core.c 173.7 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
T
Thomas Gleixner 已提交
41

42 43
#include "internal.h"

44 45
#include <asm/irq_regs.h>

46
struct remote_function_call {
47 48 49 50
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
84 85 86 87
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
108 109 110 111
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
112 113 114 115 116 117 118
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
119 120 121 122
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

123 124 125 126 127 128 129
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

130 131 132 133 134 135
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
136 137 138 139
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
140
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
141
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
142
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
143

144 145 146
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
147

P
Peter Zijlstra 已提交
148 149 150 151
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

152
/*
153
 * perf event paranoia level:
154 155
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
156
 *   1 - disallow cpu events for unpriv
157
 *   2 - disallow kernel profiling for unpriv
158
 */
159
int sysctl_perf_event_paranoid __read_mostly = 1;
160

161 162
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
163 164

/*
165
 * max perf event sample rate
166
 */
P
Peter Zijlstra 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
185

186
static atomic64_t perf_event_id;
187

188 189 190 191
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
192 193 194 195 196
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
197

198 199 200
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);

201
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
202

203
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
204
{
205
	return "pmu";
T
Thomas Gleixner 已提交
206 207
}

208 209 210 211 212
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
213 214 215 216 217 218
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
235 236
#ifdef CONFIG_CGROUP_PERF

237 238 239 240 241
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

	return !event->cgrp || event->cgrp == cpuctx->cgrp;
}

258
static inline bool perf_tryget_cgroup(struct perf_event *event)
S
Stephane Eranian 已提交
259
{
260
	return css_tryget(&event->cgrp->css);
S
Stephane Eranian 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
309 310
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
311
	/*
312 313
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
314
	 */
315
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
316 317
		return;

318 319 320 321 322 323
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
324 325 326
}

static inline void
327 328
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
329 330 331 332
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

333 334 335 336 337 338
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
339 340 341 342
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
343
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
376 377
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
378 379 380 381 382 383 384 385 386

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
387 388
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
389 390 391 392 393 394 395 396 397 398 399

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
400
				WARN_ON_ONCE(cpuctx->cgrp);
401 402 403 404
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
405 406 407 408
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
409 410
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
411 412 413 414 415 416 417 418
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

419 420
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
421
{
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
444 445
}

446 447
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
448
{
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
467 468 469 470 471 472 473 474
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
475 476
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
477

478
	if (!f.file)
S
Stephane Eranian 已提交
479 480
		return -EBADF;

481
	css = cgroup_css_from_dir(f.file, perf_subsys_id);
482 483 484 485
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
486 487 488 489

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

490
	/* must be done before we fput() the file */
491 492 493 494 495
	if (!perf_tryget_cgroup(event)) {
		event->cgrp = NULL;
		ret = -ENOENT;
		goto out;
	}
496

S
Stephane Eranian 已提交
497 498 499 500 501 502 503 504 505
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
506
out:
507
	fdput(f);
S
Stephane Eranian 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

581 582
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
583 584 585
{
}

586 587
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
588 589 590 591 592 593 594 595 596 597 598
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
599 600
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
631
void perf_pmu_disable(struct pmu *pmu)
632
{
P
Peter Zijlstra 已提交
633 634 635
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
636 637
}

P
Peter Zijlstra 已提交
638
void perf_pmu_enable(struct pmu *pmu)
639
{
P
Peter Zijlstra 已提交
640 641 642
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
643 644
}

645 646 647 648 649 650 651
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
652
static void perf_pmu_rotate_start(struct pmu *pmu)
653
{
P
Peter Zijlstra 已提交
654
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
655
	struct list_head *head = &__get_cpu_var(rotation_list);
656

657
	WARN_ON(!irqs_disabled());
658

659 660
	if (list_empty(&cpuctx->rotation_list)) {
		int was_empty = list_empty(head);
661
		list_add(&cpuctx->rotation_list, head);
662 663 664
		if (was_empty)
			tick_nohz_full_kick();
	}
665 666
}

667
static void get_ctx(struct perf_event_context *ctx)
668
{
669
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
670 671
}

672
static void put_ctx(struct perf_event_context *ctx)
673
{
674 675 676
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
677 678
		if (ctx->task)
			put_task_struct(ctx->task);
679
		kfree_rcu(ctx, rcu_head);
680
	}
681 682
}

683
static void unclone_ctx(struct perf_event_context *ctx)
684 685 686 687 688 689 690
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

713
/*
714
 * If we inherit events we want to return the parent event id
715 716
 * to userspace.
 */
717
static u64 primary_event_id(struct perf_event *event)
718
{
719
	u64 id = event->id;
720

721 722
	if (event->parent)
		id = event->parent->id;
723 724 725 726

	return id;
}

727
/*
728
 * Get the perf_event_context for a task and lock it.
729 730 731
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
732
static struct perf_event_context *
P
Peter Zijlstra 已提交
733
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
734
{
735
	struct perf_event_context *ctx;
736 737

	rcu_read_lock();
P
Peter Zijlstra 已提交
738
retry:
P
Peter Zijlstra 已提交
739
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
740 741 742 743
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
744
		 * perf_event_task_sched_out, though the
745 746 747 748 749 750
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
751
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
752
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
753
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
754 755
			goto retry;
		}
756 757

		if (!atomic_inc_not_zero(&ctx->refcount)) {
758
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
759 760
			ctx = NULL;
		}
761 762 763 764 765 766 767 768 769 770
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
771 772
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
773
{
774
	struct perf_event_context *ctx;
775 776
	unsigned long flags;

P
Peter Zijlstra 已提交
777
	ctx = perf_lock_task_context(task, ctxn, &flags);
778 779
	if (ctx) {
		++ctx->pin_count;
780
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
781 782 783 784
	}
	return ctx;
}

785
static void perf_unpin_context(struct perf_event_context *ctx)
786 787 788
{
	unsigned long flags;

789
	raw_spin_lock_irqsave(&ctx->lock, flags);
790
	--ctx->pin_count;
791
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
792 793
}

794 795 796 797 798 799 800 801 802 803 804
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

805 806 807
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
808 809 810 811

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

812 813 814
	return ctx ? ctx->time : 0;
}

815 816
/*
 * Update the total_time_enabled and total_time_running fields for a event.
817
 * The caller of this function needs to hold the ctx->lock.
818 819 820 821 822 823 824 825 826
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
827 828 829 830 831 832 833 834 835 836 837
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
838
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
839 840
	else if (ctx->is_active)
		run_end = ctx->time;
841 842 843 844
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
845 846 847 848

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
849
		run_end = perf_event_time(event);
850 851

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
852

853 854
}

855 856 857 858 859 860 861 862 863 864 865 866
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

867 868 869 870 871 872 873 874 875
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

876
/*
877
 * Add a event from the lists for its context.
878 879
 * Must be called with ctx->mutex and ctx->lock held.
 */
880
static void
881
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
882
{
883 884
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
885 886

	/*
887 888 889
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
890
	 */
891
	if (event->group_leader == event) {
892 893
		struct list_head *list;

894 895 896
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

897 898
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
899
	}
P
Peter Zijlstra 已提交
900

901
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
902 903
		ctx->nr_cgroups++;

904 905 906
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

907
	list_add_rcu(&event->event_entry, &ctx->event_list);
908
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
909
		perf_pmu_rotate_start(ctx->pmu);
910 911
	ctx->nr_events++;
	if (event->attr.inherit_stat)
912
		ctx->nr_stat++;
913 914
}

J
Jiri Olsa 已提交
915 916 917 918 919 920 921 922 923
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

996
	event->id_header_size = size;
997 998
}

999 1000
static void perf_group_attach(struct perf_event *event)
{
1001
	struct perf_event *group_leader = event->group_leader, *pos;
1002

P
Peter Zijlstra 已提交
1003 1004 1005 1006 1007 1008
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1020 1021 1022 1023 1024

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1025 1026
}

1027
/*
1028
 * Remove a event from the lists for its context.
1029
 * Must be called with ctx->mutex and ctx->lock held.
1030
 */
1031
static void
1032
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1033
{
1034
	struct perf_cpu_context *cpuctx;
1035 1036 1037 1038
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1039
		return;
1040 1041 1042

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1043
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1044
		ctx->nr_cgroups--;
1045 1046 1047 1048 1049 1050 1051 1052 1053
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1054

1055 1056 1057
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1058 1059
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1060
		ctx->nr_stat--;
1061

1062
	list_del_rcu(&event->event_entry);
1063

1064 1065
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1066

1067
	update_group_times(event);
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1078 1079
}

1080
static void perf_group_detach(struct perf_event *event)
1081 1082
{
	struct perf_event *sibling, *tmp;
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1099
		goto out;
1100 1101 1102 1103
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1104

1105
	/*
1106 1107
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1108
	 * to whatever list we are on.
1109
	 */
1110
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1111 1112
		if (list)
			list_move_tail(&sibling->group_entry, list);
1113
		sibling->group_leader = sibling;
1114 1115 1116

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1117
	}
1118 1119 1120 1121 1122 1123

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1124 1125
}

1126 1127 1128
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1129 1130
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1131 1132
}

1133 1134
static void
event_sched_out(struct perf_event *event,
1135
		  struct perf_cpu_context *cpuctx,
1136
		  struct perf_event_context *ctx)
1137
{
1138
	u64 tstamp = perf_event_time(event);
1139 1140 1141 1142 1143 1144 1145 1146 1147
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1148
		delta = tstamp - event->tstamp_stopped;
1149
		event->tstamp_running += delta;
1150
		event->tstamp_stopped = tstamp;
1151 1152
	}

1153
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1154
		return;
1155

1156 1157 1158 1159
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1160
	}
1161
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1162
	event->pmu->del(event, 0);
1163
	event->oncpu = -1;
1164

1165
	if (!is_software_event(event))
1166 1167
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1168 1169
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1170
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1171 1172 1173
		cpuctx->exclusive = 0;
}

1174
static void
1175
group_sched_out(struct perf_event *group_event,
1176
		struct perf_cpu_context *cpuctx,
1177
		struct perf_event_context *ctx)
1178
{
1179
	struct perf_event *event;
1180
	int state = group_event->state;
1181

1182
	event_sched_out(group_event, cpuctx, ctx);
1183 1184 1185 1186

	/*
	 * Schedule out siblings (if any):
	 */
1187 1188
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1189

1190
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1191 1192 1193
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1194
/*
1195
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1196
 *
1197
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1198 1199
 * remove it from the context list.
 */
1200
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1201
{
1202 1203
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1204
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1205

1206
	raw_spin_lock(&ctx->lock);
1207 1208
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1209 1210 1211 1212
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1213
	raw_spin_unlock(&ctx->lock);
1214 1215

	return 0;
T
Thomas Gleixner 已提交
1216 1217 1218 1219
}


/*
1220
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1221
 *
1222
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1223
 * call when the task is on a CPU.
1224
 *
1225 1226
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1227 1228
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1229
 * When called from perf_event_exit_task, it's OK because the
1230
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1231
 */
1232
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1233
{
1234
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1235 1236
	struct task_struct *task = ctx->task;

1237 1238
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1239 1240
	if (!task) {
		/*
1241
		 * Per cpu events are removed via an smp call and
1242
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1243
		 */
1244
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1245 1246 1247 1248
		return;
	}

retry:
1249 1250
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1251

1252
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1253
	/*
1254 1255
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1256
	 */
1257
	if (ctx->is_active) {
1258
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1259 1260 1261 1262
		goto retry;
	}

	/*
1263 1264
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1265
	 */
1266
	list_del_event(event, ctx);
1267
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1268 1269
}

1270
/*
1271
 * Cross CPU call to disable a performance event
1272
 */
1273
int __perf_event_disable(void *info)
1274
{
1275 1276
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1277
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1278 1279

	/*
1280 1281
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1282 1283 1284
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1285
	 */
1286
	if (ctx->task && cpuctx->task_ctx != ctx)
1287
		return -EINVAL;
1288

1289
	raw_spin_lock(&ctx->lock);
1290 1291

	/*
1292
	 * If the event is on, turn it off.
1293 1294
	 * If it is in error state, leave it in error state.
	 */
1295
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1296
		update_context_time(ctx);
S
Stephane Eranian 已提交
1297
		update_cgrp_time_from_event(event);
1298 1299 1300
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1301
		else
1302 1303
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1304 1305
	}

1306
	raw_spin_unlock(&ctx->lock);
1307 1308

	return 0;
1309 1310 1311
}

/*
1312
 * Disable a event.
1313
 *
1314 1315
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1316
 * remains valid.  This condition is satisifed when called through
1317 1318 1319 1320
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1321
 * is the current context on this CPU and preemption is disabled,
1322
 * hence we can't get into perf_event_task_sched_out for this context.
1323
 */
1324
void perf_event_disable(struct perf_event *event)
1325
{
1326
	struct perf_event_context *ctx = event->ctx;
1327 1328 1329 1330
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1331
		 * Disable the event on the cpu that it's on
1332
		 */
1333
		cpu_function_call(event->cpu, __perf_event_disable, event);
1334 1335 1336
		return;
	}

P
Peter Zijlstra 已提交
1337
retry:
1338 1339
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1340

1341
	raw_spin_lock_irq(&ctx->lock);
1342
	/*
1343
	 * If the event is still active, we need to retry the cross-call.
1344
	 */
1345
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1346
		raw_spin_unlock_irq(&ctx->lock);
1347 1348 1349 1350 1351
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1352 1353 1354 1355 1356 1357 1358
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1359 1360 1361
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1362
	}
1363
	raw_spin_unlock_irq(&ctx->lock);
1364
}
1365
EXPORT_SYMBOL_GPL(perf_event_disable);
1366

S
Stephane Eranian 已提交
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1402 1403 1404 1405
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1406
static int
1407
event_sched_in(struct perf_event *event,
1408
		 struct perf_cpu_context *cpuctx,
1409
		 struct perf_event_context *ctx)
1410
{
1411 1412
	u64 tstamp = perf_event_time(event);

1413
	if (event->state <= PERF_EVENT_STATE_OFF)
1414 1415
		return 0;

1416
	event->state = PERF_EVENT_STATE_ACTIVE;
1417
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1429 1430 1431 1432 1433
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1434
	if (event->pmu->add(event, PERF_EF_START)) {
1435 1436
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1437 1438 1439
		return -EAGAIN;
	}

1440
	event->tstamp_running += tstamp - event->tstamp_stopped;
1441

S
Stephane Eranian 已提交
1442
	perf_set_shadow_time(event, ctx, tstamp);
1443

1444
	if (!is_software_event(event))
1445
		cpuctx->active_oncpu++;
1446
	ctx->nr_active++;
1447 1448
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1449

1450
	if (event->attr.exclusive)
1451 1452
		cpuctx->exclusive = 1;

1453 1454 1455
	return 0;
}

1456
static int
1457
group_sched_in(struct perf_event *group_event,
1458
	       struct perf_cpu_context *cpuctx,
1459
	       struct perf_event_context *ctx)
1460
{
1461
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1462
	struct pmu *pmu = group_event->pmu;
1463 1464
	u64 now = ctx->time;
	bool simulate = false;
1465

1466
	if (group_event->state == PERF_EVENT_STATE_OFF)
1467 1468
		return 0;

P
Peter Zijlstra 已提交
1469
	pmu->start_txn(pmu);
1470

1471
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1472
		pmu->cancel_txn(pmu);
1473
		return -EAGAIN;
1474
	}
1475 1476 1477 1478

	/*
	 * Schedule in siblings as one group (if any):
	 */
1479
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1480
		if (event_sched_in(event, cpuctx, ctx)) {
1481
			partial_group = event;
1482 1483 1484 1485
			goto group_error;
		}
	}

1486
	if (!pmu->commit_txn(pmu))
1487
		return 0;
1488

1489 1490 1491 1492
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1503
	 */
1504 1505
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1506 1507 1508 1509 1510 1511 1512 1513
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1514
	}
1515
	event_sched_out(group_event, cpuctx, ctx);
1516

P
Peter Zijlstra 已提交
1517
	pmu->cancel_txn(pmu);
1518

1519 1520 1521
	return -EAGAIN;
}

1522
/*
1523
 * Work out whether we can put this event group on the CPU now.
1524
 */
1525
static int group_can_go_on(struct perf_event *event,
1526 1527 1528 1529
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1530
	 * Groups consisting entirely of software events can always go on.
1531
	 */
1532
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1533 1534 1535
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1536
	 * events can go on.
1537 1538 1539 1540 1541
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1542
	 * events on the CPU, it can't go on.
1543
	 */
1544
	if (event->attr.exclusive && cpuctx->active_oncpu)
1545 1546 1547 1548 1549 1550 1551 1552
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1553 1554
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1555
{
1556 1557
	u64 tstamp = perf_event_time(event);

1558
	list_add_event(event, ctx);
1559
	perf_group_attach(event);
1560 1561 1562
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1563 1564
}

1565 1566 1567 1568 1569 1570
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1571

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1584
/*
1585
 * Cross CPU call to install and enable a performance event
1586 1587
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1588
 */
1589
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1590
{
1591 1592
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1593
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1594 1595 1596
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1597
	perf_ctx_lock(cpuctx, task_ctx);
1598
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1599 1600

	/*
1601
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1602
	 */
1603
	if (task_ctx)
1604
		task_ctx_sched_out(task_ctx);
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1619 1620
		task = task_ctx->task;
	}
1621

1622
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1623

1624
	update_context_time(ctx);
S
Stephane Eranian 已提交
1625 1626 1627 1628 1629 1630
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1631

1632
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1633

1634
	/*
1635
	 * Schedule everything back in
1636
	 */
1637
	perf_event_sched_in(cpuctx, task_ctx, task);
1638 1639 1640

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1641 1642

	return 0;
T
Thomas Gleixner 已提交
1643 1644 1645
}

/*
1646
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1647
 *
1648 1649
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1650
 *
1651
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1652 1653 1654 1655
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1656 1657
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1658 1659 1660 1661
			int cpu)
{
	struct task_struct *task = ctx->task;

1662 1663
	lockdep_assert_held(&ctx->mutex);

1664
	event->ctx = ctx;
1665 1666
	if (event->cpu != -1)
		event->cpu = cpu;
1667

T
Thomas Gleixner 已提交
1668 1669
	if (!task) {
		/*
1670
		 * Per cpu events are installed via an smp call and
1671
		 * the install is always successful.
T
Thomas Gleixner 已提交
1672
		 */
1673
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1674 1675 1676 1677
		return;
	}

retry:
1678 1679
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1680

1681
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1682
	/*
1683 1684
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1685
	 */
1686
	if (ctx->is_active) {
1687
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1688 1689 1690 1691
		goto retry;
	}

	/*
1692 1693
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1694
	 */
1695
	add_event_to_ctx(event, ctx);
1696
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1697 1698
}

1699
/*
1700
 * Put a event into inactive state and update time fields.
1701 1702 1703 1704 1705 1706
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1707
static void __perf_event_mark_enabled(struct perf_event *event)
1708
{
1709
	struct perf_event *sub;
1710
	u64 tstamp = perf_event_time(event);
1711

1712
	event->state = PERF_EVENT_STATE_INACTIVE;
1713
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1714
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1715 1716
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1717
	}
1718 1719
}

1720
/*
1721
 * Cross CPU call to enable a performance event
1722
 */
1723
static int __perf_event_enable(void *info)
1724
{
1725 1726 1727
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1728
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1729
	int err;
1730

1731 1732
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1733

1734
	raw_spin_lock(&ctx->lock);
1735
	update_context_time(ctx);
1736

1737
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1738
		goto unlock;
S
Stephane Eranian 已提交
1739 1740 1741 1742

	/*
	 * set current task's cgroup time reference point
	 */
1743
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1744

1745
	__perf_event_mark_enabled(event);
1746

S
Stephane Eranian 已提交
1747 1748 1749
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1750
		goto unlock;
S
Stephane Eranian 已提交
1751
	}
1752

1753
	/*
1754
	 * If the event is in a group and isn't the group leader,
1755
	 * then don't put it on unless the group is on.
1756
	 */
1757
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1758
		goto unlock;
1759

1760
	if (!group_can_go_on(event, cpuctx, 1)) {
1761
		err = -EEXIST;
1762
	} else {
1763
		if (event == leader)
1764
			err = group_sched_in(event, cpuctx, ctx);
1765
		else
1766
			err = event_sched_in(event, cpuctx, ctx);
1767
	}
1768 1769 1770

	if (err) {
		/*
1771
		 * If this event can't go on and it's part of a
1772 1773
		 * group, then the whole group has to come off.
		 */
1774
		if (leader != event)
1775
			group_sched_out(leader, cpuctx, ctx);
1776
		if (leader->attr.pinned) {
1777
			update_group_times(leader);
1778
			leader->state = PERF_EVENT_STATE_ERROR;
1779
		}
1780 1781
	}

P
Peter Zijlstra 已提交
1782
unlock:
1783
	raw_spin_unlock(&ctx->lock);
1784 1785

	return 0;
1786 1787 1788
}

/*
1789
 * Enable a event.
1790
 *
1791 1792
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1793
 * remains valid.  This condition is satisfied when called through
1794 1795
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1796
 */
1797
void perf_event_enable(struct perf_event *event)
1798
{
1799
	struct perf_event_context *ctx = event->ctx;
1800 1801 1802 1803
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1804
		 * Enable the event on the cpu that it's on
1805
		 */
1806
		cpu_function_call(event->cpu, __perf_event_enable, event);
1807 1808 1809
		return;
	}

1810
	raw_spin_lock_irq(&ctx->lock);
1811
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1812 1813 1814
		goto out;

	/*
1815 1816
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1817 1818 1819 1820
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1821 1822
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1823

P
Peter Zijlstra 已提交
1824
retry:
1825
	if (!ctx->is_active) {
1826
		__perf_event_mark_enabled(event);
1827 1828 1829
		goto out;
	}

1830
	raw_spin_unlock_irq(&ctx->lock);
1831 1832 1833

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1834

1835
	raw_spin_lock_irq(&ctx->lock);
1836 1837

	/*
1838
	 * If the context is active and the event is still off,
1839 1840
	 * we need to retry the cross-call.
	 */
1841 1842 1843 1844 1845 1846
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1847
		goto retry;
1848
	}
1849

P
Peter Zijlstra 已提交
1850
out:
1851
	raw_spin_unlock_irq(&ctx->lock);
1852
}
1853
EXPORT_SYMBOL_GPL(perf_event_enable);
1854

1855
int perf_event_refresh(struct perf_event *event, int refresh)
1856
{
1857
	/*
1858
	 * not supported on inherited events
1859
	 */
1860
	if (event->attr.inherit || !is_sampling_event(event))
1861 1862
		return -EINVAL;

1863 1864
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1865 1866

	return 0;
1867
}
1868
EXPORT_SYMBOL_GPL(perf_event_refresh);
1869

1870 1871 1872
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1873
{
1874
	struct perf_event *event;
1875
	int is_active = ctx->is_active;
1876

1877
	ctx->is_active &= ~event_type;
1878
	if (likely(!ctx->nr_events))
1879 1880
		return;

1881
	update_context_time(ctx);
S
Stephane Eranian 已提交
1882
	update_cgrp_time_from_cpuctx(cpuctx);
1883
	if (!ctx->nr_active)
1884
		return;
1885

P
Peter Zijlstra 已提交
1886
	perf_pmu_disable(ctx->pmu);
1887
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1888 1889
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1890
	}
1891

1892
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1893
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1894
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1895
	}
P
Peter Zijlstra 已提交
1896
	perf_pmu_enable(ctx->pmu);
1897 1898
}

1899 1900 1901
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1902 1903 1904 1905
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1906
 * in them directly with an fd; we can only enable/disable all
1907
 * events via prctl, or enable/disable all events in a family
1908 1909
 * via ioctl, which will have the same effect on both contexts.
 */
1910 1911
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1912 1913
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1914
		&& ctx1->parent_gen == ctx2->parent_gen
1915
		&& !ctx1->pin_count && !ctx2->pin_count;
1916 1917
}

1918 1919
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1920 1921 1922
{
	u64 value;

1923
	if (!event->attr.inherit_stat)
1924 1925 1926
		return;

	/*
1927
	 * Update the event value, we cannot use perf_event_read()
1928 1929
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1930
	 * we know the event must be on the current CPU, therefore we
1931 1932
	 * don't need to use it.
	 */
1933 1934
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1935 1936
		event->pmu->read(event);
		/* fall-through */
1937

1938 1939
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1940 1941 1942 1943 1944 1945 1946
		break;

	default:
		break;
	}

	/*
1947
	 * In order to keep per-task stats reliable we need to flip the event
1948 1949
	 * values when we flip the contexts.
	 */
1950 1951 1952
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1953

1954 1955
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1956

1957
	/*
1958
	 * Since we swizzled the values, update the user visible data too.
1959
	 */
1960 1961
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1962 1963 1964 1965 1966
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1967 1968
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1969
{
1970
	struct perf_event *event, *next_event;
1971 1972 1973 1974

	if (!ctx->nr_stat)
		return;

1975 1976
	update_context_time(ctx);

1977 1978
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1979

1980 1981
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1982

1983 1984
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1985

1986
		__perf_event_sync_stat(event, next_event);
1987

1988 1989
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1990 1991 1992
	}
}

1993 1994
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
1995
{
P
Peter Zijlstra 已提交
1996
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1997 1998
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1999
	struct perf_cpu_context *cpuctx;
2000
	int do_switch = 1;
T
Thomas Gleixner 已提交
2001

P
Peter Zijlstra 已提交
2002 2003
	if (likely(!ctx))
		return;
2004

P
Peter Zijlstra 已提交
2005 2006
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2007 2008
		return;

2009 2010
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
2011
	next_ctx = next->perf_event_ctxp[ctxn];
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2023 2024
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2025
		if (context_equiv(ctx, next_ctx)) {
2026 2027
			/*
			 * XXX do we need a memory barrier of sorts
2028
			 * wrt to rcu_dereference() of perf_event_ctxp
2029
			 */
P
Peter Zijlstra 已提交
2030 2031
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2032 2033 2034
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2035

2036
			perf_event_sync_stat(ctx, next_ctx);
2037
		}
2038 2039
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2040
	}
2041
	rcu_read_unlock();
2042

2043
	if (do_switch) {
2044
		raw_spin_lock(&ctx->lock);
2045
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2046
		cpuctx->task_ctx = NULL;
2047
		raw_spin_unlock(&ctx->lock);
2048
	}
T
Thomas Gleixner 已提交
2049 2050
}

P
Peter Zijlstra 已提交
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2065 2066
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2067 2068 2069 2070 2071
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2072 2073 2074 2075 2076 2077 2078

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2079
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2080 2081
}

2082
static void task_ctx_sched_out(struct perf_event_context *ctx)
2083
{
P
Peter Zijlstra 已提交
2084
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2085

2086 2087
	if (!cpuctx->task_ctx)
		return;
2088 2089 2090 2091

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2092
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2093 2094 2095
	cpuctx->task_ctx = NULL;
}

2096 2097 2098 2099 2100 2101 2102
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2103 2104
}

2105
static void
2106
ctx_pinned_sched_in(struct perf_event_context *ctx,
2107
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2108
{
2109
	struct perf_event *event;
T
Thomas Gleixner 已提交
2110

2111 2112
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2113
			continue;
2114
		if (!event_filter_match(event))
2115 2116
			continue;

S
Stephane Eranian 已提交
2117 2118 2119 2120
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2121
		if (group_can_go_on(event, cpuctx, 1))
2122
			group_sched_in(event, cpuctx, ctx);
2123 2124 2125 2126 2127

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2128 2129 2130
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2131
		}
2132
	}
2133 2134 2135 2136
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2137
		      struct perf_cpu_context *cpuctx)
2138 2139 2140
{
	struct perf_event *event;
	int can_add_hw = 1;
2141

2142 2143 2144
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2145
			continue;
2146 2147
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2148
		 * of events:
2149
		 */
2150
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2151 2152
			continue;

S
Stephane Eranian 已提交
2153 2154 2155 2156
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2157
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2158
			if (group_sched_in(event, cpuctx, ctx))
2159
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2160
		}
T
Thomas Gleixner 已提交
2161
	}
2162 2163 2164 2165 2166
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2167 2168
	     enum event_type_t event_type,
	     struct task_struct *task)
2169
{
S
Stephane Eranian 已提交
2170
	u64 now;
2171
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2172

2173
	ctx->is_active |= event_type;
2174
	if (likely(!ctx->nr_events))
2175
		return;
2176

S
Stephane Eranian 已提交
2177 2178
	now = perf_clock();
	ctx->timestamp = now;
2179
	perf_cgroup_set_timestamp(task, ctx);
2180 2181 2182 2183
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2184
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2185
		ctx_pinned_sched_in(ctx, cpuctx);
2186 2187

	/* Then walk through the lower prio flexible groups */
2188
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2189
		ctx_flexible_sched_in(ctx, cpuctx);
2190 2191
}

2192
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2193 2194
			     enum event_type_t event_type,
			     struct task_struct *task)
2195 2196 2197
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2198
	ctx_sched_in(ctx, cpuctx, event_type, task);
2199 2200
}

S
Stephane Eranian 已提交
2201 2202
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2203
{
P
Peter Zijlstra 已提交
2204
	struct perf_cpu_context *cpuctx;
2205

P
Peter Zijlstra 已提交
2206
	cpuctx = __get_cpu_context(ctx);
2207 2208 2209
	if (cpuctx->task_ctx == ctx)
		return;

2210
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2211
	perf_pmu_disable(ctx->pmu);
2212 2213 2214 2215 2216 2217 2218
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2219 2220
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2221

2222 2223
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2224 2225 2226
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2227 2228 2229 2230
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2231
	perf_pmu_rotate_start(ctx->pmu);
2232 2233
}

2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			pmu = cpuctx->ctx.pmu;

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2305 2306
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2307 2308 2309 2310 2311 2312 2313 2314 2315
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2316
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2317
	}
S
Stephane Eranian 已提交
2318 2319 2320 2321 2322 2323
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2324
		perf_cgroup_sched_in(prev, task);
2325 2326 2327 2328

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2329 2330
}

2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2358
#define REDUCE_FLS(a, b)		\
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2398 2399 2400
	if (!divisor)
		return dividend;

2401 2402 2403
	return div64_u64(dividend, divisor);
}

2404 2405 2406
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2407
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2408
{
2409
	struct hw_perf_event *hwc = &event->hw;
2410
	s64 period, sample_period;
2411 2412
	s64 delta;

2413
	period = perf_calculate_period(event, nsec, count);
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2424

2425
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2426 2427 2428
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2429
		local64_set(&hwc->period_left, 0);
2430 2431 2432

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2433
	}
2434 2435
}

2436 2437 2438 2439 2440 2441 2442
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2443
{
2444 2445
	struct perf_event *event;
	struct hw_perf_event *hwc;
2446
	u64 now, period = TICK_NSEC;
2447
	s64 delta;
2448

2449 2450 2451 2452 2453 2454
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2455 2456
		return;

2457
	raw_spin_lock(&ctx->lock);
2458
	perf_pmu_disable(ctx->pmu);
2459

2460
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2461
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2462 2463
			continue;

2464
		if (!event_filter_match(event))
2465 2466
			continue;

2467
		hwc = &event->hw;
2468

2469 2470
		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
			hwc->interrupts = 0;
2471
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2472
			event->pmu->start(event, 0);
2473 2474
		}

2475
		if (!event->attr.freq || !event->attr.sample_freq)
2476 2477
			continue;

2478 2479 2480 2481 2482
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2483
		now = local64_read(&event->count);
2484 2485
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2486

2487 2488 2489
		/*
		 * restart the event
		 * reload only if value has changed
2490 2491 2492
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2493
		 */
2494
		if (delta > 0)
2495
			perf_adjust_period(event, period, delta, false);
2496 2497

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2498
	}
2499

2500
	perf_pmu_enable(ctx->pmu);
2501
	raw_spin_unlock(&ctx->lock);
2502 2503
}

2504
/*
2505
 * Round-robin a context's events:
2506
 */
2507
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2508
{
2509 2510 2511 2512 2513 2514
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2515 2516
}

2517
/*
2518 2519 2520
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2521
 */
2522
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2523
{
P
Peter Zijlstra 已提交
2524
	struct perf_event_context *ctx = NULL;
2525
	int rotate = 0, remove = 1;
2526

2527
	if (cpuctx->ctx.nr_events) {
2528
		remove = 0;
2529 2530 2531
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2532

P
Peter Zijlstra 已提交
2533
	ctx = cpuctx->task_ctx;
2534
	if (ctx && ctx->nr_events) {
2535
		remove = 0;
2536 2537 2538
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2539

2540
	if (!rotate)
2541 2542
		goto done;

2543
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2544
	perf_pmu_disable(cpuctx->ctx.pmu);
2545

2546 2547 2548
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2549

2550 2551 2552
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2553

2554
	perf_event_sched_in(cpuctx, ctx, current);
2555

2556 2557
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2558
done:
2559 2560 2561 2562 2563 2564 2565 2566
	if (remove)
		list_del_init(&cpuctx->rotation_list);
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2567 2568
	struct perf_event_context *ctx;
	int throttled;
2569

2570 2571
	WARN_ON(!irqs_disabled());

2572 2573 2574
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2575
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2576 2577 2578 2579 2580 2581 2582
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);

2583 2584 2585 2586
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2587 2588
}

2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2599
	__perf_event_mark_enabled(event);
2600 2601 2602 2603

	return 1;
}

2604
/*
2605
 * Enable all of a task's events that have been marked enable-on-exec.
2606 2607
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2608
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2609
{
2610
	struct perf_event *event;
2611 2612
	unsigned long flags;
	int enabled = 0;
2613
	int ret;
2614 2615

	local_irq_save(flags);
2616
	if (!ctx || !ctx->nr_events)
2617 2618
		goto out;

2619 2620 2621 2622 2623 2624 2625
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2626
	perf_cgroup_sched_out(current, NULL);
2627

2628
	raw_spin_lock(&ctx->lock);
2629
	task_ctx_sched_out(ctx);
2630

2631
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2632 2633 2634
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2635 2636 2637
	}

	/*
2638
	 * Unclone this context if we enabled any event.
2639
	 */
2640 2641
	if (enabled)
		unclone_ctx(ctx);
2642

2643
	raw_spin_unlock(&ctx->lock);
2644

2645 2646 2647
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2648
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2649
out:
2650 2651 2652
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2653
/*
2654
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2655
 */
2656
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2657
{
2658 2659
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2660
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2661

2662 2663 2664 2665
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2666 2667
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2668 2669 2670 2671
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2672
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2673
	if (ctx->is_active) {
2674
		update_context_time(ctx);
S
Stephane Eranian 已提交
2675 2676
		update_cgrp_time_from_event(event);
	}
2677
	update_event_times(event);
2678 2679
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2680
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2681 2682
}

P
Peter Zijlstra 已提交
2683 2684
static inline u64 perf_event_count(struct perf_event *event)
{
2685
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2686 2687
}

2688
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2689 2690
{
	/*
2691 2692
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2693
	 */
2694 2695 2696 2697
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2698 2699 2700
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2701
		raw_spin_lock_irqsave(&ctx->lock, flags);
2702 2703 2704 2705 2706
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2707
		if (ctx->is_active) {
2708
			update_context_time(ctx);
S
Stephane Eranian 已提交
2709 2710
			update_cgrp_time_from_event(event);
		}
2711
		update_event_times(event);
2712
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2713 2714
	}

P
Peter Zijlstra 已提交
2715
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2716 2717
}

2718
/*
2719
 * Initialize the perf_event context in a task_struct:
2720
 */
2721
static void __perf_event_init_context(struct perf_event_context *ctx)
2722
{
2723
	raw_spin_lock_init(&ctx->lock);
2724
	mutex_init(&ctx->mutex);
2725 2726
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2727 2728
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2744
	}
2745 2746 2747
	ctx->pmu = pmu;

	return ctx;
2748 2749
}

2750 2751 2752 2753 2754
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2755 2756

	rcu_read_lock();
2757
	if (!vpid)
T
Thomas Gleixner 已提交
2758 2759
		task = current;
	else
2760
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2761 2762 2763 2764 2765 2766 2767 2768
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2769 2770 2771 2772
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2773 2774 2775 2776 2777 2778 2779
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2780 2781 2782
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2783
static struct perf_event_context *
M
Matt Helsley 已提交
2784
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2785
{
2786
	struct perf_event_context *ctx;
2787
	struct perf_cpu_context *cpuctx;
2788
	unsigned long flags;
P
Peter Zijlstra 已提交
2789
	int ctxn, err;
T
Thomas Gleixner 已提交
2790

2791
	if (!task) {
2792
		/* Must be root to operate on a CPU event: */
2793
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2794 2795 2796
			return ERR_PTR(-EACCES);

		/*
2797
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2798 2799 2800
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2801
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2802 2803
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2804
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2805
		ctx = &cpuctx->ctx;
2806
		get_ctx(ctx);
2807
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2808 2809 2810 2811

		return ctx;
	}

P
Peter Zijlstra 已提交
2812 2813 2814 2815 2816
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2817
retry:
P
Peter Zijlstra 已提交
2818
	ctx = perf_lock_task_context(task, ctxn, &flags);
2819
	if (ctx) {
2820
		unclone_ctx(ctx);
2821
		++ctx->pin_count;
2822
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2823
	} else {
2824
		ctx = alloc_perf_context(pmu, task);
2825 2826 2827
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2828

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2839
		else {
2840
			get_ctx(ctx);
2841
			++ctx->pin_count;
2842
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2843
		}
2844 2845 2846
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2847
			put_ctx(ctx);
2848 2849 2850 2851

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2852 2853 2854
		}
	}

T
Thomas Gleixner 已提交
2855
	return ctx;
2856

P
Peter Zijlstra 已提交
2857
errout:
2858
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2859 2860
}

L
Li Zefan 已提交
2861 2862
static void perf_event_free_filter(struct perf_event *event);

2863
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2864
{
2865
	struct perf_event *event;
P
Peter Zijlstra 已提交
2866

2867 2868 2869
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2870
	perf_event_free_filter(event);
2871
	kfree(event);
P
Peter Zijlstra 已提交
2872 2873
}

2874
static void ring_buffer_put(struct ring_buffer *rb);
2875

2876
static void free_event(struct perf_event *event)
2877
{
2878
	irq_work_sync(&event->pending);
2879

2880
	if (!event->parent) {
2881
		if (event->attach_state & PERF_ATTACH_TASK)
2882
			static_key_slow_dec_deferred(&perf_sched_events);
2883
		if (event->attr.mmap || event->attr.mmap_data)
2884 2885 2886 2887 2888
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2889 2890
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2891 2892
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2893
			static_key_slow_dec_deferred(&perf_sched_events);
2894
		}
2895 2896 2897 2898 2899 2900 2901 2902

		if (has_branch_stack(event)) {
			static_key_slow_dec_deferred(&perf_sched_events);
			/* is system-wide event */
			if (!(event->attach_state & PERF_ATTACH_TASK))
				atomic_dec(&per_cpu(perf_branch_stack_events,
						    event->cpu));
		}
2903
	}
2904

2905 2906 2907
	if (event->rb) {
		ring_buffer_put(event->rb);
		event->rb = NULL;
2908 2909
	}

S
Stephane Eranian 已提交
2910 2911 2912
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2913 2914
	if (event->destroy)
		event->destroy(event);
2915

P
Peter Zijlstra 已提交
2916 2917 2918
	if (event->ctx)
		put_ctx(event->ctx);

2919
	call_rcu(&event->rcu_head, free_event_rcu);
2920 2921
}

2922
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2923
{
2924
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2925

2926
	WARN_ON_ONCE(ctx->parent_ctx);
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2940
	raw_spin_lock_irq(&ctx->lock);
2941
	perf_group_detach(event);
2942
	raw_spin_unlock_irq(&ctx->lock);
2943
	perf_remove_from_context(event);
2944
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2945

2946
	free_event(event);
T
Thomas Gleixner 已提交
2947 2948 2949

	return 0;
}
2950
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2951

2952 2953 2954
/*
 * Called when the last reference to the file is gone.
 */
2955
static void put_event(struct perf_event *event)
2956
{
P
Peter Zijlstra 已提交
2957
	struct task_struct *owner;
2958

2959 2960
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
2961

P
Peter Zijlstra 已提交
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

2995 2996 2997 2998 2999 3000 3001
	perf_event_release_kernel(event);
}

static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3002 3003
}

3004
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3005
{
3006
	struct perf_event *child;
3007 3008
	u64 total = 0;

3009 3010 3011
	*enabled = 0;
	*running = 0;

3012
	mutex_lock(&event->child_mutex);
3013
	total += perf_event_read(event);
3014 3015 3016 3017 3018 3019
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3020
		total += perf_event_read(child);
3021 3022 3023
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3024
	mutex_unlock(&event->child_mutex);
3025 3026 3027

	return total;
}
3028
EXPORT_SYMBOL_GPL(perf_event_read_value);
3029

3030
static int perf_event_read_group(struct perf_event *event,
3031 3032
				   u64 read_format, char __user *buf)
{
3033
	struct perf_event *leader = event->group_leader, *sub;
3034 3035
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3036
	u64 values[5];
3037
	u64 count, enabled, running;
3038

3039
	mutex_lock(&ctx->mutex);
3040
	count = perf_event_read_value(leader, &enabled, &running);
3041 3042

	values[n++] = 1 + leader->nr_siblings;
3043 3044 3045 3046
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3047 3048 3049
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3050 3051 3052 3053

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3054
		goto unlock;
3055

3056
	ret = size;
3057

3058
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3059
		n = 0;
3060

3061
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3062 3063 3064 3065 3066
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3067
		if (copy_to_user(buf + ret, values, size)) {
3068 3069 3070
			ret = -EFAULT;
			goto unlock;
		}
3071 3072

		ret += size;
3073
	}
3074 3075
unlock:
	mutex_unlock(&ctx->mutex);
3076

3077
	return ret;
3078 3079
}

3080
static int perf_event_read_one(struct perf_event *event,
3081 3082
				 u64 read_format, char __user *buf)
{
3083
	u64 enabled, running;
3084 3085 3086
	u64 values[4];
	int n = 0;

3087 3088 3089 3090 3091
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3092
	if (read_format & PERF_FORMAT_ID)
3093
		values[n++] = primary_event_id(event);
3094 3095 3096 3097 3098 3099 3100

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3101
/*
3102
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3103 3104
 */
static ssize_t
3105
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3106
{
3107
	u64 read_format = event->attr.read_format;
3108
	int ret;
T
Thomas Gleixner 已提交
3109

3110
	/*
3111
	 * Return end-of-file for a read on a event that is in
3112 3113 3114
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3115
	if (event->state == PERF_EVENT_STATE_ERROR)
3116 3117
		return 0;

3118
	if (count < event->read_size)
3119 3120
		return -ENOSPC;

3121
	WARN_ON_ONCE(event->ctx->parent_ctx);
3122
	if (read_format & PERF_FORMAT_GROUP)
3123
		ret = perf_event_read_group(event, read_format, buf);
3124
	else
3125
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3126

3127
	return ret;
T
Thomas Gleixner 已提交
3128 3129 3130 3131 3132
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3133
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3134

3135
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3136 3137 3138 3139
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3140
	struct perf_event *event = file->private_data;
3141
	struct ring_buffer *rb;
3142
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3143

3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
	/*
	 * Race between perf_event_set_output() and perf_poll(): perf_poll()
	 * grabs the rb reference but perf_event_set_output() overrides it.
	 * Here is the timeline for two threads T1, T2:
	 * t0: T1, rb = rcu_dereference(event->rb)
	 * t1: T2, old_rb = event->rb
	 * t2: T2, event->rb = new rb
	 * t3: T2, ring_buffer_detach(old_rb)
	 * t4: T1, ring_buffer_attach(rb1)
	 * t5: T1, poll_wait(event->waitq)
	 *
	 * To avoid this problem, we grab mmap_mutex in perf_poll()
	 * thereby ensuring that the assignment of the new ring buffer
	 * and the detachment of the old buffer appear atomic to perf_poll()
	 */
	mutex_lock(&event->mmap_mutex);

P
Peter Zijlstra 已提交
3161
	rcu_read_lock();
3162
	rb = rcu_dereference(event->rb);
3163 3164
	if (rb) {
		ring_buffer_attach(event, rb);
3165
		events = atomic_xchg(&rb->poll, 0);
3166
	}
P
Peter Zijlstra 已提交
3167
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3168

3169 3170
	mutex_unlock(&event->mmap_mutex);

3171
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3172 3173 3174 3175

	return events;
}

3176
static void perf_event_reset(struct perf_event *event)
3177
{
3178
	(void)perf_event_read(event);
3179
	local64_set(&event->count, 0);
3180
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3181 3182
}

3183
/*
3184 3185 3186 3187
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3188
 */
3189 3190
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3191
{
3192
	struct perf_event *child;
P
Peter Zijlstra 已提交
3193

3194 3195 3196 3197
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3198
		func(child);
3199
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3200 3201
}

3202 3203
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3204
{
3205 3206
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3207

3208 3209
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3210
	event = event->group_leader;
3211

3212 3213
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3214
		perf_event_for_each_child(sibling, func);
3215
	mutex_unlock(&ctx->mutex);
3216 3217
}

3218
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3219
{
3220
	struct perf_event_context *ctx = event->ctx;
3221 3222 3223
	int ret = 0;
	u64 value;

3224
	if (!is_sampling_event(event))
3225 3226
		return -EINVAL;

3227
	if (copy_from_user(&value, arg, sizeof(value)))
3228 3229 3230 3231 3232
		return -EFAULT;

	if (!value)
		return -EINVAL;

3233
	raw_spin_lock_irq(&ctx->lock);
3234 3235
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3236 3237 3238 3239
			ret = -EINVAL;
			goto unlock;
		}

3240
		event->attr.sample_freq = value;
3241
	} else {
3242 3243
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3244 3245
	}
unlock:
3246
	raw_spin_unlock_irq(&ctx->lock);
3247 3248 3249 3250

	return ret;
}

3251 3252
static const struct file_operations perf_fops;

3253
static inline int perf_fget_light(int fd, struct fd *p)
3254
{
3255 3256 3257
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3258

3259 3260 3261
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3262
	}
3263 3264
	*p = f;
	return 0;
3265 3266 3267 3268
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3269
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3270

3271 3272
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3273 3274
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3275
	u32 flags = arg;
3276 3277

	switch (cmd) {
3278 3279
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3280
		break;
3281 3282
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3283
		break;
3284 3285
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3286
		break;
P
Peter Zijlstra 已提交
3287

3288 3289
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3290

3291 3292
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3293

3294
	case PERF_EVENT_IOC_SET_OUTPUT:
3295 3296 3297
	{
		int ret;
		if (arg != -1) {
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3308 3309 3310
		}
		return ret;
	}
3311

L
Li Zefan 已提交
3312 3313 3314
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3315
	default:
P
Peter Zijlstra 已提交
3316
		return -ENOTTY;
3317
	}
P
Peter Zijlstra 已提交
3318 3319

	if (flags & PERF_IOC_FLAG_GROUP)
3320
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3321
	else
3322
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3323 3324

	return 0;
3325 3326
}

3327
int perf_event_task_enable(void)
3328
{
3329
	struct perf_event *event;
3330

3331 3332 3333 3334
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3335 3336 3337 3338

	return 0;
}

3339
int perf_event_task_disable(void)
3340
{
3341
	struct perf_event *event;
3342

3343 3344 3345 3346
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3347 3348 3349 3350

	return 0;
}

3351
static int perf_event_index(struct perf_event *event)
3352
{
P
Peter Zijlstra 已提交
3353 3354 3355
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3356
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3357 3358
		return 0;

3359
	return event->pmu->event_idx(event);
3360 3361
}

3362
static void calc_timer_values(struct perf_event *event,
3363
				u64 *now,
3364 3365
				u64 *enabled,
				u64 *running)
3366
{
3367
	u64 ctx_time;
3368

3369 3370
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3371 3372 3373 3374
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3375
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3376 3377 3378
{
}

3379 3380 3381 3382 3383
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3384
void perf_event_update_userpage(struct perf_event *event)
3385
{
3386
	struct perf_event_mmap_page *userpg;
3387
	struct ring_buffer *rb;
3388
	u64 enabled, running, now;
3389 3390

	rcu_read_lock();
3391 3392 3393 3394 3395 3396 3397 3398 3399
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3400
	calc_timer_values(event, &now, &enabled, &running);
3401 3402
	rb = rcu_dereference(event->rb);
	if (!rb)
3403 3404
		goto unlock;

3405
	userpg = rb->user_page;
3406

3407 3408 3409 3410 3411
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3412
	++userpg->lock;
3413
	barrier();
3414
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3415
	userpg->offset = perf_event_count(event);
3416
	if (userpg->index)
3417
		userpg->offset -= local64_read(&event->hw.prev_count);
3418

3419
	userpg->time_enabled = enabled +
3420
			atomic64_read(&event->child_total_time_enabled);
3421

3422
	userpg->time_running = running +
3423
			atomic64_read(&event->child_total_time_running);
3424

3425
	arch_perf_update_userpage(userpg, now);
3426

3427
	barrier();
3428
	++userpg->lock;
3429
	preempt_enable();
3430
unlock:
3431
	rcu_read_unlock();
3432 3433
}

3434 3435 3436
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3437
	struct ring_buffer *rb;
3438 3439 3440 3441 3442 3443 3444 3445 3446
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3447 3448
	rb = rcu_dereference(event->rb);
	if (!rb)
3449 3450 3451 3452 3453
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3454
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	if (!list_empty(&event->rb_entry))
		goto unlock;

	list_add(&event->rb_entry, &rb->event_list);
unlock:
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_detach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3506 3507 3508 3509
	if (!rb)
		goto unlock;

	list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3510
		wake_up_all(&event->waitq);
3511 3512

unlock:
3513 3514 3515
	rcu_read_unlock();
}

3516
static void rb_free_rcu(struct rcu_head *rcu_head)
3517
{
3518
	struct ring_buffer *rb;
3519

3520 3521
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3522 3523
}

3524
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3525
{
3526
	struct ring_buffer *rb;
3527

3528
	rcu_read_lock();
3529 3530 3531 3532
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3533 3534 3535
	}
	rcu_read_unlock();

3536
	return rb;
3537 3538
}

3539
static void ring_buffer_put(struct ring_buffer *rb)
3540
{
3541 3542 3543
	struct perf_event *event, *n;
	unsigned long flags;

3544
	if (!atomic_dec_and_test(&rb->refcount))
3545
		return;
3546

3547 3548 3549 3550 3551 3552 3553
	spin_lock_irqsave(&rb->event_lock, flags);
	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
		list_del_init(&event->rb_entry);
		wake_up_all(&event->waitq);
	}
	spin_unlock_irqrestore(&rb->event_lock, flags);

3554
	call_rcu(&rb->rcu_head, rb_free_rcu);
3555 3556 3557 3558
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3559
	struct perf_event *event = vma->vm_file->private_data;
3560

3561
	atomic_inc(&event->mmap_count);
3562 3563 3564 3565
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3566
	struct perf_event *event = vma->vm_file->private_data;
3567

3568
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3569
		unsigned long size = perf_data_size(event->rb);
3570
		struct user_struct *user = event->mmap_user;
3571
		struct ring_buffer *rb = event->rb;
3572

3573
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3574
		vma->vm_mm->pinned_vm -= event->mmap_locked;
3575
		rcu_assign_pointer(event->rb, NULL);
3576
		ring_buffer_detach(event, rb);
3577
		mutex_unlock(&event->mmap_mutex);
3578

3579
		ring_buffer_put(rb);
3580
		free_uid(user);
3581
	}
3582 3583
}

3584
static const struct vm_operations_struct perf_mmap_vmops = {
3585 3586 3587 3588
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3589 3590 3591 3592
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3593
	struct perf_event *event = file->private_data;
3594
	unsigned long user_locked, user_lock_limit;
3595
	struct user_struct *user = current_user();
3596
	unsigned long locked, lock_limit;
3597
	struct ring_buffer *rb;
3598 3599
	unsigned long vma_size;
	unsigned long nr_pages;
3600
	long user_extra, extra;
3601
	int ret = 0, flags = 0;
3602

3603 3604 3605
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3606
	 * same rb.
3607 3608 3609 3610
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3611
	if (!(vma->vm_flags & VM_SHARED))
3612
		return -EINVAL;
3613 3614 3615 3616

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3617
	/*
3618
	 * If we have rb pages ensure they're a power-of-two number, so we
3619 3620 3621
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3622 3623
		return -EINVAL;

3624
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3625 3626
		return -EINVAL;

3627 3628
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3629

3630 3631
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3632 3633 3634
	if (event->rb) {
		if (event->rb->nr_pages == nr_pages)
			atomic_inc(&event->rb->refcount);
3635
		else
3636 3637 3638 3639
			ret = -EINVAL;
		goto unlock;
	}

3640
	user_extra = nr_pages + 1;
3641
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3642 3643 3644 3645 3646 3647

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3648
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3649

3650 3651 3652
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3653

3654
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3655
	lock_limit >>= PAGE_SHIFT;
3656
	locked = vma->vm_mm->pinned_vm + extra;
3657

3658 3659
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3660 3661 3662
		ret = -EPERM;
		goto unlock;
	}
3663

3664
	WARN_ON(event->rb);
3665

3666
	if (vma->vm_flags & VM_WRITE)
3667
		flags |= RING_BUFFER_WRITABLE;
3668

3669 3670 3671 3672
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

3673
	if (!rb) {
3674
		ret = -ENOMEM;
3675
		goto unlock;
3676
	}
3677
	rcu_assign_pointer(event->rb, rb);
3678

3679 3680 3681
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
3682
	vma->vm_mm->pinned_vm += event->mmap_locked;
3683

3684 3685
	perf_event_update_userpage(event);

3686
unlock:
3687 3688
	if (!ret)
		atomic_inc(&event->mmap_count);
3689
	mutex_unlock(&event->mmap_mutex);
3690

3691
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3692
	vma->vm_ops = &perf_mmap_vmops;
3693 3694

	return ret;
3695 3696
}

P
Peter Zijlstra 已提交
3697 3698
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
3699
	struct inode *inode = file_inode(filp);
3700
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3701 3702 3703
	int retval;

	mutex_lock(&inode->i_mutex);
3704
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3705 3706 3707 3708 3709 3710 3711 3712
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3713
static const struct file_operations perf_fops = {
3714
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3715 3716 3717
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3718 3719
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3720
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3721
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3722 3723
};

3724
/*
3725
 * Perf event wakeup
3726 3727 3728 3729 3730
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3731
void perf_event_wakeup(struct perf_event *event)
3732
{
3733
	ring_buffer_wakeup(event);
3734

3735 3736 3737
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3738
	}
3739 3740
}

3741
static void perf_pending_event(struct irq_work *entry)
3742
{
3743 3744
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3745

3746 3747 3748
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3749 3750
	}

3751 3752 3753
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3754 3755 3756
	}
}

3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

3904 3905 3906
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

3934 3935 3936
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

3963 3964 3965
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
3966 3967 3968 3969 3970
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

3971
static void perf_output_read_one(struct perf_output_handle *handle,
3972 3973
				 struct perf_event *event,
				 u64 enabled, u64 running)
3974
{
3975
	u64 read_format = event->attr.read_format;
3976 3977 3978
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3979
	values[n++] = perf_event_count(event);
3980
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3981
		values[n++] = enabled +
3982
			atomic64_read(&event->child_total_time_enabled);
3983 3984
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3985
		values[n++] = running +
3986
			atomic64_read(&event->child_total_time_running);
3987 3988
	}
	if (read_format & PERF_FORMAT_ID)
3989
		values[n++] = primary_event_id(event);
3990

3991
	__output_copy(handle, values, n * sizeof(u64));
3992 3993 3994
}

/*
3995
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3996 3997
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3998 3999
			    struct perf_event *event,
			    u64 enabled, u64 running)
4000
{
4001 4002
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4003 4004 4005 4006 4007 4008
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4009
		values[n++] = enabled;
4010 4011

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4012
		values[n++] = running;
4013

4014
	if (leader != event)
4015 4016
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4017
	values[n++] = perf_event_count(leader);
4018
	if (read_format & PERF_FORMAT_ID)
4019
		values[n++] = primary_event_id(leader);
4020

4021
	__output_copy(handle, values, n * sizeof(u64));
4022

4023
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4024 4025
		n = 0;

4026
		if (sub != event)
4027 4028
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4029
		values[n++] = perf_event_count(sub);
4030
		if (read_format & PERF_FORMAT_ID)
4031
			values[n++] = primary_event_id(sub);
4032

4033
		__output_copy(handle, values, n * sizeof(u64));
4034 4035 4036
	}
}

4037 4038 4039
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4040
static void perf_output_read(struct perf_output_handle *handle,
4041
			     struct perf_event *event)
4042
{
4043
	u64 enabled = 0, running = 0, now;
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4055
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4056
		calc_timer_values(event, &now, &enabled, &running);
4057

4058
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4059
		perf_output_read_group(handle, event, enabled, running);
4060
	else
4061
		perf_output_read_one(handle, event, enabled, running);
4062 4063
}

4064 4065 4066
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4067
			struct perf_event *event)
4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4098
		perf_output_read(handle, event);
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4109
			__output_copy(handle, data->callchain, size);
4110 4111 4112 4113 4114 4115 4116 4117 4118
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4119 4120
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4181 4182 4183 4184 4185

	if (sample_type & PERF_SAMPLE_STACK_USER)
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
4186 4187 4188 4189
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4190
			 struct perf_event *event,
4191
			 struct pt_regs *regs)
4192
{
4193
	u64 sample_type = event->attr.sample_type;
4194

4195
	header->type = PERF_RECORD_SAMPLE;
4196
	header->size = sizeof(*header) + event->header_size;
4197 4198 4199

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4200

4201
	__perf_event_header__init_id(header, data, event);
4202

4203
	if (sample_type & PERF_SAMPLE_IP)
4204 4205
		data->ip = perf_instruction_pointer(regs);

4206
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4207
		int size = 1;
4208

4209
		data->callchain = perf_callchain(event, regs);
4210 4211 4212 4213 4214

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4215 4216
	}

4217
	if (sample_type & PERF_SAMPLE_RAW) {
4218 4219 4220 4221 4222 4223 4224 4225
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4226
		header->size += size;
4227
	}
4228 4229 4230 4231 4232 4233 4234 4235 4236

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4280
}
4281

4282
static void perf_event_output(struct perf_event *event,
4283 4284 4285 4286 4287
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4288

4289 4290 4291
	/* protect the callchain buffers */
	rcu_read_lock();

4292
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4293

4294
	if (perf_output_begin(&handle, event, header.size))
4295
		goto exit;
4296

4297
	perf_output_sample(&handle, &header, data, event);
4298

4299
	perf_output_end(&handle);
4300 4301 4302

exit:
	rcu_read_unlock();
4303 4304
}

4305
/*
4306
 * read event_id
4307 4308 4309 4310 4311 4312 4313 4314 4315 4316
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4317
perf_event_read_event(struct perf_event *event,
4318 4319 4320
			struct task_struct *task)
{
	struct perf_output_handle handle;
4321
	struct perf_sample_data sample;
4322
	struct perf_read_event read_event = {
4323
		.header = {
4324
			.type = PERF_RECORD_READ,
4325
			.misc = 0,
4326
			.size = sizeof(read_event) + event->read_size,
4327
		},
4328 4329
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4330
	};
4331
	int ret;
4332

4333
	perf_event_header__init_id(&read_event.header, &sample, event);
4334
	ret = perf_output_begin(&handle, event, read_event.header.size);
4335 4336 4337
	if (ret)
		return;

4338
	perf_output_put(&handle, read_event);
4339
	perf_output_read(&handle, event);
4340
	perf_event__output_id_sample(event, &handle, &sample);
4341

4342 4343 4344
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
4345
/*
P
Peter Zijlstra 已提交
4346 4347
 * task tracking -- fork/exit
 *
4348
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4349 4350
 */

P
Peter Zijlstra 已提交
4351
struct perf_task_event {
4352
	struct task_struct		*task;
4353
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4354 4355 4356 4357 4358 4359

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4360 4361
		u32				tid;
		u32				ptid;
4362
		u64				time;
4363
	} event_id;
P
Peter Zijlstra 已提交
4364 4365
};

4366
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
4367
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4368 4369
{
	struct perf_output_handle handle;
4370
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4371
	struct task_struct *task = task_event->task;
4372
	int ret, size = task_event->event_id.header.size;
4373

4374
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4375

4376
	ret = perf_output_begin(&handle, event,
4377
				task_event->event_id.header.size);
4378
	if (ret)
4379
		goto out;
P
Peter Zijlstra 已提交
4380

4381 4382
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4383

4384 4385
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4386

4387
	perf_output_put(&handle, task_event->event_id);
4388

4389 4390
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4391
	perf_output_end(&handle);
4392 4393
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4394 4395
}

4396
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
4397
{
P
Peter Zijlstra 已提交
4398
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4399 4400
		return 0;

4401
	if (!event_filter_match(event))
4402 4403
		return 0;

4404 4405
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
4406 4407 4408 4409 4410
		return 1;

	return 0;
}

4411
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
4412
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4413
{
4414
	struct perf_event *event;
P
Peter Zijlstra 已提交
4415

4416 4417 4418
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
4419 4420 4421
	}
}

4422
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4423 4424
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
4425
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
4426
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4427
	int ctxn;
P
Peter Zijlstra 已提交
4428

4429
	rcu_read_lock();
P
Peter Zijlstra 已提交
4430
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4431
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4432
		if (cpuctx->unique_pmu != pmu)
4433
			goto next;
P
Peter Zijlstra 已提交
4434
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
4435 4436 4437 4438 4439

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
4440
				goto next;
P
Peter Zijlstra 已提交
4441 4442 4443 4444
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
4445 4446
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4447
	}
P
Peter Zijlstra 已提交
4448 4449 4450
	rcu_read_unlock();
}

4451 4452
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4453
			      int new)
P
Peter Zijlstra 已提交
4454
{
P
Peter Zijlstra 已提交
4455
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4456

4457 4458 4459
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4460 4461
		return;

P
Peter Zijlstra 已提交
4462
	task_event = (struct perf_task_event){
4463 4464
		.task	  = task,
		.task_ctx = task_ctx,
4465
		.event_id    = {
P
Peter Zijlstra 已提交
4466
			.header = {
4467
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4468
				.misc = 0,
4469
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4470
			},
4471 4472
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4473 4474
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4475
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4476 4477 4478
		},
	};

4479
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
4480 4481
}

4482
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4483
{
4484
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4485 4486
}

4487 4488 4489 4490 4491
/*
 * comm tracking
 */

struct perf_comm_event {
4492 4493
	struct task_struct	*task;
	char			*comm;
4494 4495 4496 4497 4498 4499 4500
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4501
	} event_id;
4502 4503
};

4504
static void perf_event_comm_output(struct perf_event *event,
4505 4506 4507
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4508
	struct perf_sample_data sample;
4509
	int size = comm_event->event_id.header.size;
4510 4511 4512 4513
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4514
				comm_event->event_id.header.size);
4515 4516

	if (ret)
4517
		goto out;
4518

4519 4520
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4521

4522
	perf_output_put(&handle, comm_event->event_id);
4523
	__output_copy(&handle, comm_event->comm,
4524
				   comm_event->comm_size);
4525 4526 4527

	perf_event__output_id_sample(event, &handle, &sample);

4528
	perf_output_end(&handle);
4529 4530
out:
	comm_event->event_id.header.size = size;
4531 4532
}

4533
static int perf_event_comm_match(struct perf_event *event)
4534
{
P
Peter Zijlstra 已提交
4535
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4536 4537
		return 0;

4538
	if (!event_filter_match(event))
4539 4540
		return 0;

4541
	if (event->attr.comm)
4542 4543 4544 4545 4546
		return 1;

	return 0;
}

4547
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4548 4549
				  struct perf_comm_event *comm_event)
{
4550
	struct perf_event *event;
4551

4552 4553 4554
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4555 4556 4557
	}
}

4558
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4559 4560
{
	struct perf_cpu_context *cpuctx;
4561
	struct perf_event_context *ctx;
4562
	char comm[TASK_COMM_LEN];
4563
	unsigned int size;
P
Peter Zijlstra 已提交
4564
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4565
	int ctxn;
4566

4567
	memset(comm, 0, sizeof(comm));
4568
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4569
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4570 4571 4572 4573

	comm_event->comm = comm;
	comm_event->comm_size = size;

4574
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4575
	rcu_read_lock();
P
Peter Zijlstra 已提交
4576
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4577
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4578
		if (cpuctx->unique_pmu != pmu)
4579
			goto next;
P
Peter Zijlstra 已提交
4580
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4581 4582 4583

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4584
			goto next;
P
Peter Zijlstra 已提交
4585 4586 4587 4588

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4589 4590
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4591
	}
4592
	rcu_read_unlock();
4593 4594
}

4595
void perf_event_comm(struct task_struct *task)
4596
{
4597
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4598 4599
	struct perf_event_context *ctx;
	int ctxn;
4600

P
Peter Zijlstra 已提交
4601 4602 4603 4604
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4605

P
Peter Zijlstra 已提交
4606 4607
		perf_event_enable_on_exec(ctx);
	}
4608

4609
	if (!atomic_read(&nr_comm_events))
4610
		return;
4611

4612
	comm_event = (struct perf_comm_event){
4613
		.task	= task,
4614 4615
		/* .comm      */
		/* .comm_size */
4616
		.event_id  = {
4617
			.header = {
4618
				.type = PERF_RECORD_COMM,
4619 4620 4621 4622 4623
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4624 4625 4626
		},
	};

4627
	perf_event_comm_event(&comm_event);
4628 4629
}

4630 4631 4632 4633 4634
/*
 * mmap tracking
 */

struct perf_mmap_event {
4635 4636 4637 4638
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4639 4640 4641 4642 4643 4644 4645 4646 4647

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4648
	} event_id;
4649 4650
};

4651
static void perf_event_mmap_output(struct perf_event *event,
4652 4653 4654
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4655
	struct perf_sample_data sample;
4656
	int size = mmap_event->event_id.header.size;
4657
	int ret;
4658

4659 4660
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4661
				mmap_event->event_id.header.size);
4662
	if (ret)
4663
		goto out;
4664

4665 4666
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4667

4668
	perf_output_put(&handle, mmap_event->event_id);
4669
	__output_copy(&handle, mmap_event->file_name,
4670
				   mmap_event->file_size);
4671 4672 4673

	perf_event__output_id_sample(event, &handle, &sample);

4674
	perf_output_end(&handle);
4675 4676
out:
	mmap_event->event_id.header.size = size;
4677 4678
}

4679
static int perf_event_mmap_match(struct perf_event *event,
4680 4681
				   struct perf_mmap_event *mmap_event,
				   int executable)
4682
{
P
Peter Zijlstra 已提交
4683
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4684 4685
		return 0;

4686
	if (!event_filter_match(event))
4687 4688
		return 0;

4689 4690
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4691 4692 4693 4694 4695
		return 1;

	return 0;
}

4696
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4697 4698
				  struct perf_mmap_event *mmap_event,
				  int executable)
4699
{
4700
	struct perf_event *event;
4701

4702
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4703
		if (perf_event_mmap_match(event, mmap_event, executable))
4704
			perf_event_mmap_output(event, mmap_event);
4705 4706 4707
	}
}

4708
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4709 4710
{
	struct perf_cpu_context *cpuctx;
4711
	struct perf_event_context *ctx;
4712 4713
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4714 4715 4716
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4717
	const char *name;
P
Peter Zijlstra 已提交
4718
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4719
	int ctxn;
4720

4721 4722
	memset(tmp, 0, sizeof(tmp));

4723
	if (file) {
4724
		/*
4725
		 * d_path works from the end of the rb backwards, so we
4726 4727 4728 4729
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4730 4731 4732 4733
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4734
		name = d_path(&file->f_path, buf, PATH_MAX);
4735 4736 4737 4738 4739
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4740 4741 4742
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4743
			goto got_name;
4744
		}
4745 4746 4747 4748

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4749 4750 4751 4752 4753 4754 4755 4756
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4757 4758
		}

4759 4760 4761 4762 4763
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4764
	size = ALIGN(strlen(name)+1, sizeof(u64));
4765 4766 4767 4768

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4769
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4770

4771
	rcu_read_lock();
P
Peter Zijlstra 已提交
4772
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4773
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4774
		if (cpuctx->unique_pmu != pmu)
4775
			goto next;
P
Peter Zijlstra 已提交
4776 4777
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4778 4779 4780

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4781
			goto next;
P
Peter Zijlstra 已提交
4782 4783 4784 4785 4786 4787

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4788 4789
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4790
	}
4791 4792
	rcu_read_unlock();

4793 4794 4795
	kfree(buf);
}

4796
void perf_event_mmap(struct vm_area_struct *vma)
4797
{
4798 4799
	struct perf_mmap_event mmap_event;

4800
	if (!atomic_read(&nr_mmap_events))
4801 4802 4803
		return;

	mmap_event = (struct perf_mmap_event){
4804
		.vma	= vma,
4805 4806
		/* .file_name */
		/* .file_size */
4807
		.event_id  = {
4808
			.header = {
4809
				.type = PERF_RECORD_MMAP,
4810
				.misc = PERF_RECORD_MISC_USER,
4811 4812 4813 4814
				/* .size */
			},
			/* .pid */
			/* .tid */
4815 4816
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4817
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4818 4819 4820
		},
	};

4821
	perf_event_mmap_event(&mmap_event);
4822 4823
}

4824 4825 4826 4827
/*
 * IRQ throttle logging
 */

4828
static void perf_log_throttle(struct perf_event *event, int enable)
4829 4830
{
	struct perf_output_handle handle;
4831
	struct perf_sample_data sample;
4832 4833 4834 4835 4836
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4837
		u64				id;
4838
		u64				stream_id;
4839 4840
	} throttle_event = {
		.header = {
4841
			.type = PERF_RECORD_THROTTLE,
4842 4843 4844
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4845
		.time		= perf_clock(),
4846 4847
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4848 4849
	};

4850
	if (enable)
4851
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4852

4853 4854 4855
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
4856
				throttle_event.header.size);
4857 4858 4859 4860
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4861
	perf_event__output_id_sample(event, &handle, &sample);
4862 4863 4864
	perf_output_end(&handle);
}

4865
/*
4866
 * Generic event overflow handling, sampling.
4867 4868
 */

4869
static int __perf_event_overflow(struct perf_event *event,
4870 4871
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4872
{
4873 4874
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4875
	u64 seq;
4876 4877
	int ret = 0;

4878 4879 4880 4881 4882 4883 4884
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

4885 4886 4887 4888 4889 4890 4891 4892 4893
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
4894 4895
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4896 4897
			ret = 1;
		}
4898
	}
4899

4900
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4901
		u64 now = perf_clock();
4902
		s64 delta = now - hwc->freq_time_stamp;
4903

4904
		hwc->freq_time_stamp = now;
4905

4906
		if (delta > 0 && delta < 2*TICK_NSEC)
4907
			perf_adjust_period(event, delta, hwc->last_period, true);
4908 4909
	}

4910 4911
	/*
	 * XXX event_limit might not quite work as expected on inherited
4912
	 * events
4913 4914
	 */

4915 4916
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4917
		ret = 1;
4918
		event->pending_kill = POLL_HUP;
4919 4920
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
4921 4922
	}

4923
	if (event->overflow_handler)
4924
		event->overflow_handler(event, data, regs);
4925
	else
4926
		perf_event_output(event, data, regs);
4927

P
Peter Zijlstra 已提交
4928
	if (event->fasync && event->pending_kill) {
4929 4930
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
4931 4932
	}

4933
	return ret;
4934 4935
}

4936
int perf_event_overflow(struct perf_event *event,
4937 4938
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4939
{
4940
	return __perf_event_overflow(event, 1, data, regs);
4941 4942
}

4943
/*
4944
 * Generic software event infrastructure
4945 4946
 */

4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4958
/*
4959 4960
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4961 4962 4963 4964
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4965
static u64 perf_swevent_set_period(struct perf_event *event)
4966
{
4967
	struct hw_perf_event *hwc = &event->hw;
4968 4969 4970 4971 4972
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4973 4974

again:
4975
	old = val = local64_read(&hwc->period_left);
4976 4977
	if (val < 0)
		return 0;
4978

4979 4980 4981
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4982
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4983
		goto again;
4984

4985
	return nr;
4986 4987
}

4988
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4989
				    struct perf_sample_data *data,
4990
				    struct pt_regs *regs)
4991
{
4992
	struct hw_perf_event *hwc = &event->hw;
4993
	int throttle = 0;
4994

4995 4996
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4997

4998 4999
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5000

5001
	for (; overflow; overflow--) {
5002
		if (__perf_event_overflow(event, throttle,
5003
					    data, regs)) {
5004 5005 5006 5007 5008 5009
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5010
		throttle = 1;
5011
	}
5012 5013
}

P
Peter Zijlstra 已提交
5014
static void perf_swevent_event(struct perf_event *event, u64 nr,
5015
			       struct perf_sample_data *data,
5016
			       struct pt_regs *regs)
5017
{
5018
	struct hw_perf_event *hwc = &event->hw;
5019

5020
	local64_add(nr, &event->count);
5021

5022 5023 5024
	if (!regs)
		return;

5025
	if (!is_sampling_event(event))
5026
		return;
5027

5028 5029 5030 5031 5032 5033
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5034
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5035
		return perf_swevent_overflow(event, 1, data, regs);
5036

5037
	if (local64_add_negative(nr, &hwc->period_left))
5038
		return;
5039

5040
	perf_swevent_overflow(event, 0, data, regs);
5041 5042
}

5043 5044 5045
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5046
	if (event->hw.state & PERF_HES_STOPPED)
5047
		return 1;
P
Peter Zijlstra 已提交
5048

5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5060
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5061
				enum perf_type_id type,
L
Li Zefan 已提交
5062 5063 5064
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5065
{
5066
	if (event->attr.type != type)
5067
		return 0;
5068

5069
	if (event->attr.config != event_id)
5070 5071
		return 0;

5072 5073
	if (perf_exclude_event(event, regs))
		return 0;
5074 5075 5076 5077

	return 1;
}

5078 5079 5080 5081 5082 5083 5084
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5085 5086
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5087
{
5088 5089 5090 5091
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5092

5093 5094
/* For the read side: events when they trigger */
static inline struct hlist_head *
5095
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5096 5097
{
	struct swevent_hlist *hlist;
5098

5099
	hlist = rcu_dereference(swhash->swevent_hlist);
5100 5101 5102
	if (!hlist)
		return NULL;

5103 5104 5105 5106 5107
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5108
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5119
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5120 5121 5122 5123 5124
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5125 5126 5127
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5128
				    u64 nr,
5129 5130
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5131
{
5132
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5133
	struct perf_event *event;
5134
	struct hlist_head *head;
5135

5136
	rcu_read_lock();
5137
	head = find_swevent_head_rcu(swhash, type, event_id);
5138 5139 5140
	if (!head)
		goto end;

5141
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5142
		if (perf_swevent_match(event, type, event_id, data, regs))
5143
			perf_swevent_event(event, nr, data, regs);
5144
	}
5145 5146
end:
	rcu_read_unlock();
5147 5148
}

5149
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5150
{
5151
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5152

5153
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5154
}
I
Ingo Molnar 已提交
5155
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5156

5157
inline void perf_swevent_put_recursion_context(int rctx)
5158
{
5159
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5160

5161
	put_recursion_context(swhash->recursion, rctx);
5162
}
5163

5164
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5165
{
5166
	struct perf_sample_data data;
5167 5168
	int rctx;

5169
	preempt_disable_notrace();
5170 5171 5172
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5173

5174
	perf_sample_data_init(&data, addr, 0);
5175

5176
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5177 5178

	perf_swevent_put_recursion_context(rctx);
5179
	preempt_enable_notrace();
5180 5181
}

5182
static void perf_swevent_read(struct perf_event *event)
5183 5184 5185
{
}

P
Peter Zijlstra 已提交
5186
static int perf_swevent_add(struct perf_event *event, int flags)
5187
{
5188
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5189
	struct hw_perf_event *hwc = &event->hw;
5190 5191
	struct hlist_head *head;

5192
	if (is_sampling_event(event)) {
5193
		hwc->last_period = hwc->sample_period;
5194
		perf_swevent_set_period(event);
5195
	}
5196

P
Peter Zijlstra 已提交
5197 5198
	hwc->state = !(flags & PERF_EF_START);

5199
	head = find_swevent_head(swhash, event);
5200 5201 5202 5203 5204
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5205 5206 5207
	return 0;
}

P
Peter Zijlstra 已提交
5208
static void perf_swevent_del(struct perf_event *event, int flags)
5209
{
5210
	hlist_del_rcu(&event->hlist_entry);
5211 5212
}

P
Peter Zijlstra 已提交
5213
static void perf_swevent_start(struct perf_event *event, int flags)
5214
{
P
Peter Zijlstra 已提交
5215
	event->hw.state = 0;
5216
}
I
Ingo Molnar 已提交
5217

P
Peter Zijlstra 已提交
5218
static void perf_swevent_stop(struct perf_event *event, int flags)
5219
{
P
Peter Zijlstra 已提交
5220
	event->hw.state = PERF_HES_STOPPED;
5221 5222
}

5223 5224
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5225
swevent_hlist_deref(struct swevent_htable *swhash)
5226
{
5227 5228
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5229 5230
}

5231
static void swevent_hlist_release(struct swevent_htable *swhash)
5232
{
5233
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5234

5235
	if (!hlist)
5236 5237
		return;

5238
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5239
	kfree_rcu(hlist, rcu_head);
5240 5241 5242 5243
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5244
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5245

5246
	mutex_lock(&swhash->hlist_mutex);
5247

5248 5249
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5250

5251
	mutex_unlock(&swhash->hlist_mutex);
5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5269
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5270 5271
	int err = 0;

5272
	mutex_lock(&swhash->hlist_mutex);
5273

5274
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5275 5276 5277 5278 5279 5280 5281
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5282
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5283
	}
5284
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5285
exit:
5286
	mutex_unlock(&swhash->hlist_mutex);
5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5310
fail:
5311 5312 5313 5314 5315 5316 5317 5318 5319 5320
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5321
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5322

5323 5324 5325
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5326

5327 5328
	WARN_ON(event->parent);

5329
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5340 5341 5342 5343 5344 5345
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5346 5347 5348 5349 5350 5351 5352 5353 5354
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5355
	if (event_id >= PERF_COUNT_SW_MAX)
5356 5357 5358 5359 5360 5361 5362 5363 5364
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5365
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5366 5367 5368 5369 5370 5371
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5372 5373 5374 5375 5376
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5377
static struct pmu perf_swevent = {
5378
	.task_ctx_nr	= perf_sw_context,
5379

5380
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5381 5382 5383 5384
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5385
	.read		= perf_swevent_read,
5386 5387

	.event_idx	= perf_swevent_event_idx,
5388 5389
};

5390 5391
#ifdef CONFIG_EVENT_TRACING

5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5406 5407
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5408 5409 5410 5411
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5412 5413 5414 5415 5416 5417 5418 5419 5420
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5421 5422
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5423 5424
{
	struct perf_sample_data data;
5425 5426
	struct perf_event *event;

5427 5428 5429 5430 5431
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5432
	perf_sample_data_init(&data, addr, 0);
5433 5434
	data.raw = &raw;

5435
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5436
		if (perf_tp_event_match(event, &data, regs))
5437
			perf_swevent_event(event, count, &data, regs);
5438
	}
5439

5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5465
	perf_swevent_put_recursion_context(rctx);
5466 5467 5468
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5469
static void tp_perf_event_destroy(struct perf_event *event)
5470
{
5471
	perf_trace_destroy(event);
5472 5473
}

5474
static int perf_tp_event_init(struct perf_event *event)
5475
{
5476 5477
	int err;

5478 5479 5480
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5481 5482 5483 5484 5485 5486
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5487 5488
	err = perf_trace_init(event);
	if (err)
5489
		return err;
5490

5491
	event->destroy = tp_perf_event_destroy;
5492

5493 5494 5495 5496
	return 0;
}

static struct pmu perf_tracepoint = {
5497 5498
	.task_ctx_nr	= perf_sw_context,

5499
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5500 5501 5502 5503
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5504
	.read		= perf_swevent_read,
5505 5506

	.event_idx	= perf_swevent_event_idx,
5507 5508 5509 5510
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5511
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5512
}
L
Li Zefan 已提交
5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5537
#else
L
Li Zefan 已提交
5538

5539
static inline void perf_tp_register(void)
5540 5541
{
}
L
Li Zefan 已提交
5542 5543 5544 5545 5546 5547 5548 5549 5550 5551

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5552
#endif /* CONFIG_EVENT_TRACING */
5553

5554
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5555
void perf_bp_event(struct perf_event *bp, void *data)
5556
{
5557 5558 5559
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5560
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5561

P
Peter Zijlstra 已提交
5562
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5563
		perf_swevent_event(bp, 1, &sample, regs);
5564 5565 5566
}
#endif

5567 5568 5569
/*
 * hrtimer based swevent callback
 */
5570

5571
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5572
{
5573 5574 5575 5576 5577
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5578

5579
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5580 5581 5582 5583

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5584
	event->pmu->read(event);
5585

5586
	perf_sample_data_init(&data, 0, event->hw.last_period);
5587 5588 5589
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
5590
		if (!(event->attr.exclude_idle && is_idle_task(current)))
5591
			if (__perf_event_overflow(event, 1, &data, regs))
5592 5593
				ret = HRTIMER_NORESTART;
	}
5594

5595 5596
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5597

5598
	return ret;
5599 5600
}

5601
static void perf_swevent_start_hrtimer(struct perf_event *event)
5602
{
5603
	struct hw_perf_event *hwc = &event->hw;
5604 5605 5606 5607
	s64 period;

	if (!is_sampling_event(event))
		return;
5608

5609 5610 5611 5612
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5613

5614 5615 5616 5617 5618
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5619
				ns_to_ktime(period), 0,
5620
				HRTIMER_MODE_REL_PINNED, 0);
5621
}
5622 5623

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5624
{
5625 5626
	struct hw_perf_event *hwc = &event->hw;

5627
	if (is_sampling_event(event)) {
5628
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5629
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5630 5631 5632

		hrtimer_cancel(&hwc->hrtimer);
	}
5633 5634
}

P
Peter Zijlstra 已提交
5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
		event->attr.freq = 0;
	}
}

5659 5660 5661 5662 5663
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5664
{
5665 5666 5667
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5668
	now = local_clock();
5669 5670
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5671 5672
}

P
Peter Zijlstra 已提交
5673
static void cpu_clock_event_start(struct perf_event *event, int flags)
5674
{
P
Peter Zijlstra 已提交
5675
	local64_set(&event->hw.prev_count, local_clock());
5676 5677 5678
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5679
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5680
{
5681 5682 5683
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5684

P
Peter Zijlstra 已提交
5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5698 5699 5700 5701
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5702

5703 5704 5705 5706 5707 5708 5709 5710
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

5711 5712 5713 5714 5715 5716
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
5717 5718
	perf_swevent_init_hrtimer(event);

5719
	return 0;
5720 5721
}

5722
static struct pmu perf_cpu_clock = {
5723 5724
	.task_ctx_nr	= perf_sw_context,

5725
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5726 5727 5728 5729
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5730
	.read		= cpu_clock_event_read,
5731 5732

	.event_idx	= perf_swevent_event_idx,
5733 5734 5735 5736 5737 5738 5739
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5740
{
5741 5742
	u64 prev;
	s64 delta;
5743

5744 5745 5746 5747
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5748

P
Peter Zijlstra 已提交
5749
static void task_clock_event_start(struct perf_event *event, int flags)
5750
{
P
Peter Zijlstra 已提交
5751
	local64_set(&event->hw.prev_count, event->ctx->time);
5752 5753 5754
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5755
static void task_clock_event_stop(struct perf_event *event, int flags)
5756 5757 5758
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5759 5760 5761 5762 5763 5764
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5765

P
Peter Zijlstra 已提交
5766 5767 5768 5769 5770 5771
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5772 5773 5774 5775
}

static void task_clock_event_read(struct perf_event *event)
{
5776 5777 5778
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5779 5780 5781 5782 5783

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5784
{
5785 5786 5787 5788 5789 5790
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

5791 5792 5793 5794 5795 5796
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
5797 5798
	perf_swevent_init_hrtimer(event);

5799
	return 0;
L
Li Zefan 已提交
5800 5801
}

5802
static struct pmu perf_task_clock = {
5803 5804
	.task_ctx_nr	= perf_sw_context,

5805
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5806 5807 5808 5809
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5810
	.read		= task_clock_event_read,
5811 5812

	.event_idx	= perf_swevent_event_idx,
5813
};
L
Li Zefan 已提交
5814

P
Peter Zijlstra 已提交
5815
static void perf_pmu_nop_void(struct pmu *pmu)
5816 5817
{
}
L
Li Zefan 已提交
5818

P
Peter Zijlstra 已提交
5819
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5820
{
P
Peter Zijlstra 已提交
5821
	return 0;
L
Li Zefan 已提交
5822 5823
}

P
Peter Zijlstra 已提交
5824
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5825
{
P
Peter Zijlstra 已提交
5826
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5827 5828
}

P
Peter Zijlstra 已提交
5829 5830 5831 5832 5833
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5834

P
Peter Zijlstra 已提交
5835
static void perf_pmu_cancel_txn(struct pmu *pmu)
5836
{
P
Peter Zijlstra 已提交
5837
	perf_pmu_enable(pmu);
5838 5839
}

5840 5841 5842 5843 5844
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
5845 5846 5847 5848 5849
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5850
{
P
Peter Zijlstra 已提交
5851
	struct pmu *pmu;
5852

P
Peter Zijlstra 已提交
5853 5854
	if (ctxn < 0)
		return NULL;
5855

P
Peter Zijlstra 已提交
5856 5857 5858 5859
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5860

P
Peter Zijlstra 已提交
5861
	return NULL;
5862 5863
}

5864
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5865
{
5866 5867 5868 5869 5870 5871 5872
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

5873 5874
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
5875 5876 5877 5878 5879 5880
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5881

P
Peter Zijlstra 已提交
5882
	mutex_lock(&pmus_lock);
5883
	/*
P
Peter Zijlstra 已提交
5884
	 * Like a real lame refcount.
5885
	 */
5886 5887 5888
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5889
			goto out;
5890
		}
P
Peter Zijlstra 已提交
5891
	}
5892

5893
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5894 5895
out:
	mutex_unlock(&pmus_lock);
5896
}
P
Peter Zijlstra 已提交
5897
static struct idr pmu_idr;
5898

P
Peter Zijlstra 已提交
5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

5931
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5952
static struct lock_class_key cpuctx_mutex;
5953
static struct lock_class_key cpuctx_lock;
5954

P
Peter Zijlstra 已提交
5955
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5956
{
P
Peter Zijlstra 已提交
5957
	int cpu, ret;
5958

5959
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5960 5961 5962 5963
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5964

P
Peter Zijlstra 已提交
5965 5966 5967 5968 5969 5970
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
5971 5972 5973
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
5974 5975 5976 5977 5978
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
5979 5980 5981 5982 5983 5984
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
5985
skip_type:
P
Peter Zijlstra 已提交
5986 5987 5988
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
5989

P
Peter Zijlstra 已提交
5990 5991
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
5992
		goto free_dev;
5993

P
Peter Zijlstra 已提交
5994 5995 5996 5997
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5998
		__perf_event_init_context(&cpuctx->ctx);
5999
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6000
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6001
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6002
		cpuctx->ctx.pmu = pmu;
6003 6004
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6005
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6006
	}
6007

P
Peter Zijlstra 已提交
6008
got_cpu_context:
P
Peter Zijlstra 已提交
6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6023
		}
6024
	}
6025

P
Peter Zijlstra 已提交
6026 6027 6028 6029 6030
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6031 6032 6033
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6034
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6035 6036
	ret = 0;
unlock:
6037 6038
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6039
	return ret;
P
Peter Zijlstra 已提交
6040

P
Peter Zijlstra 已提交
6041 6042 6043 6044
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6045 6046 6047 6048
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6049 6050 6051
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6052 6053
}

6054
void perf_pmu_unregister(struct pmu *pmu)
6055
{
6056 6057 6058
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6059

6060
	/*
P
Peter Zijlstra 已提交
6061 6062
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6063
	 */
6064
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6065
	synchronize_rcu();
6066

P
Peter Zijlstra 已提交
6067
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6068 6069
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6070 6071
	device_del(pmu->dev);
	put_device(pmu->dev);
6072
	free_pmu_context(pmu);
6073
}
6074

6075 6076 6077 6078
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6079
	int ret;
6080 6081

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6082 6083 6084 6085

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6086
	if (pmu) {
6087
		event->pmu = pmu;
6088 6089 6090
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6091
		goto unlock;
6092
	}
P
Peter Zijlstra 已提交
6093

6094
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6095
		event->pmu = pmu;
6096
		ret = pmu->event_init(event);
6097
		if (!ret)
P
Peter Zijlstra 已提交
6098
			goto unlock;
6099

6100 6101
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6102
			goto unlock;
6103
		}
6104
	}
P
Peter Zijlstra 已提交
6105 6106
	pmu = ERR_PTR(-ENOENT);
unlock:
6107
	srcu_read_unlock(&pmus_srcu, idx);
6108

6109
	return pmu;
6110 6111
}

T
Thomas Gleixner 已提交
6112
/*
6113
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6114
 */
6115
static struct perf_event *
6116
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6117 6118 6119
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6120 6121
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6122
{
P
Peter Zijlstra 已提交
6123
	struct pmu *pmu;
6124 6125
	struct perf_event *event;
	struct hw_perf_event *hwc;
6126
	long err;
T
Thomas Gleixner 已提交
6127

6128 6129 6130 6131 6132
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6133
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6134
	if (!event)
6135
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6136

6137
	/*
6138
	 * Single events are their own group leaders, with an
6139 6140 6141
	 * empty sibling list:
	 */
	if (!group_leader)
6142
		group_leader = event;
6143

6144 6145
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6146

6147 6148 6149
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6150 6151
	INIT_LIST_HEAD(&event->rb_entry);

6152
	init_waitqueue_head(&event->waitq);
6153
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6154

6155
	mutex_init(&event->mmap_mutex);
6156

6157
	atomic_long_set(&event->refcount, 1);
6158 6159 6160 6161 6162
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6163

6164
	event->parent		= parent_event;
6165

6166
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6167
	event->id		= atomic64_inc_return(&perf_event_id);
6168

6169
	event->state		= PERF_EVENT_STATE_INACTIVE;
6170

6171 6172
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6173 6174 6175

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6176 6177 6178 6179
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6180
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6181 6182 6183 6184
			event->hw.bp_target = task;
#endif
	}

6185
	if (!overflow_handler && parent_event) {
6186
		overflow_handler = parent_event->overflow_handler;
6187 6188
		context = parent_event->overflow_handler_context;
	}
6189

6190
	event->overflow_handler	= overflow_handler;
6191
	event->overflow_handler_context = context;
6192

J
Jiri Olsa 已提交
6193
	perf_event__state_init(event);
6194

6195
	pmu = NULL;
6196

6197
	hwc = &event->hw;
6198
	hwc->sample_period = attr->sample_period;
6199
	if (attr->freq && attr->sample_freq)
6200
		hwc->sample_period = 1;
6201
	hwc->last_period = hwc->sample_period;
6202

6203
	local64_set(&hwc->period_left, hwc->sample_period);
6204

6205
	/*
6206
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6207
	 */
6208
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6209 6210
		goto done;

6211
	pmu = perf_init_event(event);
6212

6213 6214
done:
	err = 0;
6215
	if (!pmu)
6216
		err = -EINVAL;
6217 6218
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
6219

6220
	if (err) {
6221 6222 6223
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
6224
		return ERR_PTR(err);
I
Ingo Molnar 已提交
6225
	}
6226

6227
	if (!event->parent) {
6228
		if (event->attach_state & PERF_ATTACH_TASK)
6229
			static_key_slow_inc(&perf_sched_events.key);
6230
		if (event->attr.mmap || event->attr.mmap_data)
6231 6232 6233 6234 6235
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
6236 6237 6238 6239 6240 6241 6242
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
6243 6244 6245 6246 6247 6248
		if (has_branch_stack(event)) {
			static_key_slow_inc(&perf_sched_events.key);
			if (!(event->attach_state & PERF_ATTACH_TASK))
				atomic_inc(&per_cpu(perf_branch_stack_events,
						    event->cpu));
		}
6249
	}
6250

6251
	return event;
T
Thomas Gleixner 已提交
6252 6253
}

6254 6255
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6256 6257
{
	u32 size;
6258
	int ret;
6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6283 6284 6285
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6286 6287
	 */
	if (size > sizeof(*attr)) {
6288 6289 6290
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6291

6292 6293
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6294

6295
		for (; addr < end; addr++) {
6296 6297 6298 6299 6300 6301
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6302
		size = sizeof(*attr);
6303 6304 6305 6306 6307 6308
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6309
	if (attr->__reserved_1)
6310 6311 6312 6313 6314 6315 6316 6317
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* kernel level capture: check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
	}
6352

6353
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6354
		ret = perf_reg_validate(attr->sample_regs_user);
6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
6373

6374 6375 6376 6377 6378 6379 6380 6381 6382
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6383 6384
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6385
{
6386
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6387 6388
	int ret = -EINVAL;

6389
	if (!output_event)
6390 6391
		goto set;

6392 6393
	/* don't allow circular references */
	if (event == output_event)
6394 6395
		goto out;

6396 6397 6398 6399 6400 6401 6402
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6403
	 * If its not a per-cpu rb, it must be the same task.
6404 6405 6406 6407
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6408
set:
6409
	mutex_lock(&event->mmap_mutex);
6410 6411 6412
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6413

6414
	if (output_event) {
6415 6416 6417
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6418
			goto unlock;
6419 6420
	}

6421 6422
	old_rb = event->rb;
	rcu_assign_pointer(event->rb, rb);
6423 6424
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6425
	ret = 0;
6426 6427 6428
unlock:
	mutex_unlock(&event->mmap_mutex);

6429 6430
	if (old_rb)
		ring_buffer_put(old_rb);
6431 6432 6433 6434
out:
	return ret;
}

T
Thomas Gleixner 已提交
6435
/**
6436
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6437
 *
6438
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6439
 * @pid:		target pid
I
Ingo Molnar 已提交
6440
 * @cpu:		target cpu
6441
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6442
 */
6443 6444
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6445
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6446
{
6447 6448
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6449 6450 6451
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6452
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
6453
	struct task_struct *task = NULL;
6454
	struct pmu *pmu;
6455
	int event_fd;
6456
	int move_group = 0;
6457
	int err;
T
Thomas Gleixner 已提交
6458

6459
	/* for future expandability... */
S
Stephane Eranian 已提交
6460
	if (flags & ~PERF_FLAG_ALL)
6461 6462
		return -EINVAL;

6463 6464 6465
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6466

6467 6468 6469 6470 6471
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6472
	if (attr.freq) {
6473
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6474 6475 6476
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6477 6478 6479 6480 6481 6482 6483 6484 6485
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6486
	event_fd = get_unused_fd();
6487 6488 6489
	if (event_fd < 0)
		return event_fd;

6490
	if (group_fd != -1) {
6491 6492
		err = perf_fget_light(group_fd, &group);
		if (err)
6493
			goto err_fd;
6494
		group_leader = group.file->private_data;
6495 6496 6497 6498 6499 6500
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6501
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6502 6503 6504 6505 6506 6507 6508
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6509 6510
	get_online_cpus();

6511 6512
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
6513 6514
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6515
		goto err_task;
6516 6517
	}

S
Stephane Eranian 已提交
6518 6519 6520 6521
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6522 6523 6524 6525 6526 6527
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6528
		static_key_slow_inc(&perf_sched_events.key);
S
Stephane Eranian 已提交
6529 6530
	}

6531 6532 6533 6534 6535
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6559 6560 6561 6562

	/*
	 * Get the target context (task or percpu):
	 */
6563
	ctx = find_get_context(pmu, task, event->cpu);
6564 6565
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6566
		goto err_alloc;
6567 6568
	}

6569 6570 6571 6572 6573
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6574
	/*
6575
	 * Look up the group leader (we will attach this event to it):
6576
	 */
6577
	if (group_leader) {
6578
		err = -EINVAL;
6579 6580

		/*
I
Ingo Molnar 已提交
6581 6582 6583 6584
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6585
			goto err_context;
I
Ingo Molnar 已提交
6586 6587 6588
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6589
		 */
6590 6591 6592 6593 6594 6595 6596 6597
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6598 6599 6600
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6601
		if (attr.exclusive || attr.pinned)
6602
			goto err_context;
6603 6604 6605 6606 6607
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6608
			goto err_context;
6609
	}
T
Thomas Gleixner 已提交
6610

6611 6612 6613
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6614
		goto err_context;
6615
	}
6616

6617 6618 6619 6620
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6621
		perf_remove_from_context(group_leader);
J
Jiri Olsa 已提交
6622 6623 6624 6625 6626 6627 6628

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
6629 6630
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6631
			perf_remove_from_context(sibling);
J
Jiri Olsa 已提交
6632
			perf_event__state_init(sibling);
6633 6634 6635 6636
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6637
	}
6638

6639
	WARN_ON_ONCE(ctx->parent_ctx);
6640
	mutex_lock(&ctx->mutex);
6641 6642

	if (move_group) {
6643
		synchronize_rcu();
6644
		perf_install_in_context(ctx, group_leader, event->cpu);
6645 6646 6647
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6648
			perf_install_in_context(ctx, sibling, event->cpu);
6649 6650 6651 6652
			get_ctx(ctx);
		}
	}

6653
	perf_install_in_context(ctx, event, event->cpu);
6654
	++ctx->generation;
6655
	perf_unpin_context(ctx);
6656
	mutex_unlock(&ctx->mutex);
6657

6658 6659
	put_online_cpus();

6660
	event->owner = current;
P
Peter Zijlstra 已提交
6661

6662 6663 6664
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6665

6666 6667 6668 6669
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6670
	perf_event__id_header_size(event);
6671

6672 6673 6674 6675 6676 6677
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6678
	fdput(group);
6679 6680
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6681

6682
err_context:
6683
	perf_unpin_context(ctx);
6684
	put_ctx(ctx);
6685
err_alloc:
6686
	free_event(event);
P
Peter Zijlstra 已提交
6687
err_task:
6688
	put_online_cpus();
P
Peter Zijlstra 已提交
6689 6690
	if (task)
		put_task_struct(task);
6691
err_group_fd:
6692
	fdput(group);
6693 6694
err_fd:
	put_unused_fd(event_fd);
6695
	return err;
T
Thomas Gleixner 已提交
6696 6697
}

6698 6699 6700 6701 6702
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6703
 * @task: task to profile (NULL for percpu)
6704 6705 6706
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6707
				 struct task_struct *task,
6708 6709
				 perf_overflow_handler_t overflow_handler,
				 void *context)
6710 6711
{
	struct perf_event_context *ctx;
6712
	struct perf_event *event;
6713
	int err;
6714

6715 6716 6717
	/*
	 * Get the target context (task or percpu):
	 */
6718

6719 6720
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
6721 6722 6723 6724
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6725

M
Matt Helsley 已提交
6726
	ctx = find_get_context(event->pmu, task, cpu);
6727 6728
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6729
		goto err_free;
6730
	}
6731 6732 6733 6734 6735

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6736
	perf_unpin_context(ctx);
6737 6738 6739 6740
	mutex_unlock(&ctx->mutex);

	return event;

6741 6742 6743
err_free:
	free_event(event);
err:
6744
	return ERR_PTR(err);
6745
}
6746
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6747

6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
		perf_remove_from_context(event);
		put_ctx(src_ctx);
		list_add(&event->event_entry, &events);
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &events, event_entry) {
		list_del(&event->event_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

6781
static void sync_child_event(struct perf_event *child_event,
6782
			       struct task_struct *child)
6783
{
6784
	struct perf_event *parent_event = child_event->parent;
6785
	u64 child_val;
6786

6787 6788
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6789

P
Peter Zijlstra 已提交
6790
	child_val = perf_event_count(child_event);
6791 6792 6793 6794

	/*
	 * Add back the child's count to the parent's count:
	 */
6795
	atomic64_add(child_val, &parent_event->child_count);
6796 6797 6798 6799
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6800 6801

	/*
6802
	 * Remove this event from the parent's list
6803
	 */
6804 6805 6806 6807
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6808 6809

	/*
6810
	 * Release the parent event, if this was the last
6811 6812
	 * reference to it.
	 */
6813
	put_event(parent_event);
6814 6815
}

6816
static void
6817 6818
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6819
			 struct task_struct *child)
6820
{
6821 6822 6823 6824 6825
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6826

6827
	perf_remove_from_context(child_event);
6828

6829
	/*
6830
	 * It can happen that the parent exits first, and has events
6831
	 * that are still around due to the child reference. These
6832
	 * events need to be zapped.
6833
	 */
6834
	if (child_event->parent) {
6835 6836
		sync_child_event(child_event, child);
		free_event(child_event);
6837
	}
6838 6839
}

P
Peter Zijlstra 已提交
6840
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6841
{
6842 6843
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6844
	unsigned long flags;
6845

P
Peter Zijlstra 已提交
6846
	if (likely(!child->perf_event_ctxp[ctxn])) {
6847
		perf_event_task(child, NULL, 0);
6848
		return;
P
Peter Zijlstra 已提交
6849
	}
6850

6851
	local_irq_save(flags);
6852 6853 6854 6855 6856 6857
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6858
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6859 6860 6861

	/*
	 * Take the context lock here so that if find_get_context is
6862
	 * reading child->perf_event_ctxp, we wait until it has
6863 6864
	 * incremented the context's refcount before we do put_ctx below.
	 */
6865
	raw_spin_lock(&child_ctx->lock);
6866
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
6867
	child->perf_event_ctxp[ctxn] = NULL;
6868 6869 6870
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6871
	 * the events from it.
6872 6873
	 */
	unclone_ctx(child_ctx);
6874
	update_context_time(child_ctx);
6875
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6876 6877

	/*
6878 6879 6880
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6881
	 */
6882
	perf_event_task(child, child_ctx, 0);
6883

6884 6885 6886
	/*
	 * We can recurse on the same lock type through:
	 *
6887 6888
	 *   __perf_event_exit_task()
	 *     sync_child_event()
6889 6890
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
6891 6892 6893
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6894
	mutex_lock(&child_ctx->mutex);
6895

6896
again:
6897 6898 6899 6900 6901
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6902
				 group_entry)
6903
		__perf_event_exit_task(child_event, child_ctx, child);
6904 6905

	/*
6906
	 * If the last event was a group event, it will have appended all
6907 6908 6909
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6910 6911
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6912
		goto again;
6913 6914 6915 6916

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6917 6918
}

P
Peter Zijlstra 已提交
6919 6920 6921 6922 6923
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6924
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6925 6926
	int ctxn;

P
Peter Zijlstra 已提交
6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6942 6943 6944 6945
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

6958
	put_event(parent);
6959

6960
	perf_group_detach(event);
6961 6962 6963 6964
	list_del_event(event, ctx);
	free_event(event);
}

6965 6966
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6967
 * perf_event_init_task below, used by fork() in case of fail.
6968
 */
6969
void perf_event_free_task(struct task_struct *task)
6970
{
P
Peter Zijlstra 已提交
6971
	struct perf_event_context *ctx;
6972
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6973
	int ctxn;
6974

P
Peter Zijlstra 已提交
6975 6976 6977 6978
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6979

P
Peter Zijlstra 已提交
6980
		mutex_lock(&ctx->mutex);
6981
again:
P
Peter Zijlstra 已提交
6982 6983 6984
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6985

P
Peter Zijlstra 已提交
6986 6987 6988
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6989

P
Peter Zijlstra 已提交
6990 6991 6992
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6993

P
Peter Zijlstra 已提交
6994
		mutex_unlock(&ctx->mutex);
6995

P
Peter Zijlstra 已提交
6996 6997
		put_ctx(ctx);
	}
6998 6999
}

7000 7001 7002 7003 7004 7005 7006 7007
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7020
	unsigned long flags;
P
Peter Zijlstra 已提交
7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7033
					   child,
P
Peter Zijlstra 已提交
7034
					   group_leader, parent_event,
7035
				           NULL, NULL);
P
Peter Zijlstra 已提交
7036 7037
	if (IS_ERR(child_event))
		return child_event;
7038 7039 7040 7041 7042 7043

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7068 7069
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7070

7071 7072 7073 7074
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7075
	perf_event__id_header_size(child_event);
7076

P
Peter Zijlstra 已提交
7077 7078 7079
	/*
	 * Link it up in the child's context:
	 */
7080
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7081
	add_event_to_ctx(child_event, child_ctx);
7082
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7116 7117 7118 7119 7120
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7121
		   struct task_struct *child, int ctxn,
7122 7123 7124
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7125
	struct perf_event_context *child_ctx;
7126 7127 7128 7129

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7130 7131
	}

7132
	child_ctx = child->perf_event_ctxp[ctxn];
7133 7134 7135 7136 7137 7138 7139
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7140

7141
		child_ctx = alloc_perf_context(event->pmu, child);
7142 7143
		if (!child_ctx)
			return -ENOMEM;
7144

P
Peter Zijlstra 已提交
7145
		child->perf_event_ctxp[ctxn] = child_ctx;
7146 7147 7148 7149 7150 7151 7152 7153 7154
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7155 7156
}

7157
/*
7158
 * Initialize the perf_event context in task_struct
7159
 */
P
Peter Zijlstra 已提交
7160
int perf_event_init_context(struct task_struct *child, int ctxn)
7161
{
7162
	struct perf_event_context *child_ctx, *parent_ctx;
7163 7164
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7165
	struct task_struct *parent = current;
7166
	int inherited_all = 1;
7167
	unsigned long flags;
7168
	int ret = 0;
7169

P
Peter Zijlstra 已提交
7170
	if (likely(!parent->perf_event_ctxp[ctxn]))
7171 7172
		return 0;

7173
	/*
7174 7175
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7176
	 */
P
Peter Zijlstra 已提交
7177
	parent_ctx = perf_pin_task_context(parent, ctxn);
7178

7179 7180 7181 7182 7183 7184 7185
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7186 7187 7188 7189
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7190
	mutex_lock(&parent_ctx->mutex);
7191 7192 7193 7194 7195

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7196
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7197 7198
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7199 7200 7201
		if (ret)
			break;
	}
7202

7203 7204 7205 7206 7207 7208 7209 7210 7211
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7212
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7213 7214
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7215
		if (ret)
7216
			break;
7217 7218
	}

7219 7220 7221
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7222
	child_ctx = child->perf_event_ctxp[ctxn];
7223

7224
	if (child_ctx && inherited_all) {
7225 7226 7227
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7228 7229 7230
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7231
		 */
P
Peter Zijlstra 已提交
7232
		cloned_ctx = parent_ctx->parent_ctx;
7233 7234
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7235
			child_ctx->parent_gen = parent_ctx->parent_gen;
7236 7237 7238 7239 7240
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7241 7242
	}

P
Peter Zijlstra 已提交
7243
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7244
	mutex_unlock(&parent_ctx->mutex);
7245

7246
	perf_unpin_context(parent_ctx);
7247
	put_ctx(parent_ctx);
7248

7249
	return ret;
7250 7251
}

P
Peter Zijlstra 已提交
7252 7253 7254 7255 7256 7257 7258
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7259 7260 7261 7262
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7263 7264 7265 7266 7267 7268 7269 7270 7271
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7272 7273
static void __init perf_event_init_all_cpus(void)
{
7274
	struct swevent_htable *swhash;
7275 7276 7277
	int cpu;

	for_each_possible_cpu(cpu) {
7278 7279
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7280
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7281 7282 7283
	}
}

7284
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7285
{
P
Peter Zijlstra 已提交
7286
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7287

7288
	mutex_lock(&swhash->hlist_mutex);
7289
	if (swhash->hlist_refcount > 0) {
7290 7291
		struct swevent_hlist *hlist;

7292 7293 7294
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7295
	}
7296
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7297 7298
}

P
Peter Zijlstra 已提交
7299
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7300
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7301
{
7302 7303 7304 7305 7306 7307 7308
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7309
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7310
{
P
Peter Zijlstra 已提交
7311
	struct perf_event_context *ctx = __info;
7312
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7313

P
Peter Zijlstra 已提交
7314
	perf_pmu_rotate_stop(ctx->pmu);
7315

7316
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7317
		__perf_remove_from_context(event);
7318
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7319
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7320
}
P
Peter Zijlstra 已提交
7321 7322 7323 7324 7325 7326 7327 7328 7329

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7330
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7331 7332 7333 7334 7335 7336 7337 7338

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7339
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7340
{
7341
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7342

7343 7344 7345
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7346

P
Peter Zijlstra 已提交
7347
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7348 7349
}
#else
7350
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7351 7352
#endif

P
Peter Zijlstra 已提交
7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
7373 7374 7375 7376 7377
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7378
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7379 7380

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7381
	case CPU_DOWN_FAILED:
7382
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7383 7384
		break;

P
Peter Zijlstra 已提交
7385
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7386
	case CPU_DOWN_PREPARE:
7387
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7388 7389 7390 7391 7392 7393 7394 7395 7396
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

7397
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7398
{
7399 7400
	int ret;

P
Peter Zijlstra 已提交
7401 7402
	idr_init(&pmu_idr);

7403
	perf_event_init_all_cpus();
7404
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7405 7406 7407
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7408 7409
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7410
	register_reboot_notifier(&perf_reboot_notifier);
7411 7412 7413

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7414 7415 7416

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7417 7418 7419 7420 7421 7422 7423

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
7424
}
P
Peter Zijlstra 已提交
7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7453 7454

#ifdef CONFIG_CGROUP_PERF
7455
static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
S
Stephane Eranian 已提交
7456 7457 7458
{
	struct perf_cgroup *jc;

7459
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

7472
static void perf_cgroup_css_free(struct cgroup *cont)
S
Stephane Eranian 已提交
7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

7488
static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
7489
{
7490 7491 7492 7493
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7494 7495
}

7496 7497
static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
			     struct task_struct *task)
S
Stephane Eranian 已提交
7498 7499 7500 7501 7502 7503 7504 7505 7506
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

7507
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7508 7509 7510
}

struct cgroup_subsys perf_subsys = {
7511 7512
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
7513 7514
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
7515
	.exit		= perf_cgroup_exit,
7516
	.attach		= perf_cgroup_attach,
7517 7518 7519 7520 7521 7522 7523

	/*
	 * perf_event cgroup doesn't handle nesting correctly.
	 * ctx->nr_cgroups adjustments should be propagated through the
	 * cgroup hierarchy.  Fix it and remove the following.
	 */
	.broken_hierarchy = true,
S
Stephane Eranian 已提交
7524 7525
};
#endif /* CONFIG_CGROUP_PERF */