1. 25 6月, 2015 4 次提交
    • M
      mm/hugetlb: compute/return the number of regions added by region_add() · cf3ad20b
      Mike Kravetz 提交于
      Modify region_add() to keep track of regions(pages) added to the reserve
      map and return this value.  The return value can be compared to the return
      value of region_chg() to determine if the map was modified between calls.
      
      Make vma_commit_reservation() also pass along the return value of
      region_add().  In the normal case, we want vma_commit_reservation to
      return the same value as the preceding call to vma_needs_reservation.
      Create a common __vma_reservation_common routine to help keep the special
      case return values in sync
      Signed-off-by: NMike Kravetz <mike.kravetz@oracle.com>
      Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Cc: Davidlohr Bueso <dave@stgolabs.net>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Luiz Capitulino <lcapitulino@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      cf3ad20b
    • M
      mm/hugetlb: document the reserve map/region tracking routines · 1dd308a7
      Mike Kravetz 提交于
      While working on hugetlbfs fallocate support, I noticed the following race
      in the existing code.  It is unlikely that this race is hit very often in
      the current code.  However, if more functionality to add and remove pages
      to hugetlbfs mappings (such as fallocate) is added the likelihood of
      hitting this race will increase.
      
      alloc_huge_page and hugetlb_reserve_pages use information from the reserve
      map to determine if there are enough available huge pages to complete the
      operation, as well as adjust global reserve and subpool usage counts.  The
      order of operations is as follows:
      
      - call region_chg() to determine the expected change based on reserve map
      - determine if enough resources are available for this operation
      - adjust global counts based on the expected change
      - call region_add() to update the reserve map
      
      The issue is that reserve map could change between the call to region_chg
      and region_add.  In this case, the counters which were adjusted based on
      the output of region_chg will not be correct.
      
      In order to hit this race today, there must be an existing shared hugetlb
      mmap created with the MAP_NORESERVE flag.  A page fault to allocate a huge
      page via this mapping must occur at the same another task is mapping the
      same region without the MAP_NORESERVE flag.
      
      The patch set does not prevent the race from happening.  Rather, it adds
      simple functionality to detect when the race has occurred.  If a race is
      detected, then the incorrect counts are adjusted.
      
      Review comments pointed out the need for documentation of the existing
      region/reserve map routines.  This patch set also adds documentation in
      this area.
      
      This patch (of 3):
      
      This is a documentation only patch and does not modify any code.
      Descriptions of the routines used for reserve map/region tracking are
      added.
      Signed-off-by: NMike Kravetz <mike.kravetz@oracle.com>
      Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Cc: Davidlohr Bueso <dave@stgolabs.net>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Luiz Capitulino <lcapitulino@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      1dd308a7
    • N
      mm/hugetlb: introduce minimum hugepage order · 641844f5
      Naoya Horiguchi 提交于
      Currently the initial value of order in dissolve_free_huge_page is 64 or
      32, which leads to the following warning in static checker:
      
        mm/hugetlb.c:1203 dissolve_free_huge_pages()
        warn: potential right shift more than type allows '9,18,64'
      
      This is a potential risk of infinite loop, because 1 << order (== 0) is used
      in for-loop like this:
      
        for (pfn =3D start_pfn; pfn < end_pfn; pfn +=3D 1 << order)
            ...
      
      So this patch fixes it by using global minimum_order calculated at boot time.
      
          text    data     bss     dec     hex filename
         28313     469   84236  113018   1b97a mm/hugetlb.o
         28256     473   84236  112965   1b945 mm/hugetlb.o (patched)
      
      Fixes: c8721bbb ("mm: memory-hotplug: enable memory hotplug to handle hugepage")
      Reported-by: NDan Carpenter <dan.carpenter@oracle.com>
      Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      641844f5
    • Z
      mm/hugetlb: reduce arch dependent code about huge_pmd_unshare · e81f2d22
      Zhang Zhen 提交于
      Currently we have many duplicates in definitions of huge_pmd_unshare.  In
      all architectures this function just returns 0 when
      CONFIG_ARCH_WANT_HUGE_PMD_SHARE is N.
      
      This patch puts the default implementation in mm/hugetlb.c and lets these
      architectures use the common code.
      Signed-off-by: NZhang Zhen <zhenzhang.zhang@huawei.com>
      Cc: Russell King <linux@arm.linux.org.uk>
      Cc: Catalin Marinas <catalin.marinas@arm.com>
      Cc: Tony Luck <tony.luck@intel.com>
      Cc: James Hogan <james.hogan@imgtec.com>
      Cc: Ralf Baechle <ralf@linux-mips.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
      Cc: Chris Metcalf <cmetcalf@ezchip.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: James Yang <James.Yang@freescale.com>
      Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      e81f2d22
  2. 16 4月, 2015 5 次提交
    • N
      mm: hugetlb: cleanup using paeg_huge_active() · 7e1f049e
      Naoya Horiguchi 提交于
      Now we have an easy access to hugepages' activeness, so existing helpers to
      get the information can be cleaned up.
      
      [akpm@linux-foundation.org: s/PageHugeActive/page_huge_active/]
      Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Cc: Hugh Dickins <hughd@google.com>
      Reviewed-by: NMichal Hocko <mhocko@suse.cz>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      7e1f049e
    • N
      mm: hugetlb: introduce page_huge_active · bcc54222
      Naoya Horiguchi 提交于
      We are not safe from calling isolate_huge_page() on a hugepage
      concurrently, which can make the victim hugepage in invalid state and
      results in BUG_ON().
      
      The root problem of this is that we don't have any information on struct
      page (so easily accessible) about hugepages' activeness.  Note that
      hugepages' activeness means just being linked to
      hstate->hugepage_activelist, which is not the same as normal pages'
      activeness represented by PageActive flag.
      
      Normal pages are isolated by isolate_lru_page() which prechecks PageLRU
      before isolation, so let's do similarly for hugetlb with a new
      paeg_huge_active().
      
      set/clear_page_huge_active() should be called within hugetlb_lock.  But
      hugetlb_cow() and hugetlb_no_page() don't do this, being justified because
      in these functions set_page_huge_active() is called right after the
      hugepage is allocated and no other thread tries to isolate it.
      
      [akpm@linux-foundation.org: s/PageHugeActive/page_huge_active/, make it return bool]
      [fengguang.wu@intel.com: set_page_huge_active() can be static]
      Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Cc: Hugh Dickins <hughd@google.com>
      Reviewed-by: NMichal Hocko <mhocko@suse.cz>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NFengguang Wu <fengguang.wu@intel.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      bcc54222
    • M
      hugetlbfs: accept subpool min_size mount option and setup accordingly · 7ca02d0a
      Mike Kravetz 提交于
      Make 'min_size=<value>' be an option when mounting a hugetlbfs.  This
      option takes the same value as the 'size' option.  min_size can be
      specified without specifying size.  If both are specified, min_size must
      be less that or equal to size else the mount will fail.  If min_size is
      specified, then at mount time an attempt is made to reserve min_size
      pages.  If the reservation fails, the mount fails.  At umount time, the
      reserved pages are released.
      Signed-off-by: NMike Kravetz <mike.kravetz@oracle.com>
      Cc: Davidlohr Bueso <dave@stgolabs.net>
      Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      7ca02d0a
    • M
      hugetlbfs: add minimum size accounting to subpools · 1c5ecae3
      Mike Kravetz 提交于
      The same routines that perform subpool maximum size accounting
      hugepage_subpool_get/put_pages() are modified to also perform minimum size
      accounting.  When a delta value is passed to these routines, calculate how
      global reservations must be adjusted to maintain the subpool minimum size.
       The routines now return this global reserve count adjustment.  This
      global reserve count adjustment is then passed to the global accounting
      routine hugetlb_acct_memory().
      Signed-off-by: NMike Kravetz <mike.kravetz@oracle.com>
      Cc: Davidlohr Bueso <dave@stgolabs.net>
      Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      1c5ecae3
    • M
      hugetlbfs: add minimum size tracking fields to subpool structure · c6a91820
      Mike Kravetz 提交于
      hugetlbfs allocates huge pages from the global pool as needed.  Even if
      the global pool contains a sufficient number pages for the filesystem size
      at mount time, those global pages could be grabbed for some other use.  As
      a result, filesystem huge page allocations may fail due to lack of pages.
      
      Applications such as a database want to use huge pages for performance
      reasons.  hugetlbfs filesystem semantics with ownership and modes work
      well to manage access to a pool of huge pages.  However, the application
      would like some reasonable assurance that allocations will not fail due to
      a lack of huge pages.  At application startup time, the application would
      like to configure itself to use a specific number of huge pages.  Before
      starting, the application can check to make sure that enough huge pages
      exist in the system global pools.  However, there are no guarantees that
      those pages will be available when needed by the application.  What the
      application wants is exclusive use of a subset of huge pages.
      
      Add a new hugetlbfs mount option 'min_size=<value>' to indicate that the
      specified number of pages will be available for use by the filesystem.  At
      mount time, this number of huge pages will be reserved for exclusive use
      of the filesystem.  If there is not a sufficient number of free pages, the
      mount will fail.  As pages are allocated to and freeed from the
      filesystem, the number of reserved pages is adjusted so that the specified
      minimum is maintained.
      
      This patch (of 4):
      
      Add a field to the subpool structure to indicate the minimimum number of
      huge pages to always be used by this subpool.  This minimum count includes
      allocated pages as well as reserved pages.  If the minimum number of pages
      for the subpool have not been allocated, pages are reserved up to this
      minimum.  An additional field (rsv_hpages) is used to track the number of
      pages reserved to meet this minimum size.  The hstate pointer in the
      subpool is convenient to have when reserving and unreserving the pages.
      Signed-off-by: NMike Kravetz <mike.kravetz@oracle.com>
      Cc: Davidlohr Bueso <dave@stgolabs.net>
      Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      c6a91820
  3. 15 4月, 2015 2 次提交
  4. 13 3月, 2015 1 次提交
  5. 12 2月, 2015 7 次提交
    • K
      mm: account pmd page tables to the process · dc6c9a35
      Kirill A. Shutemov 提交于
      Dave noticed that unprivileged process can allocate significant amount of
      memory -- >500 MiB on x86_64 -- and stay unnoticed by oom-killer and
      memory cgroup.  The trick is to allocate a lot of PMD page tables.  Linux
      kernel doesn't account PMD tables to the process, only PTE.
      
      The use-cases below use few tricks to allocate a lot of PMD page tables
      while keeping VmRSS and VmPTE low.  oom_score for the process will be 0.
      
      	#include <errno.h>
      	#include <stdio.h>
      	#include <stdlib.h>
      	#include <unistd.h>
      	#include <sys/mman.h>
      	#include <sys/prctl.h>
      
      	#define PUD_SIZE (1UL << 30)
      	#define PMD_SIZE (1UL << 21)
      
      	#define NR_PUD 130000
      
      	int main(void)
      	{
      		char *addr = NULL;
      		unsigned long i;
      
      		prctl(PR_SET_THP_DISABLE);
      		for (i = 0; i < NR_PUD ; i++) {
      			addr = mmap(addr + PUD_SIZE, PUD_SIZE, PROT_WRITE|PROT_READ,
      					MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
      			if (addr == MAP_FAILED) {
      				perror("mmap");
      				break;
      			}
      			*addr = 'x';
      			munmap(addr, PMD_SIZE);
      			mmap(addr, PMD_SIZE, PROT_WRITE|PROT_READ,
      					MAP_ANONYMOUS|MAP_PRIVATE|MAP_FIXED, -1, 0);
      			if (addr == MAP_FAILED)
      				perror("re-mmap"), exit(1);
      		}
      		printf("PID %d consumed %lu KiB in PMD page tables\n",
      				getpid(), i * 4096 >> 10);
      		return pause();
      	}
      
      The patch addresses the issue by account PMD tables to the process the
      same way we account PTE.
      
      The main place where PMD tables is accounted is __pmd_alloc() and
      free_pmd_range(). But there're few corner cases:
      
       - HugeTLB can share PMD page tables. The patch handles by accounting
         the table to all processes who share it.
      
       - x86 PAE pre-allocates few PMD tables on fork.
      
       - Architectures with FIRST_USER_ADDRESS > 0. We need to adjust sanity
         check on exit(2).
      
      Accounting only happens on configuration where PMD page table's level is
      present (PMD is not folded).  As with nr_ptes we use per-mm counter.  The
      counter value is used to calculate baseline for badness score by
      oom-killer.
      Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Reported-by: NDave Hansen <dave.hansen@linux.intel.com>
      Cc: Hugh Dickins <hughd@google.com>
      Reviewed-by: NCyrill Gorcunov <gorcunov@openvz.org>
      Cc: Pavel Emelyanov <xemul@openvz.org>
      Cc: David Rientjes <rientjes@google.com>
      Tested-by: NSedat Dilek <sedat.dilek@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      dc6c9a35
    • N
      mm/hugetlb: add migration entry check in __unmap_hugepage_range · 9fbc1f63
      Naoya Horiguchi 提交于
      If __unmap_hugepage_range() tries to unmap the address range over which
      hugepage migration is on the way, we get the wrong page because pte_page()
      doesn't work for migration entries.  This patch simply clears the pte for
      migration entries as we do for hwpoison entries.
      
      Fixes: 290408d4 ("hugetlb: hugepage migration core")
      Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: James Hogan <james.hogan@imgtec.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Luiz Capitulino <lcapitulino@redhat.com>
      Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
      Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
      Cc: Steve Capper <steve.capper@linaro.org>
      Cc: <stable@vger.kernel.org>	[2.6.36+]
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      9fbc1f63
    • N
      mm/hugetlb: add migration/hwpoisoned entry check in hugetlb_change_protection · a8bda28d
      Naoya Horiguchi 提交于
      There is a race condition between hugepage migration and
      change_protection(), where hugetlb_change_protection() doesn't care about
      migration entries and wrongly overwrites them.  That causes unexpected
      results like kernel crash.  HWPoison entries also can cause the same
      problem.
      
      This patch adds is_hugetlb_entry_(migration|hwpoisoned) check in this
      function to do proper actions.
      
      Fixes: 290408d4 ("hugetlb: hugepage migration core")
      Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: James Hogan <james.hogan@imgtec.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Luiz Capitulino <lcapitulino@redhat.com>
      Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
      Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
      Cc: Steve Capper <steve.capper@linaro.org>
      Cc: <stable@vger.kernel.org>	[2.6.36+]
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      a8bda28d
    • N
      mm/hugetlb: fix getting refcount 0 page in hugetlb_fault() · 0f792cf9
      Naoya Horiguchi 提交于
      When running the test which causes the race as shown in the previous patch,
      we can hit the BUG "get_page() on refcount 0 page" in hugetlb_fault().
      
      This race happens when pte turns into migration entry just after the first
      check of is_hugetlb_entry_migration() in hugetlb_fault() passed with false.
      To fix this, we need to check pte_present() again after huge_ptep_get().
      
      This patch also reorders taking ptl and doing pte_page(), because
      pte_page() should be done in ptl.  Due to this reordering, we need use
      trylock_page() in page != pagecache_page case to respect locking order.
      
      Fixes: 66aebce7 ("hugetlb: fix race condition in hugetlb_fault()")
      Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: James Hogan <james.hogan@imgtec.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Luiz Capitulino <lcapitulino@redhat.com>
      Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
      Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
      Cc: Steve Capper <steve.capper@linaro.org>
      Cc: <stable@vger.kernel.org>	[3.2+]
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      0f792cf9
    • N
      mm/hugetlb: take page table lock in follow_huge_pmd() · e66f17ff
      Naoya Horiguchi 提交于
      We have a race condition between move_pages() and freeing hugepages, where
      move_pages() calls follow_page(FOLL_GET) for hugepages internally and
      tries to get its refcount without preventing concurrent freeing.  This
      race crashes the kernel, so this patch fixes it by moving FOLL_GET code
      for hugepages into follow_huge_pmd() with taking the page table lock.
      
      This patch intentionally removes page==NULL check after pte_page.
      This is justified because pte_page() never returns NULL for any
      architectures or configurations.
      
      This patch changes the behavior of follow_huge_pmd() for tail pages and
      then tail pages can be pinned/returned.  So the caller must be changed to
      properly handle the returned tail pages.
      
      We could have a choice to add the similar locking to
      follow_huge_(addr|pud) for consistency, but it's not necessary because
      currently these functions don't support FOLL_GET flag, so let's leave it
      for future development.
      
      Here is the reproducer:
      
        $ cat movepages.c
        #include <stdio.h>
        #include <stdlib.h>
        #include <numaif.h>
      
        #define ADDR_INPUT      0x700000000000UL
        #define HPS             0x200000
        #define PS              0x1000
      
        int main(int argc, char *argv[]) {
                int i;
                int nr_hp = strtol(argv[1], NULL, 0);
                int nr_p  = nr_hp * HPS / PS;
                int ret;
                void **addrs;
                int *status;
                int *nodes;
                pid_t pid;
      
                pid = strtol(argv[2], NULL, 0);
                addrs  = malloc(sizeof(char *) * nr_p + 1);
                status = malloc(sizeof(char *) * nr_p + 1);
                nodes  = malloc(sizeof(char *) * nr_p + 1);
      
                while (1) {
                        for (i = 0; i < nr_p; i++) {
                                addrs[i] = (void *)ADDR_INPUT + i * PS;
                                nodes[i] = 1;
                                status[i] = 0;
                        }
                        ret = numa_move_pages(pid, nr_p, addrs, nodes, status,
                                              MPOL_MF_MOVE_ALL);
                        if (ret == -1)
                                err("move_pages");
      
                        for (i = 0; i < nr_p; i++) {
                                addrs[i] = (void *)ADDR_INPUT + i * PS;
                                nodes[i] = 0;
                                status[i] = 0;
                        }
                        ret = numa_move_pages(pid, nr_p, addrs, nodes, status,
                                              MPOL_MF_MOVE_ALL);
                        if (ret == -1)
                                err("move_pages");
                }
                return 0;
        }
      
        $ cat hugepage.c
        #include <stdio.h>
        #include <sys/mman.h>
        #include <string.h>
      
        #define ADDR_INPUT      0x700000000000UL
        #define HPS             0x200000
      
        int main(int argc, char *argv[]) {
                int nr_hp = strtol(argv[1], NULL, 0);
                char *p;
      
                while (1) {
                        p = mmap((void *)ADDR_INPUT, nr_hp * HPS, PROT_READ | PROT_WRITE,
                                 MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, -1, 0);
                        if (p != (void *)ADDR_INPUT) {
                                perror("mmap");
                                break;
                        }
                        memset(p, 0, nr_hp * HPS);
                        munmap(p, nr_hp * HPS);
                }
        }
      
        $ sysctl vm.nr_hugepages=40
        $ ./hugepage 10 &
        $ ./movepages 10 $(pgrep -f hugepage)
      
      Fixes: e632a938 ("mm: migrate: add hugepage migration code to move_pages()")
      Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Reported-by: NHugh Dickins <hughd@google.com>
      Cc: James Hogan <james.hogan@imgtec.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Luiz Capitulino <lcapitulino@redhat.com>
      Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
      Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
      Cc: Steve Capper <steve.capper@linaro.org>
      Cc: <stable@vger.kernel.org>	[3.12+]
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      e66f17ff
    • N
      mm/hugetlb: pmd_huge() returns true for non-present hugepage · cbef8478
      Naoya Horiguchi 提交于
      Migrating hugepages and hwpoisoned hugepages are considered as non-present
      hugepages, and they are referenced via migration entries and hwpoison
      entries in their page table slots.
      
      This behavior causes race condition because pmd_huge() doesn't tell
      non-huge pages from migrating/hwpoisoned hugepages.  follow_page_mask() is
      one example where the kernel would call follow_page_pte() for such
      hugepage while this function is supposed to handle only normal pages.
      
      To avoid this, this patch makes pmd_huge() return true when pmd_none() is
      true *and* pmd_present() is false.  We don't have to worry about mixing up
      non-present pmd entry with normal pmd (pointing to leaf level pte entry)
      because pmd_present() is true in normal pmd.
      
      The same race condition could happen in (x86-specific) gup_pmd_range(),
      where this patch simply adds pmd_present() check instead of pmd_huge().
      This is because gup_pmd_range() is fast path.  If we have non-present
      hugepage in this function, we will go into gup_huge_pmd(), then return 0
      at flag mask check, and finally fall back to the slow path.
      
      Fixes: 290408d4 ("hugetlb: hugepage migration core")
      Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: James Hogan <james.hogan@imgtec.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Luiz Capitulino <lcapitulino@redhat.com>
      Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
      Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
      Cc: Steve Capper <steve.capper@linaro.org>
      Cc: <stable@vger.kernel.org>	[2.6.36+]
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      cbef8478
    • N
      mm/hugetlb: reduce arch dependent code around follow_huge_* · 61f77eda
      Naoya Horiguchi 提交于
      Currently we have many duplicates in definitions around
      follow_huge_addr(), follow_huge_pmd(), and follow_huge_pud(), so this
      patch tries to remove the m.  The basic idea is to put the default
      implementation for these functions in mm/hugetlb.c as weak symbols
      (regardless of CONFIG_ARCH_WANT_GENERAL_HUGETL B), and to implement
      arch-specific code only when the arch needs it.
      
      For follow_huge_addr(), only powerpc and ia64 have their own
      implementation, and in all other architectures this function just returns
      ERR_PTR(-EINVAL).  So this patch sets returning ERR_PTR(-EINVAL) as
      default.
      
      As for follow_huge_(pmd|pud)(), if (pmd|pud)_huge() is implemented to
      always return 0 in your architecture (like in ia64 or sparc,) it's never
      called (the callsite is optimized away) no matter how implemented it is.
      So in such architectures, we don't need arch-specific implementation.
      
      In some architecture (like mips, s390 and tile,) their current
      arch-specific follow_huge_(pmd|pud)() are effectively identical with the
      common code, so this patch lets these architecture use the common code.
      
      One exception is metag, where pmd_huge() could return non-zero but it
      expects follow_huge_pmd() to always return NULL.  This means that we need
      arch-specific implementation which returns NULL.  This behavior looks
      strange to me (because non-zero pmd_huge() implies that the architecture
      supports PMD-based hugepage, so follow_huge_pmd() can/should return some
      relevant value,) but that's beyond this cleanup patch, so let's keep it.
      
      Justification of non-trivial changes:
      - in s390, follow_huge_pmd() checks !MACHINE_HAS_HPAGE at first, and this
        patch removes the check. This is OK because we can assume MACHINE_HAS_HPAGE
        is true when follow_huge_pmd() can be called (note that pmd_huge() has
        the same check and always returns 0 for !MACHINE_HAS_HPAGE.)
      - in s390 and mips, we use HPAGE_MASK instead of PMD_MASK as done in common
        code. This patch forces these archs use PMD_MASK, but it's OK because
        they are identical in both archs.
        In s390, both of HPAGE_SHIFT and PMD_SHIFT are 20.
        In mips, HPAGE_SHIFT is defined as (PAGE_SHIFT + PAGE_SHIFT - 3) and
        PMD_SHIFT is define as (PAGE_SHIFT + PAGE_SHIFT + PTE_ORDER - 3), but
        PTE_ORDER is always 0, so these are identical.
      Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Acked-by: NHugh Dickins <hughd@google.com>
      Cc: James Hogan <james.hogan@imgtec.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Luiz Capitulino <lcapitulino@redhat.com>
      Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
      Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
      Cc: Steve Capper <steve.capper@linaro.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      61f77eda
  6. 11 2月, 2015 1 次提交
  7. 14 12月, 2014 4 次提交
  8. 11 12月, 2014 1 次提交
  9. 27 10月, 2014 1 次提交
    • V
      cpuset: simplify cpuset_node_allowed API · 344736f2
      Vladimir Davydov 提交于
      Current cpuset API for checking if a zone/node is allowed to allocate
      from looks rather awkward. We have hardwall and softwall versions of
      cpuset_node_allowed with the softwall version doing literally the same
      as the hardwall version if __GFP_HARDWALL is passed to it in gfp flags.
      If it isn't, the softwall version may check the given node against the
      enclosing hardwall cpuset, which it needs to take the callback lock to
      do.
      
      Such a distinction was introduced by commit 02a0e53d ("cpuset:
      rework cpuset_zone_allowed api"). Before, we had the only version with
      the __GFP_HARDWALL flag determining its behavior. The purpose of the
      commit was to avoid sleep-in-atomic bugs when someone would mistakenly
      call the function without the __GFP_HARDWALL flag for an atomic
      allocation. The suffixes introduced were intended to make the callers
      think before using the function.
      
      However, since the callback lock was converted from mutex to spinlock by
      the previous patch, the softwall check function cannot sleep, and these
      precautions are no longer necessary.
      
      So let's simplify the API back to the single check.
      Suggested-by: NDavid Rientjes <rientjes@google.com>
      Signed-off-by: NVladimir Davydov <vdavydov@parallels.com>
      Acked-by: NChristoph Lameter <cl@linux.com>
      Acked-by: NZefan Li <lizefan@huawei.com>
      Signed-off-by: NTejun Heo <tj@kernel.org>
      344736f2
  10. 10 10月, 2014 1 次提交
  11. 07 8月, 2014 5 次提交
  12. 31 7月, 2014 1 次提交
    • A
      kexec: export free_huge_page to VMCOREINFO · 8f1d26d0
      Atsushi Kumagai 提交于
      PG_head_mask was added into VMCOREINFO to filter huge pages in b3acc56b
      ("kexec: save PG_head_mask in VMCOREINFO"), but makedumpfile still need
      another symbol to filter *hugetlbfs* pages.
      
      If a user hope to filter user pages, makedumpfile tries to exclude them by
      checking the condition whether the page is anonymous, but hugetlbfs pages
      aren't anonymous while they also be user pages.
      
      We know it's possible to detect them in the same way as PageHuge(),
      so we need the start address of free_huge_page():
      
          int PageHuge(struct page *page)
          {
                  if (!PageCompound(page))
                          return 0;
      
                  page = compound_head(page);
                  return get_compound_page_dtor(page) == free_huge_page;
          }
      
      For that reason, this patch changes free_huge_page() into public
      to export it to VMCOREINFO.
      Signed-off-by: NAtsushi Kumagai <kumagai-atsushi@mxc.nes.nec.co.jp>
      Acked-by: NBaoquan He <bhe@redhat.com>
      Cc: Vivek Goyal <vgoyal@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      8f1d26d0
  13. 24 7月, 2014 1 次提交
  14. 24 6月, 2014 1 次提交
  15. 05 6月, 2014 5 次提交