core.c 191.0 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
76
#include <linux/compiler.h>
L
Linus Torvalds 已提交
77

78
#include <asm/switch_to.h>
79
#include <asm/tlb.h>
80
#include <asm/irq_regs.h>
81
#include <asm/mutex.h>
G
Glauber Costa 已提交
82 83 84
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
85

86
#include "sched.h"
87
#include "../workqueue_internal.h"
88
#include "../smpboot.h"
89

90
#define CREATE_TRACE_POINTS
91
#include <trace/events/sched.h>
92

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
#ifdef smp_mb__before_atomic
void __smp_mb__before_atomic(void)
{
	smp_mb__before_atomic();
}
EXPORT_SYMBOL(__smp_mb__before_atomic);
#endif

#ifdef smp_mb__after_atomic
void __smp_mb__after_atomic(void)
{
	smp_mb__after_atomic();
}
EXPORT_SYMBOL(__smp_mb__after_atomic);
#endif

109
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
110
{
111 112
	unsigned long delta;
	ktime_t soft, hard, now;
113

114 115 116 117 118 119
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
120

121 122 123 124 125 126 127 128
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

129 130
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
131

132
static void update_rq_clock_task(struct rq *rq, s64 delta);
133

134
void update_rq_clock(struct rq *rq)
135
{
136
	s64 delta;
137

138
	if (rq->skip_clock_update > 0)
139
		return;
140

141 142 143
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
144 145
}

I
Ingo Molnar 已提交
146 147 148
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
149 150 151 152

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
153
const_debug unsigned int sysctl_sched_features =
154
#include "features.h"
P
Peter Zijlstra 已提交
155 156 157 158 159 160 161 162
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

163
static const char * const sched_feat_names[] = {
164
#include "features.h"
P
Peter Zijlstra 已提交
165 166 167 168
};

#undef SCHED_FEAT

L
Li Zefan 已提交
169
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
170 171 172
{
	int i;

173
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
174 175 176
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
177
	}
L
Li Zefan 已提交
178
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
179

L
Li Zefan 已提交
180
	return 0;
P
Peter Zijlstra 已提交
181 182
}

183 184
#ifdef HAVE_JUMP_LABEL

185 186
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
187 188 189 190

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

191
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
192 193 194 195 196 197 198
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
199 200
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
201 202 203 204
}

static void sched_feat_enable(int i)
{
205 206
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
207 208 209 210 211 212
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

213
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
214 215
{
	int i;
216
	int neg = 0;
P
Peter Zijlstra 已提交
217

H
Hillf Danton 已提交
218
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
219 220 221 222
		neg = 1;
		cmp += 3;
	}

223
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
224
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
225
			if (neg) {
P
Peter Zijlstra 已提交
226
				sysctl_sched_features &= ~(1UL << i);
227 228
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
229
				sysctl_sched_features |= (1UL << i);
230 231
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
232 233 234 235
			break;
		}
	}

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

	i = sched_feat_set(cmp);
257
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
258 259
		return -EINVAL;

260
	*ppos += cnt;
P
Peter Zijlstra 已提交
261 262 263 264

	return cnt;
}

L
Li Zefan 已提交
265 266 267 268 269
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

270
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
271 272 273 274 275
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
276 277 278 279 280 281 282 283 284 285
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
286
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
287

288 289 290 291 292 293
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

294 295 296 297 298 299 300 301
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
302
/*
P
Peter Zijlstra 已提交
303
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
304 305
 * default: 1s
 */
P
Peter Zijlstra 已提交
306
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
307

308
__read_mostly int scheduler_running;
309

P
Peter Zijlstra 已提交
310 311 312 313 314
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
315

316
/*
317
 * __task_rq_lock - lock the rq @p resides on.
318
 */
319
static inline struct rq *__task_rq_lock(struct task_struct *p)
320 321
	__acquires(rq->lock)
{
322 323
	struct rq *rq;

324 325
	lockdep_assert_held(&p->pi_lock);

326
	for (;;) {
327
		rq = task_rq(p);
328
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
329
		if (likely(rq == task_rq(p)))
330
			return rq;
331
		raw_spin_unlock(&rq->lock);
332 333 334
	}
}

L
Linus Torvalds 已提交
335
/*
336
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
337
 */
338
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
339
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
340 341
	__acquires(rq->lock)
{
342
	struct rq *rq;
L
Linus Torvalds 已提交
343

344
	for (;;) {
345
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
346
		rq = task_rq(p);
347
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
348
		if (likely(rq == task_rq(p)))
349
			return rq;
350 351
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
352 353 354
	}
}

A
Alexey Dobriyan 已提交
355
static void __task_rq_unlock(struct rq *rq)
356 357
	__releases(rq->lock)
{
358
	raw_spin_unlock(&rq->lock);
359 360
}

361 362
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
363
	__releases(rq->lock)
364
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
365
{
366 367
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
368 369 370
}

/*
371
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
372
 */
A
Alexey Dobriyan 已提交
373
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
374 375
	__acquires(rq->lock)
{
376
	struct rq *rq;
L
Linus Torvalds 已提交
377 378 379

	local_irq_disable();
	rq = this_rq();
380
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
381 382 383 384

	return rq;
}

P
Peter Zijlstra 已提交
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

406
	raw_spin_lock(&rq->lock);
407
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
408
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
409
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
410 411 412 413

	return HRTIMER_NORESTART;
}

414
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
415 416 417 418 419 420 421 422 423

static int __hrtick_restart(struct rq *rq)
{
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = hrtimer_get_softexpires(timer);

	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
}

424 425 426 427
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
428
{
429
	struct rq *rq = arg;
430

431
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
432
	__hrtick_restart(rq);
433
	rq->hrtick_csd_pending = 0;
434
	raw_spin_unlock(&rq->lock);
435 436
}

437 438 439 440 441
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
442
void hrtick_start(struct rq *rq, u64 delay)
443
{
444 445
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
446

447
	hrtimer_set_expires(timer, time);
448 449

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
450
		__hrtick_restart(rq);
451
	} else if (!rq->hrtick_csd_pending) {
452
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
453 454
		rq->hrtick_csd_pending = 1;
	}
455 456 457 458 459 460 461 462 463 464 465 466 467 468
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
469
		hrtick_clear(cpu_rq(cpu));
470 471 472 473 474 475
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

476
static __init void init_hrtick(void)
477 478 479
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
480 481 482 483 484 485
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
486
void hrtick_start(struct rq *rq, u64 delay)
487
{
488
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
489
			HRTIMER_MODE_REL_PINNED, 0);
490
}
491

A
Andrew Morton 已提交
492
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
493 494
{
}
495
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
496

497
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
498
{
499 500
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
501

502 503 504 505
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
506

507 508
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
509
}
A
Andrew Morton 已提交
510
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
511 512 513 514 515 516 517 518
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

519 520 521
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
522
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
523

524 525 526 527 528 529 530 531 532 533 534 535 536 537
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, val)						\
({	typeof(*(ptr)) __old, __val = *(ptr);				\
 	for (;;) {							\
 		__old = cmpxchg((ptr), __val, __val | (val));		\
 		if (__old == __val)					\
 			break;						\
 		__val = __old;						\
 	}								\
 	__old;								\
})

538
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
539 540 541 542 543 544 545 546 547 548
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

574 575 576 577 578 579
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
580 581 582 583 584 585 586

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
587 588
#endif

I
Ingo Molnar 已提交
589 590 591 592 593 594 595
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
596
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
597 598 599
{
	int cpu;

600
	lockdep_assert_held(&task_rq(p)->lock);
I
Ingo Molnar 已提交
601

602
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
603 604 605
		return;

	cpu = task_cpu(p);
606

607
	if (cpu == smp_processor_id()) {
608
		set_tsk_need_resched(p);
609
		set_preempt_need_resched();
I
Ingo Molnar 已提交
610
		return;
611
	}
I
Ingo Molnar 已提交
612

613
	if (set_nr_and_not_polling(p))
I
Ingo Molnar 已提交
614
		smp_send_reschedule(cpu);
615 616
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
617 618
}

619
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
620 621 622 623
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

624
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
625 626
		return;
	resched_task(cpu_curr(cpu));
627
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
628
}
629

630
#ifdef CONFIG_SMP
631
#ifdef CONFIG_NO_HZ_COMMON
632 633 634 635 636 637 638 639
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
640
int get_nohz_timer_target(int pinned)
641 642 643 644 645
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

646 647 648
	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
		return cpu;

649
	rcu_read_lock();
650
	for_each_domain(cpu, sd) {
651 652 653 654 655 656
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
657
	}
658 659
unlock:
	rcu_read_unlock();
660 661
	return cpu;
}
662 663 664 665 666 667 668 669 670 671
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
672
static void wake_up_idle_cpu(int cpu)
673 674 675 676 677 678
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

679
	if (set_nr_and_not_polling(rq->idle))
680
		smp_send_reschedule(cpu);
681 682
	else
		trace_sched_wake_idle_without_ipi(cpu);
683 684
}

685
static bool wake_up_full_nohz_cpu(int cpu)
686
{
687
	if (tick_nohz_full_cpu(cpu)) {
688 689 690 691 692 693 694 695 696 697 698
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
			smp_send_reschedule(cpu);
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
699
	if (!wake_up_full_nohz_cpu(cpu))
700 701 702
		wake_up_idle_cpu(cpu);
}

703
static inline bool got_nohz_idle_kick(void)
704
{
705
	int cpu = smp_processor_id();
706 707 708 709 710 711 712 713 714 715 716 717 718

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
719 720
}

721
#else /* CONFIG_NO_HZ_COMMON */
722

723
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
724
{
725
	return false;
P
Peter Zijlstra 已提交
726 727
}

728
#endif /* CONFIG_NO_HZ_COMMON */
729

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
       struct rq *rq;

       rq = this_rq();

       /* Make sure rq->nr_running update is visible after the IPI */
       smp_rmb();

       /* More than one running task need preemption */
       if (rq->nr_running > 1)
               return false;

       return true;
}
#endif /* CONFIG_NO_HZ_FULL */
747

748
void sched_avg_update(struct rq *rq)
749
{
750 751
	s64 period = sched_avg_period();

752
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
753 754 755 756 757 758
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
759 760 761
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
762 763
}

764
#endif /* CONFIG_SMP */
765

766 767
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
768
/*
769 770 771 772
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
773
 */
774
int walk_tg_tree_from(struct task_group *from,
775
			     tg_visitor down, tg_visitor up, void *data)
776 777
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
778
	int ret;
779

780 781
	parent = from;

782
down:
P
Peter Zijlstra 已提交
783 784
	ret = (*down)(parent, data);
	if (ret)
785
		goto out;
786 787 788 789 790 791 792
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
793
	ret = (*up)(parent, data);
794 795
	if (ret || parent == from)
		goto out;
796 797 798 799 800

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
801
out:
P
Peter Zijlstra 已提交
802
	return ret;
803 804
}

805
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
806
{
807
	return 0;
P
Peter Zijlstra 已提交
808
}
809 810
#endif

811 812
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
813 814 815
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
816 817 818 819
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
820
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
821
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
822 823
		return;
	}
824

825
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
826
	load->inv_weight = prio_to_wmult[prio];
827 828
}

829
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
830
{
831
	update_rq_clock(rq);
832
	sched_info_queued(rq, p);
833
	p->sched_class->enqueue_task(rq, p, flags);
834 835
}

836
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
837
{
838
	update_rq_clock(rq);
839
	sched_info_dequeued(rq, p);
840
	p->sched_class->dequeue_task(rq, p, flags);
841 842
}

843
void activate_task(struct rq *rq, struct task_struct *p, int flags)
844 845 846 847
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

848
	enqueue_task(rq, p, flags);
849 850
}

851
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
852 853 854 855
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

856
	dequeue_task(rq, p, flags);
857 858
}

859
static void update_rq_clock_task(struct rq *rq, s64 delta)
860
{
861 862 863 864 865 866 867 868
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
869
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
891 892
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
893
	if (static_key_false((&paravirt_steal_rq_enabled))) {
894 895 896 897 898 899 900 901 902 903 904
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

905 906
	rq->clock_task += delta;

907
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
908
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
909 910
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
911 912
}

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

943
/*
I
Ingo Molnar 已提交
944
 * __normal_prio - return the priority that is based on the static prio
945 946 947
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
948
	return p->static_prio;
949 950
}

951 952 953 954 955 956 957
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
958
static inline int normal_prio(struct task_struct *p)
959 960 961
{
	int prio;

962 963 964
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
965 966 967 968 969 970 971 972 973 974 975 976 977
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
978
static int effective_prio(struct task_struct *p)
979 980 981 982 983 984 985 986 987 988 989 990
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
991 992 993
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
994 995
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
996
 */
997
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
998 999 1000 1001
{
	return cpu_curr(task_cpu(p)) == p;
}

1002 1003
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
1004
				       int oldprio)
1005 1006 1007
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
1008 1009
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
1010
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
1011
		p->sched_class->prio_changed(rq, p, oldprio);
1012 1013
}

1014
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
1035
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1036 1037 1038
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
1039
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1040
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1041
{
1042 1043 1044 1045 1046
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1047
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1048
			!(task_preempt_count(p) & PREEMPT_ACTIVE));
1049 1050

#ifdef CONFIG_LOCKDEP
1051 1052 1053 1054 1055
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1056
	 * see task_group().
1057 1058 1059 1060
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1061 1062 1063
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1064 1065
#endif

1066
	trace_sched_migrate_task(p, new_cpu);
1067

1068
	if (task_cpu(p) != new_cpu) {
1069 1070
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
1071
		p->se.nr_migrations++;
1072
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1073
	}
I
Ingo Molnar 已提交
1074 1075

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1076 1077
}

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
	if (p->on_rq) {
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
		 * previous cpu our targer instead of where it really is.
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1114 1115
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
	double_rq_lock(src_rq, dst_rq);
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
		goto unlock;

	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1136 1137
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1160 1161 1162 1163
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1164 1165 1166 1167 1168 1169 1170 1171 1172
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
		goto out;

	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
		goto out;

1173
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1174 1175 1176 1177 1178 1179
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

1180
struct migration_arg {
1181
	struct task_struct *task;
L
Linus Torvalds 已提交
1182
	int dest_cpu;
1183
};
L
Linus Torvalds 已提交
1184

1185 1186
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1187 1188 1189
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1190 1191 1192 1193 1194 1195 1196
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1197 1198 1199 1200 1201 1202
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1203
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1204 1205
{
	unsigned long flags;
I
Ingo Molnar 已提交
1206
	int running, on_rq;
R
Roland McGrath 已提交
1207
	unsigned long ncsw;
1208
	struct rq *rq;
L
Linus Torvalds 已提交
1209

1210 1211 1212 1213 1214 1215 1216 1217
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1218

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1230 1231 1232
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1233
			cpu_relax();
R
Roland McGrath 已提交
1234
		}
1235

1236 1237 1238 1239 1240 1241
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1242
		trace_sched_wait_task(p);
1243
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1244
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1245
		ncsw = 0;
1246
		if (!match_state || p->state == match_state)
1247
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1248
		task_rq_unlock(rq, p, &flags);
1249

R
Roland McGrath 已提交
1250 1251 1252 1253 1254 1255
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1266

1267 1268 1269 1270 1271
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1272
		 * So if it was still runnable (but just not actively
1273 1274 1275 1276
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1277 1278 1279 1280
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1281 1282
			continue;
		}
1283

1284 1285 1286 1287 1288 1289 1290
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1291 1292

	return ncsw;
L
Linus Torvalds 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1302
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1303 1304 1305 1306 1307
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1308
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1318
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1319
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1320

1321
#ifdef CONFIG_SMP
1322
/*
1323
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1324
 */
1325 1326
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1327 1328
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1329 1330
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1331

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1349
	}
1350

1351 1352
	for (;;) {
		/* Any allowed, online CPU? */
1353
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1354 1355 1356 1357 1358 1359
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1360

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1387
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1388 1389
					task_pid_nr(p), p->comm, cpu);
		}
1390 1391 1392 1393 1394
	}

	return dest_cpu;
}

1395
/*
1396
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1397
 */
1398
static inline
1399
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1400
{
1401
	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1413
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1414
		     !cpu_online(cpu)))
1415
		cpu = select_fallback_rq(task_cpu(p), p);
1416 1417

	return cpu;
1418
}
1419 1420 1421 1422 1423 1424

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1425 1426
#endif

P
Peter Zijlstra 已提交
1427
static void
1428
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1429
{
P
Peter Zijlstra 已提交
1430
#ifdef CONFIG_SCHEDSTATS
1431 1432
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1443
		rcu_read_lock();
P
Peter Zijlstra 已提交
1444 1445 1446 1447 1448 1449
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1450
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1451
	}
1452 1453 1454 1455

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1456 1457 1458
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1459
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1460 1461

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1462
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1463 1464 1465 1466 1467 1468

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1469
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1470
	p->on_rq = 1;
1471 1472 1473 1474

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1475 1476
}

1477 1478 1479
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1480
static void
1481
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1482 1483
{
	check_preempt_curr(rq, p, wake_flags);
1484
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1485 1486 1487 1488 1489 1490

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1491
	if (rq->idle_stamp) {
1492
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1493
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1494

1495 1496 1497
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1498
			rq->avg_idle = max;
1499

T
Tejun Heo 已提交
1500 1501 1502 1503 1504
		rq->idle_stamp = 0;
	}
#endif
}

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
1530 1531
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1532 1533 1534 1535 1536 1537 1538 1539
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1540
#ifdef CONFIG_SMP
1541
void sched_ttwu_pending(void)
1542 1543
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1544 1545
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1546
	unsigned long flags;
1547

1548 1549 1550 1551
	if (!llist)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
1552

P
Peter Zijlstra 已提交
1553 1554 1555
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1556 1557 1558
		ttwu_do_activate(rq, p, 0);
	}

1559
	raw_spin_unlock_irqrestore(&rq->lock, flags);
1560 1561 1562 1563
}

void scheduler_ipi(void)
{
1564 1565 1566 1567 1568
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1569
	preempt_fold_need_resched();
1570

1571 1572 1573
	if (llist_empty(&this_rq()->wake_list)
			&& !tick_nohz_full_cpu(smp_processor_id())
			&& !got_nohz_idle_kick())
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
1590
	tick_nohz_full_check();
P
Peter Zijlstra 已提交
1591
	sched_ttwu_pending();
1592 1593 1594 1595

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1596
	if (unlikely(got_nohz_idle_kick())) {
1597
		this_rq()->idle_balance = 1;
1598
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1599
	}
1600
	irq_exit();
1601 1602 1603 1604
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
1605 1606 1607 1608 1609 1610 1611 1612
	struct rq *rq = cpu_rq(cpu);

	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1613
}
1614

1615
bool cpus_share_cache(int this_cpu, int that_cpu)
1616 1617 1618
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1619
#endif /* CONFIG_SMP */
1620

1621 1622 1623 1624
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1625
#if defined(CONFIG_SMP)
1626
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1627
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1628 1629 1630 1631 1632
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1633 1634 1635
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1636 1637 1638
}

/**
L
Linus Torvalds 已提交
1639
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1640
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1641
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1642
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1643 1644 1645 1646 1647 1648 1649
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
1650
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
1651
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1652
 */
1653 1654
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1655 1656
{
	unsigned long flags;
1657
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1658

1659 1660 1661 1662 1663 1664 1665
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1666
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1667
	if (!(p->state & state))
L
Linus Torvalds 已提交
1668 1669
		goto out;

1670
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1671 1672
	cpu = task_cpu(p);

1673 1674
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1675 1676

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1677
	/*
1678 1679
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1680
	 */
1681
	while (p->on_cpu)
1682
		cpu_relax();
1683
	/*
1684
	 * Pairs with the smp_wmb() in finish_lock_switch().
1685
	 */
1686
	smp_rmb();
L
Linus Torvalds 已提交
1687

1688
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1689
	p->state = TASK_WAKING;
1690

1691
	if (p->sched_class->task_waking)
1692
		p->sched_class->task_waking(p);
1693

1694
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1695 1696
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1697
		set_task_cpu(p, cpu);
1698
	}
L
Linus Torvalds 已提交
1699 1700
#endif /* CONFIG_SMP */

1701 1702
	ttwu_queue(p, cpu);
stat:
1703
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1704
out:
1705
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1706 1707 1708 1709

	return success;
}

T
Tejun Heo 已提交
1710 1711 1712 1713
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1714
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1715
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1716
 * the current task.
T
Tejun Heo 已提交
1717 1718 1719 1720 1721
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

1722 1723 1724 1725
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
1726 1727
	lockdep_assert_held(&rq->lock);

1728 1729 1730 1731 1732 1733
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1734
	if (!(p->state & TASK_NORMAL))
1735
		goto out;
T
Tejun Heo 已提交
1736

P
Peter Zijlstra 已提交
1737
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1738 1739
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1740
	ttwu_do_wakeup(rq, p, 0);
1741
	ttwu_stat(p, smp_processor_id(), 0);
1742 1743
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1744 1745
}

1746 1747 1748 1749 1750
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
1751 1752 1753
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
1754 1755 1756 1757
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1758
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1759
{
1760 1761
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
1762 1763 1764
}
EXPORT_SYMBOL(wake_up_process);

1765
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1766 1767 1768 1769 1770 1771 1772
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1773 1774 1775
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
1776
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
1777
{
P
Peter Zijlstra 已提交
1778 1779 1780
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1781 1782
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1783
	p->se.prev_sum_exec_runtime	= 0;
1784
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1785
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1786
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1787 1788

#ifdef CONFIG_SCHEDSTATS
1789
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1790
#endif
N
Nick Piggin 已提交
1791

1792 1793 1794 1795
	RB_CLEAR_NODE(&p->dl.rb_node);
	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	p->dl.dl_runtime = p->dl.runtime = 0;
	p->dl.dl_deadline = p->dl.deadline = 0;
1796
	p->dl.dl_period = 0;
1797 1798
	p->dl.flags = 0;

P
Peter Zijlstra 已提交
1799
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1800

1801 1802 1803
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1804 1805 1806

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1807
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1808 1809 1810
		p->mm->numa_scan_seq = 0;
	}

1811 1812 1813 1814 1815
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

1816 1817
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1818
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1819
	p->numa_work.next = &p->numa_work;
1820 1821
	p->numa_faults_memory = NULL;
	p->numa_faults_buffer_memory = NULL;
1822 1823
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
1824 1825 1826

	INIT_LIST_HEAD(&p->numa_entry);
	p->numa_group = NULL;
1827
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1828 1829
}

1830
#ifdef CONFIG_NUMA_BALANCING
1831
#ifdef CONFIG_SCHED_DEBUG
1832 1833 1834 1835 1836 1837 1838
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
1839 1840 1841 1842 1843 1844
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
1845
}
1846
#endif /* CONFIG_SCHED_DEBUG */
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = numabalancing_enabled;

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
1870 1871 1872 1873

/*
 * fork()/clone()-time setup:
 */
1874
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
1875
{
1876
	unsigned long flags;
I
Ingo Molnar 已提交
1877 1878
	int cpu = get_cpu();

1879
	__sched_fork(clone_flags, p);
1880
	/*
1881
	 * We mark the process as running here. This guarantees that
1882 1883 1884
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1885
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1886

1887 1888 1889 1890 1891
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1892 1893 1894 1895
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1896
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1897
			p->policy = SCHED_NORMAL;
1898
			p->static_prio = NICE_TO_PRIO(0);
1899 1900 1901 1902 1903 1904
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1905

1906 1907 1908 1909 1910 1911
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1912

1913 1914 1915 1916 1917 1918
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
1919
		p->sched_class = &fair_sched_class;
1920
	}
1921

P
Peter Zijlstra 已提交
1922 1923 1924
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1925 1926 1927 1928 1929 1930 1931
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1932
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1933
	set_task_cpu(p, cpu);
1934
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1935

1936
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1937
	if (likely(sched_info_on()))
1938
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1939
#endif
P
Peter Zijlstra 已提交
1940 1941
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1942
#endif
1943
	init_task_preempt_count(p);
1944
#ifdef CONFIG_SMP
1945
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1946
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1947
#endif
1948

N
Nick Piggin 已提交
1949
	put_cpu();
1950
	return 0;
L
Linus Torvalds 已提交
1951 1952
}

1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->rd->dl_bw;
}

1975
static inline int dl_bw_cpus(int i)
1976
{
1977 1978 1979 1980 1981 1982 1983
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
1984 1985 1986 1987 1988 1989 1990
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

1991
static inline int dl_bw_cpus(int i)
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
{
	return 1;
}
#endif

static inline
void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
{
	dl_b->total_bw -= tsk_bw;
}

static inline
void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
{
	dl_b->total_bw += tsk_bw;
}

static inline
bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
{
	return dl_b->bw != -1 &&
	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
}

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2029
	u64 period = attr->sched_period ?: attr->sched_deadline;
2030 2031
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2032
	int cpus, err = -1;
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042

	if (new_bw == p->dl.dl_bw)
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
2043
	cpus = dl_bw_cpus(task_cpu(p));
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
2064 2065 2066 2067 2068 2069 2070
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2071
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2072 2073
{
	unsigned long flags;
I
Ingo Molnar 已提交
2074
	struct rq *rq;
2075

2076
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2077 2078 2079 2080 2081 2082
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
2083
	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2084 2085
#endif

2086 2087
	/* Initialize new task's runnable average */
	init_task_runnable_average(p);
2088
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
2089
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
2090
	p->on_rq = 1;
2091
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
2092
	check_preempt_curr(rq, p, WF_FORK);
2093
#ifdef CONFIG_SMP
2094 2095
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2096
#endif
2097
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
2098 2099
}

2100 2101 2102
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2103
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2104
 * @notifier: notifier struct to register
2105 2106 2107 2108 2109 2110 2111 2112 2113
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2114
 * @notifier: notifier struct to unregister
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;

2128
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2129 2130 2131 2132 2133 2134 2135 2136 2137
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;

2138
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2139 2140 2141
		notifier->ops->sched_out(notifier, next);
}

2142
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2154
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2155

2156 2157 2158
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2159
 * @prev: the current task that is being switched out
2160 2161 2162 2163 2164 2165 2166 2167 2168
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2169 2170 2171
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2172
{
2173
	trace_sched_switch(prev, next);
2174
	sched_info_switch(rq, prev, next);
2175
	perf_event_task_sched_out(prev, next);
2176
	fire_sched_out_preempt_notifiers(prev, next);
2177 2178 2179 2180
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2181 2182
/**
 * finish_task_switch - clean up after a task-switch
2183
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2184 2185
 * @prev: the thread we just switched away from.
 *
2186 2187 2188 2189
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2190 2191
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2192
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2193 2194 2195
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2196
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2197 2198 2199
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2200
	long prev_state;
L
Linus Torvalds 已提交
2201 2202 2203 2204 2205

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2206
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2207 2208
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2209
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2210 2211 2212 2213 2214
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2215
	prev_state = prev->state;
2216
	vtime_task_switch(prev);
2217
	finish_arch_switch(prev);
2218
	perf_event_task_sched_in(prev, current);
2219
	finish_lock_switch(rq, prev);
2220
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2221

2222
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2223 2224
	if (mm)
		mmdrop(mm);
2225
	if (unlikely(prev_state == TASK_DEAD)) {
2226 2227 2228
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2229 2230 2231
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2232
		 */
2233
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2234
		put_task_struct(prev);
2235
	}
2236 2237

	tick_nohz_task_switch(current);
L
Linus Torvalds 已提交
2238 2239
}

2240 2241 2242 2243 2244 2245 2246 2247
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2248
		raw_spin_lock_irqsave(&rq->lock, flags);
2249 2250
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2251
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2252 2253 2254 2255 2256 2257

		rq->post_schedule = 0;
	}
}

#else
2258

2259 2260
static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2261 2262
}

2263 2264
#endif

L
Linus Torvalds 已提交
2265 2266 2267 2268
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2269
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2270 2271
	__releases(rq->lock)
{
2272 2273
	struct rq *rq = this_rq();

2274
	finish_task_switch(rq, prev);
2275

2276 2277 2278 2279 2280
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2281

2282 2283 2284 2285
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2286
	if (current->set_child_tid)
2287
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2288 2289 2290 2291 2292 2293
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2294
static inline void
2295
context_switch(struct rq *rq, struct task_struct *prev,
2296
	       struct task_struct *next)
L
Linus Torvalds 已提交
2297
{
I
Ingo Molnar 已提交
2298
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2299

2300
	prepare_task_switch(rq, prev, next);
2301

I
Ingo Molnar 已提交
2302 2303
	mm = next->mm;
	oldmm = prev->active_mm;
2304 2305 2306 2307 2308
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2309
	arch_start_context_switch(prev);
2310

2311
	if (!mm) {
L
Linus Torvalds 已提交
2312 2313 2314 2315 2316 2317
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2318
	if (!prev->mm) {
L
Linus Torvalds 已提交
2319 2320 2321
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2322 2323 2324 2325 2326 2327 2328
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2329
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2330
#endif
L
Linus Torvalds 已提交
2331

2332
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
2333 2334 2335
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2336 2337 2338 2339 2340 2341 2342
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2343 2344 2345
}

/*
2346
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2347 2348
 *
 * externally visible scheduler statistics: current number of runnable
2349
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2350 2351 2352 2353 2354 2355 2356 2357 2358
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2359
}
L
Linus Torvalds 已提交
2360 2361

unsigned long long nr_context_switches(void)
2362
{
2363 2364
	int i;
	unsigned long long sum = 0;
2365

2366
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2367
		sum += cpu_rq(i)->nr_switches;
2368

L
Linus Torvalds 已提交
2369 2370
	return sum;
}
2371

L
Linus Torvalds 已提交
2372 2373 2374
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2375

2376
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2377
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2378

L
Linus Torvalds 已提交
2379 2380
	return sum;
}
2381

2382
unsigned long nr_iowait_cpu(int cpu)
2383
{
2384
	struct rq *this = cpu_rq(cpu);
2385 2386
	return atomic_read(&this->nr_iowait);
}
2387

I
Ingo Molnar 已提交
2388
#ifdef CONFIG_SMP
2389

2390
/*
P
Peter Zijlstra 已提交
2391 2392
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2393
 */
P
Peter Zijlstra 已提交
2394
void sched_exec(void)
2395
{
P
Peter Zijlstra 已提交
2396
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2397
	unsigned long flags;
2398
	int dest_cpu;
2399

2400
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2401
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2402 2403
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2404

2405
	if (likely(cpu_active(dest_cpu))) {
2406
		struct migration_arg arg = { p, dest_cpu };
2407

2408 2409
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2410 2411
		return;
	}
2412
unlock:
2413
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2414
}
I
Ingo Molnar 已提交
2415

L
Linus Torvalds 已提交
2416 2417 2418
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2419
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2420 2421

EXPORT_PER_CPU_SYMBOL(kstat);
2422
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2423 2424

/*
2425
 * Return any ns on the sched_clock that have not yet been accounted in
2426
 * @p in case that task is currently running.
2427 2428
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2429
 */
2430 2431 2432 2433 2434 2435
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2436
		ns = rq_clock_task(rq) - p->se.exec_start;
2437 2438 2439 2440 2441 2442 2443
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2444
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2445 2446
{
	unsigned long flags;
2447
	struct rq *rq;
2448
	u64 ns = 0;
2449

2450
	rq = task_rq_lock(p, &flags);
2451
	ns = do_task_delta_exec(p, rq);
2452
	task_rq_unlock(rq, p, &flags);
2453

2454 2455
	return ns;
}
2456

2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
	 * If we race with it entering cpu, unaccounted time is 0. This is
	 * indistinguishable from the read occurring a few cycles earlier.
	 */
	if (!p->on_cpu)
		return p->se.sum_exec_runtime;
#endif

2482 2483
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2484
	task_rq_unlock(rq, p, &flags);
2485 2486 2487

	return ns;
}
2488

2489 2490 2491 2492 2493 2494 2495 2496
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2497
	struct task_struct *curr = rq->curr;
2498 2499

	sched_clock_tick();
I
Ingo Molnar 已提交
2500

2501
	raw_spin_lock(&rq->lock);
2502
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2503
	curr->sched_class->task_tick(rq, curr, 0);
2504
	update_cpu_load_active(rq);
2505
	raw_spin_unlock(&rq->lock);
2506

2507
	perf_event_task_tick();
2508

2509
#ifdef CONFIG_SMP
2510
	rq->idle_balance = idle_cpu(cpu);
2511
	trigger_load_balance(rq);
2512
#endif
2513
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
2514 2515
}

2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
2527 2528
 *
 * Return: Maximum deferment in nanoseconds.
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
	unsigned long next, now = ACCESS_ONCE(jiffies);

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

2540
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
2541
}
2542
#endif
L
Linus Torvalds 已提交
2543

2544
notrace unsigned long get_parent_ip(unsigned long addr)
2545 2546 2547 2548 2549 2550 2551 2552
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2553

2554 2555 2556
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2557
void preempt_count_add(int val)
L
Linus Torvalds 已提交
2558
{
2559
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2560 2561 2562
	/*
	 * Underflow?
	 */
2563 2564
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2565
#endif
2566
	__preempt_count_add(val);
2567
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2568 2569 2570
	/*
	 * Spinlock count overflowing soon?
	 */
2571 2572
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2573
#endif
2574 2575 2576 2577 2578 2579 2580
	if (preempt_count() == val) {
		unsigned long ip = get_parent_ip(CALLER_ADDR1);
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
L
Linus Torvalds 已提交
2581
}
2582
EXPORT_SYMBOL(preempt_count_add);
2583
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
2584

2585
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
2586
{
2587
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2588 2589 2590
	/*
	 * Underflow?
	 */
2591
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2592
		return;
L
Linus Torvalds 已提交
2593 2594 2595
	/*
	 * Is the spinlock portion underflowing?
	 */
2596 2597 2598
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2599
#endif
2600

2601 2602
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2603
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
2604
}
2605
EXPORT_SYMBOL(preempt_count_sub);
2606
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
2607 2608 2609 2610

#endif

/*
I
Ingo Molnar 已提交
2611
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2612
 */
I
Ingo Molnar 已提交
2613
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2614
{
2615 2616 2617
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2618 2619
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2620

I
Ingo Molnar 已提交
2621
	debug_show_held_locks(prev);
2622
	print_modules();
I
Ingo Molnar 已提交
2623 2624
	if (irqs_disabled())
		print_irqtrace_events(prev);
2625 2626 2627 2628 2629 2630 2631
#ifdef CONFIG_DEBUG_PREEMPT
	if (in_atomic_preempt_off()) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
2632
	dump_stack();
2633
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2634
}
L
Linus Torvalds 已提交
2635

I
Ingo Molnar 已提交
2636 2637 2638 2639 2640
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2641
	/*
I
Ingo Molnar 已提交
2642
	 * Test if we are atomic. Since do_exit() needs to call into
2643 2644
	 * schedule() atomically, we ignore that path. Otherwise whine
	 * if we are scheduling when we should not.
L
Linus Torvalds 已提交
2645
	 */
2646
	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
I
Ingo Molnar 已提交
2647
		__schedule_bug(prev);
2648
	rcu_sleep_check();
I
Ingo Molnar 已提交
2649

L
Linus Torvalds 已提交
2650 2651
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2652
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2653 2654 2655 2656 2657 2658
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2659
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
2660
{
2661
	const struct sched_class *class = &fair_sched_class;
I
Ingo Molnar 已提交
2662
	struct task_struct *p;
L
Linus Torvalds 已提交
2663 2664

	/*
I
Ingo Molnar 已提交
2665 2666
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2667
	 */
2668
	if (likely(prev->sched_class == class &&
2669
		   rq->nr_running == rq->cfs.h_nr_running)) {
2670
		p = fair_sched_class.pick_next_task(rq, prev);
2671 2672 2673 2674 2675 2676 2677 2678
		if (unlikely(p == RETRY_TASK))
			goto again;

		/* assumes fair_sched_class->next == idle_sched_class */
		if (unlikely(!p))
			p = idle_sched_class.pick_next_task(rq, prev);

		return p;
L
Linus Torvalds 已提交
2679 2680
	}

2681
again:
2682
	for_each_class(class) {
2683
		p = class->pick_next_task(rq, prev);
2684 2685 2686
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
2687
			return p;
2688
		}
I
Ingo Molnar 已提交
2689
	}
2690 2691

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2692
}
L
Linus Torvalds 已提交
2693

I
Ingo Molnar 已提交
2694
/*
2695
 * __schedule() is the main scheduler function.
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2730
 */
2731
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2732 2733
{
	struct task_struct *prev, *next;
2734
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2735
	struct rq *rq;
2736
	int cpu;
I
Ingo Molnar 已提交
2737

2738 2739
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2740 2741
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2742
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2743 2744 2745
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2746

2747
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2748
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2749

2750 2751 2752 2753 2754 2755
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
2756
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2757

2758
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2759
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2760
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2761
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2762
		} else {
2763 2764 2765
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2766
			/*
2767 2768 2769
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2770 2771 2772 2773 2774 2775 2776 2777 2778
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2779
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2780 2781
	}

2782 2783 2784 2785
	if (prev->on_rq || rq->skip_clock_update < 0)
		update_rq_clock(rq);

	next = pick_next_task(rq, prev);
2786
	clear_tsk_need_resched(prev);
2787
	clear_preempt_need_resched();
2788
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2789 2790 2791 2792 2793 2794

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2795
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2796
		/*
2797 2798 2799 2800
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2801 2802 2803
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2804
	} else
2805
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2806

2807
	post_schedule(rq);
L
Linus Torvalds 已提交
2808

2809
	sched_preempt_enable_no_resched();
2810
	if (need_resched())
L
Linus Torvalds 已提交
2811 2812
		goto need_resched;
}
2813

2814 2815
static inline void sched_submit_work(struct task_struct *tsk)
{
2816
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2817 2818 2819 2820 2821 2822 2823 2824 2825
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

2826
asmlinkage __visible void __sched schedule(void)
2827
{
2828 2829 2830
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2831 2832
	__schedule();
}
L
Linus Torvalds 已提交
2833 2834
EXPORT_SYMBOL(schedule);

2835
#ifdef CONFIG_CONTEXT_TRACKING
2836
asmlinkage __visible void __sched schedule_user(void)
2837 2838 2839 2840 2841 2842 2843
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
2844
	user_exit();
2845
	schedule();
2846
	user_enter();
2847 2848 2849
}
#endif

2850 2851 2852 2853 2854 2855 2856
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2857
	sched_preempt_enable_no_resched();
2858 2859 2860 2861
	schedule();
	preempt_disable();
}

L
Linus Torvalds 已提交
2862 2863
#ifdef CONFIG_PREEMPT
/*
2864
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
2865
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
2866 2867
 * occur there and call schedule directly.
 */
2868
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
2869 2870 2871
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
2872
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
2873
	 */
2874
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
2875 2876
		return;

2877
	do {
2878
		__preempt_count_add(PREEMPT_ACTIVE);
2879
		__schedule();
2880
		__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2881

2882 2883 2884 2885 2886
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2887
	} while (need_resched());
L
Linus Torvalds 已提交
2888
}
2889
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
2890
EXPORT_SYMBOL(preempt_schedule);
2891
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
2892 2893

/*
2894
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
2895 2896 2897 2898
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
2899
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
2900
{
2901
	enum ctx_state prev_state;
2902

2903
	/* Catch callers which need to be fixed */
2904
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
2905

2906 2907
	prev_state = exception_enter();

2908
	do {
2909
		__preempt_count_add(PREEMPT_ACTIVE);
2910
		local_irq_enable();
2911
		__schedule();
2912
		local_irq_disable();
2913
		__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2914

2915 2916 2917 2918 2919
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2920
	} while (need_resched());
2921 2922

	exception_exit(prev_state);
L
Linus Torvalds 已提交
2923 2924
}

P
Peter Zijlstra 已提交
2925
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
2926
			  void *key)
L
Linus Torvalds 已提交
2927
{
P
Peter Zijlstra 已提交
2928
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
2929 2930 2931
}
EXPORT_SYMBOL(default_wake_function);

2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
2942 2943
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
2944
 */
2945
void rt_mutex_setprio(struct task_struct *p, int prio)
2946
{
2947
	int oldprio, on_rq, running, enqueue_flag = 0;
2948
	struct rq *rq;
2949
	const struct sched_class *prev_class;
2950

2951
	BUG_ON(prio > MAX_PRIO);
2952

2953
	rq = __task_rq_lock(p);
2954

2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

2973
	trace_sched_pi_setprio(p, prio);
2974
	p->pi_top_task = rt_mutex_get_top_task(p);
2975
	oldprio = p->prio;
2976
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
2977
	on_rq = p->on_rq;
2978
	running = task_current(rq, p);
2979
	if (on_rq)
2980
		dequeue_task(rq, p, 0);
2981 2982
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
2983

2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
			p->dl.dl_boosted = 1;
			p->dl.dl_throttled = 0;
			enqueue_flag = ENQUEUE_REPLENISH;
		} else
			p->dl.dl_boosted = 0;
3001
		p->sched_class = &dl_sched_class;
3002 3003 3004 3005 3006
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
			enqueue_flag = ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3007
		p->sched_class = &rt_sched_class;
3008 3009 3010
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
I
Ingo Molnar 已提交
3011
		p->sched_class = &fair_sched_class;
3012
	}
I
Ingo Molnar 已提交
3013

3014 3015
	p->prio = prio;

3016 3017
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3018
	if (on_rq)
3019
		enqueue_task(rq, p, enqueue_flag);
3020

P
Peter Zijlstra 已提交
3021
	check_class_changed(rq, p, prev_class, oldprio);
3022
out_unlock:
3023
	__task_rq_unlock(rq);
3024 3025
}
#endif
3026

3027
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3028
{
I
Ingo Molnar 已提交
3029
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3030
	unsigned long flags;
3031
	struct rq *rq;
L
Linus Torvalds 已提交
3032

3033
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3044
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3045
	 */
3046
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3047 3048 3049
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3050
	on_rq = p->on_rq;
3051
	if (on_rq)
3052
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3053 3054

	p->static_prio = NICE_TO_PRIO(nice);
3055
	set_load_weight(p);
3056 3057 3058
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3059

I
Ingo Molnar 已提交
3060
	if (on_rq) {
3061
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3062
		/*
3063 3064
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3065
		 */
3066
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3067 3068 3069
			resched_task(rq->curr);
	}
out_unlock:
3070
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3071 3072 3073
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3074 3075 3076 3077 3078
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3079
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3080
{
3081
	/* convert nice value [19,-20] to rlimit style value [1,40] */
3082
	int nice_rlim = nice_to_rlimit(nice);
3083

3084
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3085 3086 3087
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3088 3089 3090 3091 3092 3093 3094 3095 3096
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3097
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3098
{
3099
	long nice, retval;
L
Linus Torvalds 已提交
3100 3101 3102 3103 3104 3105

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3106
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3107
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3108

3109
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3110 3111 3112
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3127
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3128 3129 3130
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3131
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3132 3133 3134 3135 3136 3137 3138
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3139 3140
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3141 3142 3143
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3158 3159 3160 3161 3162
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3163 3164
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3165
 */
3166
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3167 3168 3169 3170 3171 3172 3173
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3174 3175
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3176
 */
A
Alexey Dobriyan 已提交
3177
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3178
{
3179
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3180 3181
}

3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	init_dl_task_timer(dl_se);
	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3198
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3199
	dl_se->flags = attr->sched_flags;
3200
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3201 3202
	dl_se->dl_throttled = 0;
	dl_se->dl_new = 1;
3203
	dl_se->dl_yielded = 0;
3204 3205
}

3206 3207
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3208
{
3209 3210
	int policy = attr->sched_policy;

3211 3212 3213
	if (policy == -1) /* setparam */
		policy = p->policy;

L
Linus Torvalds 已提交
3214
	p->policy = policy;
3215

3216 3217
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3218
	else if (fair_policy(policy))
3219 3220
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3221 3222 3223 3224 3225 3226
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3227
	p->normal_prio = normal_prio(p);
3228 3229
	set_load_weight(p);
}
3230

3231 3232 3233 3234 3235
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
			   const struct sched_attr *attr)
{
	__setscheduler_params(p, attr);
3236

3237 3238 3239 3240 3241 3242
	/*
	 * If we get here, there was no pi waiters boosting the
	 * task. It is safe to use the normal prio.
	 */
	p->prio = normal_prio(p);

3243 3244 3245
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3246 3247 3248
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3249
}
3250 3251 3252 3253 3254 3255 3256 3257 3258

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
3259
	attr->sched_period = dl_se->dl_period;
3260 3261 3262 3263 3264 3265
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
3266
 * than the runtime, as well as the period of being zero or
3267
 * greater than deadline. Furthermore, we have to be sure that
3268 3269 3270 3271
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
3272 3273 3274 3275
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
3302 3303
}

3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3314 3315
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3316 3317 3318 3319
	rcu_read_unlock();
	return match;
}

3320 3321 3322
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
				bool user)
L
Linus Torvalds 已提交
3323
{
3324 3325
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
3326
	int retval, oldprio, oldpolicy = -1, on_rq, running;
3327
	int policy = attr->sched_policy;
L
Linus Torvalds 已提交
3328
	unsigned long flags;
3329
	const struct sched_class *prev_class;
3330
	struct rq *rq;
3331
	int reset_on_fork;
L
Linus Torvalds 已提交
3332

3333 3334
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3335 3336
recheck:
	/* double check policy once rq lock held */
3337 3338
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3339
		policy = oldpolicy = p->policy;
3340
	} else {
3341
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3342

3343 3344
		if (policy != SCHED_DEADLINE &&
				policy != SCHED_FIFO && policy != SCHED_RR &&
3345 3346 3347 3348 3349
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

3350 3351 3352
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
3353 3354
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3355 3356
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3357
	 */
3358
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3359
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3360
		return -EINVAL;
3361 3362
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
3363 3364
		return -EINVAL;

3365 3366 3367
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3368
	if (user && !capable(CAP_SYS_NICE)) {
3369
		if (fair_policy(policy)) {
3370
			if (attr->sched_nice < task_nice(p) &&
3371
			    !can_nice(p, attr->sched_nice))
3372 3373 3374
				return -EPERM;
		}

3375
		if (rt_policy(policy)) {
3376 3377
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3378 3379 3380 3381 3382 3383

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
3384 3385
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
3386 3387
				return -EPERM;
		}
3388

3389 3390 3391 3392 3393 3394 3395 3396 3397
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
3398
		/*
3399 3400
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3401
		 */
3402
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3403
			if (!can_nice(p, task_nice(p)))
3404 3405
				return -EPERM;
		}
3406

3407
		/* can't change other user's priorities */
3408
		if (!check_same_owner(p))
3409
			return -EPERM;
3410 3411 3412 3413

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3414
	}
L
Linus Torvalds 已提交
3415

3416
	if (user) {
3417
		retval = security_task_setscheduler(p);
3418 3419 3420 3421
		if (retval)
			return retval;
	}

3422 3423 3424
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3425
	 *
L
Lucas De Marchi 已提交
3426
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3427 3428
	 * runqueue lock must be held.
	 */
3429
	rq = task_rq_lock(p, &flags);
3430

3431 3432 3433 3434
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3435
		task_rq_unlock(rq, p, &flags);
3436 3437 3438
		return -EINVAL;
	}

3439
	/*
3440 3441
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
3442
	 */
3443
	if (unlikely(policy == p->policy)) {
3444
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3445 3446 3447
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
3448 3449
		if (dl_policy(policy))
			goto change;
3450

3451
		p->sched_reset_on_fork = reset_on_fork;
3452
		task_rq_unlock(rq, p, &flags);
3453 3454
		return 0;
	}
3455
change:
3456

3457
	if (user) {
3458
#ifdef CONFIG_RT_GROUP_SCHED
3459 3460 3461 3462 3463
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3464 3465
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3466
			task_rq_unlock(rq, p, &flags);
3467 3468 3469
			return -EPERM;
		}
#endif
3470 3471 3472 3473 3474 3475 3476 3477 3478
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
3479 3480
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
3481 3482 3483 3484 3485 3486
				task_rq_unlock(rq, p, &flags);
				return -EPERM;
			}
		}
#endif
	}
3487

L
Linus Torvalds 已提交
3488 3489 3490
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3491
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3492 3493
		goto recheck;
	}
3494 3495 3496 3497 3498 3499

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
3500
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3501 3502 3503 3504
		task_rq_unlock(rq, p, &flags);
		return -EBUSY;
	}

3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

	/*
	 * Special case for priority boosted tasks.
	 *
	 * If the new priority is lower or equal (user space view)
	 * than the current (boosted) priority, we just store the new
	 * normal parameters and do not touch the scheduler class and
	 * the runqueue. This will be done when the task deboost
	 * itself.
	 */
	if (rt_mutex_check_prio(p, newprio)) {
		__setscheduler_params(p, attr);
		task_rq_unlock(rq, p, &flags);
		return 0;
	}

P
Peter Zijlstra 已提交
3523
	on_rq = p->on_rq;
3524
	running = task_current(rq, p);
3525
	if (on_rq)
3526
		dequeue_task(rq, p, 0);
3527 3528
	if (running)
		p->sched_class->put_prev_task(rq, p);
3529

3530
	prev_class = p->sched_class;
3531
	__setscheduler(rq, p, attr);
3532

3533 3534
	if (running)
		p->sched_class->set_curr_task(rq);
3535 3536 3537 3538 3539 3540 3541
	if (on_rq) {
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
	}
3542

P
Peter Zijlstra 已提交
3543
	check_class_changed(rq, p, prev_class, oldprio);
3544
	task_rq_unlock(rq, p, &flags);
3545

3546 3547
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3548 3549
	return 0;
}
3550

3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

	/*
	 * Fixup the legacy SCHED_RESET_ON_FORK hack
	 */
	if (policy & SCHED_RESET_ON_FORK) {
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

	return __sched_setscheduler(p, &attr, check);
}
3571 3572 3573 3574 3575 3576
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
3577 3578
 * Return: 0 on success. An error code otherwise.
 *
3579 3580 3581
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3582
		       const struct sched_param *param)
3583
{
3584
	return _sched_setscheduler(p, policy, param, true);
3585
}
L
Linus Torvalds 已提交
3586 3587
EXPORT_SYMBOL_GPL(sched_setscheduler);

3588 3589 3590 3591 3592 3593
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
	return __sched_setscheduler(p, attr, true);
}
EXPORT_SYMBOL_GPL(sched_setattr);

3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
3604 3605
 *
 * Return: 0 on success. An error code otherwise.
3606 3607
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3608
			       const struct sched_param *param)
3609
{
3610
	return _sched_setscheduler(p, policy, param, false);
3611 3612
}

I
Ingo Molnar 已提交
3613 3614
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3615 3616 3617
{
	struct sched_param lparam;
	struct task_struct *p;
3618
	int retval;
L
Linus Torvalds 已提交
3619 3620 3621 3622 3623

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3624 3625 3626

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3627
	p = find_process_by_pid(pid);
3628 3629 3630
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3631

L
Linus Torvalds 已提交
3632 3633 3634
	return retval;
}

3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr)
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * XXX: do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
3697
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3698

3699
	return 0;
3700 3701 3702

err_size:
	put_user(sizeof(*attr), &uattr->size);
3703
	return -E2BIG;
3704 3705
}

L
Linus Torvalds 已提交
3706 3707 3708 3709 3710
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
3711 3712
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3713
 */
3714 3715
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3716
{
3717 3718 3719 3720
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3721 3722 3723 3724 3725 3726 3727
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
3728 3729
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3730
 */
3731
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3732 3733 3734 3735
{
	return do_sched_setscheduler(pid, -1, param);
}

3736 3737 3738
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
3739
 * @uattr: structure containing the extended parameters.
3740
 * @flags: for future extension.
3741
 */
3742 3743
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
3744 3745 3746 3747 3748
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

3749
	if (!uattr || pid < 0 || flags)
3750 3751
		return -EINVAL;

3752 3753 3754
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
3755

3756
	if ((int)attr.sched_policy < 0)
3757
		return -EINVAL;
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
3769 3770 3771
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
3772 3773 3774
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
3775
 */
3776
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
3777
{
3778
	struct task_struct *p;
3779
	int retval;
L
Linus Torvalds 已提交
3780 3781

	if (pid < 0)
3782
		return -EINVAL;
L
Linus Torvalds 已提交
3783 3784

	retval = -ESRCH;
3785
	rcu_read_lock();
L
Linus Torvalds 已提交
3786 3787 3788 3789
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
3790 3791
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
3792
	}
3793
	rcu_read_unlock();
L
Linus Torvalds 已提交
3794 3795 3796 3797
	return retval;
}

/**
3798
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
3799 3800
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
3801 3802 3803
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
3804
 */
3805
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3806
{
3807
	struct sched_param lp = { .sched_priority = 0 };
3808
	struct task_struct *p;
3809
	int retval;
L
Linus Torvalds 已提交
3810 3811

	if (!param || pid < 0)
3812
		return -EINVAL;
L
Linus Torvalds 已提交
3813

3814
	rcu_read_lock();
L
Linus Torvalds 已提交
3815 3816 3817 3818 3819 3820 3821 3822 3823
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

3824 3825
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
3826
	rcu_read_unlock();
L
Linus Torvalds 已提交
3827 3828 3829 3830 3831 3832 3833 3834 3835

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
3836
	rcu_read_unlock();
L
Linus Torvalds 已提交
3837 3838 3839
	return retval;
}

3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
3863
				return -EFBIG;
3864 3865 3866 3867 3868
		}

		attr->size = usize;
	}

3869
	ret = copy_to_user(uattr, attr, attr->size);
3870 3871 3872
	if (ret)
		return -EFAULT;

3873
	return 0;
3874 3875 3876
}

/**
3877
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3878
 * @pid: the pid in question.
J
Juri Lelli 已提交
3879
 * @uattr: structure containing the extended parameters.
3880
 * @size: sizeof(attr) for fwd/bwd comp.
3881
 * @flags: for future extension.
3882
 */
3883 3884
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
3885 3886 3887 3888 3889 3890 3891 3892
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3893
	    size < SCHED_ATTR_SIZE_VER0 || flags)
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
3907 3908
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3909 3910 3911
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
3912 3913
		attr.sched_priority = p->rt_priority;
	else
3914
		attr.sched_nice = task_nice(p);
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

3926
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
3927
{
3928
	cpumask_var_t cpus_allowed, new_mask;
3929 3930
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
3931

3932
	rcu_read_lock();
L
Linus Torvalds 已提交
3933 3934 3935

	p = find_process_by_pid(pid);
	if (!p) {
3936
		rcu_read_unlock();
L
Linus Torvalds 已提交
3937 3938 3939
		return -ESRCH;
	}

3940
	/* Prevent p going away */
L
Linus Torvalds 已提交
3941
	get_task_struct(p);
3942
	rcu_read_unlock();
L
Linus Torvalds 已提交
3943

3944 3945 3946 3947
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
3948 3949 3950 3951 3952 3953 3954 3955
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
3956
	retval = -EPERM;
E
Eric W. Biederman 已提交
3957 3958 3959 3960 3961 3962 3963 3964
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
			goto out_unlock;
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
3965

3966
	retval = security_task_setscheduler(p);
3967 3968 3969
	if (retval)
		goto out_unlock;

3970 3971 3972 3973

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
	if (task_has_dl_policy(p)) {
		const struct cpumask *span = task_rq(p)->rd->span;

3984
		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3985 3986 3987 3988 3989
			retval = -EBUSY;
			goto out_unlock;
		}
	}
#endif
P
Peter Zijlstra 已提交
3990
again:
3991
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
3992

P
Paul Menage 已提交
3993
	if (!retval) {
3994 3995
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
3996 3997 3998 3999 4000
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4001
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4002 4003 4004
			goto again;
		}
	}
L
Linus Torvalds 已提交
4005
out_unlock:
4006 4007 4008 4009
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4010 4011 4012 4013 4014
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4015
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4016
{
4017 4018 4019 4020 4021
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4022 4023 4024 4025 4026 4027 4028 4029
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
4030 4031
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4032
 */
4033 4034
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4035
{
4036
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4037 4038
	int retval;

4039 4040
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4041

4042 4043 4044 4045 4046
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4047 4048
}

4049
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4050
{
4051
	struct task_struct *p;
4052
	unsigned long flags;
L
Linus Torvalds 已提交
4053 4054
	int retval;

4055
	rcu_read_lock();
L
Linus Torvalds 已提交
4056 4057 4058 4059 4060 4061

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4062 4063 4064 4065
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4066
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4067
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4068
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4069 4070

out_unlock:
4071
	rcu_read_unlock();
L
Linus Torvalds 已提交
4072

4073
	return retval;
L
Linus Torvalds 已提交
4074 4075 4076 4077 4078 4079 4080
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4081 4082
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4083
 */
4084 4085
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4086 4087
{
	int ret;
4088
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4089

A
Anton Blanchard 已提交
4090
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4091 4092
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4093 4094
		return -EINVAL;

4095 4096
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4097

4098 4099
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4100
		size_t retlen = min_t(size_t, len, cpumask_size());
4101 4102

		if (copy_to_user(user_mask_ptr, mask, retlen))
4103 4104
			ret = -EFAULT;
		else
4105
			ret = retlen;
4106 4107
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4108

4109
	return ret;
L
Linus Torvalds 已提交
4110 4111 4112 4113 4114
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4115 4116
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4117 4118
 *
 * Return: 0.
L
Linus Torvalds 已提交
4119
 */
4120
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4121
{
4122
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4123

4124
	schedstat_inc(rq, yld_count);
4125
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4126 4127 4128 4129 4130 4131

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4132
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4133
	do_raw_spin_unlock(&rq->lock);
4134
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4135 4136 4137 4138 4139 4140

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4141
static void __cond_resched(void)
L
Linus Torvalds 已提交
4142
{
4143
	__preempt_count_add(PREEMPT_ACTIVE);
4144
	__schedule();
4145
	__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4146 4147
}

4148
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4149
{
P
Peter Zijlstra 已提交
4150
	if (should_resched()) {
L
Linus Torvalds 已提交
4151 4152 4153 4154 4155
		__cond_resched();
		return 1;
	}
	return 0;
}
4156
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4157 4158

/*
4159
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4160 4161
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4162
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4163 4164 4165
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4166
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4167
{
P
Peter Zijlstra 已提交
4168
	int resched = should_resched();
J
Jan Kara 已提交
4169 4170
	int ret = 0;

4171 4172
	lockdep_assert_held(lock);

4173
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4174
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4175
		if (resched)
N
Nick Piggin 已提交
4176 4177 4178
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4179
		ret = 1;
L
Linus Torvalds 已提交
4180 4181
		spin_lock(lock);
	}
J
Jan Kara 已提交
4182
	return ret;
L
Linus Torvalds 已提交
4183
}
4184
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4185

4186
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4187 4188 4189
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4190
	if (should_resched()) {
4191
		local_bh_enable();
L
Linus Torvalds 已提交
4192 4193 4194 4195 4196 4197
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4198
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4199 4200 4201 4202

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4221 4222 4223 4224 4225 4226 4227 4228
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4229 4230 4231 4232
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4233 4234
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4235 4236 4237 4238
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4239
 * Return:
4240 4241 4242
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4243
 */
4244
int __sched yield_to(struct task_struct *p, bool preempt)
4245 4246 4247 4248
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4249
	int yielded = 0;
4250 4251 4252 4253 4254 4255

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4256 4257 4258 4259 4260 4261 4262 4263 4264
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4265
	double_rq_lock(rq, p_rq);
4266
	if (task_rq(p) != p_rq) {
4267 4268 4269 4270 4271
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4272
		goto out_unlock;
4273 4274

	if (curr->sched_class != p->sched_class)
4275
		goto out_unlock;
4276 4277

	if (task_running(p_rq, p) || p->state)
4278
		goto out_unlock;
4279 4280

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4281
	if (yielded) {
4282
		schedstat_inc(rq, yld_count);
4283 4284 4285 4286 4287 4288 4289
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
4290

4291
out_unlock:
4292
	double_rq_unlock(rq, p_rq);
4293
out_irq:
4294 4295
	local_irq_restore(flags);

4296
	if (yielded > 0)
4297 4298 4299 4300 4301 4302
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4303
/*
I
Ingo Molnar 已提交
4304
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4305 4306 4307 4308
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4309
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4310

4311
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4312
	atomic_inc(&rq->nr_iowait);
4313
	blk_flush_plug(current);
4314
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4315
	schedule();
4316
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4317
	atomic_dec(&rq->nr_iowait);
4318
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4319 4320 4321 4322 4323
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4324
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4325 4326
	long ret;

4327
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4328
	atomic_inc(&rq->nr_iowait);
4329
	blk_flush_plug(current);
4330
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4331
	ret = schedule_timeout(timeout);
4332
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4333
	atomic_dec(&rq->nr_iowait);
4334
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4335 4336 4337 4338 4339 4340 4341
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
4342 4343 4344
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4345
 */
4346
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4347 4348 4349 4350 4351 4352 4353 4354
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
4355
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4356
	case SCHED_NORMAL:
4357
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4358
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
4369 4370 4371
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4372
 */
4373
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4374 4375 4376 4377 4378 4379 4380 4381
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
4382
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4383
	case SCHED_NORMAL:
4384
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4385
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
4398 4399 4400
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
4401
 */
4402
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4403
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4404
{
4405
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4406
	unsigned int time_slice;
4407 4408
	unsigned long flags;
	struct rq *rq;
4409
	int retval;
L
Linus Torvalds 已提交
4410 4411 4412
	struct timespec t;

	if (pid < 0)
4413
		return -EINVAL;
L
Linus Torvalds 已提交
4414 4415

	retval = -ESRCH;
4416
	rcu_read_lock();
L
Linus Torvalds 已提交
4417 4418 4419 4420 4421 4422 4423 4424
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4425
	rq = task_rq_lock(p, &flags);
4426 4427 4428
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
4429
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4430

4431
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4432
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4433 4434
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4435

L
Linus Torvalds 已提交
4436
out_unlock:
4437
	rcu_read_unlock();
L
Linus Torvalds 已提交
4438 4439 4440
	return retval;
}

4441
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4442

4443
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4444 4445
{
	unsigned long free = 0;
4446
	int ppid;
4447
	unsigned state;
L
Linus Torvalds 已提交
4448 4449

	state = p->state ? __ffs(p->state) + 1 : 0;
4450
	printk(KERN_INFO "%-15.15s %c", p->comm,
4451
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4452
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4453
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4454
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4455
	else
P
Peter Zijlstra 已提交
4456
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4457 4458
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4459
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4460
	else
P
Peter Zijlstra 已提交
4461
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4462 4463
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4464
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4465
#endif
4466 4467 4468
	rcu_read_lock();
	ppid = task_pid_nr(rcu_dereference(p->real_parent));
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4469
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4470
		task_pid_nr(p), ppid,
4471
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4472

4473
	print_worker_info(KERN_INFO, p);
4474
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4475 4476
}

I
Ingo Molnar 已提交
4477
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4478
{
4479
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4480

4481
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4482 4483
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4484
#else
P
Peter Zijlstra 已提交
4485 4486
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4487
#endif
4488
	rcu_read_lock();
L
Linus Torvalds 已提交
4489 4490 4491
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4492
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4493 4494
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4495
		if (!state_filter || (p->state & state_filter))
4496
			sched_show_task(p);
L
Linus Torvalds 已提交
4497 4498
	} while_each_thread(g, p);

4499 4500
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4501 4502 4503
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4504
	rcu_read_unlock();
I
Ingo Molnar 已提交
4505 4506 4507
	/*
	 * Only show locks if all tasks are dumped:
	 */
4508
	if (!state_filter)
I
Ingo Molnar 已提交
4509
		debug_show_all_locks();
L
Linus Torvalds 已提交
4510 4511
}

4512
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
4513
{
I
Ingo Molnar 已提交
4514
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4515 4516
}

4517 4518 4519 4520 4521 4522 4523 4524
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4525
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4526
{
4527
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4528 4529
	unsigned long flags;

4530
	raw_spin_lock_irqsave(&rq->lock, flags);
4531

4532
	__sched_fork(0, idle);
4533
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4534 4535
	idle->se.exec_start = sched_clock();

4536
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4548
	__set_task_cpu(idle, cpu);
4549
	rcu_read_unlock();
L
Linus Torvalds 已提交
4550 4551

	rq->curr = rq->idle = idle;
4552
	idle->on_rq = 1;
P
Peter Zijlstra 已提交
4553 4554
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4555
#endif
4556
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4557 4558

	/* Set the preempt count _outside_ the spinlocks! */
4559
	init_idle_preempt_count(idle, cpu);
4560

I
Ingo Molnar 已提交
4561 4562 4563 4564
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4565
	ftrace_graph_init_idle_task(idle, cpu);
4566
	vtime_init_idle(idle, cpu);
4567 4568 4569
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4570 4571
}

L
Linus Torvalds 已提交
4572
#ifdef CONFIG_SMP
4573 4574 4575 4576
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4577 4578

	cpumask_copy(&p->cpus_allowed, new_mask);
4579
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4580 4581
}

L
Linus Torvalds 已提交
4582 4583 4584
/*
 * This is how migration works:
 *
4585 4586 4587 4588 4589 4590
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4591
 *    it and puts it into the right queue.
4592 4593
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4594 4595 4596 4597 4598 4599 4600 4601
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4602
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4603 4604
 * call is not atomic; no spinlocks may be held.
 */
4605
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4606 4607
{
	unsigned long flags;
4608
	struct rq *rq;
4609
	unsigned int dest_cpu;
4610
	int ret = 0;
L
Linus Torvalds 已提交
4611 4612

	rq = task_rq_lock(p, &flags);
4613

4614 4615 4616
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4617
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4618 4619 4620 4621
		ret = -EINVAL;
		goto out;
	}

4622
	do_set_cpus_allowed(p, new_mask);
4623

L
Linus Torvalds 已提交
4624
	/* Can the task run on the task's current CPU? If so, we're done */
4625
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4626 4627
		goto out;

4628
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4629
	if (p->on_rq) {
4630
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4631
		/* Need help from migration thread: drop lock and wait. */
4632
		task_rq_unlock(rq, p, &flags);
4633
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4634 4635 4636 4637
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4638
	task_rq_unlock(rq, p, &flags);
4639

L
Linus Torvalds 已提交
4640 4641
	return ret;
}
4642
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4643 4644

/*
I
Ingo Molnar 已提交
4645
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4646 4647 4648 4649 4650 4651
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4652 4653
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4654
 */
4655
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4656
{
4657
	struct rq *rq_dest, *rq_src;
4658
	int ret = 0;
L
Linus Torvalds 已提交
4659

4660
	if (unlikely(!cpu_active(dest_cpu)))
4661
		return ret;
L
Linus Torvalds 已提交
4662 4663 4664 4665

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4666
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4667 4668 4669
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4670
		goto done;
L
Linus Torvalds 已提交
4671
	/* Affinity changed (again). */
4672
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4673
		goto fail;
L
Linus Torvalds 已提交
4674

4675 4676 4677 4678
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4679
	if (p->on_rq) {
4680
		dequeue_task(rq_src, p, 0);
4681
		set_task_cpu(p, dest_cpu);
4682
		enqueue_task(rq_dest, p, 0);
4683
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4684
	}
L
Linus Torvalds 已提交
4685
done:
4686
	ret = 1;
L
Linus Torvalds 已提交
4687
fail:
L
Linus Torvalds 已提交
4688
	double_rq_unlock(rq_src, rq_dest);
4689
	raw_spin_unlock(&p->pi_lock);
4690
	return ret;
L
Linus Torvalds 已提交
4691 4692
}

4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

4708
	trace_sched_move_numa(p, curr_cpu, target_cpu);
4709 4710
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
	struct rq *rq;
	unsigned long flags;
	bool on_rq, running;

	rq = task_rq_lock(p, &flags);
	on_rq = p->on_rq;
	running = task_current(rq, p);

	if (on_rq)
		dequeue_task(rq, p, 0);
	if (running)
		p->sched_class->put_prev_task(rq, p);

	p->numa_preferred_nid = nid;

	if (running)
		p->sched_class->set_curr_task(rq);
	if (on_rq)
		enqueue_task(rq, p, 0);
	task_rq_unlock(rq, p, &flags);
}
4739 4740
#endif

L
Linus Torvalds 已提交
4741
/*
4742 4743 4744
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4745
 */
4746
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4747
{
4748
	struct migration_arg *arg = data;
4749

4750 4751 4752 4753
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4754
	local_irq_disable();
4755
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4756
	local_irq_enable();
L
Linus Torvalds 已提交
4757
	return 0;
4758 4759
}

L
Linus Torvalds 已提交
4760
#ifdef CONFIG_HOTPLUG_CPU
4761

4762
/*
4763 4764
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4765
 */
4766
void idle_task_exit(void)
L
Linus Torvalds 已提交
4767
{
4768
	struct mm_struct *mm = current->active_mm;
4769

4770
	BUG_ON(cpu_online(smp_processor_id()));
4771

4772
	if (mm != &init_mm) {
4773
		switch_mm(mm, &init_mm, current);
4774 4775
		finish_arch_post_lock_switch();
	}
4776
	mmdrop(mm);
L
Linus Torvalds 已提交
4777 4778 4779
}

/*
4780 4781 4782 4783 4784
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4785
 */
4786
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4787
{
4788 4789 4790
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4791 4792
}

4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

4809
/*
4810 4811 4812 4813 4814 4815
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4816
 */
4817
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4818
{
4819
	struct rq *rq = cpu_rq(dead_cpu);
4820 4821
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4822 4823

	/*
4824 4825 4826 4827 4828 4829 4830
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4831
	 */
4832
	rq->stop = NULL;
4833

4834 4835 4836 4837 4838 4839 4840
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

I
Ingo Molnar 已提交
4841
	for ( ; ; ) {
4842 4843 4844 4845 4846
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4847
			break;
4848

4849
		next = pick_next_task(rq, &fake_task);
4850
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4851
		next->sched_class->put_prev_task(rq, next);
4852

4853 4854 4855 4856 4857 4858 4859
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4860
	}
4861

4862
	rq->stop = stop;
4863
}
4864

L
Linus Torvalds 已提交
4865 4866
#endif /* CONFIG_HOTPLUG_CPU */

4867 4868 4869
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4870 4871
	{
		.procname	= "sched_domain",
4872
		.mode		= 0555,
4873
	},
4874
	{}
4875 4876 4877
};

static struct ctl_table sd_ctl_root[] = {
4878 4879
	{
		.procname	= "kernel",
4880
		.mode		= 0555,
4881 4882
		.child		= sd_ctl_dir,
	},
4883
	{}
4884 4885 4886 4887 4888
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4889
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4890 4891 4892 4893

	return entry;
}

4894 4895
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
4896
	struct ctl_table *entry;
4897

4898 4899 4900
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
4901
	 * will always be set. In the lowest directory the names are
4902 4903 4904
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
4905 4906
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
4907 4908 4909
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
4910 4911 4912 4913 4914

	kfree(*tablep);
	*tablep = NULL;
}

4915
static int min_load_idx = 0;
4916
static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4917

4918
static void
4919
set_table_entry(struct ctl_table *entry,
4920
		const char *procname, void *data, int maxlen,
4921 4922
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
4923 4924 4925 4926 4927 4928
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
4929 4930 4931 4932 4933

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
4934 4935 4936 4937 4938
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
4939
	struct ctl_table *table = sd_alloc_ctl_entry(14);
4940

4941 4942 4943
	if (table == NULL)
		return NULL;

4944
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4945
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4946
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4947
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4948
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4949
		sizeof(int), 0644, proc_dointvec_minmax, true);
4950
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4951
		sizeof(int), 0644, proc_dointvec_minmax, true);
4952
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4953
		sizeof(int), 0644, proc_dointvec_minmax, true);
4954
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4955
		sizeof(int), 0644, proc_dointvec_minmax, true);
4956
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4957
		sizeof(int), 0644, proc_dointvec_minmax, true);
4958
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4959
		sizeof(int), 0644, proc_dointvec_minmax, false);
4960
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4961
		sizeof(int), 0644, proc_dointvec_minmax, false);
4962
	set_table_entry(&table[9], "cache_nice_tries",
4963
		&sd->cache_nice_tries,
4964
		sizeof(int), 0644, proc_dointvec_minmax, false);
4965
	set_table_entry(&table[10], "flags", &sd->flags,
4966
		sizeof(int), 0644, proc_dointvec_minmax, false);
4967 4968 4969 4970
	set_table_entry(&table[11], "max_newidle_lb_cost",
		&sd->max_newidle_lb_cost,
		sizeof(long), 0644, proc_doulongvec_minmax, false);
	set_table_entry(&table[12], "name", sd->name,
4971
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4972
	/* &table[13] is terminator */
4973 4974 4975 4976

	return table;
}

4977
static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4978 4979 4980 4981 4982 4983 4984 4985 4986
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4987 4988
	if (table == NULL)
		return NULL;
4989 4990 4991 4992 4993

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4994
		entry->mode = 0555;
4995 4996 4997 4998 4999 5000 5001 5002
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5003
static void register_sched_domain_sysctl(void)
5004
{
5005
	int i, cpu_num = num_possible_cpus();
5006 5007 5008
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5009 5010 5011
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5012 5013 5014
	if (entry == NULL)
		return;

5015
	for_each_possible_cpu(i) {
5016 5017
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5018
		entry->mode = 0555;
5019
		entry->child = sd_alloc_ctl_cpu_table(i);
5020
		entry++;
5021
	}
5022 5023

	WARN_ON(sd_sysctl_header);
5024 5025
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5026

5027
/* may be called multiple times per register */
5028 5029
static void unregister_sched_domain_sysctl(void)
{
5030 5031
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5032
	sd_sysctl_header = NULL;
5033 5034
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5035
}
5036
#else
5037 5038 5039 5040
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5041 5042 5043 5044
{
}
#endif

5045 5046 5047 5048 5049
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5050
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5070
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5071 5072 5073 5074
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5075 5076 5077 5078
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5079
static int
5080
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5081
{
5082
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5083
	unsigned long flags;
5084
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5085

5086
	switch (action & ~CPU_TASKS_FROZEN) {
5087

L
Linus Torvalds 已提交
5088
	case CPU_UP_PREPARE:
5089
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5090
		break;
5091

L
Linus Torvalds 已提交
5092
	case CPU_ONLINE:
5093
		/* Update our root-domain */
5094
		raw_spin_lock_irqsave(&rq->lock, flags);
5095
		if (rq->rd) {
5096
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5097 5098

			set_rq_online(rq);
5099
		}
5100
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5101
		break;
5102

L
Linus Torvalds 已提交
5103
#ifdef CONFIG_HOTPLUG_CPU
5104
	case CPU_DYING:
5105
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5106
		/* Update our root-domain */
5107
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5108
		if (rq->rd) {
5109
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5110
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5111
		}
5112 5113
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5114
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5115
		break;
5116

5117
	case CPU_DEAD:
5118
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5119
		break;
L
Linus Torvalds 已提交
5120 5121
#endif
	}
5122 5123 5124

	update_max_interval();

L
Linus Torvalds 已提交
5125 5126 5127
	return NOTIFY_OK;
}

5128 5129 5130
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5131
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5132
 */
5133
static struct notifier_block migration_notifier = {
L
Linus Torvalds 已提交
5134
	.notifier_call = migration_call,
5135
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5136 5137
};

5138 5139 5140 5141 5142 5143 5144
static void __cpuinit set_cpu_rq_start_time(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
	rq->age_stamp = sched_clock_cpu(cpu);
}

5145
static int sched_cpu_active(struct notifier_block *nfb,
5146 5147 5148
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5149 5150 5151
	case CPU_STARTING:
		set_cpu_rq_start_time();
		return NOTIFY_OK;
5152 5153 5154 5155 5156 5157 5158 5159
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5160
static int sched_cpu_inactive(struct notifier_block *nfb,
5161 5162
					unsigned long action, void *hcpu)
{
5163 5164 5165
	unsigned long flags;
	long cpu = (long)hcpu;

5166 5167
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183
		set_cpu_active(cpu, false);

		/* explicitly allow suspend */
		if (!(action & CPU_TASKS_FROZEN)) {
			struct dl_bw *dl_b = dl_bw_of(cpu);
			bool overflow;
			int cpus;

			raw_spin_lock_irqsave(&dl_b->lock, flags);
			cpus = dl_bw_cpus(cpu);
			overflow = __dl_overflow(dl_b, cpus, 0, 0);
			raw_spin_unlock_irqrestore(&dl_b->lock, flags);

			if (overflow)
				return notifier_from_errno(-EBUSY);
		}
5184 5185
		return NOTIFY_OK;
	}
5186 5187

	return NOTIFY_DONE;
5188 5189
}

5190
static int __init migration_init(void)
L
Linus Torvalds 已提交
5191 5192
{
	void *cpu = (void *)(long)smp_processor_id();
5193
	int err;
5194

5195
	/* Initialize migration for the boot CPU */
5196 5197
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5198 5199
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5200

5201 5202 5203 5204
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5205
	return 0;
L
Linus Torvalds 已提交
5206
}
5207
early_initcall(migration_init);
L
Linus Torvalds 已提交
5208 5209 5210
#endif

#ifdef CONFIG_SMP
5211

5212 5213
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5214
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5215

5216
static __read_mostly int sched_debug_enabled;
5217

5218
static int __init sched_debug_setup(char *str)
5219
{
5220
	sched_debug_enabled = 1;
5221 5222 5223

	return 0;
}
5224 5225 5226 5227 5228 5229
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5230

5231
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5232
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5233
{
I
Ingo Molnar 已提交
5234
	struct sched_group *group = sd->groups;
5235
	char str[256];
L
Linus Torvalds 已提交
5236

R
Rusty Russell 已提交
5237
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5238
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5239 5240 5241 5242

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5243
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5244
		if (sd->parent)
P
Peter Zijlstra 已提交
5245 5246
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5247
		return -1;
N
Nick Piggin 已提交
5248 5249
	}

P
Peter Zijlstra 已提交
5250
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5251

5252
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5253 5254
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5255
	}
5256
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5257 5258
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5259
	}
L
Linus Torvalds 已提交
5260

I
Ingo Molnar 已提交
5261
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5262
	do {
I
Ingo Molnar 已提交
5263
		if (!group) {
P
Peter Zijlstra 已提交
5264 5265
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5266 5267 5268
			break;
		}

5269
		/*
5270 5271
		 * Even though we initialize ->capacity to something semi-sane,
		 * we leave capacity_orig unset. This allows us to detect if
5272 5273
		 * domain iteration is still funny without causing /0 traps.
		 */
5274
		if (!group->sgc->capacity_orig) {
P
Peter Zijlstra 已提交
5275
			printk(KERN_CONT "\n");
5276
			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
I
Ingo Molnar 已提交
5277 5278
			break;
		}
L
Linus Torvalds 已提交
5279

5280
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5281 5282
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5283 5284
			break;
		}
L
Linus Torvalds 已提交
5285

5286 5287
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5288 5289
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5290 5291
			break;
		}
L
Linus Torvalds 已提交
5292

5293
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5294

R
Rusty Russell 已提交
5295
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5296

P
Peter Zijlstra 已提交
5297
		printk(KERN_CONT " %s", str);
5298
		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5299 5300
			printk(KERN_CONT " (cpu_capacity = %d)",
				group->sgc->capacity);
5301
		}
L
Linus Torvalds 已提交
5302

I
Ingo Molnar 已提交
5303 5304
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5305
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5306

5307
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5308
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5309

5310 5311
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5312 5313
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5314 5315
	return 0;
}
L
Linus Torvalds 已提交
5316

I
Ingo Molnar 已提交
5317 5318 5319
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5320

5321
	if (!sched_debug_enabled)
5322 5323
		return;

I
Ingo Molnar 已提交
5324 5325 5326 5327
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5328

I
Ingo Molnar 已提交
5329 5330 5331
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5332
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5333
			break;
L
Linus Torvalds 已提交
5334 5335
		level++;
		sd = sd->parent;
5336
		if (!sd)
I
Ingo Molnar 已提交
5337 5338
			break;
	}
L
Linus Torvalds 已提交
5339
}
5340
#else /* !CONFIG_SCHED_DEBUG */
5341
# define sched_domain_debug(sd, cpu) do { } while (0)
5342 5343 5344 5345
static inline bool sched_debug(void)
{
	return false;
}
5346
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5347

5348
static int sd_degenerate(struct sched_domain *sd)
5349
{
5350
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5351 5352 5353 5354 5355 5356
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5357
			 SD_BALANCE_EXEC |
5358
			 SD_SHARE_CPUCAPACITY |
5359 5360
			 SD_SHARE_PKG_RESOURCES |
			 SD_SHARE_POWERDOMAIN)) {
5361 5362 5363 5364 5365
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5366
	if (sd->flags & (SD_WAKE_AFFINE))
5367 5368 5369 5370 5371
		return 0;

	return 1;
}

5372 5373
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5374 5375 5376 5377 5378 5379
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5380
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5381 5382 5383 5384 5385 5386 5387
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5388
				SD_BALANCE_EXEC |
5389
				SD_SHARE_CPUCAPACITY |
5390
				SD_SHARE_PKG_RESOURCES |
5391 5392
				SD_PREFER_SIBLING |
				SD_SHARE_POWERDOMAIN);
5393 5394
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5395 5396 5397 5398 5399 5400 5401
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5402
static void free_rootdomain(struct rcu_head *rcu)
5403
{
5404
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5405

5406
	cpupri_cleanup(&rd->cpupri);
5407
	cpudl_cleanup(&rd->cpudl);
5408
	free_cpumask_var(rd->dlo_mask);
5409 5410 5411 5412 5413 5414
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5415 5416
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5417
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5418 5419
	unsigned long flags;

5420
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5421 5422

	if (rq->rd) {
I
Ingo Molnar 已提交
5423
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5424

5425
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5426
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5427

5428
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5429

I
Ingo Molnar 已提交
5430
		/*
5431
		 * If we dont want to free the old_rd yet then
I
Ingo Molnar 已提交
5432 5433 5434 5435 5436
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5437 5438 5439 5440 5441
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5442
	cpumask_set_cpu(rq->cpu, rd->span);
5443
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5444
		set_rq_online(rq);
G
Gregory Haskins 已提交
5445

5446
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5447 5448

	if (old_rd)
5449
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5450 5451
}

5452
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5453 5454 5455
{
	memset(rd, 0, sizeof(*rd));

5456
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5457
		goto out;
5458
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5459
		goto free_span;
5460
	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5461
		goto free_online;
5462 5463
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_dlo_mask;
5464

5465
	init_dl_bw(&rd->dl_bw);
5466 5467
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_dlo_mask;
5468

5469
	if (cpupri_init(&rd->cpupri) != 0)
5470
		goto free_rto_mask;
5471
	return 0;
5472

5473 5474
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5475 5476
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
5477 5478 5479 5480
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5481
out:
5482
	return -ENOMEM;
G
Gregory Haskins 已提交
5483 5484
}

5485 5486 5487 5488 5489 5490
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5491 5492
static void init_defrootdomain(void)
{
5493
	init_rootdomain(&def_root_domain);
5494

G
Gregory Haskins 已提交
5495 5496 5497
	atomic_set(&def_root_domain.refcount, 1);
}

5498
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5499 5500 5501 5502 5503 5504 5505
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5506
	if (init_rootdomain(rd) != 0) {
5507 5508 5509
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5510 5511 5512 5513

	return rd;
}

5514
static void free_sched_groups(struct sched_group *sg, int free_sgc)
5515 5516 5517 5518 5519 5520 5521 5522 5523 5524
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

5525 5526
		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
			kfree(sg->sgc);
5527 5528 5529 5530 5531 5532

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5533 5534 5535
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5536 5537 5538 5539 5540 5541 5542 5543

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5544
		kfree(sd->groups->sgc);
5545
		kfree(sd->groups);
5546
	}
5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5561 5562 5563 5564 5565 5566 5567
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5568
 * two cpus are in the same cache domain, see cpus_share_cache().
5569 5570
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5571
DEFINE_PER_CPU(int, sd_llc_size);
5572
DEFINE_PER_CPU(int, sd_llc_id);
5573
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5574 5575
DEFINE_PER_CPU(struct sched_domain *, sd_busy);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5576 5577 5578 5579

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
5580
	struct sched_domain *busy_sd = NULL;
5581
	int id = cpu;
5582
	int size = 1;
5583 5584

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5585
	if (sd) {
5586
		id = cpumask_first(sched_domain_span(sd));
5587
		size = cpumask_weight(sched_domain_span(sd));
5588
		busy_sd = sd->parent; /* sd_busy */
5589
	}
5590
	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5591 5592

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5593
	per_cpu(sd_llc_size, cpu) = size;
5594
	per_cpu(sd_llc_id, cpu) = id;
5595 5596 5597

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5598 5599 5600

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5601 5602
}

L
Linus Torvalds 已提交
5603
/*
I
Ingo Molnar 已提交
5604
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5605 5606
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5607 5608
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5609
{
5610
	struct rq *rq = cpu_rq(cpu);
5611 5612 5613
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5614
	for (tmp = sd; tmp; ) {
5615 5616 5617
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5618

5619
		if (sd_parent_degenerate(tmp, parent)) {
5620
			tmp->parent = parent->parent;
5621 5622
			if (parent->parent)
				parent->parent->child = tmp;
5623 5624 5625 5626 5627 5628 5629
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
5630
			destroy_sched_domain(parent, cpu);
5631 5632
		} else
			tmp = tmp->parent;
5633 5634
	}

5635
	if (sd && sd_degenerate(sd)) {
5636
		tmp = sd;
5637
		sd = sd->parent;
5638
		destroy_sched_domain(tmp, cpu);
5639 5640 5641
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5642

5643
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5644

G
Gregory Haskins 已提交
5645
	rq_attach_root(rq, rd);
5646
	tmp = rq->sd;
N
Nick Piggin 已提交
5647
	rcu_assign_pointer(rq->sd, sd);
5648
	destroy_sched_domains(tmp, cpu);
5649 5650

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5651 5652 5653
}

/* cpus with isolated domains */
5654
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5655 5656 5657 5658

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5659
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5660
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5661 5662 5663
	return 1;
}

I
Ingo Molnar 已提交
5664
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5665

5666
struct s_data {
5667
	struct sched_domain ** __percpu sd;
5668 5669 5670
	struct root_domain	*rd;
};

5671 5672
enum s_alloc {
	sa_rootdomain,
5673
	sa_sd,
5674
	sa_sd_storage,
5675 5676 5677
	sa_none,
};

P
Peter Zijlstra 已提交
5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5734 5735 5736 5737 5738 5739
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5740
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5741
				GFP_KERNEL, cpu_to_node(cpu));
5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

5755 5756
		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
		if (atomic_inc_return(&sg->sgc->ref) == 1)
P
Peter Zijlstra 已提交
5757 5758
			build_group_mask(sd, sg);

5759
		/*
5760
		 * Initialize sgc->capacity such that even if we mess up the
5761 5762 5763
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
5764
		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5765
		sg->sgc->capacity_orig = sg->sgc->capacity;
5766

P
Peter Zijlstra 已提交
5767 5768 5769 5770 5771
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5772
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5773
		    group_balance_cpu(sg) == cpu)
5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5793
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5794
{
5795 5796
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5797

5798 5799
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5800

5801
	if (sg) {
5802
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5803 5804
		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5805
	}
5806 5807

	return cpu;
5808 5809
}

5810
/*
5811 5812
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
5813
 * and ->cpu_capacity to 0.
5814 5815
 *
 * Assumes the sched_domain tree is fully constructed
5816
 */
5817 5818
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5819
{
5820 5821 5822
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5823
	struct cpumask *covered;
5824
	int i;
5825

5826 5827 5828
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

5829
	if (cpu != cpumask_first(span))
5830 5831
		return 0;

5832 5833 5834
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5835
	cpumask_clear(covered);
5836

5837 5838
	for_each_cpu(i, span) {
		struct sched_group *sg;
5839
		int group, j;
5840

5841 5842
		if (cpumask_test_cpu(i, covered))
			continue;
5843

5844
		group = get_group(i, sdd, &sg);
P
Peter Zijlstra 已提交
5845
		cpumask_setall(sched_group_mask(sg));
5846

5847 5848 5849
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5850

5851 5852 5853
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5854

5855 5856 5857 5858 5859 5860 5861
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5862 5863

	return 0;
5864
}
5865

5866
/*
5867
 * Initialize sched groups cpu_capacity.
5868
 *
5869
 * cpu_capacity indicates the capacity of sched group, which is used while
5870
 * distributing the load between different sched groups in a sched domain.
5871 5872 5873 5874
 * Typically cpu_capacity for all the groups in a sched domain will be same
 * unless there are asymmetries in the topology. If there are asymmetries,
 * group having more cpu_capacity will pickup more load compared to the
 * group having less cpu_capacity.
5875
 */
5876
static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
5877
{
5878
	struct sched_group *sg = sd->groups;
5879

5880
	WARN_ON(!sg);
5881 5882 5883 5884 5885

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5886

P
Peter Zijlstra 已提交
5887
	if (cpu != group_balance_cpu(sg))
5888
		return;
5889

5890 5891
	update_group_capacity(sd, cpu);
	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
5892 5893
}

5894 5895 5896 5897 5898
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5899
static int default_relax_domain_level = -1;
5900
int sched_domain_level_max;
5901 5902 5903

static int __init setup_relax_domain_level(char *str)
{
5904 5905
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
5906

5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
5925
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5926 5927
	} else {
		/* turn on idle balance on this domain */
5928
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5929 5930 5931
	}
}

5932 5933 5934
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

5935 5936 5937 5938 5939
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
5940 5941
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
5942 5943
	case sa_sd:
		free_percpu(d->sd); /* fall through */
5944
	case sa_sd_storage:
5945
		__sdt_free(cpu_map); /* fall through */
5946 5947 5948 5949
	case sa_none:
		break;
	}
}
5950

5951 5952 5953
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
5954 5955
	memset(d, 0, sizeof(*d));

5956 5957
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
5958 5959 5960
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
5961
	d->rd = alloc_rootdomain();
5962
	if (!d->rd)
5963
		return sa_sd;
5964 5965
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
5966

5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

5979
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5980
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5981

5982 5983
	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
5984 5985
}

5986 5987 5988 5989 5990
#ifdef CONFIG_NUMA
static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;
5991
#endif
5992

5993 5994 5995
/*
 * SD_flags allowed in topology descriptions.
 *
5996
 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
5997 5998
 * SD_SHARE_PKG_RESOURCES - describes shared caches
 * SD_NUMA                - describes NUMA topologies
5999
 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6000 6001 6002 6003 6004
 *
 * Odd one out:
 * SD_ASYM_PACKING        - describes SMT quirks
 */
#define TOPOLOGY_SD_FLAGS		\
6005
	(SD_SHARE_CPUCAPACITY |		\
6006 6007
	 SD_SHARE_PKG_RESOURCES |	\
	 SD_NUMA |			\
6008 6009
	 SD_ASYM_PACKING |		\
	 SD_SHARE_POWERDOMAIN)
6010 6011

static struct sched_domain *
6012
sd_init(struct sched_domain_topology_level *tl, int cpu)
6013 6014
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030
	int sd_weight, sd_flags = 0;

#ifdef CONFIG_NUMA
	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;
#endif

	sd_weight = cpumask_weight(tl->mask(cpu));

	if (tl->sd_flags)
		sd_flags = (*tl->sd_flags)();
	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
			"wrong sd_flags in topology description\n"))
		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6031 6032 6033 6034 6035

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6036
		.imbalance_pct		= 125,
6037 6038 6039 6040

		.cache_nice_tries	= 0,
		.busy_idx		= 0,
		.idle_idx		= 0,
6041 6042 6043 6044 6045 6046
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
6047 6048
					| 1*SD_BALANCE_EXEC
					| 1*SD_BALANCE_FORK
6049
					| 0*SD_BALANCE_WAKE
6050
					| 1*SD_WAKE_AFFINE
6051
					| 0*SD_SHARE_CPUCAPACITY
6052
					| 0*SD_SHARE_PKG_RESOURCES
6053
					| 0*SD_SERIALIZE
6054
					| 0*SD_PREFER_SIBLING
6055 6056
					| 0*SD_NUMA
					| sd_flags
6057
					,
6058

6059 6060
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
6061
		.smt_gain		= 0,
6062 6063
		.max_newidle_lb_cost	= 0,
		.next_decay_max_lb_cost	= jiffies,
6064 6065 6066
#ifdef CONFIG_SCHED_DEBUG
		.name			= tl->name,
#endif
6067 6068 6069
	};

	/*
6070
	 * Convert topological properties into behaviour.
6071
	 */
6072

6073
	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103
		sd->imbalance_pct = 110;
		sd->smt_gain = 1178; /* ~15% */

	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
		sd->imbalance_pct = 117;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;

#ifdef CONFIG_NUMA
	} else if (sd->flags & SD_NUMA) {
		sd->cache_nice_tries = 2;
		sd->busy_idx = 3;
		sd->idle_idx = 2;

		sd->flags |= SD_SERIALIZE;
		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
			sd->flags &= ~(SD_BALANCE_EXEC |
				       SD_BALANCE_FORK |
				       SD_WAKE_AFFINE);
		}

#endif
	} else {
		sd->flags |= SD_PREFER_SIBLING;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;
		sd->idle_idx = 1;
	}

	sd->private = &tl->data;
6104 6105 6106 6107

	return sd;
}

6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133
/*
 * Topology list, bottom-up.
 */
static struct sched_domain_topology_level default_topology[] = {
#ifdef CONFIG_SCHED_SMT
	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
	{ NULL, },
};

struct sched_domain_topology_level *sched_domain_topology = default_topology;

#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->mask; tl++)

void set_sched_topology(struct sched_domain_topology_level *tl)
{
	sched_domain_topology = tl;
}

#ifdef CONFIG_NUMA

6134 6135 6136 6137 6138
static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6220
		}
6221 6222 6223 6224 6225 6226

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6227 6228 6229 6230 6231
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6232
	 * The sched_domains_numa_distance[] array includes the actual distance
6233 6234 6235
	 * numbers.
	 */

6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6262
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6263 6264 6265 6266 6267 6268
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6269
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6270 6271 6272 6273 6274 6275 6276
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

6277 6278 6279
	/* Compute default topology size */
	for (i = 0; sched_domain_topology[i].mask; i++);

6280
	tl = kzalloc((i + level + 1) *
6281 6282 6283 6284 6285 6286 6287
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
6288 6289
	for (i = 0; sched_domain_topology[i].mask; i++)
		tl[i] = sched_domain_topology[i];
6290 6291 6292 6293 6294 6295 6296

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.mask = sd_numa_mask,
6297
			.sd_flags = cpu_numa_flags,
6298 6299
			.flags = SDTL_OVERLAP,
			.numa_level = j,
6300
			SD_INIT_NAME(NUMA)
6301 6302 6303 6304
		};
	}

	sched_domain_topology = tl;
6305 6306

	sched_domains_numa_levels = level;
6307
}
6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6355 6356 6357 6358 6359
}
#else
static inline void sched_init_numa(void)
{
}
6360 6361 6362 6363 6364 6365 6366

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6367 6368
#endif /* CONFIG_NUMA */

6369 6370 6371 6372 6373
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6374
	for_each_sd_topology(tl) {
6375 6376 6377 6378 6379 6380 6381 6382 6383 6384
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6385 6386
		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
		if (!sdd->sgc)
6387 6388
			return -ENOMEM;

6389 6390 6391
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6392
			struct sched_group_capacity *sgc;
6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6406 6407
			sg->next = sg;

6408
			*per_cpu_ptr(sdd->sg, j) = sg;
6409

6410
			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6411
					GFP_KERNEL, cpu_to_node(j));
6412
			if (!sgc)
6413 6414
				return -ENOMEM;

6415
			*per_cpu_ptr(sdd->sgc, j) = sgc;
6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6427
	for_each_sd_topology(tl) {
6428 6429 6430
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
6442 6443
			if (sdd->sgc)
				kfree(*per_cpu_ptr(sdd->sgc, j));
6444 6445
		}
		free_percpu(sdd->sd);
6446
		sdd->sd = NULL;
6447
		free_percpu(sdd->sg);
6448
		sdd->sg = NULL;
6449 6450
		free_percpu(sdd->sgc);
		sdd->sgc = NULL;
6451 6452 6453
	}
}

6454
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6455 6456
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
6457
{
6458
	struct sched_domain *sd = sd_init(tl, cpu);
6459
	if (!sd)
6460
		return child;
6461 6462

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6463 6464 6465
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6466
		child->parent = sd;
6467
		sd->child = child;
6468
	}
6469
	set_domain_attribute(sd, attr);
6470 6471 6472 6473

	return sd;
}

6474 6475 6476 6477
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6478 6479
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6480
{
6481
	enum s_alloc alloc_state;
6482
	struct sched_domain *sd;
6483
	struct s_data d;
6484
	int i, ret = -ENOMEM;
6485

6486 6487 6488
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6489

6490
	/* Set up domains for cpus specified by the cpu_map. */
6491
	for_each_cpu(i, cpu_map) {
6492 6493
		struct sched_domain_topology_level *tl;

6494
		sd = NULL;
6495
		for_each_sd_topology(tl) {
6496
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6497 6498
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
6499 6500
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6501 6502
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6503
		}
6504 6505 6506 6507 6508 6509
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6510 6511 6512 6513 6514 6515 6516
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6517
		}
6518
	}
6519

6520
	/* Calculate CPU capacity for physical packages and nodes */
6521 6522 6523
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6524

6525 6526
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6527
			init_sched_groups_capacity(i, sd);
6528
		}
6529
	}
6530

L
Linus Torvalds 已提交
6531
	/* Attach the domains */
6532
	rcu_read_lock();
6533
	for_each_cpu(i, cpu_map) {
6534
		sd = *per_cpu_ptr(d.sd, i);
6535
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6536
	}
6537
	rcu_read_unlock();
6538

6539
	ret = 0;
6540
error:
6541
	__free_domain_allocs(&d, alloc_state, cpu_map);
6542
	return ret;
L
Linus Torvalds 已提交
6543
}
P
Paul Jackson 已提交
6544

6545
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6546
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6547 6548
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6549 6550 6551

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6552 6553
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6554
 */
6555
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6556

6557 6558 6559 6560 6561
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
6562
int __weak arch_update_cpu_topology(void)
6563
{
6564
	return 0;
6565 6566
}

6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6592
/*
I
Ingo Molnar 已提交
6593
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6594 6595
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6596
 */
6597
static int init_sched_domains(const struct cpumask *cpu_map)
6598
{
6599 6600
	int err;

6601
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6602
	ndoms_cur = 1;
6603
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6604
	if (!doms_cur)
6605 6606
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6607
	err = build_sched_domains(doms_cur[0], NULL);
6608
	register_sched_domain_sysctl();
6609 6610

	return err;
6611 6612 6613 6614 6615 6616
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6617
static void detach_destroy_domains(const struct cpumask *cpu_map)
6618 6619 6620
{
	int i;

6621
	rcu_read_lock();
6622
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6623
		cpu_attach_domain(NULL, &def_root_domain, i);
6624
	rcu_read_unlock();
6625 6626
}

6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6643 6644
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6645
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6646 6647 6648
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6649
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6650 6651 6652
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6653 6654 6655
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6656 6657 6658 6659 6660 6661
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6662
 *
6663
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6664 6665
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6666
 *
P
Paul Jackson 已提交
6667 6668
 * Call with hotplug lock held
 */
6669
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6670
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6671
{
6672
	int i, j, n;
6673
	int new_topology;
P
Paul Jackson 已提交
6674

6675
	mutex_lock(&sched_domains_mutex);
6676

6677 6678 6679
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6680 6681 6682
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6683
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6684 6685 6686

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6687
		for (j = 0; j < n && !new_topology; j++) {
6688
			if (cpumask_equal(doms_cur[i], doms_new[j])
6689
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6690 6691 6692
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6693
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6694 6695 6696 6697
match1:
		;
	}

6698
	n = ndoms_cur;
6699
	if (doms_new == NULL) {
6700
		n = 0;
6701
		doms_new = &fallback_doms;
6702
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6703
		WARN_ON_ONCE(dattr_new);
6704 6705
	}

P
Paul Jackson 已提交
6706 6707
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6708
		for (j = 0; j < n && !new_topology; j++) {
6709
			if (cpumask_equal(doms_new[i], doms_cur[j])
6710
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6711 6712 6713
				goto match2;
		}
		/* no match - add a new doms_new */
6714
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6715 6716 6717 6718 6719
match2:
		;
	}

	/* Remember the new sched domains */
6720 6721
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6722
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6723
	doms_cur = doms_new;
6724
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6725
	ndoms_cur = ndoms_new;
6726 6727

	register_sched_domain_sysctl();
6728

6729
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6730 6731
}

6732 6733
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6734
/*
6735 6736 6737
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6738 6739 6740
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6741
 */
6742 6743
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6744
{
6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6767
	case CPU_ONLINE:
6768
	case CPU_DOWN_FAILED:
6769
		cpuset_update_active_cpus(true);
6770
		break;
6771 6772 6773
	default:
		return NOTIFY_DONE;
	}
6774
	return NOTIFY_OK;
6775
}
6776

6777 6778
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6779
{
6780
	switch (action) {
6781
	case CPU_DOWN_PREPARE:
6782
		cpuset_update_active_cpus(false);
6783 6784 6785 6786 6787
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6788 6789 6790
	default:
		return NOTIFY_DONE;
	}
6791
	return NOTIFY_OK;
6792 6793
}

L
Linus Torvalds 已提交
6794 6795
void __init sched_init_smp(void)
{
6796 6797 6798
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6799
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6800

6801 6802
	sched_init_numa();

6803 6804 6805 6806 6807
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
	 * cpu masks are stable and all blatant races in the below code cannot
	 * happen.
	 */
6808
	mutex_lock(&sched_domains_mutex);
6809
	init_sched_domains(cpu_active_mask);
6810 6811 6812
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6813
	mutex_unlock(&sched_domains_mutex);
6814

6815
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6816 6817
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6818

6819
	init_hrtick();
6820 6821

	/* Move init over to a non-isolated CPU */
6822
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6823
		BUG();
I
Ingo Molnar 已提交
6824
	sched_init_granularity();
6825
	free_cpumask_var(non_isolated_cpus);
6826

6827
	init_sched_rt_class();
6828
	init_sched_dl_class();
L
Linus Torvalds 已提交
6829 6830 6831 6832
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6833
	sched_init_granularity();
L
Linus Torvalds 已提交
6834 6835 6836
}
#endif /* CONFIG_SMP */

6837 6838
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6839 6840 6841 6842 6843 6844 6845
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6846
#ifdef CONFIG_CGROUP_SCHED
6847 6848 6849 6850
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
6851
struct task_group root_task_group;
6852
LIST_HEAD(task_groups);
6853
#endif
P
Peter Zijlstra 已提交
6854

6855
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
6856

L
Linus Torvalds 已提交
6857 6858
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6859
	int i, j;
6860 6861 6862 6863 6864 6865 6866
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6867
#endif
6868
#ifdef CONFIG_CPUMASK_OFFSTACK
6869
	alloc_size += num_possible_cpus() * cpumask_size();
6870 6871
#endif
	if (alloc_size) {
6872
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6873 6874

#ifdef CONFIG_FAIR_GROUP_SCHED
6875
		root_task_group.se = (struct sched_entity **)ptr;
6876 6877
		ptr += nr_cpu_ids * sizeof(void **);

6878
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6879
		ptr += nr_cpu_ids * sizeof(void **);
6880

6881
#endif /* CONFIG_FAIR_GROUP_SCHED */
6882
#ifdef CONFIG_RT_GROUP_SCHED
6883
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6884 6885
		ptr += nr_cpu_ids * sizeof(void **);

6886
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6887 6888
		ptr += nr_cpu_ids * sizeof(void **);

6889
#endif /* CONFIG_RT_GROUP_SCHED */
6890 6891
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
6892
			per_cpu(load_balance_mask, i) = (void *)ptr;
6893 6894 6895
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6896
	}
I
Ingo Molnar 已提交
6897

6898 6899 6900
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth,
6901
			global_rt_period(), global_rt_runtime());
6902

G
Gregory Haskins 已提交
6903 6904 6905 6906
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6907
#ifdef CONFIG_RT_GROUP_SCHED
6908
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6909
			global_rt_period(), global_rt_runtime());
6910
#endif /* CONFIG_RT_GROUP_SCHED */
6911

D
Dhaval Giani 已提交
6912
#ifdef CONFIG_CGROUP_SCHED
6913 6914
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6915
	INIT_LIST_HEAD(&root_task_group.siblings);
6916
	autogroup_init(&init_task);
6917

D
Dhaval Giani 已提交
6918
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6919

6920
	for_each_possible_cpu(i) {
6921
		struct rq *rq;
L
Linus Torvalds 已提交
6922 6923

		rq = cpu_rq(i);
6924
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6925
		rq->nr_running = 0;
6926 6927
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6928
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6929
		init_rt_rq(&rq->rt, rq);
6930
		init_dl_rq(&rq->dl, rq);
I
Ingo Molnar 已提交
6931
#ifdef CONFIG_FAIR_GROUP_SCHED
6932
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6933
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6934
		/*
6935
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6936 6937 6938 6939
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6940
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6941 6942 6943
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6944
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6945 6946 6947
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6948
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6949
		 *
6950 6951
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6952
		 */
6953
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6954
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6955 6956 6957
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6958
#ifdef CONFIG_RT_GROUP_SCHED
6959
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6960
#endif
L
Linus Torvalds 已提交
6961

I
Ingo Molnar 已提交
6962 6963
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6964 6965 6966

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6967
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6968
		rq->sd = NULL;
G
Gregory Haskins 已提交
6969
		rq->rd = NULL;
6970
		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
6971
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6972
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6973
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6974
		rq->push_cpu = 0;
6975
		rq->cpu = i;
6976
		rq->online = 0;
6977 6978
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6979
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6980 6981 6982

		INIT_LIST_HEAD(&rq->cfs_tasks);

6983
		rq_attach_root(rq, &def_root_domain);
6984
#ifdef CONFIG_NO_HZ_COMMON
6985
		rq->nohz_flags = 0;
6986
#endif
6987 6988 6989
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
L
Linus Torvalds 已提交
6990
#endif
P
Peter Zijlstra 已提交
6991
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6992 6993 6994
		atomic_set(&rq->nr_iowait, 0);
	}

6995
	set_load_weight(&init_task);
6996

6997 6998 6999 7000
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

L
Linus Torvalds 已提交
7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7014 7015 7016

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7017 7018 7019 7020
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7021

7022
#ifdef CONFIG_SMP
7023
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7024 7025 7026
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7027
	idle_thread_set_boot_cpu();
7028
	set_cpu_rq_start_time();
7029 7030
#endif
	init_sched_fair_class();
7031

7032
	scheduler_running = 1;
L
Linus Torvalds 已提交
7033 7034
}

7035
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7036 7037
static inline int preempt_count_equals(int preempt_offset)
{
7038
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7039

A
Arnd Bergmann 已提交
7040
	return (nested == preempt_offset);
7041 7042
}

7043
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7044 7045 7046
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7047
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7048 7049
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
7050
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7051 7052 7053 7054 7055
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7056 7057 7058 7059 7060 7061 7062
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7063 7064 7065 7066

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
7067 7068 7069 7070 7071 7072 7073
#ifdef CONFIG_DEBUG_PREEMPT
	if (!preempt_count_equals(preempt_offset)) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
I
Ingo Molnar 已提交
7074
	dump_stack();
L
Linus Torvalds 已提交
7075 7076 7077 7078 7079
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7080 7081
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
7082
	const struct sched_class *prev_class = p->sched_class;
7083 7084 7085
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
P
Peter Zijlstra 已提交
7086
	int old_prio = p->prio;
7087
	int on_rq;
7088

P
Peter Zijlstra 已提交
7089
	on_rq = p->on_rq;
7090
	if (on_rq)
7091
		dequeue_task(rq, p, 0);
7092
	__setscheduler(rq, p, &attr);
7093
	if (on_rq) {
7094
		enqueue_task(rq, p, 0);
7095 7096
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
7097 7098

	check_class_changed(rq, p, prev_class, old_prio);
7099 7100
}

L
Linus Torvalds 已提交
7101 7102
void normalize_rt_tasks(void)
{
7103
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7104
	unsigned long flags;
7105
	struct rq *rq;
L
Linus Torvalds 已提交
7106

7107
	read_lock_irqsave(&tasklist_lock, flags);
7108
	do_each_thread(g, p) {
7109 7110 7111 7112 7113 7114
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7115 7116
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7117 7118 7119
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7120
#endif
I
Ingo Molnar 已提交
7121

7122
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
7123 7124 7125 7126
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
7127
			if (task_nice(p) < 0 && p->mm)
I
Ingo Molnar 已提交
7128
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7129
			continue;
I
Ingo Molnar 已提交
7130
		}
L
Linus Torvalds 已提交
7131

7132
		raw_spin_lock(&p->pi_lock);
7133
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7134

7135
		normalize_task(rq, p);
7136

7137
		__task_rq_unlock(rq);
7138
		raw_spin_unlock(&p->pi_lock);
7139 7140
	} while_each_thread(g, p);

7141
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7142 7143 7144
}

#endif /* CONFIG_MAGIC_SYSRQ */
7145

7146
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7147
/*
7148
 * These functions are only useful for the IA64 MCA handling, or kdb.
7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7162 7163
 *
 * Return: The current task for @cpu.
7164
 */
7165
struct task_struct *curr_task(int cpu)
7166 7167 7168 7169
{
	return cpu_curr(cpu);
}

7170 7171 7172
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7173 7174 7175 7176 7177 7178
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7179 7180
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7181 7182 7183 7184 7185 7186 7187
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7188
void set_curr_task(int cpu, struct task_struct *p)
7189 7190 7191 7192 7193
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7194

D
Dhaval Giani 已提交
7195
#ifdef CONFIG_CGROUP_SCHED
7196 7197 7198
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7199 7200 7201 7202
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7203
	autogroup_free(tg);
7204 7205 7206 7207
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7208
struct task_group *sched_create_group(struct task_group *parent)
7209 7210 7211 7212 7213 7214 7215
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7216
	if (!alloc_fair_sched_group(tg, parent))
7217 7218
		goto err;

7219
	if (!alloc_rt_sched_group(tg, parent))
7220 7221
		goto err;

7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7233
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7234
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7235 7236 7237 7238 7239

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7240
	list_add_rcu(&tg->siblings, &parent->children);
7241
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7242 7243
}

7244
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7245
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7246 7247
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7248
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7249 7250
}

7251
/* Destroy runqueue etc associated with a task group */
7252
void sched_destroy_group(struct task_group *tg)
7253 7254 7255 7256 7257 7258
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7259
{
7260
	unsigned long flags;
7261
	int i;
S
Srivatsa Vaddagiri 已提交
7262

7263 7264
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7265
		unregister_fair_sched_group(tg, i);
7266 7267

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7268
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7269
	list_del_rcu(&tg->siblings);
7270
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7271 7272
}

7273
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7274 7275 7276
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7277 7278
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7279
{
P
Peter Zijlstra 已提交
7280
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7281 7282 7283 7284 7285 7286
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7287
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7288
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7289

7290
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7291
		dequeue_task(rq, tsk, 0);
7292 7293
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7294

7295
	tg = container_of(task_css_check(tsk, cpu_cgrp_id,
P
Peter Zijlstra 已提交
7296 7297 7298 7299 7300
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7301
#ifdef CONFIG_FAIR_GROUP_SCHED
7302 7303 7304
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7305
#endif
7306
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7307

7308 7309 7310
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7311
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7312

7313
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7314
}
D
Dhaval Giani 已提交
7315
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7316

7317 7318 7319 7320 7321
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7322

P
Peter Zijlstra 已提交
7323 7324
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7325
{
P
Peter Zijlstra 已提交
7326
	struct task_struct *g, *p;
7327

P
Peter Zijlstra 已提交
7328
	do_each_thread(g, p) {
7329
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7330 7331
			return 1;
	} while_each_thread(g, p);
7332

P
Peter Zijlstra 已提交
7333 7334
	return 0;
}
7335

P
Peter Zijlstra 已提交
7336 7337 7338 7339 7340
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7341

7342
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7343 7344 7345 7346 7347
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7348

P
Peter Zijlstra 已提交
7349 7350
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7351

P
Peter Zijlstra 已提交
7352 7353 7354
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7355 7356
	}

7357 7358 7359 7360 7361
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7362

7363 7364 7365
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7366 7367
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7368

P
Peter Zijlstra 已提交
7369
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7370

7371 7372 7373 7374 7375
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7376

7377 7378 7379
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7380 7381 7382
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7383

P
Peter Zijlstra 已提交
7384 7385 7386 7387
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7388

P
Peter Zijlstra 已提交
7389
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7390
	}
P
Peter Zijlstra 已提交
7391

P
Peter Zijlstra 已提交
7392 7393 7394 7395
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7396 7397
}

P
Peter Zijlstra 已提交
7398
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7399
{
7400 7401
	int ret;

P
Peter Zijlstra 已提交
7402 7403 7404 7405 7406 7407
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7408 7409 7410 7411 7412
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7413 7414
}

7415
static int tg_set_rt_bandwidth(struct task_group *tg,
7416
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7417
{
P
Peter Zijlstra 已提交
7418
	int i, err = 0;
P
Peter Zijlstra 已提交
7419 7420

	mutex_lock(&rt_constraints_mutex);
7421
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7422 7423
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7424
		goto unlock;
P
Peter Zijlstra 已提交
7425

7426
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7427 7428
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7429 7430 7431 7432

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7433
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7434
		rt_rq->rt_runtime = rt_runtime;
7435
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7436
	}
7437
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7438
unlock:
7439
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7440 7441 7442
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7443 7444
}

7445
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7446 7447 7448 7449 7450 7451 7452 7453
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7454
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7455 7456
}

7457
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7458 7459 7460
{
	u64 rt_runtime_us;

7461
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7462 7463
		return -1;

7464
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7465 7466 7467
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7468

7469
static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7470 7471 7472 7473 7474 7475
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7476 7477 7478
	if (rt_period == 0)
		return -EINVAL;

7479
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7480 7481
}

7482
static long sched_group_rt_period(struct task_group *tg)
7483 7484 7485 7486 7487 7488 7489
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
7490
#endif /* CONFIG_RT_GROUP_SCHED */
7491

7492
#ifdef CONFIG_RT_GROUP_SCHED
7493 7494 7495 7496 7497
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7498
	read_lock(&tasklist_lock);
7499
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7500
	read_unlock(&tasklist_lock);
7501 7502 7503 7504
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7505

7506
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7507 7508 7509 7510 7511 7512 7513 7514
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7515
#else /* !CONFIG_RT_GROUP_SCHED */
7516 7517
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7518
	unsigned long flags;
7519
	int i, ret = 0;
7520

7521
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7522 7523 7524
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7525
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7526
		rt_rq->rt_runtime = global_rt_runtime();
7527
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7528
	}
7529
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7530

7531
	return ret;
7532
}
7533
#endif /* CONFIG_RT_GROUP_SCHED */
7534

7535 7536
static int sched_dl_global_constraints(void)
{
7537 7538
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
7539
	u64 new_bw = to_ratio(period, runtime);
7540
	int cpu, ret = 0;
7541
	unsigned long flags;
7542 7543 7544 7545 7546 7547 7548 7549 7550 7551

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
7552 7553
	for_each_possible_cpu(cpu) {
		struct dl_bw *dl_b = dl_bw_of(cpu);
7554

7555
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7556 7557
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
7558
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7559 7560 7561

		if (ret)
			break;
7562 7563
	}

7564
	return ret;
7565 7566
}

7567
static void sched_dl_do_global(void)
7568
{
7569 7570
	u64 new_bw = -1;
	int cpu;
7571
	unsigned long flags;
7572

7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
		struct dl_bw *dl_b = dl_bw_of(cpu);

7585
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7586
		dl_b->bw = new_bw;
7587
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7588
	}
7589 7590 7591 7592 7593 7594 7595
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7596 7597
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7598 7599 7600 7601 7602 7603 7604 7605 7606
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7607 7608
}

7609
int sched_rt_handler(struct ctl_table *table, int write,
7610
		void __user *buffer, size_t *lenp,
7611 7612 7613 7614
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
7615
	int ret;
7616 7617 7618 7619 7620

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7621
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7622 7623

	if (!ret && write) {
7624 7625 7626 7627
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

7628
		ret = sched_rt_global_constraints();
7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642
		if (ret)
			goto undo;

		ret = sched_dl_global_constraints();
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
7643 7644 7645 7646 7647
	}
	mutex_unlock(&mutex);

	return ret;
}
7648

7649
int sched_rr_handler(struct ctl_table *table, int write,
7650 7651 7652 7653 7654 7655 7656 7657
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7658 7659
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
7660
	if (!ret && write) {
7661 7662
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7663 7664 7665 7666 7667
	}
	mutex_unlock(&mutex);
	return ret;
}

7668
#ifdef CONFIG_CGROUP_SCHED
7669

7670
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7671
{
7672
	return css ? container_of(css, struct task_group, css) : NULL;
7673 7674
}

7675 7676
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7677
{
7678 7679
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
7680

7681
	if (!parent) {
7682
		/* This is early initialization for the top cgroup */
7683
		return &root_task_group.css;
7684 7685
	}

7686
	tg = sched_create_group(parent);
7687 7688 7689 7690 7691 7692
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7693
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7694
{
7695
	struct task_group *tg = css_tg(css);
T
Tejun Heo 已提交
7696
	struct task_group *parent = css_tg(css->parent);
7697

T
Tejun Heo 已提交
7698 7699
	if (parent)
		sched_online_group(tg, parent);
7700 7701 7702
	return 0;
}

7703
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7704
{
7705
	struct task_group *tg = css_tg(css);
7706 7707 7708 7709

	sched_destroy_group(tg);
}

7710
static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7711
{
7712
	struct task_group *tg = css_tg(css);
7713 7714 7715 7716

	sched_offline_group(tg);
}

7717
static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7718
				 struct cgroup_taskset *tset)
7719
{
7720 7721
	struct task_struct *task;

7722
	cgroup_taskset_for_each(task, tset) {
7723
#ifdef CONFIG_RT_GROUP_SCHED
7724
		if (!sched_rt_can_attach(css_tg(css), task))
7725
			return -EINVAL;
7726
#else
7727 7728 7729
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7730
#endif
7731
	}
7732 7733
	return 0;
}
7734

7735
static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7736
			      struct cgroup_taskset *tset)
7737
{
7738 7739
	struct task_struct *task;

7740
	cgroup_taskset_for_each(task, tset)
7741
		sched_move_task(task);
7742 7743
}

7744 7745 7746
static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
			    struct cgroup_subsys_state *old_css,
			    struct task_struct *task)
7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7759
#ifdef CONFIG_FAIR_GROUP_SCHED
7760 7761
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
7762
{
7763
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7764 7765
}

7766 7767
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
7768
{
7769
	struct task_group *tg = css_tg(css);
7770

7771
	return (u64) scale_load_down(tg->shares);
7772
}
7773 7774

#ifdef CONFIG_CFS_BANDWIDTH
7775 7776
static DEFINE_MUTEX(cfs_constraints_mutex);

7777 7778 7779
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7780 7781
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7782 7783
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7784
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7785
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7806 7807 7808 7809 7810
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7811
	runtime_enabled = quota != RUNTIME_INF;
7812
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7813 7814 7815 7816 7817 7818
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
7819 7820 7821
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7822

P
Paul Turner 已提交
7823
	__refill_cfs_bandwidth_runtime(cfs_b);
7824 7825 7826
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
7827
		__start_cfs_bandwidth(cfs_b, true);
7828
	}
7829 7830 7831 7832
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7833
		struct rq *rq = cfs_rq->rq;
7834 7835

		raw_spin_lock_irq(&rq->lock);
7836
		cfs_rq->runtime_enabled = runtime_enabled;
7837
		cfs_rq->runtime_remaining = 0;
7838

7839
		if (cfs_rq->throttled)
7840
			unthrottle_cfs_rq(cfs_rq);
7841 7842
		raw_spin_unlock_irq(&rq->lock);
	}
7843 7844
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
7845 7846
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7847

7848
	return ret;
7849 7850 7851 7852 7853 7854
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7855
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7868
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7869 7870
		return -1;

7871
	quota_us = tg->cfs_bandwidth.quota;
7872 7873 7874 7875 7876 7877 7878 7879 7880 7881
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7882
	quota = tg->cfs_bandwidth.quota;
7883 7884 7885 7886 7887 7888 7889 7890

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7891
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7892 7893 7894 7895 7896
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

7897 7898
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
7899
{
7900
	return tg_get_cfs_quota(css_tg(css));
7901 7902
}

7903 7904
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
7905
{
7906
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7907 7908
}

7909 7910
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
7911
{
7912
	return tg_get_cfs_period(css_tg(css));
7913 7914
}

7915 7916
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
7917
{
7918
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7919 7920
}

7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7953
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7954 7955 7956 7957 7958
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7959
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7980
	int ret;
7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7992 7993 7994 7995 7996
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7997
}
7998

7999
static int cpu_stats_show(struct seq_file *sf, void *v)
8000
{
8001
	struct task_group *tg = css_tg(seq_css(sf));
8002
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8003

8004 8005 8006
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8007 8008 8009

	return 0;
}
8010
#endif /* CONFIG_CFS_BANDWIDTH */
8011
#endif /* CONFIG_FAIR_GROUP_SCHED */
8012

8013
#ifdef CONFIG_RT_GROUP_SCHED
8014 8015
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
8016
{
8017
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
8018 8019
}

8020 8021
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
8022
{
8023
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
8024
}
8025

8026 8027
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
8028
{
8029
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8030 8031
}

8032 8033
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8034
{
8035
	return sched_group_rt_period(css_tg(css));
8036
}
8037
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8038

8039
static struct cftype cpu_files[] = {
8040
#ifdef CONFIG_FAIR_GROUP_SCHED
8041 8042
	{
		.name = "shares",
8043 8044
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8045
	},
8046
#endif
8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8058 8059
	{
		.name = "stat",
8060
		.seq_show = cpu_stats_show,
8061
	},
8062
#endif
8063
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8064
	{
P
Peter Zijlstra 已提交
8065
		.name = "rt_runtime_us",
8066 8067
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8068
	},
8069 8070
	{
		.name = "rt_period_us",
8071 8072
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8073
	},
8074
#endif
8075
	{ }	/* terminate */
8076 8077
};

8078
struct cgroup_subsys cpu_cgrp_subsys = {
8079 8080
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
8081 8082
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
8083 8084
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8085
	.exit		= cpu_cgroup_exit,
8086
	.base_cftypes	= cpu_files,
8087 8088 8089
	.early_init	= 1,
};

8090
#endif	/* CONFIG_CGROUP_SCHED */
8091

8092 8093 8094 8095 8096
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}