i915_gem.c 100.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/shmem_fs.h>
35
#include <linux/slab.h>
36
#include <linux/swap.h>
J
Jesse Barnes 已提交
37
#include <linux/pci.h>
38

39
static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
40 41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 43 44
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
						    unsigned alignment,
						    bool map_and_fenceable);
45 46
static int i915_gem_phys_pwrite(struct drm_device *dev,
				struct drm_i915_gem_object *obj,
47
				struct drm_i915_gem_pwrite *args,
48
				struct drm_file *file);
49

50 51 52 53 54 55
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

56
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57
				    struct shrink_control *sc);
58
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
59

60 61 62 63 64 65 66 67
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
68
	obj->fence_dirty = false;
69 70 71
	obj->fence_reg = I915_FENCE_REG_NONE;
}

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

87 88
static int
i915_gem_wait_for_error(struct drm_device *dev)
89 90 91 92 93 94 95 96 97 98 99 100 101
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

102 103 104 105 106 107 108 109 110 111 112
	if (atomic_read(&dev_priv->mm.wedged)) {
		/* GPU is hung, bump the completion count to account for
		 * the token we just consumed so that we never hit zero and
		 * end up waiting upon a subsequent completion event that
		 * will never happen.
		 */
		spin_lock_irqsave(&x->wait.lock, flags);
		x->done++;
		spin_unlock_irqrestore(&x->wait.lock, flags);
	}
	return 0;
113 114
}

115
int i915_mutex_lock_interruptible(struct drm_device *dev)
116 117 118
{
	int ret;

119
	ret = i915_gem_wait_for_error(dev);
120 121 122 123 124 125 126
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

127
	WARN_ON(i915_verify_lists(dev));
128 129
	return 0;
}
130

131
static inline bool
132
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
133
{
134
	return !obj->active;
135 136
}

J
Jesse Barnes 已提交
137 138
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
139
		    struct drm_file *file)
J
Jesse Barnes 已提交
140 141
{
	struct drm_i915_gem_init *args = data;
142

143 144 145
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return -ENODEV;

146 147 148
	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
149

150 151 152 153
	/* GEM with user mode setting was never supported on ilk and later. */
	if (INTEL_INFO(dev)->gen >= 5)
		return -ENODEV;

J
Jesse Barnes 已提交
154
	mutex_lock(&dev->struct_mutex);
155 156
	i915_gem_init_global_gtt(dev, args->gtt_start,
				 args->gtt_end, args->gtt_end);
157 158
	mutex_unlock(&dev->struct_mutex);

159
	return 0;
160 161
}

162 163
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
164
			    struct drm_file *file)
165
{
166
	struct drm_i915_private *dev_priv = dev->dev_private;
167
	struct drm_i915_gem_get_aperture *args = data;
168 169
	struct drm_i915_gem_object *obj;
	size_t pinned;
170

171
	pinned = 0;
172
	mutex_lock(&dev->struct_mutex);
173 174 175
	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
		if (obj->pin_count)
			pinned += obj->gtt_space->size;
176
	mutex_unlock(&dev->struct_mutex);
177

178
	args->aper_size = dev_priv->mm.gtt_total;
179
	args->aper_available_size = args->aper_size - pinned;
180

181 182 183
	return 0;
}

184 185 186 187 188
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
189
{
190
	struct drm_i915_gem_object *obj;
191 192
	int ret;
	u32 handle;
193

194
	size = roundup(size, PAGE_SIZE);
195 196
	if (size == 0)
		return -EINVAL;
197 198

	/* Allocate the new object */
199
	obj = i915_gem_alloc_object(dev, size);
200 201 202
	if (obj == NULL)
		return -ENOMEM;

203
	ret = drm_gem_handle_create(file, &obj->base, &handle);
204
	if (ret) {
205 206
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
207
		kfree(obj);
208
		return ret;
209
	}
210

211
	/* drop reference from allocate - handle holds it now */
212
	drm_gem_object_unreference(&obj->base);
213 214
	trace_i915_gem_object_create(obj);

215
	*handle_p = handle;
216 217 218
	return 0;
}

219 220 221 222 223 224
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
225
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

int i915_gem_dumb_destroy(struct drm_file *file,
			  struct drm_device *dev,
			  uint32_t handle)
{
	return drm_gem_handle_delete(file, handle);
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
246

247 248 249 250
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

251
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
252
{
253
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
254 255

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
256
		obj->tiling_mode != I915_TILING_NONE;
257 258
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

285
static inline int
286 287
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

311 312 313
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
314
static int
315 316 317 318 319 320 321
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

322
	if (unlikely(page_do_bit17_swizzling))
323 324 325 326 327 328 329 330 331 332 333 334 335 336
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

	return ret;
}

337 338 339 340
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
341
	if (unlikely(swizzled)) {
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

359 360 361 362 363 364 365 366 367 368 369 370
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
371 372 373
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
374 375 376 377 378 379 380 381 382 383 384 385 386 387

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

	return ret;
}

388
static int
389 390 391 392
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
393
{
394
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
395
	char __user *user_data;
396
	ssize_t remain;
397
	loff_t offset;
398
	int shmem_page_offset, page_length, ret = 0;
399
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
400
	int hit_slowpath = 0;
401
	int prefaulted = 0;
402
	int needs_clflush = 0;
403
	int release_page;
404

405
	user_data = (char __user *) (uintptr_t) args->data_ptr;
406 407
	remain = args->size;

408
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
409

410 411 412 413 414 415 416 417 418 419 420
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush = 1;
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
		if (ret)
			return ret;
	}
421

422
	offset = args->offset;
423 424

	while (remain > 0) {
425 426
		struct page *page;

427 428 429 430 431
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
432
		shmem_page_offset = offset_in_page(offset);
433 434 435 436
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

437 438 439 440 441 442 443 444 445 446
		if (obj->pages) {
			page = obj->pages[offset >> PAGE_SHIFT];
			release_page = 0;
		} else {
			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
				goto out;
			}
			release_page = 1;
447
		}
448

449 450 451
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

452 453 454 455 456
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
457 458

		hit_slowpath = 1;
459
		page_cache_get(page);
460 461
		mutex_unlock(&dev->struct_mutex);

462
		if (!prefaulted) {
463
			ret = fault_in_multipages_writeable(user_data, remain);
464 465 466 467 468 469 470
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
471

472 473 474
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
475

476
		mutex_lock(&dev->struct_mutex);
477
		page_cache_release(page);
478
next_page:
479
		mark_page_accessed(page);
480 481
		if (release_page)
			page_cache_release(page);
482

483 484 485 486 487
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

488
		remain -= page_length;
489
		user_data += page_length;
490 491 492
		offset += page_length;
	}

493
out:
494 495 496 497 498
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
	}
499 500 501 502

	return ret;
}

503 504 505 506 507 508 509
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
510
		     struct drm_file *file)
511 512
{
	struct drm_i915_gem_pread *args = data;
513
	struct drm_i915_gem_object *obj;
514
	int ret = 0;
515

516 517 518 519 520 521 522 523
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

524
	ret = i915_mutex_lock_interruptible(dev);
525
	if (ret)
526
		return ret;
527

528
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
529
	if (&obj->base == NULL) {
530 531
		ret = -ENOENT;
		goto unlock;
532
	}
533

534
	/* Bounds check source.  */
535 536
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
537
		ret = -EINVAL;
538
		goto out;
C
Chris Wilson 已提交
539 540
	}

C
Chris Wilson 已提交
541 542
	trace_i915_gem_object_pread(obj, args->offset, args->size);

543
	ret = i915_gem_shmem_pread(dev, obj, args, file);
544

545
out:
546
	drm_gem_object_unreference(&obj->base);
547
unlock:
548
	mutex_unlock(&dev->struct_mutex);
549
	return ret;
550 551
}

552 553
/* This is the fast write path which cannot handle
 * page faults in the source data
554
 */
555 556 557 558 559 560

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
561
{
562 563
	void __iomem *vaddr_atomic;
	void *vaddr;
564
	unsigned long unwritten;
565

P
Peter Zijlstra 已提交
566
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
567 568 569
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
570
						      user_data, length);
P
Peter Zijlstra 已提交
571
	io_mapping_unmap_atomic(vaddr_atomic);
572
	return unwritten;
573 574
}

575 576 577 578
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
579
static int
580 581
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
582
			 struct drm_i915_gem_pwrite *args,
583
			 struct drm_file *file)
584
{
585
	drm_i915_private_t *dev_priv = dev->dev_private;
586
	ssize_t remain;
587
	loff_t offset, page_base;
588
	char __user *user_data;
D
Daniel Vetter 已提交
589 590 591 592 593 594 595 596 597 598 599 600 601
	int page_offset, page_length, ret;

	ret = i915_gem_object_pin(obj, 0, true);
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
602 603 604 605

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

606
	offset = obj->gtt_offset + args->offset;
607 608 609 610

	while (remain > 0) {
		/* Operation in this page
		 *
611 612 613
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
614
		 */
615 616
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
617 618 619 620 621
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
622 623
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
624
		 */
625
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
D
Daniel Vetter 已提交
626 627 628 629
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
			goto out_unpin;
		}
630

631 632 633
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
634 635
	}

D
Daniel Vetter 已提交
636 637 638
out_unpin:
	i915_gem_object_unpin(obj);
out:
639
	return ret;
640 641
}

642 643 644 645
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
646
static int
647 648 649 650 651
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
652
{
653
	char *vaddr;
654
	int ret;
655

656
	if (unlikely(page_do_bit17_swizzling))
657
		return -EINVAL;
658

659 660 661 662 663 664 665 666 667 668 669
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
						user_data,
						page_length);
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
670 671 672 673

	return ret;
}

674 675
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
676
static int
677 678 679 680 681
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
682
{
683 684
	char *vaddr;
	int ret;
685

686
	vaddr = kmap(page);
687
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
688 689 690
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
691 692
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
693 694
						user_data,
						page_length);
695 696 697 698 699
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
700 701 702
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
703
	kunmap(page);
704

705
	return ret;
706 707 708
}

static int
709 710 711 712
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
713
{
714
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
715
	ssize_t remain;
716 717
	loff_t offset;
	char __user *user_data;
718
	int shmem_page_offset, page_length, ret = 0;
719
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
720
	int hit_slowpath = 0;
721 722
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
723
	int release_page;
724

725
	user_data = (char __user *) (uintptr_t) args->data_ptr;
726 727
	remain = args->size;

728
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
729

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush_after = 1;
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
		if (ret)
			return ret;
	}
	/* Same trick applies for invalidate partially written cachelines before
	 * writing.  */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
	    && obj->cache_level == I915_CACHE_NONE)
		needs_clflush_before = 1;

747
	offset = args->offset;
748
	obj->dirty = 1;
749

750
	while (remain > 0) {
751
		struct page *page;
752
		int partial_cacheline_write;
753

754 755 756 757 758
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
759
		shmem_page_offset = offset_in_page(offset);
760 761 762 763 764

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

765 766 767 768 769 770 771
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

772 773 774 775 776 777 778 779 780 781
		if (obj->pages) {
			page = obj->pages[offset >> PAGE_SHIFT];
			release_page = 0;
		} else {
			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
				goto out;
			}
			release_page = 1;
782 783
		}

784 785 786
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

787 788 789 790 791 792
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
793 794

		hit_slowpath = 1;
795
		page_cache_get(page);
796 797
		mutex_unlock(&dev->struct_mutex);

798 799 800 801
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
802

803
		mutex_lock(&dev->struct_mutex);
804
		page_cache_release(page);
805
next_page:
806 807
		set_page_dirty(page);
		mark_page_accessed(page);
808 809
		if (release_page)
			page_cache_release(page);
810

811 812 813 814 815
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

816
		remain -= page_length;
817
		user_data += page_length;
818
		offset += page_length;
819 820
	}

821
out:
822 823 824 825 826 827 828 829 830 831
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
		/* and flush dirty cachelines in case the object isn't in the cpu write
		 * domain anymore. */
		if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
			i915_gem_clflush_object(obj);
			intel_gtt_chipset_flush();
		}
832
	}
833

834 835 836
	if (needs_clflush_after)
		intel_gtt_chipset_flush();

837
	return ret;
838 839 840 841 842 843 844 845 846
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
847
		      struct drm_file *file)
848 849
{
	struct drm_i915_gem_pwrite *args = data;
850
	struct drm_i915_gem_object *obj;
851 852 853 854 855 856 857 858 859 860
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

861 862
	ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
					   args->size);
863 864
	if (ret)
		return -EFAULT;
865

866
	ret = i915_mutex_lock_interruptible(dev);
867
	if (ret)
868
		return ret;
869

870
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
871
	if (&obj->base == NULL) {
872 873
		ret = -ENOENT;
		goto unlock;
874
	}
875

876
	/* Bounds check destination. */
877 878
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
879
		ret = -EINVAL;
880
		goto out;
C
Chris Wilson 已提交
881 882
	}

C
Chris Wilson 已提交
883 884
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
885
	ret = -EFAULT;
886 887 888 889 890 891
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
892
	if (obj->phys_obj) {
893
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
894 895 896 897
		goto out;
	}

	if (obj->gtt_space &&
898
	    obj->cache_level == I915_CACHE_NONE &&
899
	    obj->tiling_mode == I915_TILING_NONE &&
900
	    obj->map_and_fenceable &&
901
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
902
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
903 904 905
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
906
	}
907

908
	if (ret == -EFAULT)
D
Daniel Vetter 已提交
909
		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
910

911
out:
912
	drm_gem_object_unreference(&obj->base);
913
unlock:
914
	mutex_unlock(&dev->struct_mutex);
915 916 917 918
	return ret;
}

/**
919 920
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
921 922 923
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
924
			  struct drm_file *file)
925 926
{
	struct drm_i915_gem_set_domain *args = data;
927
	struct drm_i915_gem_object *obj;
928 929
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
930 931
	int ret;

932
	/* Only handle setting domains to types used by the CPU. */
933
	if (write_domain & I915_GEM_GPU_DOMAINS)
934 935
		return -EINVAL;

936
	if (read_domains & I915_GEM_GPU_DOMAINS)
937 938 939 940 941 942 943 944
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

945
	ret = i915_mutex_lock_interruptible(dev);
946
	if (ret)
947
		return ret;
948

949
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
950
	if (&obj->base == NULL) {
951 952
		ret = -ENOENT;
		goto unlock;
953
	}
954

955 956
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
957 958 959 960 961 962 963

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
964
	} else {
965
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
966 967
	}

968
	drm_gem_object_unreference(&obj->base);
969
unlock:
970 971 972 973 974 975 976 977 978
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
979
			 struct drm_file *file)
980 981
{
	struct drm_i915_gem_sw_finish *args = data;
982
	struct drm_i915_gem_object *obj;
983 984
	int ret = 0;

985
	ret = i915_mutex_lock_interruptible(dev);
986
	if (ret)
987
		return ret;
988

989
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
990
	if (&obj->base == NULL) {
991 992
		ret = -ENOENT;
		goto unlock;
993 994 995
	}

	/* Pinned buffers may be scanout, so flush the cache */
996
	if (obj->pin_count)
997 998
		i915_gem_object_flush_cpu_write_domain(obj);

999
	drm_gem_object_unreference(&obj->base);
1000
unlock:
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1014
		    struct drm_file *file)
1015 1016 1017 1018 1019
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1020
	obj = drm_gem_object_lookup(dev, file, args->handle);
1021
	if (obj == NULL)
1022
		return -ENOENT;
1023

1024
	addr = vm_mmap(obj->filp, 0, args->size,
1025 1026
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1027
	drm_gem_object_unreference_unlocked(obj);
1028 1029 1030 1031 1032 1033 1034 1035
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1054 1055
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1056
	drm_i915_private_t *dev_priv = dev->dev_private;
1057 1058 1059
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1060
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1061 1062 1063 1064 1065

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1066 1067 1068
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1069

C
Chris Wilson 已提交
1070 1071
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1072
	/* Now bind it into the GTT if needed */
1073 1074 1075 1076
	if (!obj->map_and_fenceable) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			goto unlock;
1077
	}
1078
	if (!obj->gtt_space) {
1079
		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1080 1081
		if (ret)
			goto unlock;
1082

1083 1084 1085 1086
		ret = i915_gem_object_set_to_gtt_domain(obj, write);
		if (ret)
			goto unlock;
	}
1087

1088 1089 1090
	if (!obj->has_global_gtt_mapping)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

1091
	ret = i915_gem_object_get_fence(obj);
1092 1093
	if (ret)
		goto unlock;
1094

1095 1096
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1097

1098 1099
	obj->fault_mappable = true;

1100
	pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1101 1102 1103 1104
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1105
unlock:
1106
	mutex_unlock(&dev->struct_mutex);
1107
out:
1108
	switch (ret) {
1109
	case -EIO:
1110
	case -EAGAIN:
1111 1112 1113 1114 1115 1116 1117
		/* Give the error handler a chance to run and move the
		 * objects off the GPU active list. Next time we service the
		 * fault, we should be able to transition the page into the
		 * GTT without touching the GPU (and so avoid further
		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
		 * with coherency, just lost writes.
		 */
1118
		set_need_resched();
1119 1120
	case 0:
	case -ERESTARTSYS:
1121
	case -EINTR:
1122
		return VM_FAULT_NOPAGE;
1123 1124 1125
	case -ENOMEM:
		return VM_FAULT_OOM;
	default:
1126
		return VM_FAULT_SIGBUS;
1127 1128 1129
	}
}

1130 1131 1132 1133
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1134
 * Preserve the reservation of the mmapping with the DRM core code, but
1135 1136 1137 1138 1139 1140 1141 1142 1143
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1144
void
1145
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1146
{
1147 1148
	if (!obj->fault_mappable)
		return;
1149

1150 1151 1152 1153
	if (obj->base.dev->dev_mapping)
		unmap_mapping_range(obj->base.dev->dev_mapping,
				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
				    obj->base.size, 1);
1154

1155
	obj->fault_mappable = false;
1156 1157
}

1158
static uint32_t
1159
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1160
{
1161
	uint32_t gtt_size;
1162 1163

	if (INTEL_INFO(dev)->gen >= 4 ||
1164 1165
	    tiling_mode == I915_TILING_NONE)
		return size;
1166 1167 1168

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1169
		gtt_size = 1024*1024;
1170
	else
1171
		gtt_size = 512*1024;
1172

1173 1174
	while (gtt_size < size)
		gtt_size <<= 1;
1175

1176
	return gtt_size;
1177 1178
}

1179 1180 1181 1182 1183
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1184
 * potential fence register mapping.
1185 1186
 */
static uint32_t
1187 1188 1189
i915_gem_get_gtt_alignment(struct drm_device *dev,
			   uint32_t size,
			   int tiling_mode)
1190 1191 1192 1193 1194
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1195
	if (INTEL_INFO(dev)->gen >= 4 ||
1196
	    tiling_mode == I915_TILING_NONE)
1197 1198
		return 4096;

1199 1200 1201 1202
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1203
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1204 1205
}

1206 1207 1208
/**
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
 *					 unfenced object
1209 1210 1211
 * @dev: the device
 * @size: size of the object
 * @tiling_mode: tiling mode of the object
1212 1213 1214 1215
 *
 * Return the required GTT alignment for an object, only taking into account
 * unfenced tiled surface requirements.
 */
1216
uint32_t
1217 1218 1219
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
				    uint32_t size,
				    int tiling_mode)
1220 1221 1222 1223 1224
{
	/*
	 * Minimum alignment is 4k (GTT page size) for sane hw.
	 */
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1225
	    tiling_mode == I915_TILING_NONE)
1226 1227
		return 4096;

1228 1229 1230
	/* Previous hardware however needs to be aligned to a power-of-two
	 * tile height. The simplest method for determining this is to reuse
	 * the power-of-tile object size.
1231
	 */
1232
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1233 1234
}

1235
int
1236 1237 1238 1239
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
		  uint32_t handle,
		  uint64_t *offset)
1240
{
1241
	struct drm_i915_private *dev_priv = dev->dev_private;
1242
	struct drm_i915_gem_object *obj;
1243 1244
	int ret;

1245
	ret = i915_mutex_lock_interruptible(dev);
1246
	if (ret)
1247
		return ret;
1248

1249
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1250
	if (&obj->base == NULL) {
1251 1252 1253
		ret = -ENOENT;
		goto unlock;
	}
1254

1255
	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1256
		ret = -E2BIG;
1257
		goto out;
1258 1259
	}

1260
	if (obj->madv != I915_MADV_WILLNEED) {
1261
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1262 1263
		ret = -EINVAL;
		goto out;
1264 1265
	}

1266
	if (!obj->base.map_list.map) {
1267
		ret = drm_gem_create_mmap_offset(&obj->base);
1268 1269
		if (ret)
			goto out;
1270 1271
	}

1272
	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1273

1274
out:
1275
	drm_gem_object_unreference(&obj->base);
1276
unlock:
1277
	mutex_unlock(&dev->struct_mutex);
1278
	return ret;
1279 1280
}

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}


1306
static int
1307
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
			      gfp_t gfpmask)
{
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
1318 1319 1320 1321
	page_count = obj->base.size / PAGE_SIZE;
	BUG_ON(obj->pages != NULL);
	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj->pages == NULL)
1322 1323
		return -ENOMEM;

1324
	inode = obj->base.filp->f_path.dentry->d_inode;
1325
	mapping = inode->i_mapping;
1326 1327
	gfpmask |= mapping_gfp_mask(mapping);

1328
	for (i = 0; i < page_count; i++) {
1329
		page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1330 1331 1332
		if (IS_ERR(page))
			goto err_pages;

1333
		obj->pages[i] = page;
1334 1335
	}

1336
	if (i915_gem_object_needs_bit17_swizzle(obj))
1337 1338 1339 1340 1341 1342
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
	while (i--)
1343
		page_cache_release(obj->pages[i]);
1344

1345 1346
	drm_free_large(obj->pages);
	obj->pages = NULL;
1347 1348 1349
	return PTR_ERR(page);
}

1350
static void
1351
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1352
{
1353
	int page_count = obj->base.size / PAGE_SIZE;
1354 1355
	int i;

1356
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1357

1358
	if (i915_gem_object_needs_bit17_swizzle(obj))
1359 1360
		i915_gem_object_save_bit_17_swizzle(obj);

1361 1362
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1363 1364

	for (i = 0; i < page_count; i++) {
1365 1366
		if (obj->dirty)
			set_page_dirty(obj->pages[i]);
1367

1368 1369
		if (obj->madv == I915_MADV_WILLNEED)
			mark_page_accessed(obj->pages[i]);
1370

1371
		page_cache_release(obj->pages[i]);
1372
	}
1373
	obj->dirty = 0;
1374

1375 1376
	drm_free_large(obj->pages);
	obj->pages = NULL;
1377 1378
}

1379
void
1380
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1381 1382
			       struct intel_ring_buffer *ring,
			       u32 seqno)
1383
{
1384
	struct drm_device *dev = obj->base.dev;
1385
	struct drm_i915_private *dev_priv = dev->dev_private;
1386

1387
	BUG_ON(ring == NULL);
1388
	obj->ring = ring;
1389 1390

	/* Add a reference if we're newly entering the active list. */
1391 1392 1393
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
1394
	}
1395

1396
	/* Move from whatever list we were on to the tail of execution. */
1397 1398
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj->ring_list, &ring->active_list);
1399

1400
	obj->last_rendering_seqno = seqno;
1401

1402
	if (obj->fenced_gpu_access) {
1403 1404
		obj->last_fenced_seqno = seqno;

1405 1406 1407 1408 1409 1410 1411 1412
		/* Bump MRU to take account of the delayed flush */
		if (obj->fence_reg != I915_FENCE_REG_NONE) {
			struct drm_i915_fence_reg *reg;

			reg = &dev_priv->fence_regs[obj->fence_reg];
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
		}
1413 1414 1415 1416 1417 1418 1419 1420
	}
}

static void
i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
{
	list_del_init(&obj->ring_list);
	obj->last_rendering_seqno = 0;
1421
	obj->last_fenced_seqno = 0;
1422 1423
}

1424
static void
1425
i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1426
{
1427
	struct drm_device *dev = obj->base.dev;
1428 1429
	drm_i915_private_t *dev_priv = dev->dev_private;

1430 1431
	BUG_ON(!obj->active);
	list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441

	i915_gem_object_move_off_active(obj);
}

static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

1442
	list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1443 1444 1445 1446 1447 1448 1449 1450 1451

	BUG_ON(!list_empty(&obj->gpu_write_list));
	BUG_ON(!obj->active);
	obj->ring = NULL;

	i915_gem_object_move_off_active(obj);
	obj->fenced_gpu_access = false;

	obj->active = 0;
1452
	obj->pending_gpu_write = false;
1453 1454 1455
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
1456
}
1457

1458 1459
/* Immediately discard the backing storage */
static void
1460
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1461
{
C
Chris Wilson 已提交
1462
	struct inode *inode;
1463

1464 1465 1466
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
1467
	 * backing pages, *now*.
1468
	 */
1469
	inode = obj->base.filp->f_path.dentry->d_inode;
1470
	shmem_truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1471

1472 1473 1474
	if (obj->base.map_list.map)
		drm_gem_free_mmap_offset(&obj->base);

1475
	obj->madv = __I915_MADV_PURGED;
1476 1477 1478
}

static inline int
1479
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1480
{
1481
	return obj->madv == I915_MADV_DONTNEED;
1482 1483
}

1484
static void
C
Chris Wilson 已提交
1485 1486
i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
			       uint32_t flush_domains)
1487
{
1488
	struct drm_i915_gem_object *obj, *next;
1489

1490
	list_for_each_entry_safe(obj, next,
1491
				 &ring->gpu_write_list,
1492
				 gpu_write_list) {
1493 1494
		if (obj->base.write_domain & flush_domains) {
			uint32_t old_write_domain = obj->base.write_domain;
1495

1496 1497
			obj->base.write_domain = 0;
			list_del_init(&obj->gpu_write_list);
1498
			i915_gem_object_move_to_active(obj, ring,
C
Chris Wilson 已提交
1499
						       i915_gem_next_request_seqno(ring));
1500 1501

			trace_i915_gem_object_change_domain(obj,
1502
							    obj->base.read_domains,
1503 1504 1505 1506
							    old_write_domain);
		}
	}
}
1507

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
static u32
i915_gem_get_seqno(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 seqno = dev_priv->next_seqno;

	/* reserve 0 for non-seqno */
	if (++dev_priv->next_seqno == 0)
		dev_priv->next_seqno = 1;

	return seqno;
}

u32
i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
{
	if (ring->outstanding_lazy_request == 0)
		ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);

	return ring->outstanding_lazy_request;
}

1530
int
C
Chris Wilson 已提交
1531
i915_add_request(struct intel_ring_buffer *ring,
1532
		 struct drm_file *file,
C
Chris Wilson 已提交
1533
		 struct drm_i915_gem_request *request)
1534
{
C
Chris Wilson 已提交
1535
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1536
	uint32_t seqno;
1537
	u32 request_ring_position;
1538
	int was_empty;
1539 1540 1541
	int ret;

	BUG_ON(request == NULL);
1542
	seqno = i915_gem_next_request_seqno(ring);
1543

1544 1545 1546 1547 1548 1549 1550
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	request_ring_position = intel_ring_get_tail(ring);

1551 1552 1553
	ret = ring->add_request(ring, &seqno);
	if (ret)
	    return ret;
1554

C
Chris Wilson 已提交
1555
	trace_i915_gem_request_add(ring, seqno);
1556 1557

	request->seqno = seqno;
1558
	request->ring = ring;
1559
	request->tail = request_ring_position;
1560
	request->emitted_jiffies = jiffies;
1561 1562 1563
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

C
Chris Wilson 已提交
1564 1565 1566
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

1567
		spin_lock(&file_priv->mm.lock);
1568
		request->file_priv = file_priv;
1569
		list_add_tail(&request->client_list,
1570
			      &file_priv->mm.request_list);
1571
		spin_unlock(&file_priv->mm.lock);
1572
	}
1573

1574
	ring->outstanding_lazy_request = 0;
C
Chris Wilson 已提交
1575

B
Ben Gamari 已提交
1576
	if (!dev_priv->mm.suspended) {
1577 1578 1579 1580 1581
		if (i915_enable_hangcheck) {
			mod_timer(&dev_priv->hangcheck_timer,
				  jiffies +
				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
		}
B
Ben Gamari 已提交
1582
		if (was_empty)
1583 1584
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1585
	}
1586
	return 0;
1587 1588
}

1589 1590
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1591
{
1592
	struct drm_i915_file_private *file_priv = request->file_priv;
1593

1594 1595
	if (!file_priv)
		return;
C
Chris Wilson 已提交
1596

1597
	spin_lock(&file_priv->mm.lock);
1598 1599 1600 1601
	if (request->file_priv) {
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
1602
	spin_unlock(&file_priv->mm.lock);
1603 1604
}

1605 1606
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1607
{
1608 1609
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1610

1611 1612 1613
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
1614

1615
		list_del(&request->list);
1616
		i915_gem_request_remove_from_client(request);
1617 1618
		kfree(request);
	}
1619

1620
	while (!list_empty(&ring->active_list)) {
1621
		struct drm_i915_gem_object *obj;
1622

1623 1624 1625
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
1626

1627 1628 1629
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1630 1631 1632
	}
}

1633 1634 1635 1636 1637
static void i915_gem_reset_fences(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

1638
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
1639
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1640

1641
		i915_gem_write_fence(dev, i, NULL);
1642

1643 1644
		if (reg->obj)
			i915_gem_object_fence_lost(reg->obj);
1645

1646 1647 1648
		reg->pin_count = 0;
		reg->obj = NULL;
		INIT_LIST_HEAD(&reg->lru_list);
1649
	}
1650 1651

	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1652 1653
}

1654
void i915_gem_reset(struct drm_device *dev)
1655
{
1656
	struct drm_i915_private *dev_priv = dev->dev_private;
1657
	struct drm_i915_gem_object *obj;
1658
	struct intel_ring_buffer *ring;
1659
	int i;
1660

1661 1662
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_lists(dev_priv, ring);
1663 1664 1665 1666 1667 1668

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
1669
		obj = list_first_entry(&dev_priv->mm.flushing_list,
1670 1671
				      struct drm_i915_gem_object,
				      mm_list);
1672

1673 1674 1675
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1676 1677 1678 1679 1680
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1681
	list_for_each_entry(obj,
1682
			    &dev_priv->mm.inactive_list,
1683
			    mm_list)
1684
	{
1685
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1686
	}
1687 1688

	/* The fence registers are invalidated so clear them out */
1689
	i915_gem_reset_fences(dev);
1690 1691 1692 1693 1694
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1695
void
C
Chris Wilson 已提交
1696
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1697 1698
{
	uint32_t seqno;
1699
	int i;
1700

C
Chris Wilson 已提交
1701
	if (list_empty(&ring->request_list))
1702 1703
		return;

C
Chris Wilson 已提交
1704
	WARN_ON(i915_verify_lists(ring->dev));
1705

1706
	seqno = ring->get_seqno(ring);
1707

1708
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1709 1710 1711
		if (seqno >= ring->sync_seqno[i])
			ring->sync_seqno[i] = 0;

1712
	while (!list_empty(&ring->request_list)) {
1713 1714
		struct drm_i915_gem_request *request;

1715
		request = list_first_entry(&ring->request_list,
1716 1717 1718
					   struct drm_i915_gem_request,
					   list);

1719
		if (!i915_seqno_passed(seqno, request->seqno))
1720 1721
			break;

C
Chris Wilson 已提交
1722
		trace_i915_gem_request_retire(ring, request->seqno);
1723 1724 1725 1726 1727 1728
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
		ring->last_retired_head = request->tail;
1729 1730

		list_del(&request->list);
1731
		i915_gem_request_remove_from_client(request);
1732 1733
		kfree(request);
	}
1734

1735 1736 1737 1738
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
1739
		struct drm_i915_gem_object *obj;
1740

1741
		obj = list_first_entry(&ring->active_list,
1742 1743
				      struct drm_i915_gem_object,
				      ring_list);
1744

1745
		if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1746
			break;
1747

1748
		if (obj->base.write_domain != 0)
1749 1750 1751
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1752
	}
1753

C
Chris Wilson 已提交
1754 1755
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1756
		ring->irq_put(ring);
C
Chris Wilson 已提交
1757
		ring->trace_irq_seqno = 0;
1758
	}
1759

C
Chris Wilson 已提交
1760
	WARN_ON(i915_verify_lists(ring->dev));
1761 1762
}

1763 1764 1765 1766
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1767
	struct intel_ring_buffer *ring;
1768
	int i;
1769

1770 1771
	for_each_ring(ring, dev_priv, i)
		i915_gem_retire_requests_ring(ring);
1772 1773
}

1774
static void
1775 1776 1777 1778
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;
1779
	struct intel_ring_buffer *ring;
1780 1781
	bool idle;
	int i;
1782 1783 1784 1785 1786

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1787 1788 1789 1790 1791 1792
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1793
	i915_gem_retire_requests(dev);
1794

1795 1796 1797 1798
	/* Send a periodic flush down the ring so we don't hold onto GEM
	 * objects indefinitely.
	 */
	idle = true;
1799
	for_each_ring(ring, dev_priv, i) {
1800 1801 1802 1803
		if (!list_empty(&ring->gpu_write_list)) {
			struct drm_i915_gem_request *request;
			int ret;

C
Chris Wilson 已提交
1804 1805
			ret = i915_gem_flush_ring(ring,
						  0, I915_GEM_GPU_DOMAINS);
1806 1807
			request = kzalloc(sizeof(*request), GFP_KERNEL);
			if (ret || request == NULL ||
C
Chris Wilson 已提交
1808
			    i915_add_request(ring, NULL, request))
1809 1810 1811 1812 1813 1814 1815
			    kfree(request);
		}

		idle &= list_empty(&ring->request_list);
	}

	if (!dev_priv->mm.suspended && !idle)
1816
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1817

1818 1819 1820
	mutex_unlock(&dev->struct_mutex);
}

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
static int
i915_gem_check_wedge(struct drm_i915_private *dev_priv)
{
	BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));

	if (atomic_read(&dev_priv->mm.wedged)) {
		struct completion *x = &dev_priv->error_completion;
		bool recovery_complete;
		unsigned long flags;

		/* Give the error handler a chance to run. */
		spin_lock_irqsave(&x->wait.lock, flags);
		recovery_complete = x->done > 0;
		spin_unlock_irqrestore(&x->wait.lock, flags);

		return recovery_complete ? -EIO : -EAGAIN;
	}

	return 0;
}

/*
 * Compare seqno against outstanding lazy request. Emit a request if they are
 * equal.
 */
static int
i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
{
	int ret = 0;

	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));

	if (seqno == ring->outstanding_lazy_request) {
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return -ENOMEM;

		ret = i915_add_request(ring, NULL, request);
		if (ret) {
			kfree(request);
			return ret;
		}

		BUG_ON(seqno != request->seqno);
	}

	return ret;
}

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
/**
 * __wait_seqno - wait until execution of seqno has finished
 * @ring: the ring expected to report seqno
 * @seqno: duh!
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
 * Returns 0 if the seqno was found within the alloted time. Else returns the
 * errno with remaining time filled in timeout argument.
 */
1882
static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1883
			bool interruptible, struct timespec *timeout)
1884 1885
{
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1886 1887 1888 1889
	struct timespec before, now, wait_time={1,0};
	unsigned long timeout_jiffies;
	long end;
	bool wait_forever = true;
1890 1891 1892 1893 1894

	if (i915_seqno_passed(ring->get_seqno(ring), seqno))
		return 0;

	trace_i915_gem_request_wait_begin(ring, seqno);
1895 1896 1897 1898 1899 1900 1901 1902

	if (timeout != NULL) {
		wait_time = *timeout;
		wait_forever = false;
	}

	timeout_jiffies = timespec_to_jiffies(&wait_time);

1903 1904 1905
	if (WARN_ON(!ring->irq_get(ring)))
		return -ENODEV;

1906 1907 1908
	/* Record current time in case interrupted by signal, or wedged * */
	getrawmonotonic(&before);

1909 1910 1911
#define EXIT_COND \
	(i915_seqno_passed(ring->get_seqno(ring), seqno) || \
	atomic_read(&dev_priv->mm.wedged))
1912 1913 1914 1915 1916 1917 1918 1919
	do {
		if (interruptible)
			end = wait_event_interruptible_timeout(ring->irq_queue,
							       EXIT_COND,
							       timeout_jiffies);
		else
			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
						 timeout_jiffies);
1920

1921 1922 1923 1924 1925
		if (atomic_read(&dev_priv->mm.wedged))
			end = -EAGAIN;
	} while (end == 0 && wait_forever);

	getrawmonotonic(&now);
1926 1927 1928 1929 1930

	ring->irq_put(ring);
	trace_i915_gem_request_wait_end(ring, seqno);
#undef EXIT_COND

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
	if (timeout) {
		struct timespec sleep_time = timespec_sub(now, before);
		*timeout = timespec_sub(*timeout, sleep_time);
	}

	switch (end) {
	case -EAGAIN: /* Wedged */
	case -ERESTARTSYS: /* Signal */
		return (int)end;
	case 0: /* Timeout */
		if (timeout)
			set_normalized_timespec(timeout, 0, 0);
		return -ETIME;
	default: /* Completed */
		WARN_ON(end < 0); /* We're not aware of other errors */
		return 0;
	}
1948 1949
}

C
Chris Wilson 已提交
1950 1951 1952 1953
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
1954
int
C
Chris Wilson 已提交
1955
i915_wait_request(struct intel_ring_buffer *ring,
1956
		  uint32_t seqno)
1957
{
C
Chris Wilson 已提交
1958
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1959 1960 1961 1962
	int ret = 0;

	BUG_ON(seqno == 0);

1963 1964 1965
	ret = i915_gem_check_wedge(dev_priv);
	if (ret)
		return ret;
1966

1967 1968 1969
	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;
1970

1971
	ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL);
1972 1973 1974 1975 1976 1977 1978 1979

	return ret;
}

/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1980
int
1981
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
1982 1983 1984
{
	int ret;

1985 1986
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
1987
	 */
1988
	BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
1989 1990 1991 1992

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
1993
	if (obj->active) {
1994
		ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
1995
		if (ret)
1996
			return ret;
1997
		i915_gem_retire_requests_ring(obj->ring);
1998 1999 2000 2001 2002
	}

	return 0;
}

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
		     struct intel_ring_buffer *to)
{
	struct intel_ring_buffer *from = obj->ring;
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

2026
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2027 2028 2029 2030 2031 2032 2033 2034
		return i915_gem_object_wait_rendering(obj);

	idx = intel_ring_sync_index(from, to);

	seqno = obj->last_rendering_seqno;
	if (seqno <= from->sync_seqno[idx])
		return 0;

2035 2036 2037
	ret = i915_gem_check_olr(obj->ring, seqno);
	if (ret)
		return ret;
2038

2039
	ret = to->sync_to(to, from, seqno);
2040 2041
	if (!ret)
		from->sync_seqno[idx] = seqno;
2042

2043
	return ret;
2044 2045
}

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Act a barrier for all accesses through the GTT */
	mb();

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2056 2057 2058
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2070 2071 2072
/**
 * Unbinds an object from the GTT aperture.
 */
2073
int
2074
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2075
{
2076
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2077 2078
	int ret = 0;

2079
	if (obj->gtt_space == NULL)
2080 2081
		return 0;

2082
	if (obj->pin_count != 0) {
2083 2084 2085 2086
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2087
	ret = i915_gem_object_finish_gpu(obj);
2088
	if (ret)
2089 2090 2091 2092 2093 2094
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

2095
	i915_gem_object_finish_gtt(obj);
2096

2097 2098
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
2099
	 * are flushed when we go to remap it.
2100
	 */
2101 2102
	if (ret == 0)
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2103
	if (ret == -ERESTARTSYS)
2104
		return ret;
2105
	if (ret) {
2106 2107 2108
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2109
		i915_gem_clflush_object(obj);
2110
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2111
	}
2112

2113
	/* release the fence reg _after_ flushing */
2114
	ret = i915_gem_object_put_fence(obj);
2115
	if (ret)
2116
		return ret;
2117

C
Chris Wilson 已提交
2118 2119
	trace_i915_gem_object_unbind(obj);

2120 2121
	if (obj->has_global_gtt_mapping)
		i915_gem_gtt_unbind_object(obj);
2122 2123 2124 2125
	if (obj->has_aliasing_ppgtt_mapping) {
		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
		obj->has_aliasing_ppgtt_mapping = 0;
	}
2126
	i915_gem_gtt_finish_object(obj);
2127

2128
	i915_gem_object_put_pages_gtt(obj);
2129

2130
	list_del_init(&obj->gtt_list);
2131
	list_del_init(&obj->mm_list);
2132
	/* Avoid an unnecessary call to unbind on rebind. */
2133
	obj->map_and_fenceable = true;
2134

2135 2136 2137
	drm_mm_put_block(obj->gtt_space);
	obj->gtt_space = NULL;
	obj->gtt_offset = 0;
2138

2139
	if (i915_gem_object_is_purgeable(obj))
2140 2141
		i915_gem_object_truncate(obj);

2142
	return ret;
2143 2144
}

2145
int
C
Chris Wilson 已提交
2146
i915_gem_flush_ring(struct intel_ring_buffer *ring,
2147 2148 2149
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
2150 2151
	int ret;

2152 2153 2154
	if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
		return 0;

C
Chris Wilson 已提交
2155 2156
	trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);

2157 2158 2159 2160
	ret = ring->flush(ring, invalidate_domains, flush_domains);
	if (ret)
		return ret;

2161 2162 2163
	if (flush_domains & I915_GEM_GPU_DOMAINS)
		i915_gem_process_flushing_list(ring, flush_domains);

2164
	return 0;
2165 2166
}

2167
static int i915_ring_idle(struct intel_ring_buffer *ring)
2168
{
2169 2170
	int ret;

2171
	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2172 2173
		return 0;

2174
	if (!list_empty(&ring->gpu_write_list)) {
C
Chris Wilson 已提交
2175
		ret = i915_gem_flush_ring(ring,
2176
				    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2177 2178 2179 2180
		if (ret)
			return ret;
	}

2181
	return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
2182 2183
}

2184
int i915_gpu_idle(struct drm_device *dev)
2185 2186
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2187
	struct intel_ring_buffer *ring;
2188
	int ret, i;
2189 2190

	/* Flush everything onto the inactive list. */
2191 2192
	for_each_ring(ring, dev_priv, i) {
		ret = i915_ring_idle(ring);
2193 2194
		if (ret)
			return ret;
2195 2196 2197 2198

		/* Is the device fubar? */
		if (WARN_ON(!list_empty(&ring->gpu_write_list)))
			return -EBUSY;
2199
	}
2200

2201
	return 0;
2202 2203
}

2204 2205
static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
					struct drm_i915_gem_object *obj)
2206 2207 2208 2209
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint64_t val;

2210 2211
	if (obj) {
		u32 size = obj->gtt_space->size;
2212

2213 2214 2215 2216 2217
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
				 0xfffff000) << 32;
		val |= obj->gtt_offset & 0xfffff000;
		val |= (uint64_t)((obj->stride / 128) - 1) <<
			SANDYBRIDGE_FENCE_PITCH_SHIFT;
2218

2219 2220 2221 2222 2223
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
	} else
		val = 0;
2224

2225 2226
	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
	POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2227 2228
}

2229 2230
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2231 2232 2233 2234
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint64_t val;

2235 2236
	if (obj) {
		u32 size = obj->gtt_space->size;
2237

2238 2239 2240 2241 2242 2243 2244 2245 2246
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
				 0xfffff000) << 32;
		val |= obj->gtt_offset & 0xfffff000;
		val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
	} else
		val = 0;
2247

2248 2249
	I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
	POSTING_READ(FENCE_REG_965_0 + reg * 8);
2250 2251
}

2252 2253
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2254 2255
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2256
	u32 val;
2257

2258 2259 2260 2261
	if (obj) {
		u32 size = obj->gtt_space->size;
		int pitch_val;
		int tile_width;
2262

2263 2264 2265 2266 2267
		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
		     (size & -size) != size ||
		     (obj->gtt_offset & (size - 1)),
		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     obj->gtt_offset, obj->map_and_fenceable, size);
2268

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

		val = obj->gtt_offset;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
2294 2295
}

2296 2297
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
2298 2299 2300 2301
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t val;

2302 2303 2304
	if (obj) {
		u32 size = obj->gtt_space->size;
		uint32_t pitch_val;
2305

2306 2307 2308 2309 2310
		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
		     (size & -size) != size ||
		     (obj->gtt_offset & (size - 1)),
		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
		     obj->gtt_offset, size);
2311

2312 2313
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
2314

2315 2316 2317 2318 2319 2320 2321 2322
		val = obj->gtt_offset;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
2323

2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
	switch (INTEL_INFO(dev)->gen) {
	case 7:
	case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
	case 5:
	case 4: i965_write_fence_reg(dev, reg, obj); break;
	case 3: i915_write_fence_reg(dev, reg, obj); break;
	case 2: i830_write_fence_reg(dev, reg, obj); break;
	default: break;
	}
2340 2341
}

2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);

	if (enable) {
		obj->fence_reg = reg;
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
}

2368
static int
C
Chris Wilson 已提交
2369
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2370 2371 2372 2373
{
	int ret;

	if (obj->fenced_gpu_access) {
2374
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2375
			ret = i915_gem_flush_ring(obj->ring,
2376 2377 2378 2379
						  0, obj->base.write_domain);
			if (ret)
				return ret;
		}
2380 2381 2382 2383

		obj->fenced_gpu_access = false;
	}

2384
	if (obj->last_fenced_seqno) {
2385
		ret = i915_wait_request(obj->ring, obj->last_fenced_seqno);
2386 2387
		if (ret)
			return ret;
2388 2389 2390 2391

		obj->last_fenced_seqno = 0;
	}

2392 2393 2394 2395 2396 2397
	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
		mb();

2398 2399 2400 2401 2402 2403
	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
2404
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2405 2406
	int ret;

C
Chris Wilson 已提交
2407
	ret = i915_gem_object_flush_fence(obj);
2408 2409 2410
	if (ret)
		return ret;

2411 2412
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
2413

2414 2415 2416 2417
	i915_gem_object_update_fence(obj,
				     &dev_priv->fence_regs[obj->fence_reg],
				     false);
	i915_gem_object_fence_lost(obj);
2418 2419 2420 2421 2422

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
2423
i915_find_fence_reg(struct drm_device *dev)
2424 2425
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
2426
	struct drm_i915_fence_reg *reg, *avail;
2427
	int i;
2428 2429

	/* First try to find a free reg */
2430
	avail = NULL;
2431 2432 2433
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
2434
			return reg;
2435

2436
		if (!reg->pin_count)
2437
			avail = reg;
2438 2439
	}

2440 2441
	if (avail == NULL)
		return NULL;
2442 2443

	/* None available, try to steal one or wait for a user to finish */
2444
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2445
		if (reg->pin_count)
2446 2447
			continue;

C
Chris Wilson 已提交
2448
		return reg;
2449 2450
	}

C
Chris Wilson 已提交
2451
	return NULL;
2452 2453
}

2454
/**
2455
 * i915_gem_object_get_fence - set up fencing for an object
2456 2457 2458 2459 2460 2461 2462 2463 2464
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
2465 2466
 *
 * For an untiled surface, this removes any existing fence.
2467
 */
2468
int
2469
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2470
{
2471
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
2472
	struct drm_i915_private *dev_priv = dev->dev_private;
2473
	bool enable = obj->tiling_mode != I915_TILING_NONE;
2474
	struct drm_i915_fence_reg *reg;
2475
	int ret;
2476

2477 2478 2479
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
2480
	if (obj->fence_dirty) {
2481 2482 2483 2484
		ret = i915_gem_object_flush_fence(obj);
		if (ret)
			return ret;
	}
2485

2486
	/* Just update our place in the LRU if our fence is getting reused. */
2487 2488
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
2489
		if (!obj->fence_dirty) {
2490 2491 2492 2493 2494 2495 2496 2497
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
		reg = i915_find_fence_reg(dev);
		if (reg == NULL)
			return -EDEADLK;
2498

2499 2500 2501 2502
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

			ret = i915_gem_object_flush_fence(old);
2503 2504 2505
			if (ret)
				return ret;

2506
			i915_gem_object_fence_lost(old);
2507
		}
2508
	} else
2509 2510
		return 0;

2511
	i915_gem_object_update_fence(obj, reg, enable);
2512
	obj->fence_dirty = false;
2513

2514
	return 0;
2515 2516
}

2517 2518 2519 2520
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2521
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2522
			    unsigned alignment,
2523
			    bool map_and_fenceable)
2524
{
2525
	struct drm_device *dev = obj->base.dev;
2526 2527
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_mm_node *free_space;
2528
	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2529
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2530
	bool mappable, fenceable;
2531
	int ret;
2532

2533
	if (obj->madv != I915_MADV_WILLNEED) {
2534 2535 2536 2537
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
						     obj->tiling_mode);
	unfenced_alignment =
		i915_gem_get_unfenced_gtt_alignment(dev,
						    obj->base.size,
						    obj->tiling_mode);
2548

2549
	if (alignment == 0)
2550 2551
		alignment = map_and_fenceable ? fence_alignment :
						unfenced_alignment;
2552
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2553 2554 2555 2556
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2557
	size = map_and_fenceable ? fence_size : obj->base.size;
2558

2559 2560 2561
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2562
	if (obj->base.size >
2563
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2564 2565 2566 2567
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2568
 search_free:
2569
	if (map_and_fenceable)
2570 2571
		free_space =
			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2572
						    size, alignment, 0,
2573 2574 2575 2576
						    dev_priv->mm.gtt_mappable_end,
						    0);
	else
		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2577
						size, alignment, 0);
2578 2579

	if (free_space != NULL) {
2580
		if (map_and_fenceable)
2581
			obj->gtt_space =
2582
				drm_mm_get_block_range_generic(free_space,
2583
							       size, alignment, 0,
2584 2585 2586
							       dev_priv->mm.gtt_mappable_end,
							       0);
		else
2587
			obj->gtt_space =
2588
				drm_mm_get_block(free_space, size, alignment);
2589
	}
2590
	if (obj->gtt_space == NULL) {
2591 2592 2593
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2594 2595
		ret = i915_gem_evict_something(dev, size, alignment,
					       map_and_fenceable);
2596
		if (ret)
2597
			return ret;
2598

2599 2600 2601
		goto search_free;
	}

2602
	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2603
	if (ret) {
2604 2605
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2606 2607

		if (ret == -ENOMEM) {
2608 2609
			/* first try to reclaim some memory by clearing the GTT */
			ret = i915_gem_evict_everything(dev, false);
2610 2611
			if (ret) {
				/* now try to shrink everyone else */
2612 2613 2614
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2615 2616
				}

2617
				return -ENOMEM;
2618 2619 2620 2621 2622
			}

			goto search_free;
		}

2623 2624 2625
		return ret;
	}

2626
	ret = i915_gem_gtt_prepare_object(obj);
2627
	if (ret) {
2628
		i915_gem_object_put_pages_gtt(obj);
2629 2630
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2631

2632
		if (i915_gem_evict_everything(dev, false))
2633 2634 2635
			return ret;

		goto search_free;
2636 2637
	}

2638 2639
	if (!dev_priv->mm.aliasing_ppgtt)
		i915_gem_gtt_bind_object(obj, obj->cache_level);
2640

2641
	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2642
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2643

2644 2645 2646 2647
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2648 2649
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2650

2651
	obj->gtt_offset = obj->gtt_space->start;
C
Chris Wilson 已提交
2652

2653
	fenceable =
2654
		obj->gtt_space->size == fence_size &&
2655
		(obj->gtt_space->start & (fence_alignment - 1)) == 0;
2656

2657
	mappable =
2658
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2659

2660
	obj->map_and_fenceable = mappable && fenceable;
2661

C
Chris Wilson 已提交
2662
	trace_i915_gem_object_bind(obj, map_and_fenceable);
2663 2664 2665 2666
	return 0;
}

void
2667
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2668 2669 2670 2671 2672
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2673
	if (obj->pages == NULL)
2674 2675
		return;

2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
	if (obj->cache_level != I915_CACHE_NONE)
		return;

C
Chris Wilson 已提交
2687
	trace_i915_gem_object_clflush(obj);
2688

2689
	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2690 2691
}

2692
/** Flushes any GPU write domain for the object if it's dirty. */
2693
static int
2694
i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2695
{
2696
	if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2697
		return 0;
2698 2699

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2700
	return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2701 2702 2703 2704
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
2705
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2706
{
C
Chris Wilson 已提交
2707 2708
	uint32_t old_write_domain;

2709
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2710 2711
		return;

2712
	/* No actual flushing is required for the GTT write domain.  Writes
2713 2714
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
2715 2716 2717 2718
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
2719
	 */
2720 2721
	wmb();

2722 2723
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2724 2725

	trace_i915_gem_object_change_domain(obj,
2726
					    obj->base.read_domains,
C
Chris Wilson 已提交
2727
					    old_write_domain);
2728 2729 2730 2731
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
2732
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2733
{
C
Chris Wilson 已提交
2734
	uint32_t old_write_domain;
2735

2736
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2737 2738 2739
		return;

	i915_gem_clflush_object(obj);
2740
	intel_gtt_chipset_flush();
2741 2742
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2743 2744

	trace_i915_gem_object_change_domain(obj,
2745
					    obj->base.read_domains,
C
Chris Wilson 已提交
2746
					    old_write_domain);
2747 2748
}

2749 2750 2751 2752 2753 2754
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2755
int
2756
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2757
{
2758
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
C
Chris Wilson 已提交
2759
	uint32_t old_write_domain, old_read_domains;
2760
	int ret;
2761

2762
	/* Not valid to be called on unbound objects. */
2763
	if (obj->gtt_space == NULL)
2764 2765
		return -EINVAL;

2766 2767 2768
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

2769 2770 2771 2772
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2773
	if (obj->pending_gpu_write || write) {
2774
		ret = i915_gem_object_wait_rendering(obj);
2775 2776 2777
		if (ret)
			return ret;
	}
2778

2779
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2780

2781 2782
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
2783

2784 2785 2786
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2787 2788
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2789
	if (write) {
2790 2791 2792
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
2793 2794
	}

C
Chris Wilson 已提交
2795 2796 2797 2798
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2799 2800 2801 2802
	/* And bump the LRU for this access */
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

2803 2804 2805
	return 0;
}

2806 2807 2808
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
2809 2810
	struct drm_device *dev = obj->base.dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

	if (obj->pin_count) {
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

	if (obj->gtt_space) {
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
		if (INTEL_INFO(obj->base.dev)->gen < 6) {
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

2838 2839
		if (obj->has_global_gtt_mapping)
			i915_gem_gtt_bind_object(obj, cache_level);
2840 2841 2842
		if (obj->has_aliasing_ppgtt_mapping)
			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
					       obj, cache_level);
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
	}

	if (cache_level == I915_CACHE_NONE) {
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

	obj->cache_level = cache_level;
	return 0;
}

2872
/*
2873 2874 2875
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
2876 2877
 */
int
2878 2879
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
2880
				     struct intel_ring_buffer *pipelined)
2881
{
2882
	u32 old_read_domains, old_write_domain;
2883 2884
	int ret;

2885 2886 2887 2888
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2889
	if (pipelined != obj->ring) {
2890 2891
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
2892 2893 2894
			return ret;
	}

2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
	if (ret)
		return ret;

2908 2909 2910 2911 2912 2913 2914 2915
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
	ret = i915_gem_object_pin(obj, alignment, true);
	if (ret)
		return ret;

2916 2917
	i915_gem_object_flush_cpu_write_domain(obj);

2918
	old_write_domain = obj->base.write_domain;
2919
	old_read_domains = obj->base.read_domains;
2920 2921 2922 2923 2924

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2925
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2926 2927 2928

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
2929
					    old_write_domain);
2930 2931 2932 2933

	return 0;
}

2934
int
2935
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
2936
{
2937 2938
	int ret;

2939
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
2940 2941
		return 0;

2942
	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
2943
		ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2944 2945 2946
		if (ret)
			return ret;
	}
2947

2948 2949 2950 2951
	ret = i915_gem_object_wait_rendering(obj);
	if (ret)
		return ret;

2952 2953
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2954
	return 0;
2955 2956
}

2957 2958 2959 2960 2961 2962
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
2963
int
2964
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
2965
{
C
Chris Wilson 已提交
2966
	uint32_t old_write_domain, old_read_domains;
2967 2968
	int ret;

2969 2970 2971
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

2972 2973 2974 2975
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2976 2977 2978 2979 2980
	if (write || obj->pending_gpu_write) {
		ret = i915_gem_object_wait_rendering(obj);
		if (ret)
			return ret;
	}
2981

2982
	i915_gem_object_flush_gtt_write_domain(obj);
2983

2984 2985
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
2986

2987
	/* Flush the CPU cache if it's still invalid. */
2988
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2989 2990
		i915_gem_clflush_object(obj);

2991
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2992 2993 2994 2995 2996
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2997
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2998 2999 3000 3001 3002

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3003 3004
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3005
	}
3006

C
Chris Wilson 已提交
3007 3008 3009 3010
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3011 3012 3013
	return 0;
}

3014 3015 3016
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3017 3018 3019 3020
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3021 3022 3023
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3024
static int
3025
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3026
{
3027 3028
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3029
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3030 3031 3032 3033
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3034

3035 3036 3037
	if (atomic_read(&dev_priv->mm.wedged))
		return -EIO;

3038
	spin_lock(&file_priv->mm.lock);
3039
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3040 3041
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3042

3043 3044
		ring = request->ring;
		seqno = request->seqno;
3045
	}
3046
	spin_unlock(&file_priv->mm.lock);
3047

3048 3049
	if (seqno == 0)
		return 0;
3050

3051
	ret = __wait_seqno(ring, seqno, true, NULL);
3052 3053
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3054 3055 3056 3057

	return ret;
}

3058
int
3059 3060
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    uint32_t alignment,
3061
		    bool map_and_fenceable)
3062 3063 3064
{
	int ret;

3065
	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3066

3067 3068 3069 3070
	if (obj->gtt_space != NULL) {
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
		    (map_and_fenceable && !obj->map_and_fenceable)) {
			WARN(obj->pin_count,
3071
			     "bo is already pinned with incorrect alignment:"
3072 3073
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
			     " obj->map_and_fenceable=%d\n",
3074
			     obj->gtt_offset, alignment,
3075
			     map_and_fenceable,
3076
			     obj->map_and_fenceable);
3077 3078 3079 3080 3081 3082
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

3083
	if (obj->gtt_space == NULL) {
3084
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3085
						  map_and_fenceable);
3086
		if (ret)
3087
			return ret;
3088
	}
J
Jesse Barnes 已提交
3089

3090 3091 3092
	if (!obj->has_global_gtt_mapping && map_and_fenceable)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

3093
	obj->pin_count++;
3094
	obj->pin_mappable |= map_and_fenceable;
3095 3096 3097 3098 3099

	return 0;
}

void
3100
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3101
{
3102 3103
	BUG_ON(obj->pin_count == 0);
	BUG_ON(obj->gtt_space == NULL);
3104

3105
	if (--obj->pin_count == 0)
3106
		obj->pin_mappable = false;
3107 3108 3109 3110
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3111
		   struct drm_file *file)
3112 3113
{
	struct drm_i915_gem_pin *args = data;
3114
	struct drm_i915_gem_object *obj;
3115 3116
	int ret;

3117 3118 3119
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3120

3121
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3122
	if (&obj->base == NULL) {
3123 3124
		ret = -ENOENT;
		goto unlock;
3125 3126
	}

3127
	if (obj->madv != I915_MADV_WILLNEED) {
C
Chris Wilson 已提交
3128
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3129 3130
		ret = -EINVAL;
		goto out;
3131 3132
	}

3133
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
J
Jesse Barnes 已提交
3134 3135
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3136 3137
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3138 3139
	}

3140 3141 3142
	obj->user_pin_count++;
	obj->pin_filp = file;
	if (obj->user_pin_count == 1) {
3143
		ret = i915_gem_object_pin(obj, args->alignment, true);
3144 3145
		if (ret)
			goto out;
3146 3147 3148 3149 3150
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3151
	i915_gem_object_flush_cpu_write_domain(obj);
3152
	args->offset = obj->gtt_offset;
3153
out:
3154
	drm_gem_object_unreference(&obj->base);
3155
unlock:
3156
	mutex_unlock(&dev->struct_mutex);
3157
	return ret;
3158 3159 3160 3161
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3162
		     struct drm_file *file)
3163 3164
{
	struct drm_i915_gem_pin *args = data;
3165
	struct drm_i915_gem_object *obj;
3166
	int ret;
3167

3168 3169 3170
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3171

3172
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3173
	if (&obj->base == NULL) {
3174 3175
		ret = -ENOENT;
		goto unlock;
3176
	}
3177

3178
	if (obj->pin_filp != file) {
J
Jesse Barnes 已提交
3179 3180
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3181 3182
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3183
	}
3184 3185 3186
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
J
Jesse Barnes 已提交
3187 3188
		i915_gem_object_unpin(obj);
	}
3189

3190
out:
3191
	drm_gem_object_unreference(&obj->base);
3192
unlock:
3193
	mutex_unlock(&dev->struct_mutex);
3194
	return ret;
3195 3196 3197 3198
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3199
		    struct drm_file *file)
3200 3201
{
	struct drm_i915_gem_busy *args = data;
3202
	struct drm_i915_gem_object *obj;
3203 3204
	int ret;

3205
	ret = i915_mutex_lock_interruptible(dev);
3206
	if (ret)
3207
		return ret;
3208

3209
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3210
	if (&obj->base == NULL) {
3211 3212
		ret = -ENOENT;
		goto unlock;
3213
	}
3214

3215 3216 3217 3218
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
3219
	 */
3220
	args->busy = obj->active;
3221 3222 3223 3224 3225 3226
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
3227
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
3228
			ret = i915_gem_flush_ring(obj->ring,
3229
						  0, obj->base.write_domain);
3230 3231 3232
		} else {
			ret = i915_gem_check_olr(obj->ring,
						 obj->last_rendering_seqno);
3233
		}
3234 3235 3236 3237 3238 3239

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
C
Chris Wilson 已提交
3240
		i915_gem_retire_requests_ring(obj->ring);
3241

3242
		args->busy = obj->active;
3243
	}
3244

3245
	drm_gem_object_unreference(&obj->base);
3246
unlock:
3247
	mutex_unlock(&dev->struct_mutex);
3248
	return ret;
3249 3250 3251 3252 3253 3254
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3255
	return i915_gem_ring_throttle(dev, file_priv);
3256 3257
}

3258 3259 3260 3261 3262
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
3263
	struct drm_i915_gem_object *obj;
3264
	int ret;
3265 3266 3267 3268 3269 3270 3271 3272 3273

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3274 3275 3276 3277
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3278
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3279
	if (&obj->base == NULL) {
3280 3281
		ret = -ENOENT;
		goto unlock;
3282 3283
	}

3284
	if (obj->pin_count) {
3285 3286
		ret = -EINVAL;
		goto out;
3287 3288
	}

3289 3290
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3291

3292
	/* if the object is no longer bound, discard its backing storage */
3293 3294
	if (i915_gem_object_is_purgeable(obj) &&
	    obj->gtt_space == NULL)
3295 3296
		i915_gem_object_truncate(obj);

3297
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3298

3299
out:
3300
	drm_gem_object_unreference(&obj->base);
3301
unlock:
3302
	mutex_unlock(&dev->struct_mutex);
3303
	return ret;
3304 3305
}

3306 3307
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
3308
{
3309
	struct drm_i915_private *dev_priv = dev->dev_private;
3310
	struct drm_i915_gem_object *obj;
3311
	struct address_space *mapping;
3312

3313 3314 3315
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
3316

3317 3318 3319 3320
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
3321

3322 3323 3324
	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
	mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);

3325 3326
	i915_gem_info_add_obj(dev_priv, size);

3327 3328
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3329

3330 3331
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

3347
	obj->base.driver_private = NULL;
3348
	obj->fence_reg = I915_FENCE_REG_NONE;
3349
	INIT_LIST_HEAD(&obj->mm_list);
D
Daniel Vetter 已提交
3350
	INIT_LIST_HEAD(&obj->gtt_list);
3351
	INIT_LIST_HEAD(&obj->ring_list);
3352
	INIT_LIST_HEAD(&obj->exec_list);
3353 3354
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
3355 3356
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;
3357

3358
	return obj;
3359 3360 3361 3362 3363
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
3364

3365 3366 3367
	return 0;
}

3368
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3369
{
3370
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3371
	struct drm_device *dev = obj->base.dev;
3372
	drm_i915_private_t *dev_priv = dev->dev_private;
3373

3374 3375
	trace_i915_gem_object_destroy(obj);

3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
	if (obj->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	obj->pin_count = 0;
	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
		bool was_interruptible;

		was_interruptible = dev_priv->mm.interruptible;
		dev_priv->mm.interruptible = false;

		WARN_ON(i915_gem_object_unbind(obj));

		dev_priv->mm.interruptible = was_interruptible;
	}

3391
	if (obj->base.map_list.map)
3392
		drm_gem_free_mmap_offset(&obj->base);
3393

3394 3395
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3396

3397 3398
	kfree(obj->bit_17);
	kfree(obj);
3399 3400
}

3401 3402 3403 3404 3405
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3406

3407
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
3408

3409
	if (dev_priv->mm.suspended) {
3410 3411
		mutex_unlock(&dev->struct_mutex);
		return 0;
3412 3413
	}

3414
	ret = i915_gpu_idle(dev);
3415 3416
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
3417
		return ret;
3418
	}
3419
	i915_gem_retire_requests(dev);
3420

3421
	/* Under UMS, be paranoid and evict. */
3422 3423
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		i915_gem_evict_everything(dev, false);
3424

3425 3426
	i915_gem_reset_fences(dev);

3427 3428 3429 3430 3431
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
3432
	del_timer_sync(&dev_priv->hangcheck_timer);
3433 3434

	i915_kernel_lost_context(dev);
3435
	i915_gem_cleanup_ringbuffer(dev);
3436

3437 3438
	mutex_unlock(&dev->struct_mutex);

3439 3440 3441
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

3442 3443 3444
	return 0;
}

3445 3446 3447 3448
void i915_gem_init_swizzling(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

3449
	if (INTEL_INFO(dev)->gen < 5 ||
3450 3451 3452 3453 3454 3455
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

3456 3457 3458
	if (IS_GEN5(dev))
		return;

3459 3460
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
3461
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3462
	else
3463
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3464
}
D
Daniel Vetter 已提交
3465 3466 3467 3468 3469 3470

void i915_gem_init_ppgtt(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t pd_offset;
	struct intel_ring_buffer *ring;
3471 3472 3473
	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
	uint32_t __iomem *pd_addr;
	uint32_t pd_entry;
D
Daniel Vetter 已提交
3474 3475 3476 3477 3478
	int i;

	if (!dev_priv->mm.aliasing_ppgtt)
		return;

3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496

	pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
	for (i = 0; i < ppgtt->num_pd_entries; i++) {
		dma_addr_t pt_addr;

		if (dev_priv->mm.gtt->needs_dmar)
			pt_addr = ppgtt->pt_dma_addr[i];
		else
			pt_addr = page_to_phys(ppgtt->pt_pages[i]);

		pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
		pd_entry |= GEN6_PDE_VALID;

		writel(pd_entry, pd_addr + i);
	}
	readl(pd_addr);

	pd_offset = ppgtt->pd_offset;
D
Daniel Vetter 已提交
3497 3498 3499 3500
	pd_offset /= 64; /* in cachelines, */
	pd_offset <<= 16;

	if (INTEL_INFO(dev)->gen == 6) {
3501 3502 3503 3504
		uint32_t ecochk, gab_ctl, ecobits;

		ecobits = I915_READ(GAC_ECO_BITS); 
		I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3505 3506 3507 3508 3509

		gab_ctl = I915_READ(GAB_CTL);
		I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

		ecochk = I915_READ(GAM_ECOCHK);
D
Daniel Vetter 已提交
3510 3511
		I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
				       ECOCHK_PPGTT_CACHE64B);
3512
		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
D
Daniel Vetter 已提交
3513 3514 3515 3516 3517
	} else if (INTEL_INFO(dev)->gen >= 7) {
		I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
		/* GFX_MODE is per-ring on gen7+ */
	}

3518
	for_each_ring(ring, dev_priv, i) {
D
Daniel Vetter 已提交
3519 3520
		if (INTEL_INFO(dev)->gen >= 7)
			I915_WRITE(RING_MODE_GEN7(ring),
3521
				   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
D
Daniel Vetter 已提交
3522 3523 3524 3525 3526 3527

		I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
		I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
	}
}

3528
int
3529
i915_gem_init_hw(struct drm_device *dev)
3530 3531 3532
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3533

3534 3535
	i915_gem_init_swizzling(dev);

3536
	ret = intel_init_render_ring_buffer(dev);
3537
	if (ret)
3538
		return ret;
3539 3540

	if (HAS_BSD(dev)) {
3541
		ret = intel_init_bsd_ring_buffer(dev);
3542 3543
		if (ret)
			goto cleanup_render_ring;
3544
	}
3545

3546 3547 3548 3549 3550 3551
	if (HAS_BLT(dev)) {
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

3552 3553
	dev_priv->next_seqno = 1;

D
Daniel Vetter 已提交
3554 3555
	i915_gem_init_ppgtt(dev);

3556 3557
	return 0;

3558
cleanup_bsd_ring:
3559
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3560
cleanup_render_ring:
3561
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3562 3563 3564
	return ret;
}

3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
static bool
intel_enable_ppgtt(struct drm_device *dev)
{
	if (i915_enable_ppgtt >= 0)
		return i915_enable_ppgtt;

#ifdef CONFIG_INTEL_IOMMU
	/* Disable ppgtt on SNB if VT-d is on. */
	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long gtt_size, mappable_size;
	int ret;

	gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
	mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;

	mutex_lock(&dev->struct_mutex);
	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
		/* PPGTT pdes are stolen from global gtt ptes, so shrink the
		 * aperture accordingly when using aliasing ppgtt. */
		gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;

		i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);

		ret = i915_gem_init_aliasing_ppgtt(dev);
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	} else {
		/* Let GEM Manage all of the aperture.
		 *
		 * However, leave one page at the end still bound to the scratch
		 * page.  There are a number of places where the hardware
		 * apparently prefetches past the end of the object, and we've
		 * seen multiple hangs with the GPU head pointer stuck in a
		 * batchbuffer bound at the last page of the aperture.  One page
		 * should be enough to keep any prefetching inside of the
		 * aperture.
		 */
		i915_gem_init_global_gtt(dev, 0, mappable_size,
					 gtt_size);
	}

	ret = i915_gem_init_hw(dev);
	mutex_unlock(&dev->struct_mutex);
	if (ret) {
		i915_gem_cleanup_aliasing_ppgtt(dev);
		return ret;
	}

3624 3625 3626
	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->dri1.allow_batchbuffer = 1;
3627 3628 3629
	return 0;
}

3630 3631 3632 3633
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3634
	struct intel_ring_buffer *ring;
3635
	int i;
3636

3637 3638
	for_each_ring(ring, dev_priv, i)
		intel_cleanup_ring_buffer(ring);
3639 3640
}

3641 3642 3643 3644 3645
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3646
	int ret;
3647

J
Jesse Barnes 已提交
3648 3649 3650
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3651
	if (atomic_read(&dev_priv->mm.wedged)) {
3652
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3653
		atomic_set(&dev_priv->mm.wedged, 0);
3654 3655 3656
	}

	mutex_lock(&dev->struct_mutex);
3657 3658
	dev_priv->mm.suspended = 0;

3659
	ret = i915_gem_init_hw(dev);
3660 3661
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
3662
		return ret;
3663
	}
3664

3665
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3666 3667 3668
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
	mutex_unlock(&dev->struct_mutex);
3669

3670 3671 3672
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
3673

3674
	return 0;
3675 3676 3677 3678 3679 3680 3681 3682

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
3683 3684 3685 3686 3687 3688
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
3689 3690 3691
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3692
	drm_irq_uninstall(dev);
3693
	return i915_gem_idle(dev);
3694 3695 3696 3697 3698 3699 3700
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

3701 3702 3703
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

3704 3705 3706
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
3707 3708
}

3709 3710 3711 3712 3713 3714 3715 3716
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);
}

3717 3718 3719
void
i915_gem_load(struct drm_device *dev)
{
3720
	int i;
3721 3722
	drm_i915_private_t *dev_priv = dev->dev_private;

3723
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3724 3725
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3726
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
D
Daniel Vetter 已提交
3727
	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3728 3729
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
3730
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3731
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3732 3733
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
3734
	init_completion(&dev_priv->error_completion);
3735

3736 3737
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
3738 3739
		I915_WRITE(MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
3740 3741
	}

3742 3743
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

3744
	/* Old X drivers will take 0-2 for front, back, depth buffers */
3745 3746
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
3747

3748
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3749 3750 3751 3752
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

3753
	/* Initialize fence registers to zero */
3754
	i915_gem_reset_fences(dev);
3755

3756
	i915_gem_detect_bit_6_swizzle(dev);
3757
	init_waitqueue_head(&dev_priv->pending_flip_queue);
3758

3759 3760
	dev_priv->mm.interruptible = true;

3761 3762 3763
	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
3764
}
3765 3766 3767 3768 3769

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
3770 3771
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
3772 3773 3774 3775 3776 3777 3778 3779
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

3780
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3781 3782 3783 3784 3785
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

3786
	phys_obj->handle = drm_pci_alloc(dev, size, align);
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
3799
	kfree(phys_obj);
3800 3801 3802
	return ret;
}

3803
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

3828
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3829 3830 3831 3832
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
3833
				 struct drm_i915_gem_object *obj)
3834
{
3835
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3836
	char *vaddr;
3837 3838 3839
	int i;
	int page_count;

3840
	if (!obj->phys_obj)
3841
		return;
3842
	vaddr = obj->phys_obj->handle->vaddr;
3843

3844
	page_count = obj->base.size / PAGE_SIZE;
3845
	for (i = 0; i < page_count; i++) {
3846
		struct page *page = shmem_read_mapping_page(mapping, i);
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
3858
	}
3859
	intel_gtt_chipset_flush();
3860

3861 3862
	obj->phys_obj->cur_obj = NULL;
	obj->phys_obj = NULL;
3863 3864 3865 3866
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
3867
			    struct drm_i915_gem_object *obj,
3868 3869
			    int id,
			    int align)
3870
{
3871
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3872 3873 3874 3875 3876 3877 3878 3879
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

3880 3881
	if (obj->phys_obj) {
		if (obj->phys_obj->id == id)
3882 3883 3884 3885 3886 3887 3888
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
3889
						obj->base.size, align);
3890
		if (ret) {
3891 3892
			DRM_ERROR("failed to init phys object %d size: %zu\n",
				  id, obj->base.size);
3893
			return ret;
3894 3895 3896 3897
		}
	}

	/* bind to the object */
3898 3899
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj->phys_obj->cur_obj = obj;
3900

3901
	page_count = obj->base.size / PAGE_SIZE;
3902 3903

	for (i = 0; i < page_count; i++) {
3904 3905 3906
		struct page *page;
		char *dst, *src;

3907
		page = shmem_read_mapping_page(mapping, i);
3908 3909
		if (IS_ERR(page))
			return PTR_ERR(page);
3910

3911
		src = kmap_atomic(page);
3912
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3913
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
3914
		kunmap_atomic(src);
3915

3916 3917 3918
		mark_page_accessed(page);
		page_cache_release(page);
	}
3919

3920 3921 3922 3923
	return 0;
}

static int
3924 3925
i915_gem_phys_pwrite(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
3926 3927 3928
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
3929
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
3930
	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
3931

3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
3945

3946
	intel_gtt_chipset_flush();
3947 3948
	return 0;
}
3949

3950
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
3951
{
3952
	struct drm_i915_file_private *file_priv = file->driver_priv;
3953 3954 3955 3956 3957

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
3958
	spin_lock(&file_priv->mm.lock);
3959 3960 3961 3962 3963 3964 3965 3966 3967
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
3968
	spin_unlock(&file_priv->mm.lock);
3969
}
3970

3971 3972 3973 3974 3975 3976 3977
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
3978
		      list_empty(&dev_priv->mm.active_list);
3979 3980 3981 3982

	return !lists_empty;
}

3983
static int
3984
i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
3985
{
3986 3987 3988 3989 3990 3991
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj, *next;
3992
	int nr_to_scan = sc->nr_to_scan;
3993 3994 3995
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
3996
		return 0;
3997 3998 3999

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
4000 4001 4002 4003 4004 4005 4006
		cnt = 0;
		list_for_each_entry(obj,
				    &dev_priv->mm.inactive_list,
				    mm_list)
			cnt++;
		mutex_unlock(&dev->struct_mutex);
		return cnt / 100 * sysctl_vfs_cache_pressure;
4007 4008
	}

4009
rescan:
4010
	/* first scan for clean buffers */
4011
	i915_gem_retire_requests(dev);
4012

4013 4014 4015 4016
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj)) {
4017 4018
			if (i915_gem_object_unbind(obj) == 0 &&
			    --nr_to_scan == 0)
4019
				break;
4020 4021 4022 4023
		}
	}

	/* second pass, evict/count anything still on the inactive list */
4024 4025 4026 4027
	cnt = 0;
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
4028 4029
		if (nr_to_scan &&
		    i915_gem_object_unbind(obj) == 0)
4030
			nr_to_scan--;
4031
		else
4032 4033 4034 4035
			cnt++;
	}

	if (nr_to_scan && i915_gpu_is_active(dev)) {
4036 4037 4038 4039 4040 4041
		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
4042
		if (i915_gpu_idle(dev) == 0)
4043 4044
			goto rescan;
	}
4045 4046
	mutex_unlock(&dev->struct_mutex);
	return cnt / 100 * sysctl_vfs_cache_pressure;
4047
}