hugetlb.c 118.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/mm.h>
8
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
9 10
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
11
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
12
#include <linux/nodemask.h>
D
David Gibson 已提交
13
#include <linux/pagemap.h>
14
#include <linux/mempolicy.h>
15
#include <linux/compiler.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24
#include <linux/page-isolation.h>
25
#include <linux/jhash.h>
26

D
David Gibson 已提交
27 28
#include <asm/page.h>
#include <asm/pgtable.h>
29
#include <asm/tlb.h>
D
David Gibson 已提交
30

31
#include <linux/io.h>
D
David Gibson 已提交
32
#include <linux/hugetlb.h>
33
#include <linux/hugetlb_cgroup.h>
34
#include <linux/node.h>
35
#include "internal.h"
L
Linus Torvalds 已提交
36

37
int hugepages_treat_as_movable;
38

39
int hugetlb_max_hstate __read_mostly;
40 41
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
42 43 44 45 46
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
47

48 49
__initdata LIST_HEAD(huge_boot_pages);

50 51 52
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
53
static unsigned long __initdata default_hstate_size;
54
static bool __initdata parsed_valid_hugepagesz = true;
55

56
/*
57 58
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
59
 */
60
DEFINE_SPINLOCK(hugetlb_lock);
61

62 63 64 65 66
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
67
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68

69 70 71
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

72 73 74 75 76 77 78
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
79 80 81 82 83 84
	 * remain, give up any reservations mased on minimum size and
	 * free the subpool */
	if (free) {
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
85
		kfree(spool);
86
	}
87 88
}

89 90
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
91 92 93
{
	struct hugepage_subpool *spool;

94
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 96 97 98 99
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
100 101 102 103 104 105 106 107 108
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
109 110 111 112 113 114 115 116 117 118 119 120

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

121 122 123 124 125 126 127 128 129
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
 * the request.  Otherwise, return the number of pages by which the
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
 * a subpool minimum size must be manitained.
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 131
				      long delta)
{
132
	long ret = delta;
133 134

	if (!spool)
135
		return ret;
136 137

	spin_lock(&spool->lock);
138 139 140 141 142 143 144 145

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
146 147
	}

148 149
	/* minimum size accounting */
	if (spool->min_hpages != -1 && spool->rsv_hpages) {
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
	spin_unlock(&spool->lock);
165 166 167
	return ret;
}

168 169 170 171 172 173 174
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
175 176
				       long delta)
{
177 178
	long ret = delta;

179
	if (!spool)
180
		return delta;
181 182

	spin_lock(&spool->lock);
183 184 185 186

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

187 188
	 /* minimum size accounting */
	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
189 190 191 192 193 194 195 196 197 198 199 200 201 202
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
203
	unlock_or_release_subpool(spool);
204 205

	return ret;
206 207 208 209 210 211 212 213 214
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
215
	return subpool_inode(file_inode(vma->vm_file));
216 217
}

218 219 220
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
221
 *
222 223 224 225 226 227 228 229 230 231 232 233 234 235
 * The region data structures are embedded into a resv_map and protected
 * by a resv_map's lock.  The set of regions within the resv_map represent
 * reservations for huge pages, or huge pages that have already been
 * instantiated within the map.  The from and to elements are huge page
 * indicies into the associated mapping.  from indicates the starting index
 * of the region.  to represents the first index past the end of  the region.
 *
 * For example, a file region structure with from == 0 and to == 4 represents
 * four huge pages in a mapping.  It is important to note that the to element
 * represents the first element past the end of the region. This is used in
 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 *
 * Interval notation of the form [from, to) will be used to indicate that
 * the endpoint from is inclusive and to is exclusive.
236 237 238 239 240 241 242
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

243 244
/*
 * Add the huge page range represented by [f, t) to the reserve
245 246 247 248 249 250 251 252
 * map.  In the normal case, existing regions will be expanded
 * to accommodate the specified range.  Sufficient regions should
 * exist for expansion due to the previous call to region_chg
 * with the same range.  However, it is possible that region_del
 * could have been called after region_chg and modifed the map
 * in such a way that no region exists to be expanded.  In this
 * case, pull a region descriptor from the cache associated with
 * the map and use that for the new range.
253 254 255
 *
 * Return the number of new huge pages added to the map.  This
 * number is greater than or equal to zero.
256
 */
257
static long region_add(struct resv_map *resv, long f, long t)
258
{
259
	struct list_head *head = &resv->regions;
260
	struct file_region *rg, *nrg, *trg;
261
	long add = 0;
262

263
	spin_lock(&resv->lock);
264 265 266 267 268
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	/*
	 * If no region exists which can be expanded to include the
	 * specified range, the list must have been modified by an
	 * interleving call to region_del().  Pull a region descriptor
	 * from the cache and use it for this range.
	 */
	if (&rg->link == head || t < rg->from) {
		VM_BUG_ON(resv->region_cache_count <= 0);

		resv->region_cache_count--;
		nrg = list_first_entry(&resv->region_cache, struct file_region,
					link);
		list_del(&nrg->link);

		nrg->from = f;
		nrg->to = t;
		list_add(&nrg->link, rg->link.prev);

		add += t - f;
		goto out_locked;
	}

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
309 310 311 312 313
			/* Decrement return value by the deleted range.
			 * Another range will span this area so that by
			 * end of routine add will be >= zero
			 */
			add -= (rg->to - rg->from);
314 315 316 317
			list_del(&rg->link);
			kfree(rg);
		}
	}
318 319

	add += (nrg->from - f);		/* Added to beginning of region */
320
	nrg->from = f;
321
	add += t - nrg->to;		/* Added to end of region */
322
	nrg->to = t;
323

324 325
out_locked:
	resv->adds_in_progress--;
326
	spin_unlock(&resv->lock);
327 328
	VM_BUG_ON(add < 0);
	return add;
329 330
}

331 332 333 334 335 336 337 338 339 340 341 342 343
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
 * map.  However, if the existing regions in the map can not
 * be expanded to represent the new range, a new file_region
 * structure is added to the map as a placeholder.  This is
 * so that the subsequent region_add call will have all the
 * regions it needs and will not fail.
 *
344 345 346 347 348 349 350 351
 * Upon entry, region_chg will also examine the cache of region descriptors
 * associated with the map.  If there are not enough descriptors cached, one
 * will be allocated for the in progress add operation.
 *
 * Returns the number of huge pages that need to be added to the existing
 * reservation map for the range [f, t).  This number is greater or equal to
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 * is needed and can not be allocated.
352
 */
353
static long region_chg(struct resv_map *resv, long f, long t)
354
{
355
	struct list_head *head = &resv->regions;
356
	struct file_region *rg, *nrg = NULL;
357 358
	long chg = 0;

359 360
retry:
	spin_lock(&resv->lock);
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
retry_locked:
	resv->adds_in_progress++;

	/*
	 * Check for sufficient descriptors in the cache to accommodate
	 * the number of in progress add operations.
	 */
	if (resv->adds_in_progress > resv->region_cache_count) {
		struct file_region *trg;

		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
		/* Must drop lock to allocate a new descriptor. */
		resv->adds_in_progress--;
		spin_unlock(&resv->lock);

		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
377 378
		if (!trg) {
			kfree(nrg);
379
			return -ENOMEM;
380
		}
381 382 383 384 385 386 387

		spin_lock(&resv->lock);
		list_add(&trg->link, &resv->region_cache);
		resv->region_cache_count++;
		goto retry_locked;
	}

388 389 390 391 392 393 394 395 396
	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
397
		if (!nrg) {
398
			resv->adds_in_progress--;
399 400 401 402 403 404 405 406 407 408
			spin_unlock(&resv->lock);
			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
			if (!nrg)
				return -ENOMEM;

			nrg->from = f;
			nrg->to   = f;
			INIT_LIST_HEAD(&nrg->link);
			goto retry;
		}
409

410 411 412
		list_add(&nrg->link, rg->link.prev);
		chg = t - f;
		goto out_nrg;
413 414 415 416 417 418 419 420 421 422 423 424
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
425
			goto out;
426

L
Lucas De Marchi 已提交
427
		/* We overlap with this area, if it extends further than
428 429 430 431 432 433 434 435
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
436 437 438 439 440 441 442 443

out:
	spin_unlock(&resv->lock);
	/*  We already know we raced and no longer need the new region */
	kfree(nrg);
	return chg;
out_nrg:
	spin_unlock(&resv->lock);
444 445 446
	return chg;
}

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
/*
 * Abort the in progress add operation.  The adds_in_progress field
 * of the resv_map keeps track of the operations in progress between
 * calls to region_chg and region_add.  Operations are sometimes
 * aborted after the call to region_chg.  In such cases, region_abort
 * is called to decrement the adds_in_progress counter.
 *
 * NOTE: The range arguments [f, t) are not needed or used in this
 * routine.  They are kept to make reading the calling code easier as
 * arguments will match the associated region_chg call.
 */
static void region_abort(struct resv_map *resv, long f, long t)
{
	spin_lock(&resv->lock);
	VM_BUG_ON(!resv->region_cache_count);
	resv->adds_in_progress--;
	spin_unlock(&resv->lock);
}

466
/*
467 468 469 470 471 472 473 474 475 476 477 478
 * Delete the specified range [f, t) from the reserve map.  If the
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 * should be deleted.  Locate the regions which intersect [f, t)
 * and either trim, delete or split the existing regions.
 *
 * Returns the number of huge pages deleted from the reserve map.
 * In the normal case, the return value is zero or more.  In the
 * case where a region must be split, a new region descriptor must
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 * a region and possibly return -ENOMEM.  Callers specifying
 * t == LONG_MAX do not need to check for -ENOMEM error.
479
 */
480
static long region_del(struct resv_map *resv, long f, long t)
481
{
482
	struct list_head *head = &resv->regions;
483
	struct file_region *rg, *trg;
484 485
	struct file_region *nrg = NULL;
	long del = 0;
486

487
retry:
488
	spin_lock(&resv->lock);
489
	list_for_each_entry_safe(rg, trg, head, link) {
490 491 492 493 494 495 496 497
		/*
		 * Skip regions before the range to be deleted.  file_region
		 * ranges are normally of the form [from, to).  However, there
		 * may be a "placeholder" entry in the map which is of the form
		 * (from, to) with from == to.  Check for placeholder entries
		 * at the beginning of the range to be deleted.
		 */
		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
498
			continue;
499

500
		if (rg->from >= t)
501 502
			break;

503 504 505 506 507 508 509 510 511 512 513 514 515
		if (f > rg->from && t < rg->to) { /* Must split region */
			/*
			 * Check for an entry in the cache before dropping
			 * lock and attempting allocation.
			 */
			if (!nrg &&
			    resv->region_cache_count > resv->adds_in_progress) {
				nrg = list_first_entry(&resv->region_cache,
							struct file_region,
							link);
				list_del(&nrg->link);
				resv->region_cache_count--;
			}
516

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
			if (!nrg) {
				spin_unlock(&resv->lock);
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
				if (!nrg)
					return -ENOMEM;
				goto retry;
			}

			del += t - f;

			/* New entry for end of split region */
			nrg->from = t;
			nrg->to = rg->to;
			INIT_LIST_HEAD(&nrg->link);

			/* Original entry is trimmed */
			rg->to = f;

			list_add(&nrg->link, &rg->link);
			nrg = NULL;
537
			break;
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
		}

		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
			del += rg->to - rg->from;
			list_del(&rg->link);
			kfree(rg);
			continue;
		}

		if (f <= rg->from) {	/* Trim beginning of region */
			del += t - rg->from;
			rg->from = t;
		} else {		/* Trim end of region */
			del += rg->to - f;
			rg->to = f;
		}
554
	}
555 556

	spin_unlock(&resv->lock);
557 558
	kfree(nrg);
	return del;
559 560
}

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
/*
 * A rare out of memory error was encountered which prevented removal of
 * the reserve map region for a page.  The huge page itself was free'ed
 * and removed from the page cache.  This routine will adjust the subpool
 * usage count, and the global reserve count if needed.  By incrementing
 * these counts, the reserve map entry which could not be deleted will
 * appear as a "reserved" entry instead of simply dangling with incorrect
 * counts.
 */
void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
{
	struct hugepage_subpool *spool = subpool_inode(inode);
	long rsv_adjust;

	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
	if (restore_reserve && rsv_adjust) {
		struct hstate *h = hstate_inode(inode);

		hugetlb_acct_memory(h, 1);
	}
}

583 584 585 586
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
587
static long region_count(struct resv_map *resv, long f, long t)
588
{
589
	struct list_head *head = &resv->regions;
590 591 592
	struct file_region *rg;
	long chg = 0;

593
	spin_lock(&resv->lock);
594 595
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
596 597
		long seg_from;
		long seg_to;
598 599 600 601 602 603 604 605 606 607 608

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
609
	spin_unlock(&resv->lock);
610 611 612 613

	return chg;
}

614 615 616 617
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
618 619
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
620
{
621 622
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
623 624
}

625 626 627 628 629 630
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

631 632 633 634 635 636 637 638 639 640 641 642 643
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

644
	return 1UL << huge_page_shift(hstate);
645
}
646
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
647

648 649 650 651 652 653 654 655 656 657 658 659 660
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

661 662 663 664 665 666 667
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
668
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
669

670 671 672 673 674 675 676 677 678
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
679 680 681 682 683 684 685 686 687
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
688
 */
689 690 691 692 693 694 695 696 697 698 699
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

700
struct resv_map *resv_map_alloc(void)
701 702
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
703 704 705 706 707
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);

	if (!resv_map || !rg) {
		kfree(resv_map);
		kfree(rg);
708
		return NULL;
709
	}
710 711

	kref_init(&resv_map->refs);
712
	spin_lock_init(&resv_map->lock);
713 714
	INIT_LIST_HEAD(&resv_map->regions);

715 716 717 718 719 720
	resv_map->adds_in_progress = 0;

	INIT_LIST_HEAD(&resv_map->region_cache);
	list_add(&rg->link, &resv_map->region_cache);
	resv_map->region_cache_count = 1;

721 722 723
	return resv_map;
}

724
void resv_map_release(struct kref *ref)
725 726
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
727 728
	struct list_head *head = &resv_map->region_cache;
	struct file_region *rg, *trg;
729 730

	/* Clear out any active regions before we release the map. */
731
	region_del(resv_map, 0, LONG_MAX);
732 733 734 735 736 737 738 739 740

	/* ... and any entries left in the cache */
	list_for_each_entry_safe(rg, trg, head, link) {
		list_del(&rg->link);
		kfree(rg);
	}

	VM_BUG_ON(resv_map->adds_in_progress);

741 742 743
	kfree(resv_map);
}

744 745 746 747 748
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
	return inode->i_mapping->private_data;
}

749
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
750
{
751
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
752 753 754 755 756 757 758
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
759 760
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
761
	}
762 763
}

764
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
765
{
766 767
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
768

769 770
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
771 772 773 774
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
775 776
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
777 778

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
779 780 781 782
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
783
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
784 785

	return (get_vma_private_data(vma) & flag) != 0;
786 787
}

788
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
789 790
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
791
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
792
	if (!(vma->vm_flags & VM_MAYSHARE))
793 794 795 796
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
797
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
798
{
799 800 801 802 803 804 805 806 807 808 809
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
810
			return true;
811
		else
812
			return false;
813
	}
814 815

	/* Shared mappings always use reserves */
816 817 818 819 820 821 822 823 824 825 826 827 828
	if (vma->vm_flags & VM_MAYSHARE) {
		/*
		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
		 * be a region map for all pages.  The only situation where
		 * there is no region map is if a hole was punched via
		 * fallocate.  In this case, there really are no reverves to
		 * use.  This situation is indicated if chg != 0.
		 */
		if (chg)
			return false;
		else
			return true;
	}
829 830 831 832 833

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
834
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
835
		return true;
836

837
	return false;
838 839
}

840
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
841 842
{
	int nid = page_to_nid(page);
843
	list_move(&page->lru, &h->hugepage_freelists[nid]);
844 845
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
846 847
}

848 849 850 851
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

852 853 854 855 856 857 858 859
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
		if (!is_migrate_isolate_page(page))
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
860
		return NULL;
861
	list_move(&page->lru, &h->hugepage_activelist);
862
	set_page_refcounted(page);
863 864 865 866 867
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

868 869 870
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
871
	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
872 873 874 875 876
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

877 878
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
879 880
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
881
{
882
	struct page *page = NULL;
883
	struct mempolicy *mpol;
884
	nodemask_t *nodemask;
885
	struct zonelist *zonelist;
886 887
	struct zone *zone;
	struct zoneref *z;
888
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
889

890 891 892 893 894
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
895
	if (!vma_has_reserves(vma, chg) &&
896
			h->free_huge_pages - h->resv_huge_pages == 0)
897
		goto err;
898

899
	/* If reserves cannot be used, ensure enough pages are in the pool */
900
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
901
		goto err;
902

903
retry_cpuset:
904
	cpuset_mems_cookie = read_mems_allowed_begin();
905
	zonelist = huge_zonelist(vma, address,
906
					htlb_alloc_mask(h), &mpol, &nodemask);
907

908 909
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
910
		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
911 912
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
913 914 915 916 917
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

918
				SetPagePrivate(page);
919
				h->resv_huge_pages--;
920 921
				break;
			}
A
Andrew Morton 已提交
922
		}
L
Linus Torvalds 已提交
923
	}
924

925
	mpol_cond_put(mpol);
926
	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
927
		goto retry_cpuset;
L
Linus Torvalds 已提交
928
	return page;
929 930 931

err:
	return NULL;
L
Linus Torvalds 已提交
932 933
}

934 935 936 937 938 939 940 941 942
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
943
	nid = next_node_in(nid, *nodes_allowed);
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

1005
#if defined(CONFIG_X86_64) && ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA))
1006
static void destroy_compound_gigantic_page(struct page *page,
1007
					unsigned int order)
1008 1009 1010 1011 1012 1013
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1014
		clear_compound_head(p);
1015 1016 1017 1018 1019 1020 1021
		set_page_refcounted(p);
	}

	set_compound_order(page, 0);
	__ClearPageHead(page);
}

1022
static void free_gigantic_page(struct page *page, unsigned int order)
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
{
	free_contig_range(page_to_pfn(page), 1 << order);
}

static int __alloc_gigantic_page(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long end_pfn = start_pfn + nr_pages;
	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
}

1034 1035
static bool pfn_range_valid_gigantic(struct zone *z,
			unsigned long start_pfn, unsigned long nr_pages)
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		if (!pfn_valid(i))
			return false;

		page = pfn_to_page(i);

1046 1047 1048
		if (page_zone(page) != z)
			return false;

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}

	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
			unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;
	return zone_spans_pfn(zone, last_pfn);
}

1069
static struct page *alloc_gigantic_page(int nid, unsigned int order)
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
{
	unsigned long nr_pages = 1 << order;
	unsigned long ret, pfn, flags;
	struct zone *z;

	z = NODE_DATA(nid)->node_zones;
	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
		spin_lock_irqsave(&z->lock, flags);

		pfn = ALIGN(z->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1081
			if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
				spin_unlock_irqrestore(&z->lock, flags);
				ret = __alloc_gigantic_page(pfn, nr_pages);
				if (!ret)
					return pfn_to_page(pfn);
				spin_lock_irqsave(&z->lock, flags);
			}
			pfn += nr_pages;
		}

		spin_unlock_irqrestore(&z->lock, flags);
	}

	return NULL;
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1105
static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137

static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
{
	struct page *page;

	page = alloc_gigantic_page(nid, huge_page_order(h));
	if (page) {
		prep_compound_gigantic_page(page, huge_page_order(h));
		prep_new_huge_page(h, page, nid);
	}

	return page;
}

static int alloc_fresh_gigantic_page(struct hstate *h,
				nodemask_t *nodes_allowed)
{
	struct page *page = NULL;
	int nr_nodes, node;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_gigantic_page_node(h, node);
		if (page)
			return 1;
	}

	return 0;
}

static inline bool gigantic_page_supported(void) { return true; }
#else
static inline bool gigantic_page_supported(void) { return false; }
1138
static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1139
static inline void destroy_compound_gigantic_page(struct page *page,
1140
						unsigned int order) { }
1141 1142 1143 1144
static inline int alloc_fresh_gigantic_page(struct hstate *h,
					nodemask_t *nodes_allowed) { return 0; }
#endif

1145
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
1146 1147
{
	int i;
1148

1149 1150
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
		return;
1151

1152 1153 1154
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
1155 1156
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
1157 1158
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
1159
	}
1160
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1161
	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
A
Adam Litke 已提交
1162
	set_page_refcounted(page);
1163 1164 1165 1166 1167 1168
	if (hstate_is_gigantic(h)) {
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
	} else {
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
1169 1170
}

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
/*
 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
 * to hstate->hugepage_activelist.)
 *
 * This function can be called for tail pages, but never returns true for them.
 */
bool page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHuge(page), page);
	return PageHead(page) && PagePrivate(&page[1]);
}

/* never called for tail page */
static void set_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	SetPagePrivate(&page[1]);
}

static void clear_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	ClearPagePrivate(&page[1]);
}

1207
void free_huge_page(struct page *page)
1208
{
1209 1210 1211 1212
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1213
	struct hstate *h = page_hstate(page);
1214
	int nid = page_to_nid(page);
1215 1216
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
1217
	bool restore_reserve;
1218

1219
	set_page_private(page, 0);
1220
	page->mapping = NULL;
1221 1222
	VM_BUG_ON_PAGE(page_count(page), page);
	VM_BUG_ON_PAGE(page_mapcount(page), page);
1223
	restore_reserve = PagePrivate(page);
1224
	ClearPagePrivate(page);
1225

1226 1227 1228 1229 1230 1231 1232 1233
	/*
	 * A return code of zero implies that the subpool will be under its
	 * minimum size if the reservation is not restored after page is free.
	 * Therefore, force restore_reserve operation.
	 */
	if (hugepage_subpool_put_pages(spool, 1) == 0)
		restore_reserve = true;

1234
	spin_lock(&hugetlb_lock);
1235
	clear_page_huge_active(page);
1236 1237
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1238 1239 1240
	if (restore_reserve)
		h->resv_huge_pages++;

1241
	if (h->surplus_huge_pages_node[nid]) {
1242 1243
		/* remove the page from active list */
		list_del(&page->lru);
1244 1245 1246
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
1247
	} else {
1248
		arch_clear_hugepage_flags(page);
1249
		enqueue_huge_page(h, page);
1250
	}
1251 1252 1253
	spin_unlock(&hugetlb_lock);
}

1254
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1255
{
1256
	INIT_LIST_HEAD(&page->lru);
1257
	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1258
	spin_lock(&hugetlb_lock);
1259
	set_hugetlb_cgroup(page, NULL);
1260 1261
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
1262 1263 1264 1265
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

1266
static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1267 1268 1269 1270 1271 1272 1273
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
1274
	__ClearPageReserved(page);
1275
	__SetPageHead(page);
1276
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1290
		set_page_count(p, 0);
1291
		set_compound_head(p, page);
1292
	}
1293
	atomic_set(compound_mapcount_ptr(page), -1);
1294 1295
}

A
Andrew Morton 已提交
1296 1297 1298 1299 1300
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1301 1302 1303 1304 1305 1306
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1307
	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1308
}
1309 1310
EXPORT_SYMBOL_GPL(PageHuge);

1311 1312 1313 1314 1315 1316 1317 1318 1319
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1320
	return get_compound_page_dtor(page_head) == free_huge_page;
1321 1322
}

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1340
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
1341 1342
{
	struct page *page;
1343

1344
	page = __alloc_pages_node(nid,
1345
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1346
						__GFP_REPEAT|__GFP_NOWARN,
1347
		huge_page_order(h));
L
Linus Torvalds 已提交
1348
	if (page) {
1349
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
1350
	}
1351 1352 1353 1354

	return page;
}

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

1377 1378 1379 1380 1381 1382
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
1383 1384
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
1385
{
1386
	int nr_nodes, node;
1387 1388
	int ret = 0;

1389
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1390 1391 1392 1393
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1394 1395
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1396
			struct page *page =
1397
				list_entry(h->hugepage_freelists[node].next,
1398 1399 1400
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
1401
			h->free_huge_pages_node[node]--;
1402 1403
			if (acct_surplus) {
				h->surplus_huge_pages--;
1404
				h->surplus_huge_pages_node[node]--;
1405
			}
1406 1407
			update_and_free_page(h, page);
			ret = 1;
1408
			break;
1409
		}
1410
	}
1411 1412 1413 1414

	return ret;
}

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
 * nothing for in-use (including surplus) hugepages.
 */
static void dissolve_free_huge_page(struct page *page)
{
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
		struct hstate *h = page_hstate(page);
		int nid = page_to_nid(page);
		list_del(&page->lru);
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		update_and_free_page(h, page);
	}
	spin_unlock(&hugetlb_lock);
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
 * Note that start_pfn should aligned with (minimum) hugepage size.
 */
void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned long pfn;

1442 1443 1444
	if (!hugepages_supported())
		return;

1445 1446
	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1447 1448 1449
		dissolve_free_huge_page(pfn_to_page(pfn));
}

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
/*
 * There are 3 ways this can get called:
 * 1. With vma+addr: we use the VMA's memory policy
 * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
 *    page from any node, and let the buddy allocator itself figure
 *    it out.
 * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
 *    strictly from 'nid'
 */
static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr, int nid)
{
	int order = huge_page_order(h);
	gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
	unsigned int cpuset_mems_cookie;

	/*
	 * We need a VMA to get a memory policy.  If we do not
D
Dave Hansen 已提交
1468 1469 1470 1471 1472 1473
	 * have one, we use the 'nid' argument.
	 *
	 * The mempolicy stuff below has some non-inlined bits
	 * and calls ->vm_ops.  That makes it hard to optimize at
	 * compile-time, even when NUMA is off and it does
	 * nothing.  This helps the compiler optimize it out.
1474
	 */
D
Dave Hansen 已提交
1475
	if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
		/*
		 * If a specific node is requested, make sure to
		 * get memory from there, but only when a node
		 * is explicitly specified.
		 */
		if (nid != NUMA_NO_NODE)
			gfp |= __GFP_THISNODE;
		/*
		 * Make sure to call something that can handle
		 * nid=NUMA_NO_NODE
		 */
		return alloc_pages_node(nid, gfp, order);
	}

	/*
	 * OK, so we have a VMA.  Fetch the mempolicy and try to
D
Dave Hansen 已提交
1492 1493
	 * allocate a huge page with it.  We will only reach this
	 * when CONFIG_NUMA=y.
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
	 */
	do {
		struct page *page;
		struct mempolicy *mpol;
		struct zonelist *zl;
		nodemask_t *nodemask;

		cpuset_mems_cookie = read_mems_allowed_begin();
		zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
		mpol_cond_put(mpol);
		page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
		if (page)
			return page;
	} while (read_mems_allowed_retry(cpuset_mems_cookie));

	return NULL;
}

/*
 * There are two ways to allocate a huge page:
 * 1. When you have a VMA and an address (like a fault)
 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
 *
 * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
 * this case which signifies that the allocation should be done with
 * respect for the VMA's memory policy.
 *
 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
 * implies that memory policies will not be taken in to account.
 */
static struct page *__alloc_buddy_huge_page(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr, int nid)
1526 1527
{
	struct page *page;
1528
	unsigned int r_nid;
1529

1530
	if (hstate_is_gigantic(h))
1531 1532
		return NULL;

1533 1534 1535 1536 1537 1538
	/*
	 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
	 * This makes sure the caller is picking _one_ of the modes with which
	 * we can call this function, not both.
	 */
	if (vma || (addr != -1)) {
D
Dave Hansen 已提交
1539 1540
		VM_WARN_ON_ONCE(addr == -1);
		VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1541
	}
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
1566
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1567 1568 1569
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
1570 1571
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
1572 1573 1574
	}
	spin_unlock(&hugetlb_lock);

1575
	page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1576 1577

	spin_lock(&hugetlb_lock);
1578
	if (page) {
1579
		INIT_LIST_HEAD(&page->lru);
1580
		r_nid = page_to_nid(page);
1581
		set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1582
		set_hugetlb_cgroup(page, NULL);
1583 1584 1585
		/*
		 * We incremented the global counters already
		 */
1586 1587
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
1588
		__count_vm_event(HTLB_BUDDY_PGALLOC);
1589
	} else {
1590 1591
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
1592
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1593
	}
1594
	spin_unlock(&hugetlb_lock);
1595 1596 1597 1598

	return page;
}

1599 1600 1601 1602 1603
/*
 * Allocate a huge page from 'nid'.  Note, 'nid' may be
 * NUMA_NO_NODE, which means that it may be allocated
 * anywhere.
 */
D
Dave Hansen 已提交
1604
static
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
{
	unsigned long addr = -1;

	return __alloc_buddy_huge_page(h, NULL, addr, nid);
}

/*
 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 */
D
Dave Hansen 已提交
1615
static
1616 1617 1618 1619 1620 1621
struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr)
{
	return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
}

1622 1623 1624 1625 1626 1627 1628
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1629
	struct page *page = NULL;
1630 1631

	spin_lock(&hugetlb_lock);
1632 1633
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
1634 1635
	spin_unlock(&hugetlb_lock);

1636
	if (!page)
1637
		page = __alloc_buddy_huge_page_no_mpol(h, nid);
1638 1639 1640 1641

	return page;
}

1642
/*
L
Lucas De Marchi 已提交
1643
 * Increase the hugetlb pool such that it can accommodate a reservation
1644 1645
 * of size 'delta'.
 */
1646
static int gather_surplus_pages(struct hstate *h, int delta)
1647 1648 1649 1650 1651
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1652
	bool alloc_ok = true;
1653

1654
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1655
	if (needed <= 0) {
1656
		h->resv_huge_pages += delta;
1657
		return 0;
1658
	}
1659 1660 1661 1662 1663 1664 1665 1666

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1667
		page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1668 1669 1670 1671
		if (!page) {
			alloc_ok = false;
			break;
		}
1672 1673
		list_add(&page->lru, &surplus_list);
	}
1674
	allocated += i;
1675 1676 1677 1678 1679 1680

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1681 1682
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1693 1694
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1695
	 * needed to accommodate the reservation.  Add the appropriate number
1696
	 * of pages to the hugetlb pool and free the extras back to the buddy
1697 1698 1699
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1700 1701
	 */
	needed += allocated;
1702
	h->resv_huge_pages += delta;
1703
	ret = 0;
1704

1705
	/* Free the needed pages to the hugetlb pool */
1706
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1707 1708
		if ((--needed) < 0)
			break;
1709 1710 1711 1712 1713
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
1714
		VM_BUG_ON_PAGE(page_count(page), page);
1715
		enqueue_huge_page(h, page);
1716
	}
1717
free:
1718
	spin_unlock(&hugetlb_lock);
1719 1720

	/* Free unnecessary surplus pages to the buddy allocator */
1721 1722
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1723
	spin_lock(&hugetlb_lock);
1724 1725 1726 1727 1728 1729 1730 1731

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1732
 * Called with hugetlb_lock held.
1733
 */
1734 1735
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1736 1737 1738
{
	unsigned long nr_pages;

1739
	/* Uncommit the reservation */
1740
	h->resv_huge_pages -= unused_resv_pages;
1741

1742
	/* Cannot return gigantic pages currently */
1743
	if (hstate_is_gigantic(h))
1744 1745
		return;

1746
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1747

1748 1749
	/*
	 * We want to release as many surplus pages as possible, spread
1750 1751 1752 1753 1754
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1755 1756
	 */
	while (nr_pages--) {
1757
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1758
			break;
1759
		cond_resched_lock(&hugetlb_lock);
1760 1761 1762
	}
}

1763

1764
/*
1765
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1766
 * are used by the huge page allocation routines to manage reservations.
1767 1768 1769 1770 1771 1772
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
1773 1774 1775
 * to add the page to the reservation map.  If the page allocation fails,
 * the reservation must be ended instead of committed.  vma_end_reservation
 * is called in such cases.
1776 1777 1778 1779 1780 1781
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
1782
 */
1783 1784 1785
enum vma_resv_mode {
	VMA_NEEDS_RESV,
	VMA_COMMIT_RESV,
1786
	VMA_END_RESV,
1787
};
1788 1789
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
1790
				enum vma_resv_mode mode)
1791
{
1792 1793
	struct resv_map *resv;
	pgoff_t idx;
1794
	long ret;
1795

1796 1797
	resv = vma_resv_map(vma);
	if (!resv)
1798
		return 1;
1799

1800
	idx = vma_hugecache_offset(h, vma, addr);
1801 1802
	switch (mode) {
	case VMA_NEEDS_RESV:
1803
		ret = region_chg(resv, idx, idx + 1);
1804 1805 1806 1807
		break;
	case VMA_COMMIT_RESV:
		ret = region_add(resv, idx, idx + 1);
		break;
1808
	case VMA_END_RESV:
1809 1810 1811 1812 1813 1814
		region_abort(resv, idx, idx + 1);
		ret = 0;
		break;
	default:
		BUG();
	}
1815

1816
	if (vma->vm_flags & VM_MAYSHARE)
1817
		return ret;
1818
	else
1819
		return ret < 0 ? ret : 0;
1820
}
1821 1822

static long vma_needs_reservation(struct hstate *h,
1823
			struct vm_area_struct *vma, unsigned long addr)
1824
{
1825
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1826
}
1827

1828 1829 1830
static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
1831 1832 1833
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}

1834
static void vma_end_reservation(struct hstate *h,
1835 1836
			struct vm_area_struct *vma, unsigned long addr)
{
1837
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1838 1839
}

1840
struct page *alloc_huge_page(struct vm_area_struct *vma,
1841
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1842
{
1843
	struct hugepage_subpool *spool = subpool_vma(vma);
1844
	struct hstate *h = hstate_vma(vma);
1845
	struct page *page;
1846 1847
	long map_chg, map_commit;
	long gbl_chg;
1848 1849
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1850

1851
	idx = hstate_index(h);
1852
	/*
1853 1854 1855
	 * Examine the region/reserve map to determine if the process
	 * has a reservation for the page to be allocated.  A return
	 * code of zero indicates a reservation exists (no change).
1856
	 */
1857 1858
	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
	if (map_chg < 0)
1859
		return ERR_PTR(-ENOMEM);
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870

	/*
	 * Processes that did not create the mapping will have no
	 * reserves as indicated by the region/reserve map. Check
	 * that the allocation will not exceed the subpool limit.
	 * Allocations for MAP_NORESERVE mappings also need to be
	 * checked against any subpool limit.
	 */
	if (map_chg || avoid_reserve) {
		gbl_chg = hugepage_subpool_get_pages(spool, 1);
		if (gbl_chg < 0) {
1871
			vma_end_reservation(h, vma, addr);
1872
			return ERR_PTR(-ENOSPC);
1873
		}
L
Linus Torvalds 已提交
1874

1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
		/*
		 * Even though there was no reservation in the region/reserve
		 * map, there could be reservations associated with the
		 * subpool that can be used.  This would be indicated if the
		 * return value of hugepage_subpool_get_pages() is zero.
		 * However, if avoid_reserve is specified we still avoid even
		 * the subpool reservations.
		 */
		if (avoid_reserve)
			gbl_chg = 1;
	}

1887
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1888 1889 1890
	if (ret)
		goto out_subpool_put;

L
Linus Torvalds 已提交
1891
	spin_lock(&hugetlb_lock);
1892 1893 1894 1895 1896 1897
	/*
	 * glb_chg is passed to indicate whether or not a page must be taken
	 * from the global free pool (global change).  gbl_chg == 0 indicates
	 * a reservation exists for the allocation.
	 */
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1898
	if (!page) {
1899
		spin_unlock(&hugetlb_lock);
1900
		page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1901 1902
		if (!page)
			goto out_uncharge_cgroup;
1903 1904 1905 1906
		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
			SetPagePrivate(page);
			h->resv_huge_pages--;
		}
1907 1908
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1909
		/* Fall through */
K
Ken Chen 已提交
1910
	}
1911 1912
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1913

1914
	set_page_private(page, (unsigned long)spool);
1915

1916 1917
	map_commit = vma_commit_reservation(h, vma, addr);
	if (unlikely(map_chg > map_commit)) {
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
		/*
		 * The page was added to the reservation map between
		 * vma_needs_reservation and vma_commit_reservation.
		 * This indicates a race with hugetlb_reserve_pages.
		 * Adjust for the subpool count incremented above AND
		 * in hugetlb_reserve_pages for the same page.  Also,
		 * the reservation count added in hugetlb_reserve_pages
		 * no longer applies.
		 */
		long rsv_adjust;

		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
		hugetlb_acct_memory(h, -rsv_adjust);
	}
1932
	return page;
1933 1934 1935 1936

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
out_subpool_put:
1937
	if (map_chg || avoid_reserve)
1938
		hugepage_subpool_put_pages(spool, 1);
1939
	vma_end_reservation(h, vma, addr);
1940
	return ERR_PTR(-ENOSPC);
1941 1942
}

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

1957
int __weak alloc_bootmem_huge_page(struct hstate *h)
1958 1959
{
	struct huge_bootmem_page *m;
1960
	int nr_nodes, node;
1961

1962
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1963 1964
		void *addr;

1965 1966 1967
		addr = memblock_virt_alloc_try_nid_nopanic(
				huge_page_size(h), huge_page_size(h),
				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1968 1969 1970 1971 1972 1973 1974
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1975
			goto found;
1976 1977 1978 1979 1980
		}
	}
	return 0;

found:
1981
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1982 1983 1984 1985 1986 1987
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1988 1989
static void __init prep_compound_huge_page(struct page *page,
		unsigned int order)
1990 1991 1992 1993 1994 1995 1996
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1997 1998 1999 2000 2001 2002 2003
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
2004 2005 2006 2007
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
2008 2009
		memblock_free_late(__pa(m),
				   sizeof(struct huge_bootmem_page));
2010 2011 2012
#else
		page = virt_to_page(m);
#endif
2013
		WARN_ON(page_count(page) != 1);
2014
		prep_compound_huge_page(page, h->order);
2015
		WARN_ON(PageReserved(page));
2016
		prep_new_huge_page(h, page, page_to_nid(page));
2017 2018 2019 2020 2021 2022
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
2023
		if (hstate_is_gigantic(h))
2024
			adjust_managed_page_count(page, 1 << h->order);
2025 2026 2027
	}
}

2028
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
2029 2030
{
	unsigned long i;
2031

2032
	for (i = 0; i < h->max_huge_pages; ++i) {
2033
		if (hstate_is_gigantic(h)) {
2034 2035
			if (!alloc_bootmem_huge_page(h))
				break;
2036
		} else if (!alloc_fresh_huge_page(h,
2037
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
2038 2039
			break;
	}
2040
	h->max_huge_pages = i;
2041 2042 2043 2044 2045 2046 2047
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
2048 2049 2050
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

2051
		/* oversize hugepages were init'ed in early boot */
2052
		if (!hstate_is_gigantic(h))
2053
			hugetlb_hstate_alloc_pages(h);
2054
	}
2055
	VM_BUG_ON(minimum_order == UINT_MAX);
2056 2057
}

A
Andi Kleen 已提交
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

2069 2070 2071 2072 2073
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
2074
		char buf[32];
2075
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
2076 2077
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
2078 2079 2080
	}
}

L
Linus Torvalds 已提交
2081
#ifdef CONFIG_HIGHMEM
2082 2083
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2084
{
2085 2086
	int i;

2087
	if (hstate_is_gigantic(h))
2088 2089
		return;

2090
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
2091
		struct page *page, *next;
2092 2093 2094
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
2095
				return;
L
Linus Torvalds 已提交
2096 2097 2098
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
2099
			update_and_free_page(h, page);
2100 2101
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
2102 2103 2104 2105
		}
	}
}
#else
2106 2107
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2108 2109 2110 2111
{
}
#endif

2112 2113 2114 2115 2116
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
2117 2118
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
2119
{
2120
	int nr_nodes, node;
2121 2122 2123

	VM_BUG_ON(delta != -1 && delta != 1);

2124 2125 2126 2127
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
2128
		}
2129 2130 2131 2132 2133
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
2134
		}
2135 2136
	}
	return 0;
2137

2138 2139 2140 2141
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
2142 2143
}

2144
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2145 2146
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2147
{
2148
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
2149

2150
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2151 2152
		return h->max_huge_pages;

2153 2154 2155 2156
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
2157
	 *
N
Naoya Horiguchi 已提交
2158
	 * We might race with __alloc_buddy_huge_page() here and be unable
2159 2160 2161 2162
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
2163
	 */
L
Linus Torvalds 已提交
2164
	spin_lock(&hugetlb_lock);
2165
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2166
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2167 2168 2169
			break;
	}

2170
	while (count > persistent_huge_pages(h)) {
2171 2172 2173 2174 2175 2176
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
2177 2178 2179 2180
		if (hstate_is_gigantic(h))
			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
		else
			ret = alloc_fresh_huge_page(h, nodes_allowed);
2181 2182 2183 2184
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

2185 2186 2187
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
2188 2189 2190 2191 2192 2193 2194 2195
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
2196 2197 2198 2199
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
N
Naoya Horiguchi 已提交
2200
	 * __alloc_buddy_huge_page() is checking the global counter,
2201 2202 2203
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
2204
	 */
2205
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2206
	min_count = max(count, min_count);
2207
	try_to_free_low(h, min_count, nodes_allowed);
2208
	while (min_count < persistent_huge_pages(h)) {
2209
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
2210
			break;
2211
		cond_resched_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
2212
	}
2213
	while (count < persistent_huge_pages(h)) {
2214
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2215 2216 2217
			break;
	}
out:
2218
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
2219
	spin_unlock(&hugetlb_lock);
2220
	return ret;
L
Linus Torvalds 已提交
2221 2222
}

2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

2233 2234 2235
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2236 2237
{
	int i;
2238

2239
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2240 2241 2242
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
2243
			return &hstates[i];
2244 2245 2246
		}

	return kobj_to_node_hstate(kobj, nidp);
2247 2248
}

2249
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2250 2251
					struct kobj_attribute *attr, char *buf)
{
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
2263
}
2264

2265 2266 2267
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
2268 2269
{
	int err;
2270
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2271

2272
	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2273 2274 2275 2276
		err = -EINVAL;
		goto out;
	}

2277 2278 2279 2280 2281 2282 2283
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2284
			nodes_allowed = &node_states[N_MEMORY];
2285 2286 2287 2288 2289 2290 2291 2292 2293
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
2294
		nodes_allowed = &node_states[N_MEMORY];
2295

2296
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2297

2298
	if (nodes_allowed != &node_states[N_MEMORY])
2299 2300 2301
		NODEMASK_FREE(nodes_allowed);

	return len;
2302 2303 2304
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
2305 2306
}

2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

2324 2325 2326 2327 2328 2329 2330 2331 2332
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2333
	return nr_hugepages_store_common(false, kobj, buf, len);
2334 2335 2336
}
HSTATE_ATTR(nr_hugepages);

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2352
	return nr_hugepages_store_common(true, kobj, buf, len);
2353 2354 2355 2356 2357
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


2358 2359 2360
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2361
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2362 2363
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
2364

2365 2366 2367 2368 2369
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
2370
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2371

2372
	if (hstate_is_gigantic(h))
2373 2374
		return -EINVAL;

2375
	err = kstrtoul(buf, 10, &input);
2376
	if (err)
2377
		return err;
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
2401 2402 2403 2404 2405 2406
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2407
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2408 2409 2410 2411 2412 2413 2414
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
2426 2427 2428 2429 2430 2431 2432 2433 2434
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
2435 2436 2437
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
2438 2439 2440 2441 2442 2443 2444
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
2445 2446 2447
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
2448 2449
{
	int retval;
2450
	int hi = hstate_index(h);
2451

2452 2453
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
2454 2455
		return -ENOMEM;

2456
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2457
	if (retval)
2458
		kobject_put(hstate_kobjs[hi]);
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
2473 2474
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
2475
		if (err)
2476
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2477 2478 2479
	}
}

2480 2481 2482 2483
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2484 2485 2486
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
2487 2488 2489 2490 2491 2492
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
2493
static struct node_hstate node_hstates[MAX_NUMNODES];
2494 2495

/*
2496
 * A subset of global hstate attributes for node devices
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
2510
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
2533
 * Unregister hstate attributes from a single node device.
2534 2535
 * No-op if no hstate attributes attached.
 */
2536
static void hugetlb_unregister_node(struct node *node)
2537 2538
{
	struct hstate *h;
2539
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2540 2541

	if (!nhs->hugepages_kobj)
2542
		return;		/* no hstate attributes */
2543

2544 2545 2546 2547 2548
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
2549
		}
2550
	}
2551 2552 2553 2554 2555 2556 2557

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}


/*
2558
 * Register hstate attributes for a single node device.
2559 2560
 * No-op if attributes already registered.
 */
2561
static void hugetlb_register_node(struct node *node)
2562 2563
{
	struct hstate *h;
2564
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2565 2566 2567 2568 2569 2570
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2571
							&node->dev.kobj);
2572 2573 2574 2575 2576 2577 2578 2579
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
2580 2581
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
2582 2583 2584 2585 2586 2587 2588
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
2589
 * hugetlb init time:  register hstate attributes for all registered node
2590 2591
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
2592
 */
2593
static void __init hugetlb_register_all_nodes(void)
2594 2595 2596
{
	int nid;

2597
	for_each_node_state(nid, N_MEMORY) {
2598
		struct node *node = node_devices[nid];
2599
		if (node->dev.id == nid)
2600 2601 2602 2603
			hugetlb_register_node(node);
	}

	/*
2604
	 * Let the node device driver know we're here so it can
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_register_all_nodes(void) { }

#endif

2624 2625
static int __init hugetlb_init(void)
{
2626 2627
	int i;

2628
	if (!hugepages_supported())
2629
		return 0;
2630

2631 2632 2633 2634
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2635
	}
2636
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2637 2638 2639 2640
	if (default_hstate_max_huge_pages) {
		if (!default_hstate.max_huge_pages)
			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
	}
2641 2642

	hugetlb_init_hstates();
2643
	gather_bootmem_prealloc();
2644 2645 2646
	report_hugepages();

	hugetlb_sysfs_init();
2647
	hugetlb_register_all_nodes();
2648
	hugetlb_cgroup_file_init();
2649

2650 2651 2652 2653 2654
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
2655
	hugetlb_fault_mutex_table =
2656
		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2657
	BUG_ON(!hugetlb_fault_mutex_table);
2658 2659

	for (i = 0; i < num_fault_mutexes; i++)
2660
		mutex_init(&hugetlb_fault_mutex_table[i]);
2661 2662
	return 0;
}
2663
subsys_initcall(hugetlb_init);
2664 2665

/* Should be called on processing a hugepagesz=... option */
2666 2667 2668 2669 2670
void __init hugetlb_bad_size(void)
{
	parsed_valid_hugepagesz = false;
}

2671
void __init hugetlb_add_hstate(unsigned int order)
2672 2673
{
	struct hstate *h;
2674 2675
	unsigned long i;

2676
	if (size_to_hstate(PAGE_SIZE << order)) {
J
Joe Perches 已提交
2677
		pr_warn("hugepagesz= specified twice, ignoring\n");
2678 2679
		return;
	}
2680
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2681
	BUG_ON(order == 0);
2682
	h = &hstates[hugetlb_max_hstate++];
2683 2684
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2685 2686 2687 2688
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2689
	INIT_LIST_HEAD(&h->hugepage_activelist);
2690 2691
	h->next_nid_to_alloc = first_memory_node;
	h->next_nid_to_free = first_memory_node;
2692 2693
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2694

2695 2696 2697
	parsed_hstate = h;
}

2698
static int __init hugetlb_nrpages_setup(char *s)
2699 2700
{
	unsigned long *mhp;
2701
	static unsigned long *last_mhp;
2702

2703 2704 2705 2706 2707 2708
	if (!parsed_valid_hugepagesz) {
		pr_warn("hugepages = %s preceded by "
			"an unsupported hugepagesz, ignoring\n", s);
		parsed_valid_hugepagesz = true;
		return 1;
	}
2709
	/*
2710
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2711 2712
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2713
	else if (!hugetlb_max_hstate)
2714 2715 2716 2717
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2718
	if (mhp == last_mhp) {
J
Joe Perches 已提交
2719
		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2720 2721 2722
		return 1;
	}

2723 2724 2725
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2726 2727 2728 2729 2730
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2731
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2732 2733 2734 2735
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2736 2737
	return 1;
}
2738 2739 2740 2741 2742 2743 2744 2745
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2746

2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2759 2760 2761
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2762
{
2763
	struct hstate *h = &default_hstate;
2764
	unsigned long tmp = h->max_huge_pages;
2765
	int ret;
2766

2767
	if (!hugepages_supported())
2768
		return -EOPNOTSUPP;
2769

2770 2771
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2772 2773 2774
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2775

2776 2777 2778
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
2779 2780
out:
	return ret;
L
Linus Torvalds 已提交
2781
}
2782

2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2800
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2801
			void __user *buffer,
2802 2803
			size_t *length, loff_t *ppos)
{
2804
	struct hstate *h = &default_hstate;
2805
	unsigned long tmp;
2806
	int ret;
2807

2808
	if (!hugepages_supported())
2809
		return -EOPNOTSUPP;
2810

2811
	tmp = h->nr_overcommit_huge_pages;
2812

2813
	if (write && hstate_is_gigantic(h))
2814 2815
		return -EINVAL;

2816 2817
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2818 2819 2820
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2821 2822 2823 2824 2825 2826

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2827 2828
out:
	return ret;
2829 2830
}

L
Linus Torvalds 已提交
2831 2832
#endif /* CONFIG_SYSCTL */

2833
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2834
{
2835
	struct hstate *h = &default_hstate;
2836 2837
	if (!hugepages_supported())
		return;
2838
	seq_printf(m,
2839 2840 2841 2842 2843
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2844 2845 2846 2847 2848
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2849 2850 2851 2852
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2853
	struct hstate *h = &default_hstate;
2854 2855
	if (!hugepages_supported())
		return 0;
L
Linus Torvalds 已提交
2856 2857
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2858 2859
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2860 2861 2862
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2863 2864
}

2865 2866 2867 2868 2869
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

2870 2871 2872
	if (!hugepages_supported())
		return;

2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

2883 2884 2885 2886 2887 2888
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2889 2890 2891
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2892 2893 2894 2895 2896 2897
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2898 2899
}

2900
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2923
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2924 2925
			goto out;

2926 2927
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2928 2929 2930 2931 2932 2933
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2934
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2935 2936 2937 2938 2939 2940

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2941 2942
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
2943
	struct resv_map *resv = vma_resv_map(vma);
2944 2945 2946 2947 2948

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2949
	 * has a reference to the reservation map it cannot disappear until
2950 2951 2952
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
2953
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2954
		kref_get(&resv->refs);
2955 2956
}

2957 2958
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2959
	struct hstate *h = hstate_vma(vma);
2960
	struct resv_map *resv = vma_resv_map(vma);
2961
	struct hugepage_subpool *spool = subpool_vma(vma);
2962
	unsigned long reserve, start, end;
2963
	long gbl_reserve;
2964

2965 2966
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
2967

2968 2969
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
2970

2971
	reserve = (end - start) - region_count(resv, start, end);
2972

2973 2974 2975
	kref_put(&resv->refs, resv_map_release);

	if (reserve) {
2976 2977 2978 2979 2980 2981
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
2982
	}
2983 2984
}

L
Linus Torvalds 已提交
2985 2986 2987 2988 2989 2990
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2991
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2992 2993
{
	BUG();
N
Nick Piggin 已提交
2994
	return 0;
L
Linus Torvalds 已提交
2995 2996
}

2997
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2998
	.fault = hugetlb_vm_op_fault,
2999
	.open = hugetlb_vm_op_open,
3000
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
3001 3002
};

3003 3004
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
3005 3006 3007
{
	pte_t entry;

3008
	if (writable) {
3009 3010
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
3011
	} else {
3012 3013
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
3014 3015 3016
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
3017
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
3018 3019 3020 3021

	return entry;
}

3022 3023 3024 3025 3026
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

3027
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3028
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3029
		update_mmu_cache(vma, address, ptep);
3030 3031
}

3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_migration_entry(swp))
		return 1;
	else
		return 0;
}

static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
		return 1;
	else
		return 0;
}
3057

D
David Gibson 已提交
3058 3059 3060 3061 3062
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
3063
	unsigned long addr;
3064
	int cow;
3065 3066
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3067 3068 3069
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	int ret = 0;
3070 3071

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
3072

3073 3074 3075 3076 3077
	mmun_start = vma->vm_start;
	mmun_end = vma->vm_end;
	if (cow)
		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);

3078
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3079
		spinlock_t *src_ptl, *dst_ptl;
H
Hugh Dickins 已提交
3080 3081 3082
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
3083
		dst_pte = huge_pte_alloc(dst, addr, sz);
3084 3085 3086 3087
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
3088 3089 3090 3091 3092

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

3093 3094 3095
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
		entry = huge_ptep_get(src_pte);
		if (huge_pte_none(entry)) { /* skip none entry */
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
				set_huge_pte_at(src, addr, src_pte, entry);
			}
			set_huge_pte_at(dst, addr, dst_pte, entry);
		} else {
3114
			if (cow) {
3115
				huge_ptep_set_wrprotect(src, addr, src_pte);
3116 3117 3118
				mmu_notifier_invalidate_range(src, mmun_start,
								   mmun_end);
			}
3119
			entry = huge_ptep_get(src_pte);
3120 3121
			ptepage = pte_page(entry);
			get_page(ptepage);
3122
			page_dup_rmap(ptepage, true);
3123
			set_huge_pte_at(dst, addr, dst_pte, entry);
3124
			hugetlb_count_add(pages_per_huge_page(h), dst);
3125
		}
3126 3127
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
3128 3129
	}

3130 3131 3132 3133
	if (cow)
		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);

	return ret;
D
David Gibson 已提交
3134 3135
}

3136 3137 3138
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
3139
{
3140
	int force_flush = 0;
D
David Gibson 已提交
3141 3142
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
3143
	pte_t *ptep;
D
David Gibson 已提交
3144
	pte_t pte;
3145
	spinlock_t *ptl;
D
David Gibson 已提交
3146
	struct page *page;
3147 3148
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3149 3150
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3151

D
David Gibson 已提交
3152
	WARN_ON(!is_vm_hugetlb_page(vma));
3153 3154
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
3155

3156
	tlb_start_vma(tlb, vma);
3157
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3158
	address = start;
3159
again:
3160
	for (; address < end; address += sz) {
3161
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
3162
		if (!ptep)
3163 3164
			continue;

3165
		ptl = huge_pte_lock(h, mm, ptep);
3166
		if (huge_pmd_unshare(mm, &address, ptep))
3167
			goto unlock;
3168

3169 3170
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
3171
			goto unlock;
3172 3173

		/*
3174 3175
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
3176
		 */
3177
		if (unlikely(!pte_present(pte))) {
3178
			huge_pte_clear(mm, address, ptep);
3179
			goto unlock;
3180
		}
3181 3182

		page = pte_page(pte);
3183 3184 3185 3186 3187 3188 3189
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
3190
				goto unlock;
3191 3192 3193 3194 3195 3196 3197 3198 3199

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

3200
		pte = huge_ptep_get_and_clear(mm, address, ptep);
3201
		tlb_remove_tlb_entry(tlb, ptep, address);
3202
		if (huge_pte_dirty(pte))
3203
			set_page_dirty(page);
3204

3205
		hugetlb_count_sub(pages_per_huge_page(h), mm);
3206
		page_remove_rmap(page, true);
3207
		force_flush = !__tlb_remove_page(tlb, page);
3208
		if (force_flush) {
3209
			address += sz;
3210
			spin_unlock(ptl);
3211
			break;
3212
		}
3213
		/* Bail out after unmapping reference page if supplied */
3214 3215
		if (ref_page) {
			spin_unlock(ptl);
3216
			break;
3217 3218 3219
		}
unlock:
		spin_unlock(ptl);
D
David Gibson 已提交
3220
	}
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
3231
	}
3232
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3233
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
3234
}
D
David Gibson 已提交
3235

3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
3248
	 * is to clear it before releasing the i_mmap_rwsem. This works
3249
	 * because in the context this is called, the VMA is about to be
3250
	 * destroyed and the i_mmap_rwsem is held.
3251 3252 3253 3254
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

3255
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3256
			  unsigned long end, struct page *ref_page)
3257
{
3258 3259 3260 3261 3262
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

3263
	tlb_gather_mmu(&tlb, mm, start, end);
3264 3265
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
3266 3267
}

3268 3269 3270 3271 3272 3273
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
3274 3275
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
3276
{
3277
	struct hstate *h = hstate_vma(vma);
3278 3279 3280 3281 3282 3283 3284 3285
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
3286
	address = address & huge_page_mask(h);
3287 3288
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
A
Al Viro 已提交
3289
	mapping = file_inode(vma->vm_file)->i_mapping;
3290

3291 3292 3293 3294 3295
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
3296
	i_mmap_lock_write(mapping);
3297
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3298 3299 3300 3301
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

3302 3303 3304 3305 3306 3307 3308 3309
		/*
		 * Shared VMAs have their own reserves and do not affect
		 * MAP_PRIVATE accounting but it is possible that a shared
		 * VMA is using the same page so check and skip such VMAs.
		 */
		if (iter_vma->vm_flags & VM_MAYSHARE)
			continue;

3310 3311 3312 3313 3314 3315 3316 3317
		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3318 3319
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
3320
	}
3321
	i_mmap_unlock_write(mapping);
3322 3323
}

3324 3325
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3326 3327 3328
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
3329
 */
3330
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3331
			unsigned long address, pte_t *ptep, pte_t pte,
3332
			struct page *pagecache_page, spinlock_t *ptl)
3333
{
3334
	struct hstate *h = hstate_vma(vma);
3335
	struct page *old_page, *new_page;
3336
	int ret = 0, outside_reserve = 0;
3337 3338
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
3339 3340 3341

	old_page = pte_page(pte);

3342
retry_avoidcopy:
3343 3344
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
3345 3346
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
		page_move_anon_rmap(old_page, vma, address);
3347
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
3348
		return 0;
3349 3350
	}

3351 3352 3353 3354 3355 3356 3357 3358 3359
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
3360
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3361 3362 3363
			old_page != pagecache_page)
		outside_reserve = 1;

3364
	get_page(old_page);
3365

3366 3367 3368 3369
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
3370
	spin_unlock(ptl);
3371
	new_page = alloc_huge_page(vma, address, outside_reserve);
3372

3373
	if (IS_ERR(new_page)) {
3374 3375 3376 3377 3378 3379 3380 3381
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
3382
			put_page(old_page);
3383
			BUG_ON(huge_pte_none(pte));
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
			unmap_ref_private(mm, vma, old_page, address);
			BUG_ON(huge_pte_none(pte));
			spin_lock(ptl);
			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
3396 3397
		}

3398 3399 3400
		ret = (PTR_ERR(new_page) == -ENOMEM) ?
			VM_FAULT_OOM : VM_FAULT_SIGBUS;
		goto out_release_old;
3401 3402
	}

3403 3404 3405 3406
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
3407
	if (unlikely(anon_vma_prepare(vma))) {
3408 3409
		ret = VM_FAULT_OOM;
		goto out_release_all;
3410
	}
3411

A
Andrea Arcangeli 已提交
3412 3413
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
3414
	__SetPageUptodate(new_page);
3415
	set_page_huge_active(new_page);
3416

3417 3418 3419
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3420

3421
	/*
3422
	 * Retake the page table lock to check for racing updates
3423 3424
	 * before the page tables are altered
	 */
3425
	spin_lock(ptl);
3426
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3427
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3428 3429
		ClearPagePrivate(new_page);

3430
		/* Break COW */
3431
		huge_ptep_clear_flush(vma, address, ptep);
3432
		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3433 3434
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
3435
		page_remove_rmap(old_page, true);
3436
		hugepage_add_new_anon_rmap(new_page, vma, address);
3437 3438 3439
		/* Make the old page be freed below */
		new_page = old_page;
	}
3440
	spin_unlock(ptl);
3441
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3442
out_release_all:
3443
	put_page(new_page);
3444
out_release_old:
3445
	put_page(old_page);
3446

3447 3448
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
3449 3450
}

3451
/* Return the pagecache page at a given address within a VMA */
3452 3453
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
3454 3455
{
	struct address_space *mapping;
3456
	pgoff_t idx;
3457 3458

	mapping = vma->vm_file->f_mapping;
3459
	idx = vma_hugecache_offset(h, vma, address);
3460 3461 3462 3463

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
3464 3465 3466 3467 3468
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
			   pgoff_t idx)
{
	struct inode *inode = mapping->host;
	struct hstate *h = hstate_inode(inode);
	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);

	if (err)
		return err;
	ClearPagePrivate(page);

	spin_lock(&inode->i_lock);
	inode->i_blocks += blocks_per_huge_page(h);
	spin_unlock(&inode->i_lock);
	return 0;
}

3501
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3502 3503
			   struct address_space *mapping, pgoff_t idx,
			   unsigned long address, pte_t *ptep, unsigned int flags)
3504
{
3505
	struct hstate *h = hstate_vma(vma);
3506
	int ret = VM_FAULT_SIGBUS;
3507
	int anon_rmap = 0;
A
Adam Litke 已提交
3508 3509
	unsigned long size;
	struct page *page;
3510
	pte_t new_pte;
3511
	spinlock_t *ptl;
A
Adam Litke 已提交
3512

3513 3514 3515
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
3516
	 * COW. Warn that such a situation has occurred as it may not be obvious
3517 3518
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3519
		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3520
			   current->pid);
3521 3522 3523
		return ret;
	}

A
Adam Litke 已提交
3524 3525 3526 3527
	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
3528 3529 3530
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
3531
		size = i_size_read(mapping->host) >> huge_page_shift(h);
3532 3533
		if (idx >= size)
			goto out;
3534
		page = alloc_huge_page(vma, address, 0);
3535
		if (IS_ERR(page)) {
3536 3537 3538 3539 3540
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
3541 3542
			goto out;
		}
A
Andrea Arcangeli 已提交
3543
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
3544
		__SetPageUptodate(page);
3545
		set_page_huge_active(page);
3546

3547
		if (vma->vm_flags & VM_MAYSHARE) {
3548
			int err = huge_add_to_page_cache(page, mapping, idx);
3549 3550 3551 3552 3553 3554
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
3555
		} else {
3556
			lock_page(page);
3557 3558 3559 3560
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
3561
			anon_rmap = 1;
3562
		}
3563
	} else {
3564 3565 3566 3567 3568 3569
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
3570
			ret = VM_FAULT_HWPOISON |
3571
				VM_FAULT_SET_HINDEX(hstate_index(h));
3572 3573
			goto backout_unlocked;
		}
3574
	}
3575

3576 3577 3578 3579 3580 3581
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
3582
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3583 3584 3585 3586
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
3587
		/* Just decrements count, does not deallocate */
3588
		vma_end_reservation(h, vma, address);
3589
	}
3590

3591 3592
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
3593
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
3594 3595 3596
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
3597
	ret = 0;
3598
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
3599 3600
		goto backout;

3601 3602
	if (anon_rmap) {
		ClearPagePrivate(page);
3603
		hugepage_add_new_anon_rmap(page, vma, address);
3604
	} else
3605
		page_dup_rmap(page, true);
3606 3607 3608 3609
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

3610
	hugetlb_count_add(pages_per_huge_page(h), mm);
3611
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3612
		/* Optimization, do the COW without a second fault */
3613
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3614 3615
	}

3616
	spin_unlock(ptl);
A
Adam Litke 已提交
3617 3618
	unlock_page(page);
out:
3619
	return ret;
A
Adam Litke 已提交
3620 3621

backout:
3622
	spin_unlock(ptl);
3623
backout_unlocked:
A
Adam Litke 已提交
3624 3625 3626
	unlock_page(page);
	put_page(page);
	goto out;
3627 3628
}

3629
#ifdef CONFIG_SMP
3630
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	unsigned long key[2];
	u32 hash;

	if (vma->vm_flags & VM_SHARED) {
		key[0] = (unsigned long) mapping;
		key[1] = idx;
	} else {
		key[0] = (unsigned long) mm;
		key[1] = address >> huge_page_shift(h);
	}

	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
3655
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3656 3657 3658 3659 3660 3661 3662 3663
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	return 0;
}
#endif

3664
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3665
			unsigned long address, unsigned int flags)
3666
{
3667
	pte_t *ptep, entry;
3668
	spinlock_t *ptl;
3669
	int ret;
3670 3671
	u32 hash;
	pgoff_t idx;
3672
	struct page *page = NULL;
3673
	struct page *pagecache_page = NULL;
3674
	struct hstate *h = hstate_vma(vma);
3675
	struct address_space *mapping;
3676
	int need_wait_lock = 0;
3677

3678 3679
	address &= huge_page_mask(h);

3680 3681 3682
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
3683
		if (unlikely(is_hugetlb_entry_migration(entry))) {
3684
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
3685 3686
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3687
			return VM_FAULT_HWPOISON_LARGE |
3688
				VM_FAULT_SET_HINDEX(hstate_index(h));
3689 3690 3691 3692
	} else {
		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
		if (!ptep)
			return VM_FAULT_OOM;
3693 3694
	}

3695 3696 3697
	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

3698 3699 3700 3701 3702
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
3703 3704
	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3705

3706 3707
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
3708
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3709
		goto out_mutex;
3710
	}
3711

N
Nick Piggin 已提交
3712
	ret = 0;
3713

3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
	 * handle it.
	 */
	if (!pte_present(entry))
		goto out_mutex;

3724 3725 3726 3727 3728 3729 3730 3731
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
3732
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3733 3734
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
3735
			goto out_mutex;
3736
		}
3737
		/* Just decrements count, does not deallocate */
3738
		vma_end_reservation(h, vma, address);
3739

3740
		if (!(vma->vm_flags & VM_MAYSHARE))
3741 3742 3743 3744
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

3745 3746 3747 3748 3749 3750
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

3751 3752 3753 3754 3755 3756 3757
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
3758 3759 3760 3761
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
3762

3763
	get_page(page);
3764

3765
	if (flags & FAULT_FLAG_WRITE) {
3766
		if (!huge_pte_write(entry)) {
3767
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3768
					pagecache_page, ptl);
3769
			goto out_put_page;
3770
		}
3771
		entry = huge_pte_mkdirty(entry);
3772 3773
	}
	entry = pte_mkyoung(entry);
3774 3775
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
3776
		update_mmu_cache(vma, address, ptep);
3777 3778 3779 3780
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
3781 3782
out_ptl:
	spin_unlock(ptl);
3783 3784 3785 3786 3787

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
3788
out_mutex:
3789
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3790 3791 3792 3793 3794 3795 3796 3797 3798
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
3799
	return ret;
3800 3801
}

3802 3803 3804 3805
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
3806
{
3807 3808
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
3809
	unsigned long remainder = *nr_pages;
3810
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
3811 3812

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
3813
		pte_t *pte;
3814
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
3815
		int absent;
A
Adam Litke 已提交
3816
		struct page *page;
D
David Gibson 已提交
3817

3818 3819 3820 3821 3822 3823 3824 3825 3826
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
		if (unlikely(fatal_signal_pending(current))) {
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
3827 3828
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
3829
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
3830
		 * first, for the page indexing below to work.
3831 3832
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
3833
		 */
3834
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3835 3836
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
3837 3838 3839 3840
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
3841 3842 3843 3844
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
3845
		 */
H
Hugh Dickins 已提交
3846 3847
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3848 3849
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3850 3851 3852
			remainder = 0;
			break;
		}
D
David Gibson 已提交
3853

3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3865 3866
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
3867
			int ret;
D
David Gibson 已提交
3868

3869 3870
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3871 3872
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3873
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
3874
				continue;
D
David Gibson 已提交
3875

A
Adam Litke 已提交
3876 3877 3878 3879
			remainder = 0;
			break;
		}

3880
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3881
		page = pte_page(huge_ptep_get(pte));
3882
same_page:
3883
		if (pages) {
H
Hugh Dickins 已提交
3884
			pages[i] = mem_map_offset(page, pfn_offset);
3885
			get_page(pages[i]);
3886
		}
D
David Gibson 已提交
3887 3888 3889 3890 3891

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
3892
		++pfn_offset;
D
David Gibson 已提交
3893 3894
		--remainder;
		++i;
3895
		if (vaddr < vma->vm_end && remainder &&
3896
				pfn_offset < pages_per_huge_page(h)) {
3897 3898 3899 3900 3901 3902
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
3903
		spin_unlock(ptl);
D
David Gibson 已提交
3904
	}
3905
	*nr_pages = remainder;
D
David Gibson 已提交
3906 3907
	*position = vaddr;

H
Hugh Dickins 已提交
3908
	return i ? i : -EFAULT;
D
David Gibson 已提交
3909
}
3910

3911
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3912 3913 3914 3915 3916 3917
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3918
	struct hstate *h = hstate_vma(vma);
3919
	unsigned long pages = 0;
3920 3921 3922 3923

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3924
	mmu_notifier_invalidate_range_start(mm, start, end);
3925
	i_mmap_lock_write(vma->vm_file->f_mapping);
3926
	for (; address < end; address += huge_page_size(h)) {
3927
		spinlock_t *ptl;
3928 3929 3930
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3931
		ptl = huge_pte_lock(h, mm, ptep);
3932 3933
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3934
			spin_unlock(ptl);
3935
			continue;
3936
		}
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
				set_huge_pte_at(mm, address, ptep, newpte);
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
3957
			pte = huge_ptep_get_and_clear(mm, address, ptep);
3958
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3959
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3960
			set_huge_pte_at(mm, address, ptep, pte);
3961
			pages++;
3962
		}
3963
		spin_unlock(ptl);
3964
	}
3965
	/*
3966
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3967
	 * may have cleared our pud entry and done put_page on the page table:
3968
	 * once we release i_mmap_rwsem, another task can do the final put_page
3969 3970
	 * and that page table be reused and filled with junk.
	 */
3971
	flush_tlb_range(vma, start, end);
3972
	mmu_notifier_invalidate_range(mm, start, end);
3973
	i_mmap_unlock_write(vma->vm_file->f_mapping);
3974
	mmu_notifier_invalidate_range_end(mm, start, end);
3975 3976

	return pages << h->order;
3977 3978
}

3979 3980
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3981
					struct vm_area_struct *vma,
3982
					vm_flags_t vm_flags)
3983
{
3984
	long ret, chg;
3985
	struct hstate *h = hstate_inode(inode);
3986
	struct hugepage_subpool *spool = subpool_inode(inode);
3987
	struct resv_map *resv_map;
3988
	long gbl_reserve;
3989

3990 3991 3992
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3993
	 * without using reserves
3994
	 */
3995
	if (vm_flags & VM_NORESERVE)
3996 3997
		return 0;

3998 3999 4000 4001 4002 4003
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
4004
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4005
		resv_map = inode_resv_map(inode);
4006

4007
		chg = region_chg(resv_map, from, to);
4008 4009 4010

	} else {
		resv_map = resv_map_alloc();
4011 4012 4013
		if (!resv_map)
			return -ENOMEM;

4014
		chg = to - from;
4015

4016 4017 4018 4019
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

4020 4021 4022 4023
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
4024

4025 4026 4027 4028 4029 4030 4031
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
4032 4033 4034
		ret = -ENOSPC;
		goto out_err;
	}
4035 4036

	/*
4037
	 * Check enough hugepages are available for the reservation.
4038
	 * Hand the pages back to the subpool if there are not
4039
	 */
4040
	ret = hugetlb_acct_memory(h, gbl_reserve);
K
Ken Chen 已提交
4041
	if (ret < 0) {
4042 4043
		/* put back original number of pages, chg */
		(void)hugepage_subpool_put_pages(spool, chg);
4044
		goto out_err;
K
Ken Chen 已提交
4045
	}
4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
		long add = region_add(resv_map, from, to);

		if (unlikely(chg > add)) {
			/*
			 * pages in this range were added to the reserve
			 * map between region_chg and region_add.  This
			 * indicates a race with alloc_huge_page.  Adjust
			 * the subpool and reserve counts modified above
			 * based on the difference.
			 */
			long rsv_adjust;

			rsv_adjust = hugepage_subpool_put_pages(spool,
								chg - add);
			hugetlb_acct_memory(h, -rsv_adjust);
		}
	}
4076
	return 0;
4077
out_err:
4078 4079
	if (!vma || vma->vm_flags & VM_MAYSHARE)
		region_abort(resv_map, from, to);
J
Joonsoo Kim 已提交
4080 4081
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
4082
	return ret;
4083 4084
}

4085 4086
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
								long freed)
4087
{
4088
	struct hstate *h = hstate_inode(inode);
4089
	struct resv_map *resv_map = inode_resv_map(inode);
4090
	long chg = 0;
4091
	struct hugepage_subpool *spool = subpool_inode(inode);
4092
	long gbl_reserve;
K
Ken Chen 已提交
4093

4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
	if (resv_map) {
		chg = region_del(resv_map, start, end);
		/*
		 * region_del() can fail in the rare case where a region
		 * must be split and another region descriptor can not be
		 * allocated.  If end == LONG_MAX, it will not fail.
		 */
		if (chg < 0)
			return chg;
	}

K
Ken Chen 已提交
4105
	spin_lock(&inode->i_lock);
4106
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
4107 4108
	spin_unlock(&inode->i_lock);

4109 4110 4111 4112 4113 4114
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
4115 4116

	return 0;
4117
}
4118

4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
E
Eric B Munson 已提交
4130 4131
	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

4145
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4146 4147 4148 4149 4150 4151 4152 4153 4154
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
4155 4156
		return true;
	return false;
4157 4158 4159 4160 4161 4162 4163
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
4164
 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
4178
	spinlock_t *ptl;
4179 4180 4181 4182

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

4183
	i_mmap_lock_write(mapping);
4184 4185 4186 4187 4188 4189 4190 4191
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
4192
				mm_inc_nr_pmds(mm);
4193 4194 4195 4196 4197 4198 4199 4200 4201
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

4202 4203
	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
	spin_lock(ptl);
4204
	if (pud_none(*pud)) {
4205 4206
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4207
	} else {
4208
		put_page(virt_to_page(spte));
4209 4210
		mm_inc_nr_pmds(mm);
	}
4211
	spin_unlock(ptl);
4212 4213
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4214
	i_mmap_unlock_write(mapping);
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
4225
 * called with page table lock held.
4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
4241
	mm_dec_nr_pmds(mm);
4242 4243 4244
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
4245 4246 4247 4248 4249 4250
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
4251 4252 4253 4254 4255

int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	return 0;
}
4256
#define want_pmd_share()	(0)
4257 4258
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

struct page * __weak
4317
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4318
		pmd_t *pmd, int flags)
4319
{
4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331
	struct page *page = NULL;
	spinlock_t *ptl;
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
	if (pmd_present(*pmd)) {
4332
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
		if (flags & FOLL_GET)
			get_page(page);
	} else {
		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
4348 4349 4350
	return page;
}

4351
struct page * __weak
4352
follow_huge_pud(struct mm_struct *mm, unsigned long address,
4353
		pud_t *pud, int flags)
4354
{
4355 4356
	if (flags & FOLL_GET)
		return NULL;
4357

4358
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4359 4360
}

4361 4362
#ifdef CONFIG_MEMORY_FAILURE

4363 4364 4365 4366
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
4367
int dequeue_hwpoisoned_huge_page(struct page *hpage)
4368 4369 4370
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
4371
	int ret = -EBUSY;
4372 4373

	spin_lock(&hugetlb_lock);
4374 4375 4376 4377 4378
	/*
	 * Just checking !page_huge_active is not enough, because that could be
	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
	 */
	if (!page_huge_active(hpage) && !page_count(hpage)) {
4379 4380 4381 4382 4383 4384 4385
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
4386
		set_page_refcounted(hpage);
4387 4388 4389 4390
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
4391
	spin_unlock(&hugetlb_lock);
4392
	return ret;
4393
}
4394
#endif
4395 4396 4397

bool isolate_huge_page(struct page *page, struct list_head *list)
{
4398 4399
	bool ret = true;

4400
	VM_BUG_ON_PAGE(!PageHead(page), page);
4401
	spin_lock(&hugetlb_lock);
4402 4403 4404 4405 4406
	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
		ret = false;
		goto unlock;
	}
	clear_page_huge_active(page);
4407
	list_move_tail(&page->lru, list);
4408
unlock:
4409
	spin_unlock(&hugetlb_lock);
4410
	return ret;
4411 4412 4413 4414
}

void putback_active_hugepage(struct page *page)
{
4415
	VM_BUG_ON_PAGE(!PageHead(page), page);
4416
	spin_lock(&hugetlb_lock);
4417
	set_page_huge_active(page);
4418 4419 4420 4421
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}