nmi) {
			event->pending_wakeup = 1;
			irq_work_queue(&event->pending);
		} else
			perf_event_wakeup(event);
	}

4605
	return ret;
4606 4607
}

4608
int perf_event_overflow(struct perf_event *event, int nmi,
4609 4610
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4611
{
4612
	return __perf_event_overflow(event, nmi, 1, data, regs);
4613 4614
}

4615
/*
4616
 * Generic software event infrastructure
4617 4618
 */

4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4630
/*
4631 4632
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4633 4634 4635 4636
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4637
static u64 perf_swevent_set_period(struct perf_event *event)
4638
{
4639
	struct hw_perf_event *hwc = &event->hw;
4640 4641 4642 4643 4644
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4645 4646

again:
4647
	old = val = local64_read(&hwc->period_left);
4648 4649
	if (val < 0)
		return 0;
4650

4651 4652 4653
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4654
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4655
		goto again;
4656

4657
	return nr;
4658 4659
}

4660
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4661 4662
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
4663
{
4664
	struct hw_perf_event *hwc = &event->hw;
4665
	int throttle = 0;
4666

4667
	data->period = event->hw.last_period;
4668 4669
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4670

4671 4672
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4673

4674
	for (; overflow; overflow--) {
4675
		if (__perf_event_overflow(event, nmi, throttle,
4676
					    data, regs)) {
4677 4678 4679 4680 4681 4682
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4683
		throttle = 1;
4684
	}
4685 4686
}

P
Peter Zijlstra 已提交
4687
static void perf_swevent_event(struct perf_event *event, u64 nr,
4688 4689
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
4690
{
4691
	struct hw_perf_event *hwc = &event->hw;
4692

4693
	local64_add(nr, &event->count);
4694

4695 4696 4697
	if (!regs)
		return;

4698
	if (!is_sampling_event(event))
4699
		return;
4700

4701 4702 4703
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

4704
	if (local64_add_negative(nr, &hwc->period_left))
4705
		return;
4706

4707
	perf_swevent_overflow(event, 0, nmi, data, regs);
4708 4709
}

4710 4711 4712
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
4713
	if (event->hw.state & PERF_HES_STOPPED)
4714
		return 1;
P
Peter Zijlstra 已提交
4715

4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4727
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4728
				enum perf_type_id type,
L
Li Zefan 已提交
4729 4730 4731
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4732
{
4733
	if (event->attr.type != type)
4734
		return 0;
4735

4736
	if (event->attr.config != event_id)
4737 4738
		return 0;

4739 4740
	if (perf_exclude_event(event, regs))
		return 0;
4741 4742 4743 4744

	return 1;
}

4745 4746 4747 4748 4749 4750 4751
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4752 4753
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4754
{
4755 4756 4757 4758
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4759

4760 4761
/* For the read side: events when they trigger */
static inline struct hlist_head *
4762
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4763 4764
{
	struct swevent_hlist *hlist;
4765

4766
	hlist = rcu_dereference(swhash->swevent_hlist);
4767 4768 4769
	if (!hlist)
		return NULL;

4770 4771 4772 4773 4774
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
4775
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
4786
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4787 4788 4789 4790 4791
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4792 4793 4794 4795 4796 4797
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4798
{
4799
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4800
	struct perf_event *event;
4801 4802
	struct hlist_node *node;
	struct hlist_head *head;
4803

4804
	rcu_read_lock();
4805
	head = find_swevent_head_rcu(swhash, type, event_id);
4806 4807 4808 4809
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4810
		if (perf_swevent_match(event, type, event_id, data, regs))
P
Peter Zijlstra 已提交
4811
			perf_swevent_event(event, nr, nmi, data, regs);
4812
	}
4813 4814
end:
	rcu_read_unlock();
4815 4816
}

4817
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4818
{
4819
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
4820

4821
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
4822
}
I
Ingo Molnar 已提交
4823
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4824

4825
inline void perf_swevent_put_recursion_context(int rctx)
4826
{
4827
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4828

4829
	put_recursion_context(swhash->recursion, rctx);
4830
}
4831

4832
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4833
			    struct pt_regs *regs, u64 addr)
4834
{
4835
	struct perf_sample_data data;
4836 4837
	int rctx;

4838
	preempt_disable_notrace();
4839 4840 4841
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4842

4843
	perf_sample_data_init(&data, addr);
4844

4845
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4846 4847

	perf_swevent_put_recursion_context(rctx);
4848
	preempt_enable_notrace();
4849 4850
}

4851
static void perf_swevent_read(struct perf_event *event)
4852 4853 4854
{
}

P
Peter Zijlstra 已提交
4855
static int perf_swevent_add(struct perf_event *event, int flags)
4856
{
4857
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4858
	struct hw_perf_event *hwc = &event->hw;
4859 4860
	struct hlist_head *head;

4861
	if (is_sampling_event(event)) {
4862
		hwc->last_period = hwc->sample_period;
4863
		perf_swevent_set_period(event);
4864
	}
4865

P
Peter Zijlstra 已提交
4866 4867
	hwc->state = !(flags & PERF_EF_START);

4868
	head = find_swevent_head(swhash, event);
4869 4870 4871 4872 4873
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4874 4875 4876
	return 0;
}

P
Peter Zijlstra 已提交
4877
static void perf_swevent_del(struct perf_event *event, int flags)
4878
{
4879
	hlist_del_rcu(&event->hlist_entry);
4880 4881
}

P
Peter Zijlstra 已提交
4882
static void perf_swevent_start(struct perf_event *event, int flags)
4883
{
P
Peter Zijlstra 已提交
4884
	event->hw.state = 0;
4885
}
I
Ingo Molnar 已提交
4886

P
Peter Zijlstra 已提交
4887
static void perf_swevent_stop(struct perf_event *event, int flags)
4888
{
P
Peter Zijlstra 已提交
4889
	event->hw.state = PERF_HES_STOPPED;
4890 4891
}

4892 4893
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
4894
swevent_hlist_deref(struct swevent_htable *swhash)
4895
{
4896 4897
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
4898 4899
}

4900
static void swevent_hlist_release(struct swevent_htable *swhash)
4901
{
4902
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4903

4904
	if (!hlist)
4905 4906
		return;

4907
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4908
	kfree_rcu(hlist, rcu_head);
4909 4910 4911 4912
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
4913
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4914

4915
	mutex_lock(&swhash->hlist_mutex);
4916

4917 4918
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
4919

4920
	mutex_unlock(&swhash->hlist_mutex);
4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
4938
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4939 4940
	int err = 0;

4941
	mutex_lock(&swhash->hlist_mutex);
4942

4943
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4944 4945 4946 4947 4948 4949 4950
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
4951
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
4952
	}
4953
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
4954
exit:
4955
	mutex_unlock(&swhash->hlist_mutex);
4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
4979
fail:
4980 4981 4982 4983 4984 4985 4986 4987 4988 4989
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4990
struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
4991

4992 4993 4994
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
4995

4996 4997
	WARN_ON(event->parent);

P
Peter Zijlstra 已提交
4998
	jump_label_dec(&perf_swevent_enabled[event_id]);
4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5018
	if (event_id >= PERF_COUNT_SW_MAX)
5019 5020 5021 5022 5023 5024 5025 5026 5027
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

P
Peter Zijlstra 已提交
5028
		jump_label_inc(&perf_swevent_enabled[event_id]);
5029 5030 5031 5032 5033 5034 5035
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
5036
	.task_ctx_nr	= perf_sw_context,
5037

5038
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5039 5040 5041 5042
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5043 5044 5045
	.read		= perf_swevent_read,
};

5046 5047
#ifdef CONFIG_EVENT_TRACING

5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5062 5063
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5064 5065 5066 5067
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5068 5069 5070 5071 5072 5073 5074 5075 5076
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5077
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
5078 5079
{
	struct perf_sample_data data;
5080 5081 5082
	struct perf_event *event;
	struct hlist_node *node;

5083 5084 5085 5086 5087 5088 5089 5090
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

5091 5092
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
P
Peter Zijlstra 已提交
5093
			perf_swevent_event(event, count, 1, &data, regs);
5094
	}
5095 5096

	perf_swevent_put_recursion_context(rctx);
5097 5098 5099
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5100
static void tp_perf_event_destroy(struct perf_event *event)
5101
{
5102
	perf_trace_destroy(event);
5103 5104
}

5105
static int perf_tp_event_init(struct perf_event *event)
5106
{
5107 5108
	int err;

5109 5110 5111
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5112 5113
	err = perf_trace_init(event);
	if (err)
5114
		return err;
5115

5116
	event->destroy = tp_perf_event_destroy;
5117

5118 5119 5120 5121
	return 0;
}

static struct pmu perf_tracepoint = {
5122 5123
	.task_ctx_nr	= perf_sw_context,

5124
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5125 5126 5127 5128
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5129 5130 5131 5132 5133
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5134
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5135
}
L
Li Zefan 已提交
5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5160
#else
L
Li Zefan 已提交
5161

5162
static inline void perf_tp_register(void)
5163 5164
{
}
L
Li Zefan 已提交
5165 5166 5167 5168 5169 5170 5171 5172 5173 5174

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5175
#endif /* CONFIG_EVENT_TRACING */
5176

5177
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5178
void perf_bp_event(struct perf_event *bp, void *data)
5179
{
5180 5181 5182
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5183
	perf_sample_data_init(&sample, bp->attr.bp_addr);
5184

P
Peter Zijlstra 已提交
5185 5186
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
		perf_swevent_event(bp, 1, 1, &sample, regs);
5187 5188 5189
}
#endif

5190 5191 5192
/*
 * hrtimer based swevent callback
 */
5193

5194
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5195
{
5196 5197 5198 5199 5200
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5201

5202
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5203 5204 5205 5206

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5207
	event->pmu->read(event);
5208

5209 5210 5211 5212 5213 5214 5215 5216 5217
	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
	}
5218

5219 5220
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5221

5222
	return ret;
5223 5224
}

5225
static void perf_swevent_start_hrtimer(struct perf_event *event)
5226
{
5227
	struct hw_perf_event *hwc = &event->hw;
5228 5229 5230 5231
	s64 period;

	if (!is_sampling_event(event))
		return;
5232

5233 5234 5235 5236
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5237

5238 5239 5240 5241 5242
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5243
				ns_to_ktime(period), 0,
5244
				HRTIMER_MODE_REL_PINNED, 0);
5245
}
5246 5247

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5248
{
5249 5250
	struct hw_perf_event *hwc = &event->hw;

5251
	if (is_sampling_event(event)) {
5252
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5253
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5254 5255 5256

		hrtimer_cancel(&hwc->hrtimer);
	}
5257 5258
}

P
Peter Zijlstra 已提交
5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
		event->attr.freq = 0;
	}
}

5283 5284 5285 5286 5287
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5288
{
5289 5290 5291
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5292
	now = local_clock();
5293 5294
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5295 5296
}

P
Peter Zijlstra 已提交
5297
static void cpu_clock_event_start(struct perf_event *event, int flags)
5298
{
P
Peter Zijlstra 已提交
5299
	local64_set(&event->hw.prev_count, local_clock());
5300 5301 5302
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5303
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5304
{
5305 5306 5307
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5308

P
Peter Zijlstra 已提交
5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5322 5323 5324 5325
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5326

5327 5328 5329 5330 5331 5332 5333 5334
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5335 5336
	perf_swevent_init_hrtimer(event);

5337
	return 0;
5338 5339
}

5340
static struct pmu perf_cpu_clock = {
5341 5342
	.task_ctx_nr	= perf_sw_context,

5343
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5344 5345 5346 5347
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5348 5349 5350 5351 5352 5353 5354 5355
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5356
{
5357 5358
	u64 prev;
	s64 delta;
5359

5360 5361 5362 5363
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5364

P
Peter Zijlstra 已提交
5365
static void task_clock_event_start(struct perf_event *event, int flags)
5366
{
P
Peter Zijlstra 已提交
5367
	local64_set(&event->hw.prev_count, event->ctx->time);
5368 5369 5370
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5371
static void task_clock_event_stop(struct perf_event *event, int flags)
5372 5373 5374
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5375 5376 5377 5378 5379 5380
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5381

P
Peter Zijlstra 已提交
5382 5383 5384 5385 5386 5387
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5388 5389 5390 5391
}

static void task_clock_event_read(struct perf_event *event)
{
5392 5393 5394
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5395 5396 5397 5398 5399

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5400
{
5401 5402 5403 5404 5405 5406
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5407 5408
	perf_swevent_init_hrtimer(event);

5409
	return 0;
L
Li Zefan 已提交
5410 5411
}

5412
static struct pmu perf_task_clock = {
5413 5414
	.task_ctx_nr	= perf_sw_context,

5415
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5416 5417 5418 5419
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5420 5421
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
5422

P
Peter Zijlstra 已提交
5423
static void perf_pmu_nop_void(struct pmu *pmu)
5424 5425
{
}
L
Li Zefan 已提交
5426

P
Peter Zijlstra 已提交
5427
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5428
{
P
Peter Zijlstra 已提交
5429
	return 0;
L
Li Zefan 已提交
5430 5431
}

P
Peter Zijlstra 已提交
5432
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5433
{
P
Peter Zijlstra 已提交
5434
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5435 5436
}

P
Peter Zijlstra 已提交
5437 5438 5439 5440 5441
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5442

P
Peter Zijlstra 已提交
5443
static void perf_pmu_cancel_txn(struct pmu *pmu)
5444
{
P
Peter Zijlstra 已提交
5445
	perf_pmu_enable(pmu);
5446 5447
}

P
Peter Zijlstra 已提交
5448 5449 5450 5451 5452
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5453
{
P
Peter Zijlstra 已提交
5454
	struct pmu *pmu;
5455

P
Peter Zijlstra 已提交
5456 5457
	if (ctxn < 0)
		return NULL;
5458

P
Peter Zijlstra 已提交
5459 5460 5461 5462
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5463

P
Peter Zijlstra 已提交
5464
	return NULL;
5465 5466
}

5467
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5468
{
5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

		if (cpuctx->active_pmu == old_pmu)
			cpuctx->active_pmu = pmu;
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5484

P
Peter Zijlstra 已提交
5485
	mutex_lock(&pmus_lock);
5486
	/*
P
Peter Zijlstra 已提交
5487
	 * Like a real lame refcount.
5488
	 */
5489 5490 5491
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5492
			goto out;
5493
		}
P
Peter Zijlstra 已提交
5494
	}
5495

5496
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5497 5498
out:
	mutex_unlock(&pmus_lock);
5499
}
P
Peter Zijlstra 已提交
5500
static struct idr pmu_idr;
5501

P
Peter Zijlstra 已提交
5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5554
static struct lock_class_key cpuctx_mutex;
5555
static struct lock_class_key cpuctx_lock;
5556

P
Peter Zijlstra 已提交
5557
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5558
{
P
Peter Zijlstra 已提交
5559
	int cpu, ret;
5560

5561
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5562 5563 5564 5565
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5566

P
Peter Zijlstra 已提交
5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
		if (!err)
			goto free_pdc;

		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
		if (err) {
			ret = err;
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
5585 5586 5587 5588 5589 5590
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
5591
skip_type:
P
Peter Zijlstra 已提交
5592 5593 5594
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
5595

P
Peter Zijlstra 已提交
5596 5597
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
5598
		goto free_dev;
5599

P
Peter Zijlstra 已提交
5600 5601 5602 5603
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5604
		__perf_event_init_context(&cpuctx->ctx);
5605
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5606
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5607
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
5608
		cpuctx->ctx.pmu = pmu;
5609 5610
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
5611
		cpuctx->active_pmu = pmu;
P
Peter Zijlstra 已提交
5612
	}
5613

P
Peter Zijlstra 已提交
5614
got_cpu_context:
P
Peter Zijlstra 已提交
5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
5629
		}
5630
	}
5631

P
Peter Zijlstra 已提交
5632 5633 5634 5635 5636
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

5637
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
5638 5639
	ret = 0;
unlock:
5640 5641
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5642
	return ret;
P
Peter Zijlstra 已提交
5643

P
Peter Zijlstra 已提交
5644 5645 5646 5647
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
5648 5649 5650 5651
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
5652 5653 5654
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
5655 5656
}

5657
void perf_pmu_unregister(struct pmu *pmu)
5658
{
5659 5660 5661
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
5662

5663
	/*
P
Peter Zijlstra 已提交
5664 5665
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
5666
	 */
5667
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
5668
	synchronize_rcu();
5669

P
Peter Zijlstra 已提交
5670
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
5671 5672
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
5673 5674
	device_del(pmu->dev);
	put_device(pmu->dev);
5675
	free_pmu_context(pmu);
5676
}
5677

5678 5679 5680 5681
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
5682
	int ret;
5683 5684

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
5685 5686 5687 5688

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
5689 5690 5691 5692
	if (pmu) {
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5693
		goto unlock;
5694
	}
P
Peter Zijlstra 已提交
5695

5696
	list_for_each_entry_rcu(pmu, &pmus, entry) {
5697
		ret = pmu->event_init(event);
5698
		if (!ret)
P
Peter Zijlstra 已提交
5699
			goto unlock;
5700

5701 5702
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5703
			goto unlock;
5704
		}
5705
	}
P
Peter Zijlstra 已提交
5706 5707
	pmu = ERR_PTR(-ENOENT);
unlock:
5708
	srcu_read_unlock(&pmus_srcu, idx);
5709

5710
	return pmu;
5711 5712
}

T
Thomas Gleixner 已提交
5713
/*
5714
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
5715
 */
5716
static struct perf_event *
5717
perf_event_alloc(struct perf_event_attr *attr, int cpu,
5718 5719 5720 5721
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
		 perf_overflow_handler_t overflow_handler)
T
Thomas Gleixner 已提交
5722
{
P
Peter Zijlstra 已提交
5723
	struct pmu *pmu;
5724 5725
	struct perf_event *event;
	struct hw_perf_event *hwc;
5726
	long err;
T
Thomas Gleixner 已提交
5727

5728 5729 5730 5731 5732
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

5733
	event = kzalloc(sizeof(*event), GFP_KERNEL);
5734
	if (!event)
5735
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
5736

5737
	/*
5738
	 * Single events are their own group leaders, with an
5739 5740 5741
	 * empty sibling list:
	 */
	if (!group_leader)
5742
		group_leader = event;
5743

5744 5745
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
5746

5747 5748 5749 5750
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
5751
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
5752

5753
	mutex_init(&event->mmap_mutex);
5754

5755 5756 5757 5758 5759
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
5760

5761
	event->parent		= parent_event;
5762

5763 5764
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
5765

5766
	event->state		= PERF_EVENT_STATE_INACTIVE;
5767

5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
		if (attr->type == PERF_TYPE_BREAKPOINT)
			event->hw.bp_target = task;
#endif
	}

5779 5780
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
5781

5782
	event->overflow_handler	= overflow_handler;
5783

5784
	if (attr->disabled)
5785
		event->state = PERF_EVENT_STATE_OFF;
5786

5787
	pmu = NULL;
5788

5789
	hwc = &event->hw;
5790
	hwc->sample_period = attr->sample_period;
5791
	if (attr->freq && attr->sample_freq)
5792
		hwc->sample_period = 1;
5793
	hwc->last_period = hwc->sample_period;
5794

5795
	local64_set(&hwc->period_left, hwc->sample_period);
5796

5797
	/*
5798
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5799
	 */
5800
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5801 5802
		goto done;

5803
	pmu = perf_init_event(event);
5804

5805 5806
done:
	err = 0;
5807
	if (!pmu)
5808
		err = -EINVAL;
5809 5810
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
5811

5812
	if (err) {
5813 5814 5815
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
5816
		return ERR_PTR(err);
I
Ingo Molnar 已提交
5817
	}
5818

5819
	event->pmu = pmu;
T
Thomas Gleixner 已提交
5820

5821
	if (!event->parent) {
5822
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
5823
			jump_label_inc(&perf_sched_events);
5824
		if (event->attr.mmap || event->attr.mmap_data)
5825 5826 5827 5828 5829
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
5830 5831 5832 5833 5834 5835 5836
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
5837
	}
5838

5839
	return event;
T
Thomas Gleixner 已提交
5840 5841
}

5842 5843
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
5844 5845
{
	u32 size;
5846
	int ret;
5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
5871 5872 5873
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
5874 5875
	 */
	if (size > sizeof(*attr)) {
5876 5877 5878
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
5879

5880 5881
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
5882

5883
		for (; addr < end; addr++) {
5884 5885 5886 5887 5888 5889
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
5890
		size = sizeof(*attr);
5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

5904
	if (attr->__reserved_1)
5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

5922 5923
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5924
{
5925
	struct ring_buffer *rb = NULL, *old_rb = NULL;
5926 5927
	int ret = -EINVAL;

5928
	if (!output_event)
5929 5930
		goto set;

5931 5932
	/* don't allow circular references */
	if (event == output_event)
5933 5934
		goto out;

5935 5936 5937 5938 5939 5940 5941
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
5942
	 * If its not a per-cpu rb, it must be the same task.
5943 5944 5945 5946
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

5947
set:
5948
	mutex_lock(&event->mmap_mutex);
5949 5950 5951
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
5952

5953
	if (output_event) {
5954 5955 5956
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
5957
			goto unlock;
5958 5959
	}

5960 5961
	old_rb = event->rb;
	rcu_assign_pointer(event->rb, rb);
5962
	ret = 0;
5963 5964 5965
unlock:
	mutex_unlock(&event->mmap_mutex);

5966 5967
	if (old_rb)
		ring_buffer_put(old_rb);
5968 5969 5970 5971
out:
	return ret;
}

T
Thomas Gleixner 已提交
5972
/**
5973
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
5974
 *
5975
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
5976
 * @pid:		target pid
I
Ingo Molnar 已提交
5977
 * @cpu:		target cpu
5978
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
5979
 */
5980 5981
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
5982
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
5983
{
5984 5985
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
5986 5987 5988
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
5989
	struct file *group_file = NULL;
M
Matt Helsley 已提交
5990
	struct task_struct *task = NULL;
5991
	struct pmu *pmu;
5992
	int event_fd;
5993
	int move_group = 0;
5994
	int fput_needed = 0;
5995
	int err;
T
Thomas Gleixner 已提交
5996

5997
	/* for future expandability... */
S
Stephane Eranian 已提交
5998
	if (flags & ~PERF_FLAG_ALL)
5999 6000
		return -EINVAL;

6001 6002 6003
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6004

6005 6006 6007 6008 6009
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6010
	if (attr.freq) {
6011
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6012 6013 6014
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6015 6016 6017 6018 6019 6020 6021 6022 6023
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6024 6025 6026 6027
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

6028 6029 6030 6031
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
6032
			goto err_fd;
6033 6034 6035 6036 6037 6038 6039 6040
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6041
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6042 6043 6044 6045 6046 6047 6048
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6049
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
6050 6051
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6052
		goto err_task;
6053 6054
	}

S
Stephane Eranian 已提交
6055 6056 6057 6058
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6059 6060 6061 6062 6063 6064 6065
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
		jump_label_inc(&perf_sched_events);
S
Stephane Eranian 已提交
6066 6067
	}

6068 6069 6070 6071 6072
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6096 6097 6098 6099

	/*
	 * Get the target context (task or percpu):
	 */
M
Matt Helsley 已提交
6100
	ctx = find_get_context(pmu, task, cpu);
6101 6102
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6103
		goto err_alloc;
6104 6105
	}

6106 6107 6108 6109 6110
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6111
	/*
6112
	 * Look up the group leader (we will attach this event to it):
6113
	 */
6114
	if (group_leader) {
6115
		err = -EINVAL;
6116 6117

		/*
I
Ingo Molnar 已提交
6118 6119 6120 6121
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6122
			goto err_context;
I
Ingo Molnar 已提交
6123 6124 6125
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6126
		 */
6127 6128 6129 6130 6131 6132 6133 6134
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6135 6136 6137
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6138
		if (attr.exclusive || attr.pinned)
6139
			goto err_context;
6140 6141 6142 6143 6144
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6145
			goto err_context;
6146
	}
T
Thomas Gleixner 已提交
6147

6148 6149 6150
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6151
		goto err_context;
6152
	}
6153

6154 6155 6156 6157
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6158
		perf_remove_from_context(group_leader);
6159 6160
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6161
			perf_remove_from_context(sibling);
6162 6163 6164 6165
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6166
	}
6167

6168
	event->filp = event_file;
6169
	WARN_ON_ONCE(ctx->parent_ctx);
6170
	mutex_lock(&ctx->mutex);
6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181

	if (move_group) {
		perf_install_in_context(ctx, group_leader, cpu);
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_install_in_context(ctx, sibling, cpu);
			get_ctx(ctx);
		}
	}

6182
	perf_install_in_context(ctx, event, cpu);
6183
	++ctx->generation;
6184
	perf_unpin_context(ctx);
6185
	mutex_unlock(&ctx->mutex);
6186

6187
	event->owner = current;
P
Peter Zijlstra 已提交
6188

6189 6190 6191
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6192

6193 6194 6195 6196
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6197
	perf_event__id_header_size(event);
6198

6199 6200 6201 6202 6203 6204
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6205 6206 6207
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6208

6209
err_context:
6210
	perf_unpin_context(ctx);
6211
	put_ctx(ctx);
6212
err_alloc:
6213
	free_event(event);
P
Peter Zijlstra 已提交
6214 6215 6216
err_task:
	if (task)
		put_task_struct(task);
6217
err_group_fd:
6218
	fput_light(group_file, fput_needed);
6219 6220
err_fd:
	put_unused_fd(event_fd);
6221
	return err;
T
Thomas Gleixner 已提交
6222 6223
}

6224 6225 6226 6227 6228
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6229
 * @task: task to profile (NULL for percpu)
6230 6231 6232
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6233
				 struct task_struct *task,
6234
				 perf_overflow_handler_t overflow_handler)
6235 6236
{
	struct perf_event_context *ctx;
6237
	struct perf_event *event;
6238
	int err;
6239

6240 6241 6242
	/*
	 * Get the target context (task or percpu):
	 */
6243

6244
	event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
6245 6246 6247 6248
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6249

M
Matt Helsley 已提交
6250
	ctx = find_get_context(event->pmu, task, cpu);
6251 6252
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6253
		goto err_free;
6254
	}
6255 6256 6257 6258 6259 6260

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6261
	perf_unpin_context(ctx);
6262 6263 6264 6265
	mutex_unlock(&ctx->mutex);

	return event;

6266 6267 6268
err_free:
	free_event(event);
err:
6269
	return ERR_PTR(err);
6270
}
6271
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6272

6273
static void sync_child_event(struct perf_event *child_event,
6274
			       struct task_struct *child)
6275
{
6276
	struct perf_event *parent_event = child_event->parent;
6277
	u64 child_val;
6278

6279 6280
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6281

P
Peter Zijlstra 已提交
6282
	child_val = perf_event_count(child_event);
6283 6284 6285 6286

	/*
	 * Add back the child's count to the parent's count:
	 */
6287
	atomic64_add(child_val, &parent_event->child_count);
6288 6289 6290 6291
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6292 6293

	/*
6294
	 * Remove this event from the parent's list
6295
	 */
6296 6297 6298 6299
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6300 6301

	/*
6302
	 * Release the parent event, if this was the last
6303 6304
	 * reference to it.
	 */
6305
	fput(parent_event->filp);
6306 6307
}

6308
static void
6309 6310
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6311
			 struct task_struct *child)
6312
{
6313 6314 6315 6316 6317
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6318

6319
	perf_remove_from_context(child_event);
6320

6321
	/*
6322
	 * It can happen that the parent exits first, and has events
6323
	 * that are still around due to the child reference. These
6324
	 * events need to be zapped.
6325
	 */
6326
	if (child_event->parent) {
6327 6328
		sync_child_event(child_event, child);
		free_event(child_event);
6329
	}
6330 6331
}

P
Peter Zijlstra 已提交
6332
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6333
{
6334 6335
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6336
	unsigned long flags;
6337

P
Peter Zijlstra 已提交
6338
	if (likely(!child->perf_event_ctxp[ctxn])) {
6339
		perf_event_task(child, NULL, 0);
6340
		return;
P
Peter Zijlstra 已提交
6341
	}
6342

6343
	local_irq_save(flags);
6344 6345 6346 6347 6348 6349
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6350
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6351 6352 6353

	/*
	 * Take the context lock here so that if find_get_context is
6354
	 * reading child->perf_event_ctxp, we wait until it has
6355 6356
	 * incremented the context's refcount before we do put_ctx below.
	 */
6357
	raw_spin_lock(&child_ctx->lock);
6358
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
6359
	child->perf_event_ctxp[ctxn] = NULL;
6360 6361 6362
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6363
	 * the events from it.
6364 6365
	 */
	unclone_ctx(child_ctx);
6366
	update_context_time(child_ctx);
6367
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6368 6369

	/*
6370 6371 6372
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6373
	 */
6374
	perf_event_task(child, child_ctx, 0);
6375

6376 6377 6378
	/*
	 * We can recurse on the same lock type through:
	 *
6379 6380 6381
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
6382 6383 6384 6385 6386
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6387
	mutex_lock(&child_ctx->mutex);
6388

6389
again:
6390 6391 6392 6393 6394
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6395
				 group_entry)
6396
		__perf_event_exit_task(child_event, child_ctx, child);
6397 6398

	/*
6399
	 * If the last event was a group event, it will have appended all
6400 6401 6402
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6403 6404
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6405
		goto again;
6406 6407 6408 6409

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6410 6411
}

P
Peter Zijlstra 已提交
6412 6413 6414 6415 6416
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6417
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6418 6419
	int ctxn;

P
Peter Zijlstra 已提交
6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6435 6436 6437 6438
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

6453
	perf_group_detach(event);
6454 6455 6456 6457
	list_del_event(event, ctx);
	free_event(event);
}

6458 6459
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6460
 * perf_event_init_task below, used by fork() in case of fail.
6461
 */
6462
void perf_event_free_task(struct task_struct *task)
6463
{
P
Peter Zijlstra 已提交
6464
	struct perf_event_context *ctx;
6465
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6466
	int ctxn;
6467

P
Peter Zijlstra 已提交
6468 6469 6470 6471
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6472

P
Peter Zijlstra 已提交
6473
		mutex_lock(&ctx->mutex);
6474
again:
P
Peter Zijlstra 已提交
6475 6476 6477
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6478

P
Peter Zijlstra 已提交
6479 6480 6481
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6482

P
Peter Zijlstra 已提交
6483 6484 6485
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6486

P
Peter Zijlstra 已提交
6487
		mutex_unlock(&ctx->mutex);
6488

P
Peter Zijlstra 已提交
6489 6490
		put_ctx(ctx);
	}
6491 6492
}

6493 6494 6495 6496 6497 6498 6499 6500
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
6513
	unsigned long flags;
P
Peter Zijlstra 已提交
6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
6526
					   child,
P
Peter Zijlstra 已提交
6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555
					   group_leader, parent_event,
					   NULL);
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;

6556 6557 6558 6559
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
6560
	perf_event__id_header_size(child_event);
6561

P
Peter Zijlstra 已提交
6562 6563 6564
	/*
	 * Link it up in the child's context:
	 */
6565
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6566
	add_event_to_ctx(child_event, child_ctx);
6567
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
6609 6610 6611 6612 6613
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
6614
		   struct task_struct *child, int ctxn,
6615 6616 6617
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
6618
	struct perf_event_context *child_ctx;
6619 6620 6621 6622

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
6623 6624
	}

6625
	child_ctx = child->perf_event_ctxp[ctxn];
6626 6627 6628 6629 6630 6631 6632
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
6633

6634
		child_ctx = alloc_perf_context(event->pmu, child);
6635 6636
		if (!child_ctx)
			return -ENOMEM;
6637

P
Peter Zijlstra 已提交
6638
		child->perf_event_ctxp[ctxn] = child_ctx;
6639 6640 6641 6642 6643 6644 6645 6646 6647
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
6648 6649
}

6650
/*
6651
 * Initialize the perf_event context in task_struct
6652
 */
P
Peter Zijlstra 已提交
6653
int perf_event_init_context(struct task_struct *child, int ctxn)
6654
{
6655
	struct perf_event_context *child_ctx, *parent_ctx;
6656 6657
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
6658
	struct task_struct *parent = current;
6659
	int inherited_all = 1;
6660
	unsigned long flags;
6661
	int ret = 0;
6662

P
Peter Zijlstra 已提交
6663
	if (likely(!parent->perf_event_ctxp[ctxn]))
6664 6665
		return 0;

6666
	/*
6667 6668
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
6669
	 */
P
Peter Zijlstra 已提交
6670
	parent_ctx = perf_pin_task_context(parent, ctxn);
6671

6672 6673 6674 6675 6676 6677 6678
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

6679 6680 6681 6682
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
6683
	mutex_lock(&parent_ctx->mutex);
6684 6685 6686 6687 6688

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
6689
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
6690 6691
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6692 6693 6694
		if (ret)
			break;
	}
6695

6696 6697 6698 6699 6700 6701 6702 6703 6704
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

6705
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
6706 6707
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6708
		if (ret)
6709
			break;
6710 6711
	}

6712 6713 6714
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
6715
	child_ctx = child->perf_event_ctxp[ctxn];
6716

6717
	if (child_ctx && inherited_all) {
6718 6719 6720
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
6721 6722 6723
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
6724
		 */
P
Peter Zijlstra 已提交
6725
		cloned_ctx = parent_ctx->parent_ctx;
6726 6727
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
6728
			child_ctx->parent_gen = parent_ctx->parent_gen;
6729 6730 6731 6732 6733
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
6734 6735
	}

P
Peter Zijlstra 已提交
6736
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6737
	mutex_unlock(&parent_ctx->mutex);
6738

6739
	perf_unpin_context(parent_ctx);
6740
	put_ctx(parent_ctx);
6741

6742
	return ret;
6743 6744
}

P
Peter Zijlstra 已提交
6745 6746 6747 6748 6749 6750 6751
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

6752 6753 6754 6755
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
6756 6757 6758 6759 6760 6761 6762 6763 6764
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

6765 6766
static void __init perf_event_init_all_cpus(void)
{
6767
	struct swevent_htable *swhash;
6768 6769 6770
	int cpu;

	for_each_possible_cpu(cpu) {
6771 6772
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
6773
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6774 6775 6776
	}
}

6777
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
6778
{
P
Peter Zijlstra 已提交
6779
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
6780

6781 6782
	mutex_lock(&swhash->hlist_mutex);
	if (swhash->hlist_refcount > 0) {
6783 6784
		struct swevent_hlist *hlist;

6785 6786 6787
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6788
	}
6789
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
6790 6791
}

P
Peter Zijlstra 已提交
6792
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6793
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
6794
{
6795 6796 6797 6798 6799 6800 6801
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
6802
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
6803
{
P
Peter Zijlstra 已提交
6804
	struct perf_event_context *ctx = __info;
6805
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
6806

P
Peter Zijlstra 已提交
6807
	perf_pmu_rotate_stop(ctx->pmu);
6808

6809
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6810
		__perf_remove_from_context(event);
6811
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6812
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
6813
}
P
Peter Zijlstra 已提交
6814 6815 6816 6817 6818 6819 6820 6821 6822

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6823
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
6824 6825 6826 6827 6828 6829 6830 6831

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

6832
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
6833
{
6834
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6835

6836 6837 6838
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
6839

P
Peter Zijlstra 已提交
6840
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
6841 6842
}
#else
6843
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
6844 6845
#endif

P
Peter Zijlstra 已提交
6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
6866 6867 6868 6869 6870
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

P
Peter Zijlstra 已提交
6871
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
6872 6873

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
6874
	case CPU_DOWN_FAILED:
6875
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
6876 6877
		break;

P
Peter Zijlstra 已提交
6878
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
6879
	case CPU_DOWN_PREPARE:
6880
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
6881 6882 6883 6884 6885 6886 6887 6888 6889
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

6890
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
6891
{
6892 6893
	int ret;

P
Peter Zijlstra 已提交
6894 6895
	idr_init(&pmu_idr);

6896
	perf_event_init_all_cpus();
6897
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
6898 6899 6900
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
6901 6902
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
6903
	register_reboot_notifier(&perf_reboot_notifier);
6904 6905 6906

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
T
Thomas Gleixner 已提交
6907
}
P
Peter Zijlstra 已提交
6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
6936 6937 6938 6939 6940 6941 6942

#ifdef CONFIG_CGROUP_PERF
static struct cgroup_subsys_state *perf_cgroup_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct perf_cgroup *jc;

6943
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

static void perf_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

6973 6974
static void
perf_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *task)
S
Stephane Eranian 已提交
6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989
{
	task_function_call(task, __perf_cgroup_move, task);
}

static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

6990
	perf_cgroup_attach_task(cgrp, task);
S
Stephane Eranian 已提交
6991 6992 6993
}

struct cgroup_subsys perf_subsys = {
6994 6995 6996 6997 6998
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
	.create		= perf_cgroup_create,
	.destroy	= perf_cgroup_destroy,
	.exit		= perf_cgroup_exit,
6999
	.attach_task	= perf_cgroup_attach_task,
S
Stephane Eranian 已提交
7000 7001
};
#endif /* CONFIG_CGROUP_PERF */