hugetlb.c 61.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
10
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
11 12
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
13
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
14
#include <linux/nodemask.h>
D
David Gibson 已提交
15
#include <linux/pagemap.h>
16
#include <linux/mempolicy.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/bootmem.h>
20
#include <linux/sysfs.h>
21

D
David Gibson 已提交
22 23
#include <asm/page.h>
#include <asm/pgtable.h>
24
#include <asm/io.h>
D
David Gibson 已提交
25 26

#include <linux/hugetlb.h>
27
#include "internal.h"
L
Linus Torvalds 已提交
28 29

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
30 31
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
32

33 34 35 36
static int max_hstate;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

37 38
__initdata LIST_HEAD(huge_boot_pages);

39 40 41
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
42
static unsigned long __initdata default_hstate_size;
43 44 45

#define for_each_hstate(h) \
	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
46

47 48 49 50
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
51

52 53 54
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
55 56 57 58 59 60 61 62 63 64
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
 * 	down_write(&mm->mmap_sem);
 * or
 * 	down_read(&mm->mmap_sem);
 * 	mutex_lock(&hugetlb_instantiation_mutex);
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

		/* We overlap with this area, if it extends futher than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
		int seg_from;
		int seg_to;

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

211 212 213 214
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
215 216
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
217
{
218 219
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
220 221
}

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

	return 1UL << (hstate->order + PAGE_SHIFT);
}

238 239 240 241 242 243 244 245 246 247 248 249 250
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

251 252 253 254 255 256 257
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
258
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
259

260 261 262 263 264 265 266 267 268
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
269 270 271 272 273 274 275 276 277
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
278
 */
279 280 281 282 283 284 285 286 287 288 289
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

290 291 292 293 294
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

295
static struct resv_map *resv_map_alloc(void)
296 297 298 299 300 301 302 303 304 305 306
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

307
static void resv_map_release(struct kref *ref)
308 309 310 311 312 313 314 315 316
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
317 318 319
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	if (!(vma->vm_flags & VM_SHARED))
320 321
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
322
	return NULL;
323 324
}

325
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
326 327 328 329
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	VM_BUG_ON(vma->vm_flags & VM_SHARED);

330 331
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
332 333 334 335 336
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
337 338 339
	VM_BUG_ON(vma->vm_flags & VM_SHARED);

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
340 341 342 343 344
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
345 346

	return (get_vma_private_data(vma) & flag) != 0;
347 348 349
}

/* Decrement the reserved pages in the hugepage pool by one */
350 351
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
352
{
353 354 355
	if (vma->vm_flags & VM_NORESERVE)
		return;

356 357
	if (vma->vm_flags & VM_SHARED) {
		/* Shared mappings always use reserves */
358
		h->resv_huge_pages--;
359
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
360 361 362 363
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
364
		h->resv_huge_pages--;
365 366 367
	}
}

368
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
369 370 371 372 373 374 375 376
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	if (!(vma->vm_flags & VM_SHARED))
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
377
static int vma_has_reserves(struct vm_area_struct *vma)
378 379
{
	if (vma->vm_flags & VM_SHARED)
380 381 382 383
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
384 385
}

386 387 388 389 390 391 392 393 394 395 396 397
static void clear_gigantic_page(struct page *page,
			unsigned long addr, unsigned long sz)
{
	int i;
	struct page *p = page;

	might_sleep();
	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
		cond_resched();
		clear_user_highpage(p, addr + i * PAGE_SIZE);
	}
}
398 399
static void clear_huge_page(struct page *page,
			unsigned long addr, unsigned long sz)
400 401 402
{
	int i;

H
Hannes Eder 已提交
403 404 405 406
	if (unlikely(sz > MAX_ORDER_NR_PAGES)) {
		clear_gigantic_page(page, addr, sz);
		return;
	}
407

408
	might_sleep();
409
	for (i = 0; i < sz/PAGE_SIZE; i++) {
410
		cond_resched();
411
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
412 413 414
	}
}

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
static void copy_gigantic_page(struct page *dst, struct page *src,
			   unsigned long addr, struct vm_area_struct *vma)
{
	int i;
	struct hstate *h = hstate_vma(vma);
	struct page *dst_base = dst;
	struct page *src_base = src;
	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}
432
static void copy_huge_page(struct page *dst, struct page *src,
433
			   unsigned long addr, struct vm_area_struct *vma)
434 435
{
	int i;
436
	struct hstate *h = hstate_vma(vma);
437

H
Hannes Eder 已提交
438 439 440 441
	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src, addr, vma);
		return;
	}
442

443
	might_sleep();
444
	for (i = 0; i < pages_per_huge_page(h); i++) {
445
		cond_resched();
446
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
447 448 449
	}
}

450
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
451 452
{
	int nid = page_to_nid(page);
453 454 455
	list_add(&page->lru, &h->hugepage_freelists[nid]);
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
456 457
}

458
static struct page *dequeue_huge_page(struct hstate *h)
459 460 461 462 463
{
	int nid;
	struct page *page = NULL;

	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
464 465
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
466 467
					  struct page, lru);
			list_del(&page->lru);
468 469
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
470 471 472 473 474 475
			break;
		}
	}
	return page;
}

476 477
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
478
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
479
{
480
	int nid;
L
Linus Torvalds 已提交
481
	struct page *page = NULL;
482
	struct mempolicy *mpol;
483
	nodemask_t *nodemask;
484
	struct zonelist *zonelist = huge_zonelist(vma, address,
485
					htlb_alloc_mask, &mpol, &nodemask);
486 487
	struct zone *zone;
	struct zoneref *z;
L
Linus Torvalds 已提交
488

489 490 491 492 493
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
494
	if (!vma_has_reserves(vma) &&
495
			h->free_huge_pages - h->resv_huge_pages == 0)
496 497
		return NULL;

498
	/* If reserves cannot be used, ensure enough pages are in the pool */
499
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
500 501
		return NULL;

502 503
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
504 505
		nid = zone_to_nid(zone);
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
506 507
		    !list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
A
Andrew Morton 已提交
508 509
					  struct page, lru);
			list_del(&page->lru);
510 511
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
512 513

			if (!avoid_reserve)
514
				decrement_hugepage_resv_vma(h, vma);
515

K
Ken Chen 已提交
516
			break;
A
Andrew Morton 已提交
517
		}
L
Linus Torvalds 已提交
518
	}
519
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
520 521 522
	return page;
}

523
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
524 525
{
	int i;
526

527 528
	VM_BUG_ON(h->order >= MAX_ORDER);

529 530 531
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
A
Adam Litke 已提交
532 533 534 535 536 537
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
538
	arch_release_hugepage(page);
539
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
540 541
}

542 543 544 545 546 547 548 549 550 551 552
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

553 554
static void free_huge_page(struct page *page)
{
555 556 557 558
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
559
	struct hstate *h = page_hstate(page);
560
	int nid = page_to_nid(page);
561
	struct address_space *mapping;
562

563
	mapping = (struct address_space *) page_private(page);
564
	set_page_private(page, 0);
565
	BUG_ON(page_count(page));
566 567 568
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
569
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
570 571 572
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
573
	} else {
574
		enqueue_huge_page(h, page);
575
	}
576
	spin_unlock(&hugetlb_lock);
577
	if (mapping)
578
		hugetlb_put_quota(mapping, 1);
579 580
}

581 582 583 584 585
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
586
static int adjust_pool_surplus(struct hstate *h, int delta)
587 588 589 590 591 592 593 594 595 596 597 598
{
	static int prev_nid;
	int nid = prev_nid;
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);
	do {
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

		/* To shrink on this node, there must be a surplus page */
599
		if (delta < 0 && !h->surplus_huge_pages_node[nid])
600 601
			continue;
		/* Surplus cannot exceed the total number of pages */
602 603
		if (delta > 0 && h->surplus_huge_pages_node[nid] >=
						h->nr_huge_pages_node[nid])
604 605
			continue;

606 607
		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
608 609 610 611 612 613 614 615
		ret = 1;
		break;
	} while (nid != prev_nid);

	prev_nid = nid;
	return ret;
}

616
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
617 618 619
{
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
620 621
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
622 623 624 625
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

626
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
627 628
{
	struct page *page;
629

630 631 632
	if (h->order >= MAX_ORDER)
		return NULL;

633
	page = alloc_pages_node(nid,
634 635
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
636
		huge_page_order(h));
L
Linus Torvalds 已提交
637
	if (page) {
638
		if (arch_prepare_hugepage(page)) {
639
			__free_pages(page, huge_page_order(h));
640
			return NULL;
641
		}
642
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
643
	}
644 645 646 647

	return page;
}

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
/*
 * Use a helper variable to find the next node and then
 * copy it back to hugetlb_next_nid afterwards:
 * otherwise there's a window in which a racer might
 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
 * But we don't need to use a spin_lock here: it really
 * doesn't matter if occasionally a racer chooses the
 * same nid as we do.  Move nid forward in the mask even
 * if we just successfully allocated a hugepage so that
 * the next caller gets hugepages on the next node.
 */
static int hstate_next_node(struct hstate *h)
{
	int next_nid;
	next_nid = next_node(h->hugetlb_next_nid, node_online_map);
	if (next_nid == MAX_NUMNODES)
		next_nid = first_node(node_online_map);
	h->hugetlb_next_nid = next_nid;
	return next_nid;
}

669
static int alloc_fresh_huge_page(struct hstate *h)
670 671 672 673 674 675
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

676
	start_nid = h->hugetlb_next_nid;
677 678

	do {
679
		page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
680 681
		if (page)
			ret = 1;
682
		next_nid = hstate_next_node(h);
683
	} while (!page && h->hugetlb_next_nid != start_nid);
684

685 686 687 688 689
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

690
	return ret;
L
Linus Torvalds 已提交
691 692
}

693 694
static struct page *alloc_buddy_huge_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
695 696
{
	struct page *page;
697
	unsigned int nid;
698

699 700 701
	if (h->order >= MAX_ORDER)
		return NULL;

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
726
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
727 728 729
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
730 731
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
732 733 734
	}
	spin_unlock(&hugetlb_lock);

735 736
	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
					__GFP_REPEAT|__GFP_NOWARN,
737
					huge_page_order(h));
738

739 740 741 742 743
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
		return NULL;
	}

744
	spin_lock(&hugetlb_lock);
745
	if (page) {
746 747 748 749 750 751
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
752
		nid = page_to_nid(page);
753
		set_compound_page_dtor(page, free_huge_page);
754 755 756
		/*
		 * We incremented the global counters already
		 */
757 758
		h->nr_huge_pages_node[nid]++;
		h->surplus_huge_pages_node[nid]++;
759
		__count_vm_event(HTLB_BUDDY_PGALLOC);
760
	} else {
761 762
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
763
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
764
	}
765
	spin_unlock(&hugetlb_lock);
766 767 768 769

	return page;
}

770 771 772 773
/*
 * Increase the hugetlb pool such that it can accomodate a reservation
 * of size 'delta'.
 */
774
static int gather_surplus_pages(struct hstate *h, int delta)
775 776 777 778 779 780
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

781
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
782
	if (needed <= 0) {
783
		h->resv_huge_pages += delta;
784
		return 0;
785
	}
786 787 788 789 790 791 792 793

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
794
		page = alloc_buddy_huge_page(h, NULL, 0);
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
		if (!page) {
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			spin_lock(&hugetlb_lock);
			needed = 0;
			goto free;
		}

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
815 816
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
817 818 819 820 821 822 823
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accomodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
824 825 826
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
827 828
	 */
	needed += allocated;
829
	h->resv_huge_pages += delta;
830 831
	ret = 0;
free:
832
	/* Free the needed pages to the hugetlb pool */
833
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
834 835
		if ((--needed) < 0)
			break;
836
		list_del(&page->lru);
837
		enqueue_huge_page(h, page);
838 839 840 841 842 843 844
	}

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		spin_unlock(&hugetlb_lock);
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
845
			/*
846 847 848
			 * The page has a reference count of zero already, so
			 * call free_huge_page directly instead of using
			 * put_page.  This must be done with hugetlb_lock
849 850 851
			 * unlocked which is safe because free_huge_page takes
			 * hugetlb_lock before deciding how to free the page.
			 */
852
			free_huge_page(page);
853
		}
854
		spin_lock(&hugetlb_lock);
855 856 857 858 859 860 861 862 863 864
	}

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
 */
865 866
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
867 868 869 870 871
{
	static int nid = -1;
	struct page *page;
	unsigned long nr_pages;

872 873 874 875 876 877 878 879
	/*
	 * We want to release as many surplus pages as possible, spread
	 * evenly across all nodes. Iterate across all nodes until we
	 * can no longer free unreserved surplus pages. This occurs when
	 * the nodes with surplus pages have no free pages.
	 */
	unsigned long remaining_iterations = num_online_nodes();

880
	/* Uncommit the reservation */
881
	h->resv_huge_pages -= unused_resv_pages;
882

883 884 885 886
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

887
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
888

889
	while (remaining_iterations-- && nr_pages) {
890 891 892 893
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

894
		if (!h->surplus_huge_pages_node[nid])
895 896
			continue;

897 898
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
899 900
					  struct page, lru);
			list_del(&page->lru);
901 902 903 904 905
			update_and_free_page(h, page);
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
			h->surplus_huge_pages--;
			h->surplus_huge_pages_node[nid]--;
906
			nr_pages--;
907
			remaining_iterations = num_online_nodes();
908 909 910 911
		}
	}
}

912 913 914 915 916 917 918 919 920
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
 * reservation and actually increase quota before an allocation can occur.
 * Where any new reservation would be required the reservation change is
 * prepared, but not committed.  Once the page has been quota'd allocated
 * an instantiated the change should be committed via vma_commit_reservation.
 * No action is required on failure.
 */
921 922
static int vma_needs_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
923 924 925 926 927
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

	if (vma->vm_flags & VM_SHARED) {
928
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
929 930 931
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

932 933
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
934

935 936
	} else  {
		int err;
937
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
938 939 940 941 942 943 944
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
945
}
946 947
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
948 949 950 951 952
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

	if (vma->vm_flags & VM_SHARED) {
953
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
954
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
955 956

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
957
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
958 959 960 961
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
962 963 964
	}
}

965
static struct page *alloc_huge_page(struct vm_area_struct *vma,
966
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
967
{
968
	struct hstate *h = hstate_vma(vma);
969
	struct page *page;
970 971
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
972
	unsigned int chg;
973 974 975 976 977

	/*
	 * Processes that did not create the mapping will have no reserves and
	 * will not have accounted against quota. Check that the quota can be
	 * made before satisfying the allocation
978 979
	 * MAP_NORESERVE mappings may also need pages and quota allocated
	 * if no reserve mapping overlaps.
980
	 */
981
	chg = vma_needs_reservation(h, vma, addr);
982 983 984
	if (chg < 0)
		return ERR_PTR(chg);
	if (chg)
985 986
		if (hugetlb_get_quota(inode->i_mapping, chg))
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
987 988

	spin_lock(&hugetlb_lock);
989
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
L
Linus Torvalds 已提交
990
	spin_unlock(&hugetlb_lock);
991

K
Ken Chen 已提交
992
	if (!page) {
993
		page = alloc_buddy_huge_page(h, vma, addr);
K
Ken Chen 已提交
994
		if (!page) {
995
			hugetlb_put_quota(inode->i_mapping, chg);
K
Ken Chen 已提交
996 997 998
			return ERR_PTR(-VM_FAULT_OOM);
		}
	}
999

1000 1001
	set_page_refcounted(page);
	set_page_private(page, (unsigned long) mapping);
1002

1003
	vma_commit_reservation(h, vma, addr);
1004

1005
	return page;
1006 1007
}

1008
int __weak alloc_bootmem_huge_page(struct hstate *h)
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
{
	struct huge_bootmem_page *m;
	int nr_nodes = nodes_weight(node_online_map);

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
				NODE_DATA(h->hugetlb_next_nid),
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1027
			goto found;
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
		}
		hstate_next_node(h);
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1042 1043 1044 1045 1046 1047 1048 1049
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct page *page = virt_to_page(m);
		struct hstate *h = m->hstate;
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1060
		prep_compound_huge_page(page, h->order);
1061 1062 1063 1064
		prep_new_huge_page(h, page, page_to_nid(page));
	}
}

1065
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1066 1067
{
	unsigned long i;
1068

1069
	for (i = 0; i < h->max_huge_pages; ++i) {
1070 1071 1072 1073
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
		} else if (!alloc_fresh_huge_page(h))
L
Linus Torvalds 已提交
1074 1075
			break;
	}
1076
	h->max_huge_pages = i;
1077 1078 1079 1080 1081 1082 1083
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1084 1085 1086
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1087 1088 1089
	}
}

A
Andi Kleen 已提交
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1101 1102 1103 1104 1105
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1106 1107 1108 1109 1110
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1111 1112 1113
	}
}

L
Linus Torvalds 已提交
1114
#ifdef CONFIG_HIGHMEM
1115
static void try_to_free_low(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1116
{
1117 1118
	int i;

1119 1120 1121
	if (h->order >= MAX_ORDER)
		return;

L
Linus Torvalds 已提交
1122 1123
	for (i = 0; i < MAX_NUMNODES; ++i) {
		struct page *page, *next;
1124 1125 1126
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1127
				return;
L
Linus Torvalds 已提交
1128 1129 1130
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1131
			update_and_free_page(h, page);
1132 1133
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1134 1135 1136 1137
		}
	}
}
#else
1138
static inline void try_to_free_low(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1139 1140 1141 1142
{
}
#endif

1143
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1144
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1145
{
1146
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1147

1148 1149 1150
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1151 1152 1153 1154
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1155 1156 1157 1158 1159 1160
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1161
	 */
L
Linus Torvalds 已提交
1162
	spin_lock(&hugetlb_lock);
1163 1164
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, -1))
1165 1166 1167
			break;
	}

1168
	while (count > persistent_huge_pages(h)) {
1169 1170 1171 1172 1173 1174
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1175
		ret = alloc_fresh_huge_page(h);
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1188 1189 1190 1191 1192 1193 1194 1195
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1196
	 */
1197
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1198
	min_count = max(count, min_count);
1199 1200 1201
	try_to_free_low(h, min_count);
	while (min_count < persistent_huge_pages(h)) {
		struct page *page = dequeue_huge_page(h);
L
Linus Torvalds 已提交
1202 1203
		if (!page)
			break;
1204
		update_and_free_page(h, page);
L
Linus Torvalds 已提交
1205
	}
1206 1207
	while (count < persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, 1))
1208 1209 1210
			break;
	}
out:
1211
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1212
	spin_unlock(&hugetlb_lock);
1213
	return ret;
L
Linus Torvalds 已提交
1214 1215
}

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

static struct hstate *kobj_to_hstate(struct kobject *kobj)
{
	int i;
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
		if (hstate_kobjs[i] == kobj)
			return &hstates[i];
	BUG();
	return NULL;
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->nr_huge_pages);
}
static ssize_t nr_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
	struct hstate *h = kobj_to_hstate(kobj);

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	h->max_huge_pages = set_max_huge_pages(h, input);

	return count;
}
HSTATE_ATTR(nr_hugepages);

static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
	struct hstate *h = kobj_to_hstate(kobj);

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->free_huge_pages);
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->surplus_huge_pages);
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
{
	int retval;

	hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
							hugepages_kobj);
	if (!hstate_kobjs[h - hstates])
		return -ENOMEM;

	retval = sysfs_create_group(hstate_kobjs[h - hstates],
							&hstate_attr_group);
	if (retval)
		kobject_put(hstate_kobjs[h - hstates]);

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h);
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

static void __exit hugetlb_exit(void)
{
	struct hstate *h;

	for_each_hstate(h) {
		kobject_put(hstate_kobjs[h - hstates]);
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1369 1370 1371 1372 1373 1374
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1375

1376 1377 1378 1379
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1380
	}
1381 1382 1383
	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1384 1385 1386

	hugetlb_init_hstates();

1387 1388
	gather_bootmem_prealloc();

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
	report_hugepages();

	hugetlb_sysfs_init();

	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1401 1402
	unsigned long i;

1403 1404 1405 1406 1407 1408 1409 1410 1411
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
	BUG_ON(order == 0);
	h = &hstates[max_hstate++];
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1412 1413 1414 1415 1416
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
	h->hugetlb_next_nid = first_node(node_online_map);
1417 1418
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1419

1420 1421 1422
	parsed_hstate = h;
}

1423
static int __init hugetlb_nrpages_setup(char *s)
1424 1425
{
	unsigned long *mhp;
1426
	static unsigned long *last_mhp;
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436

	/*
	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
	 * so this hugepages= parameter goes to the "default hstate".
	 */
	if (!max_hstate)
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1437 1438 1439 1440 1441 1442
	if (mhp == last_mhp) {
		printk(KERN_WARNING "hugepages= specified twice without "
			"interleaving hugepagesz=, ignoring\n");
		return 1;
	}

1443 1444 1445
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1456 1457
	return 1;
}
1458 1459 1460 1461 1462 1463 1464 1465
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
1466

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
L
Linus Torvalds 已提交
1479 1480 1481 1482
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			   struct file *file, void __user *buffer,
			   size_t *length, loff_t *ppos)
{
1483 1484 1485 1486 1487 1488 1489 1490
	struct hstate *h = &default_hstate;
	unsigned long tmp;

	if (!write)
		tmp = h->max_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
L
Linus Torvalds 已提交
1491
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1492 1493 1494 1495

	if (write)
		h->max_huge_pages = set_max_huge_pages(h, tmp);

L
Linus Torvalds 已提交
1496 1497
	return 0;
}
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510

int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
	proc_dointvec(table, write, file, buffer, length, ppos);
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

1511 1512 1513 1514
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
1515
	struct hstate *h = &default_hstate;
1516 1517 1518 1519 1520 1521 1522
	unsigned long tmp;

	if (!write)
		tmp = h->nr_overcommit_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1523
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1524 1525 1526 1527 1528 1529 1530

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}

1531 1532 1533
	return 0;
}

L
Linus Torvalds 已提交
1534 1535
#endif /* CONFIG_SYSCTL */

1536
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
1537
{
1538
	struct hstate *h = &default_hstate;
1539
	seq_printf(m,
1540 1541 1542 1543 1544
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
1545 1546 1547 1548 1549
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
1550 1551 1552 1553
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
1554
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
1555 1556
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
1557 1558
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
1559 1560 1561
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
1562 1563 1564 1565 1566
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
1567 1568
	struct hstate *h = &default_hstate;
	return h->nr_huge_pages * pages_per_huge_page(h);
L
Linus Torvalds 已提交
1569 1570
}

1571
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
1594
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
1595 1596
			goto out;

1597 1598
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
1599 1600 1601 1602 1603 1604
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
1605
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
1606 1607 1608 1609 1610 1611

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
	 * has a reference to the reservation map it cannot dissappear until
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

1628 1629
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
1630
	struct hstate *h = hstate_vma(vma);
1631 1632 1633 1634 1635 1636
	struct resv_map *reservations = vma_resv_map(vma);
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
1637 1638
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
1639 1640 1641 1642 1643 1644

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

		kref_put(&reservations->refs, resv_map_release);

1645
		if (reserve) {
1646
			hugetlb_acct_memory(h, -reserve);
1647 1648
			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
		}
1649
	}
1650 1651
}

L
Linus Torvalds 已提交
1652 1653 1654 1655 1656 1657
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
1658
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
1659 1660
{
	BUG();
N
Nick Piggin 已提交
1661
	return 0;
L
Linus Torvalds 已提交
1662 1663 1664
}

struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
1665
	.fault = hugetlb_vm_op_fault,
1666
	.open = hugetlb_vm_op_open,
1667
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
1668 1669
};

1670 1671
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
1672 1673 1674
{
	pte_t entry;

1675
	if (writable) {
D
David Gibson 已提交
1676 1677 1678
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
1679
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
1680 1681 1682 1683 1684 1685 1686
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);

	return entry;
}

1687 1688 1689 1690 1691
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

1692 1693
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1694 1695
		update_mmu_cache(vma, address, entry);
	}
1696 1697 1698
}


D
David Gibson 已提交
1699 1700 1701 1702 1703
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
1704
	unsigned long addr;
1705
	int cow;
1706 1707
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
1708 1709

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
1710

1711
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
1712 1713 1714
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
1715
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
1716 1717
		if (!dst_pte)
			goto nomem;
1718 1719 1720 1721 1722

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
1723
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
1724
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1725
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
1726
			if (cow)
1727 1728
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
1729 1730 1731 1732 1733
			ptepage = pte_page(entry);
			get_page(ptepage);
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
1734
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
1735 1736 1737 1738 1739 1740 1741
	}
	return 0;

nomem:
	return -ENOMEM;
}

1742
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1743
			    unsigned long end, struct page *ref_page)
D
David Gibson 已提交
1744 1745 1746
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
1747
	pte_t *ptep;
D
David Gibson 已提交
1748 1749
	pte_t pte;
	struct page *page;
1750
	struct page *tmp;
1751 1752 1753
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);

1754 1755 1756 1757 1758
	/*
	 * A page gathering list, protected by per file i_mmap_lock. The
	 * lock is used to avoid list corruption from multiple unmapping
	 * of the same page since we are using page->lru.
	 */
1759
	LIST_HEAD(page_list);
D
David Gibson 已提交
1760 1761

	WARN_ON(!is_vm_hugetlb_page(vma));
1762 1763
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
1764

A
Andrea Arcangeli 已提交
1765
	mmu_notifier_invalidate_range_start(mm, start, end);
1766
	spin_lock(&mm->page_table_lock);
1767
	for (address = start; address < end; address += sz) {
1768
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
1769
		if (!ptep)
1770 1771
			continue;

1772 1773 1774
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			pte = huge_ptep_get(ptep);
			if (huge_pte_none(pte))
				continue;
			page = pte_page(pte);
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

1796
		pte = huge_ptep_get_and_clear(mm, address, ptep);
1797
		if (huge_pte_none(pte))
D
David Gibson 已提交
1798
			continue;
1799

D
David Gibson 已提交
1800
		page = pte_page(pte);
1801 1802
		if (pte_dirty(pte))
			set_page_dirty(page);
1803
		list_add(&page->lru, &page_list);
D
David Gibson 已提交
1804
	}
L
Linus Torvalds 已提交
1805
	spin_unlock(&mm->page_table_lock);
1806
	flush_tlb_range(vma, start, end);
A
Andrea Arcangeli 已提交
1807
	mmu_notifier_invalidate_range_end(mm, start, end);
1808 1809 1810 1811
	list_for_each_entry_safe(page, tmp, &page_list, lru) {
		list_del(&page->lru);
		put_page(page);
	}
L
Linus Torvalds 已提交
1812
}
D
David Gibson 已提交
1813

1814
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1815
			  unsigned long end, struct page *ref_page)
1816
{
1817 1818 1819
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
	__unmap_hugepage_range(vma, start, end, ref_page);
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1820 1821
}

1822 1823 1824 1825 1826 1827
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
1828 1829
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
1830
{
1831
	struct hstate *h = hstate_vma(vma);
1832 1833 1834 1835 1836 1837 1838 1839 1840
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
1841
	address = address & huge_page_mask(h);
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
		+ (vma->vm_pgoff >> PAGE_SHIFT);
	mapping = (struct address_space *)page_private(page);

	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
			unmap_hugepage_range(iter_vma,
1860
				address, address + huge_page_size(h),
1861 1862 1863 1864 1865 1866
				page);
	}

	return 1;
}

1867
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1868 1869
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
1870
{
1871
	struct hstate *h = hstate_vma(vma);
1872
	struct page *old_page, *new_page;
1873
	int avoidcopy;
1874
	int outside_reserve = 0;
1875 1876 1877

	old_page = pte_page(pte);

1878
retry_avoidcopy:
1879 1880 1881 1882 1883
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
	avoidcopy = (page_count(old_page) == 1);
	if (avoidcopy) {
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
1884
		return 0;
1885 1886
	}

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
	if (!(vma->vm_flags & VM_SHARED) &&
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

1901
	page_cache_get(old_page);
1902
	new_page = alloc_huge_page(vma, address, outside_reserve);
1903

1904
	if (IS_ERR(new_page)) {
1905
		page_cache_release(old_page);
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(page_count(old_page) != 1);
				BUG_ON(huge_pte_none(pte));
				goto retry_avoidcopy;
			}
			WARN_ON_ONCE(1);
		}

1924
		return -PTR_ERR(new_page);
1925 1926 1927
	}

	spin_unlock(&mm->page_table_lock);
1928
	copy_huge_page(new_page, old_page, address, vma);
N
Nick Piggin 已提交
1929
	__SetPageUptodate(new_page);
1930 1931
	spin_lock(&mm->page_table_lock);

1932
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1933
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1934
		/* Break COW */
1935
		huge_ptep_clear_flush(vma, address, ptep);
1936 1937 1938 1939 1940 1941 1942
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
		/* Make the old page be freed below */
		new_page = old_page;
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
1943
	return 0;
1944 1945
}

1946
/* Return the pagecache page at a given address within a VMA */
1947 1948
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
1949 1950
{
	struct address_space *mapping;
1951
	pgoff_t idx;
1952 1953

	mapping = vma->vm_file->f_mapping;
1954
	idx = vma_hugecache_offset(h, vma, address);
1955 1956 1957 1958

	return find_lock_page(mapping, idx);
}

1959
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1960
			unsigned long address, pte_t *ptep, int write_access)
1961
{
1962
	struct hstate *h = hstate_vma(vma);
1963
	int ret = VM_FAULT_SIGBUS;
1964
	pgoff_t idx;
A
Adam Litke 已提交
1965 1966 1967
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
1968
	pte_t new_pte;
A
Adam Litke 已提交
1969

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
	 * COW. Warn that such a situation has occured as it may not be obvious
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
1982
	mapping = vma->vm_file->f_mapping;
1983
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
1984 1985 1986 1987 1988

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
1989 1990 1991
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
1992
		size = i_size_read(mapping->host) >> huge_page_shift(h);
1993 1994
		if (idx >= size)
			goto out;
1995
		page = alloc_huge_page(vma, address, 0);
1996 1997
		if (IS_ERR(page)) {
			ret = -PTR_ERR(page);
1998 1999
			goto out;
		}
2000
		clear_huge_page(page, address, huge_page_size(h));
N
Nick Piggin 已提交
2001
		__SetPageUptodate(page);
2002

2003 2004
		if (vma->vm_flags & VM_SHARED) {
			int err;
K
Ken Chen 已提交
2005
			struct inode *inode = mapping->host;
2006 2007 2008 2009 2010 2011 2012 2013

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
2014 2015

			spin_lock(&inode->i_lock);
2016
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2017
			spin_unlock(&inode->i_lock);
2018 2019 2020
		} else
			lock_page(page);
	}
2021

2022 2023 2024 2025 2026 2027 2028
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
	if (write_access && !(vma->vm_flags & VM_SHARED))
2029 2030 2031 2032
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2033

2034
	spin_lock(&mm->page_table_lock);
2035
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2036 2037 2038
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2039
	ret = 0;
2040
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2041 2042
		goto backout;

2043 2044 2045 2046 2047 2048
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

	if (write_access && !(vma->vm_flags & VM_SHARED)) {
		/* Optimization, do the COW without a second fault */
2049
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2050 2051
	}

2052
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2053 2054
	unlock_page(page);
out:
2055
	return ret;
A
Adam Litke 已提交
2056 2057 2058

backout:
	spin_unlock(&mm->page_table_lock);
2059
backout_unlocked:
A
Adam Litke 已提交
2060 2061 2062
	unlock_page(page);
	put_page(page);
	goto out;
2063 2064
}

2065 2066 2067 2068 2069
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, int write_access)
{
	pte_t *ptep;
	pte_t entry;
2070
	int ret;
2071
	struct page *pagecache_page = NULL;
2072
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2073
	struct hstate *h = hstate_vma(vma);
2074

2075
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2076 2077 2078
	if (!ptep)
		return VM_FAULT_OOM;

2079 2080 2081 2082 2083 2084
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2085 2086
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2087
		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
2088
		goto out_mutex;
2089
	}
2090

N
Nick Piggin 已提交
2091
	ret = 0;
2092

2093 2094 2095 2096 2097 2098 2099 2100 2101
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
	if (write_access && !pte_write(entry)) {
2102 2103
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2104
			goto out_mutex;
2105
		}
2106 2107 2108 2109 2110 2111

		if (!(vma->vm_flags & VM_SHARED))
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2112 2113
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2114 2115 2116 2117 2118 2119
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


	if (write_access) {
		if (!pte_write(entry)) {
2120 2121
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2122 2123 2124 2125 2126 2127 2128 2129 2130
			goto out_page_table_lock;
		}
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, write_access))
		update_mmu_cache(vma, address, entry);

out_page_table_lock:
2131
	spin_unlock(&mm->page_table_lock);
2132 2133 2134 2135 2136 2137

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}

2138
out_mutex:
2139
	mutex_unlock(&hugetlb_instantiation_mutex);
2140 2141

	return ret;
2142 2143
}

A
Andi Kleen 已提交
2144 2145 2146 2147 2148 2149 2150 2151 2152
/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

K
KOSAKI Motohiro 已提交
2153 2154 2155 2156 2157 2158 2159 2160
static int huge_zeropage_ok(pte_t *ptep, int write, int shared)
{
	if (!ptep || write || shared)
		return 0;
	else
		return huge_pte_none(huge_ptep_get(ptep));
}

D
David Gibson 已提交
2161 2162
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
2163 2164
			unsigned long *position, int *length, int i,
			int write)
D
David Gibson 已提交
2165
{
2166 2167
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
2168
	int remainder = *length;
2169
	struct hstate *h = hstate_vma(vma);
K
KOSAKI Motohiro 已提交
2170 2171
	int zeropage_ok = 0;
	int shared = vma->vm_flags & VM_SHARED;
D
David Gibson 已提交
2172

2173
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2174
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2175 2176
		pte_t *pte;
		struct page *page;
D
David Gibson 已提交
2177

A
Adam Litke 已提交
2178 2179 2180 2181 2182
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
		 * each hugepage.  We have to make * sure we get the
		 * first, for the page indexing below to work.
		 */
2183
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
K
KOSAKI Motohiro 已提交
2184 2185
		if (huge_zeropage_ok(pte, write, shared))
			zeropage_ok = 1;
D
David Gibson 已提交
2186

K
KOSAKI Motohiro 已提交
2187 2188
		if (!pte ||
		    (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) ||
2189
		    (write && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2190
			int ret;
D
David Gibson 已提交
2191

A
Adam Litke 已提交
2192
			spin_unlock(&mm->page_table_lock);
2193
			ret = hugetlb_fault(mm, vma, vaddr, write);
A
Adam Litke 已提交
2194
			spin_lock(&mm->page_table_lock);
2195
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
2196
				continue;
D
David Gibson 已提交
2197

A
Adam Litke 已提交
2198 2199 2200 2201 2202 2203
			remainder = 0;
			if (!i)
				i = -EFAULT;
			break;
		}

2204
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2205
		page = pte_page(huge_ptep_get(pte));
2206
same_page:
2207
		if (pages) {
K
KOSAKI Motohiro 已提交
2208 2209 2210
			if (zeropage_ok)
				pages[i] = ZERO_PAGE(0);
			else
2211
				pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
2212
			get_page(pages[i]);
2213
		}
D
David Gibson 已提交
2214 2215 2216 2217 2218

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
2219
		++pfn_offset;
D
David Gibson 已提交
2220 2221
		--remainder;
		++i;
2222
		if (vaddr < vma->vm_end && remainder &&
2223
				pfn_offset < pages_per_huge_page(h)) {
2224 2225 2226 2227 2228 2229
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
2230
	}
2231
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
2232 2233 2234 2235 2236
	*length = remainder;
	*position = vaddr;

	return i;
}
2237 2238 2239 2240 2241 2242 2243 2244

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
2245
	struct hstate *h = hstate_vma(vma);
2246 2247 2248 2249

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

2250
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2251
	spin_lock(&mm->page_table_lock);
2252
	for (; address < end; address += huge_page_size(h)) {
2253 2254 2255
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
2256 2257
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
2258
		if (!huge_pte_none(huge_ptep_get(ptep))) {
2259 2260 2261 2262 2263 2264
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
2265
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2266 2267 2268 2269

	flush_tlb_range(vma, start, end);
}

2270 2271
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
2272 2273
					struct vm_area_struct *vma,
					int acctflag)
2274
{
2275
	long ret, chg;
2276
	struct hstate *h = hstate_inode(inode);
2277

2278 2279 2280 2281 2282 2283 2284 2285
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
	 * and filesystem quota without using reserves
	 */
	if (acctflag & VM_NORESERVE)
		return 0;

2286 2287 2288 2289 2290 2291 2292 2293
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
	if (!vma || vma->vm_flags & VM_SHARED)
		chg = region_chg(&inode->i_mapping->private_list, from, to);
2294 2295 2296 2297 2298
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

2299
		chg = to - from;
2300

2301 2302 2303 2304
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

2305 2306
	if (chg < 0)
		return chg;
2307

2308
	/* There must be enough filesystem quota for the mapping */
2309 2310
	if (hugetlb_get_quota(inode->i_mapping, chg))
		return -ENOSPC;
2311 2312

	/*
2313 2314
	 * Check enough hugepages are available for the reservation.
	 * Hand back the quota if there are not
2315
	 */
2316
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
2317 2318
	if (ret < 0) {
		hugetlb_put_quota(inode->i_mapping, chg);
2319
		return ret;
K
Ken Chen 已提交
2320
	}
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
2333 2334
	if (!vma || vma->vm_flags & VM_SHARED)
		region_add(&inode->i_mapping->private_list, from, to);
2335 2336 2337 2338 2339
	return 0;
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
2340
	struct hstate *h = hstate_inode(inode);
2341
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
K
Ken Chen 已提交
2342 2343

	spin_lock(&inode->i_lock);
2344
	inode->i_blocks -= blocks_per_huge_page(h);
K
Ken Chen 已提交
2345 2346
	spin_unlock(&inode->i_lock);

2347
	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2348
	hugetlb_acct_memory(h, -(chg - freed));
2349
}