/* * Copyright © 2008 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * */ #include "drmP.h" #include "drm.h" #include "i915_drm.h" #include "i915_drv.h" #include "i915_trace.h" #include "intel_drv.h" #include #include #include #include static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj); static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj); static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj); static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj, unsigned alignment, bool map_and_fenceable); static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_i915_gem_object *obj, struct drm_i915_gem_pwrite *args, struct drm_file *file); static void i915_gem_write_fence(struct drm_device *dev, int reg, struct drm_i915_gem_object *obj); static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, struct drm_i915_fence_reg *fence, bool enable); static int i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc); static void i915_gem_object_truncate(struct drm_i915_gem_object *obj); static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj) { if (obj->tiling_mode) i915_gem_release_mmap(obj); /* As we do not have an associated fence register, we will force * a tiling change if we ever need to acquire one. */ obj->fence_dirty = false; obj->fence_reg = I915_FENCE_REG_NONE; } /* some bookkeeping */ static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, size_t size) { dev_priv->mm.object_count++; dev_priv->mm.object_memory += size; } static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, size_t size) { dev_priv->mm.object_count--; dev_priv->mm.object_memory -= size; } static int i915_gem_wait_for_error(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct completion *x = &dev_priv->error_completion; unsigned long flags; int ret; if (!atomic_read(&dev_priv->mm.wedged)) return 0; ret = wait_for_completion_interruptible(x); if (ret) return ret; if (atomic_read(&dev_priv->mm.wedged)) { /* GPU is hung, bump the completion count to account for * the token we just consumed so that we never hit zero and * end up waiting upon a subsequent completion event that * will never happen. */ spin_lock_irqsave(&x->wait.lock, flags); x->done++; spin_unlock_irqrestore(&x->wait.lock, flags); } return 0; } int i915_mutex_lock_interruptible(struct drm_device *dev) { int ret; ret = i915_gem_wait_for_error(dev); if (ret) return ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; WARN_ON(i915_verify_lists(dev)); return 0; } static inline bool i915_gem_object_is_inactive(struct drm_i915_gem_object *obj) { return !obj->active; } int i915_gem_init_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_init *args = data; if (drm_core_check_feature(dev, DRIVER_MODESET)) return -ENODEV; if (args->gtt_start >= args->gtt_end || (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1)) return -EINVAL; /* GEM with user mode setting was never supported on ilk and later. */ if (INTEL_INFO(dev)->gen >= 5) return -ENODEV; mutex_lock(&dev->struct_mutex); i915_gem_init_global_gtt(dev, args->gtt_start, args->gtt_end, args->gtt_end); mutex_unlock(&dev->struct_mutex); return 0; } int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_get_aperture *args = data; struct drm_i915_gem_object *obj; size_t pinned; pinned = 0; mutex_lock(&dev->struct_mutex); list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) if (obj->pin_count) pinned += obj->gtt_space->size; mutex_unlock(&dev->struct_mutex); args->aper_size = dev_priv->mm.gtt_total; args->aper_available_size = args->aper_size - pinned; return 0; } static int i915_gem_create(struct drm_file *file, struct drm_device *dev, uint64_t size, uint32_t *handle_p) { struct drm_i915_gem_object *obj; int ret; u32 handle; size = roundup(size, PAGE_SIZE); if (size == 0) return -EINVAL; /* Allocate the new object */ obj = i915_gem_alloc_object(dev, size); if (obj == NULL) return -ENOMEM; ret = drm_gem_handle_create(file, &obj->base, &handle); if (ret) { drm_gem_object_release(&obj->base); i915_gem_info_remove_obj(dev->dev_private, obj->base.size); kfree(obj); return ret; } /* drop reference from allocate - handle holds it now */ drm_gem_object_unreference(&obj->base); trace_i915_gem_object_create(obj); *handle_p = handle; return 0; } int i915_gem_dumb_create(struct drm_file *file, struct drm_device *dev, struct drm_mode_create_dumb *args) { /* have to work out size/pitch and return them */ args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64); args->size = args->pitch * args->height; return i915_gem_create(file, dev, args->size, &args->handle); } int i915_gem_dumb_destroy(struct drm_file *file, struct drm_device *dev, uint32_t handle) { return drm_gem_handle_delete(file, handle); } /** * Creates a new mm object and returns a handle to it. */ int i915_gem_create_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_create *args = data; return i915_gem_create(file, dev, args->size, &args->handle); } static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) { drm_i915_private_t *dev_priv = obj->base.dev->dev_private; return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && obj->tiling_mode != I915_TILING_NONE; } static inline int __copy_to_user_swizzled(char __user *cpu_vaddr, const char *gpu_vaddr, int gpu_offset, int length) { int ret, cpu_offset = 0; while (length > 0) { int cacheline_end = ALIGN(gpu_offset + 1, 64); int this_length = min(cacheline_end - gpu_offset, length); int swizzled_gpu_offset = gpu_offset ^ 64; ret = __copy_to_user(cpu_vaddr + cpu_offset, gpu_vaddr + swizzled_gpu_offset, this_length); if (ret) return ret + length; cpu_offset += this_length; gpu_offset += this_length; length -= this_length; } return 0; } static inline int __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, const char __user *cpu_vaddr, int length) { int ret, cpu_offset = 0; while (length > 0) { int cacheline_end = ALIGN(gpu_offset + 1, 64); int this_length = min(cacheline_end - gpu_offset, length); int swizzled_gpu_offset = gpu_offset ^ 64; ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, cpu_vaddr + cpu_offset, this_length); if (ret) return ret + length; cpu_offset += this_length; gpu_offset += this_length; length -= this_length; } return 0; } /* Per-page copy function for the shmem pread fastpath. * Flushes invalid cachelines before reading the target if * needs_clflush is set. */ static int shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length, char __user *user_data, bool page_do_bit17_swizzling, bool needs_clflush) { char *vaddr; int ret; if (unlikely(page_do_bit17_swizzling)) return -EINVAL; vaddr = kmap_atomic(page); if (needs_clflush) drm_clflush_virt_range(vaddr + shmem_page_offset, page_length); ret = __copy_to_user_inatomic(user_data, vaddr + shmem_page_offset, page_length); kunmap_atomic(vaddr); return ret; } static void shmem_clflush_swizzled_range(char *addr, unsigned long length, bool swizzled) { if (unlikely(swizzled)) { unsigned long start = (unsigned long) addr; unsigned long end = (unsigned long) addr + length; /* For swizzling simply ensure that we always flush both * channels. Lame, but simple and it works. Swizzled * pwrite/pread is far from a hotpath - current userspace * doesn't use it at all. */ start = round_down(start, 128); end = round_up(end, 128); drm_clflush_virt_range((void *)start, end - start); } else { drm_clflush_virt_range(addr, length); } } /* Only difference to the fast-path function is that this can handle bit17 * and uses non-atomic copy and kmap functions. */ static int shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length, char __user *user_data, bool page_do_bit17_swizzling, bool needs_clflush) { char *vaddr; int ret; vaddr = kmap(page); if (needs_clflush) shmem_clflush_swizzled_range(vaddr + shmem_page_offset, page_length, page_do_bit17_swizzling); if (page_do_bit17_swizzling) ret = __copy_to_user_swizzled(user_data, vaddr, shmem_page_offset, page_length); else ret = __copy_to_user(user_data, vaddr + shmem_page_offset, page_length); kunmap(page); return ret; } static int i915_gem_shmem_pread(struct drm_device *dev, struct drm_i915_gem_object *obj, struct drm_i915_gem_pread *args, struct drm_file *file) { struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; char __user *user_data; ssize_t remain; loff_t offset; int shmem_page_offset, page_length, ret = 0; int obj_do_bit17_swizzling, page_do_bit17_swizzling; int hit_slowpath = 0; int prefaulted = 0; int needs_clflush = 0; int release_page; user_data = (char __user *) (uintptr_t) args->data_ptr; remain = args->size; obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) { /* If we're not in the cpu read domain, set ourself into the gtt * read domain and manually flush cachelines (if required). This * optimizes for the case when the gpu will dirty the data * anyway again before the next pread happens. */ if (obj->cache_level == I915_CACHE_NONE) needs_clflush = 1; ret = i915_gem_object_set_to_gtt_domain(obj, false); if (ret) return ret; } offset = args->offset; while (remain > 0) { struct page *page; /* Operation in this page * * shmem_page_offset = offset within page in shmem file * page_length = bytes to copy for this page */ shmem_page_offset = offset_in_page(offset); page_length = remain; if ((shmem_page_offset + page_length) > PAGE_SIZE) page_length = PAGE_SIZE - shmem_page_offset; if (obj->pages) { page = obj->pages[offset >> PAGE_SHIFT]; release_page = 0; } else { page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); if (IS_ERR(page)) { ret = PTR_ERR(page); goto out; } release_page = 1; } page_do_bit17_swizzling = obj_do_bit17_swizzling && (page_to_phys(page) & (1 << 17)) != 0; ret = shmem_pread_fast(page, shmem_page_offset, page_length, user_data, page_do_bit17_swizzling, needs_clflush); if (ret == 0) goto next_page; hit_slowpath = 1; page_cache_get(page); mutex_unlock(&dev->struct_mutex); if (!prefaulted) { ret = fault_in_multipages_writeable(user_data, remain); /* Userspace is tricking us, but we've already clobbered * its pages with the prefault and promised to write the * data up to the first fault. Hence ignore any errors * and just continue. */ (void)ret; prefaulted = 1; } ret = shmem_pread_slow(page, shmem_page_offset, page_length, user_data, page_do_bit17_swizzling, needs_clflush); mutex_lock(&dev->struct_mutex); page_cache_release(page); next_page: mark_page_accessed(page); if (release_page) page_cache_release(page); if (ret) { ret = -EFAULT; goto out; } remain -= page_length; user_data += page_length; offset += page_length; } out: if (hit_slowpath) { /* Fixup: Kill any reinstated backing storage pages */ if (obj->madv == __I915_MADV_PURGED) i915_gem_object_truncate(obj); } return ret; } /** * Reads data from the object referenced by handle. * * On error, the contents of *data are undefined. */ int i915_gem_pread_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_pread *args = data; struct drm_i915_gem_object *obj; int ret = 0; if (args->size == 0) return 0; if (!access_ok(VERIFY_WRITE, (char __user *)(uintptr_t)args->data_ptr, args->size)) return -EFAULT; ret = i915_mutex_lock_interruptible(dev); if (ret) return ret; obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); if (&obj->base == NULL) { ret = -ENOENT; goto unlock; } /* Bounds check source. */ if (args->offset > obj->base.size || args->size > obj->base.size - args->offset) { ret = -EINVAL; goto out; } trace_i915_gem_object_pread(obj, args->offset, args->size); ret = i915_gem_shmem_pread(dev, obj, args, file); out: drm_gem_object_unreference(&obj->base); unlock: mutex_unlock(&dev->struct_mutex); return ret; } /* This is the fast write path which cannot handle * page faults in the source data */ static inline int fast_user_write(struct io_mapping *mapping, loff_t page_base, int page_offset, char __user *user_data, int length) { void __iomem *vaddr_atomic; void *vaddr; unsigned long unwritten; vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base); /* We can use the cpu mem copy function because this is X86. */ vaddr = (void __force*)vaddr_atomic + page_offset; unwritten = __copy_from_user_inatomic_nocache(vaddr, user_data, length); io_mapping_unmap_atomic(vaddr_atomic); return unwritten; } /** * This is the fast pwrite path, where we copy the data directly from the * user into the GTT, uncached. */ static int i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_i915_gem_object *obj, struct drm_i915_gem_pwrite *args, struct drm_file *file) { drm_i915_private_t *dev_priv = dev->dev_private; ssize_t remain; loff_t offset, page_base; char __user *user_data; int page_offset, page_length, ret; ret = i915_gem_object_pin(obj, 0, true); if (ret) goto out; ret = i915_gem_object_set_to_gtt_domain(obj, true); if (ret) goto out_unpin; ret = i915_gem_object_put_fence(obj); if (ret) goto out_unpin; user_data = (char __user *) (uintptr_t) args->data_ptr; remain = args->size; offset = obj->gtt_offset + args->offset; while (remain > 0) { /* Operation in this page * * page_base = page offset within aperture * page_offset = offset within page * page_length = bytes to copy for this page */ page_base = offset & PAGE_MASK; page_offset = offset_in_page(offset); page_length = remain; if ((page_offset + remain) > PAGE_SIZE) page_length = PAGE_SIZE - page_offset; /* If we get a fault while copying data, then (presumably) our * source page isn't available. Return the error and we'll * retry in the slow path. */ if (fast_user_write(dev_priv->mm.gtt_mapping, page_base, page_offset, user_data, page_length)) { ret = -EFAULT; goto out_unpin; } remain -= page_length; user_data += page_length; offset += page_length; } out_unpin: i915_gem_object_unpin(obj); out: return ret; } /* Per-page copy function for the shmem pwrite fastpath. * Flushes invalid cachelines before writing to the target if * needs_clflush_before is set and flushes out any written cachelines after * writing if needs_clflush is set. */ static int shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length, char __user *user_data, bool page_do_bit17_swizzling, bool needs_clflush_before, bool needs_clflush_after) { char *vaddr; int ret; if (unlikely(page_do_bit17_swizzling)) return -EINVAL; vaddr = kmap_atomic(page); if (needs_clflush_before) drm_clflush_virt_range(vaddr + shmem_page_offset, page_length); ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset, user_data, page_length); if (needs_clflush_after) drm_clflush_virt_range(vaddr + shmem_page_offset, page_length); kunmap_atomic(vaddr); return ret; } /* Only difference to the fast-path function is that this can handle bit17 * and uses non-atomic copy and kmap functions. */ static int shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length, char __user *user_data, bool page_do_bit17_swizzling, bool needs_clflush_before, bool needs_clflush_after) { char *vaddr; int ret; vaddr = kmap(page); if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) shmem_clflush_swizzled_range(vaddr + shmem_page_offset, page_length, page_do_bit17_swizzling); if (page_do_bit17_swizzling) ret = __copy_from_user_swizzled(vaddr, shmem_page_offset, user_data, page_length); else ret = __copy_from_user(vaddr + shmem_page_offset, user_data, page_length); if (needs_clflush_after) shmem_clflush_swizzled_range(vaddr + shmem_page_offset, page_length, page_do_bit17_swizzling); kunmap(page); return ret; } static int i915_gem_shmem_pwrite(struct drm_device *dev, struct drm_i915_gem_object *obj, struct drm_i915_gem_pwrite *args, struct drm_file *file) { struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; ssize_t remain; loff_t offset; char __user *user_data; int shmem_page_offset, page_length, ret = 0; int obj_do_bit17_swizzling, page_do_bit17_swizzling; int hit_slowpath = 0; int needs_clflush_after = 0; int needs_clflush_before = 0; int release_page; user_data = (char __user *) (uintptr_t) args->data_ptr; remain = args->size; obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) { /* If we're not in the cpu write domain, set ourself into the gtt * write domain and manually flush cachelines (if required). This * optimizes for the case when the gpu will use the data * right away and we therefore have to clflush anyway. */ if (obj->cache_level == I915_CACHE_NONE) needs_clflush_after = 1; ret = i915_gem_object_set_to_gtt_domain(obj, true); if (ret) return ret; } /* Same trick applies for invalidate partially written cachelines before * writing. */ if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU) && obj->cache_level == I915_CACHE_NONE) needs_clflush_before = 1; offset = args->offset; obj->dirty = 1; while (remain > 0) { struct page *page; int partial_cacheline_write; /* Operation in this page * * shmem_page_offset = offset within page in shmem file * page_length = bytes to copy for this page */ shmem_page_offset = offset_in_page(offset); page_length = remain; if ((shmem_page_offset + page_length) > PAGE_SIZE) page_length = PAGE_SIZE - shmem_page_offset; /* If we don't overwrite a cacheline completely we need to be * careful to have up-to-date data by first clflushing. Don't * overcomplicate things and flush the entire patch. */ partial_cacheline_write = needs_clflush_before && ((shmem_page_offset | page_length) & (boot_cpu_data.x86_clflush_size - 1)); if (obj->pages) { page = obj->pages[offset >> PAGE_SHIFT]; release_page = 0; } else { page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); if (IS_ERR(page)) { ret = PTR_ERR(page); goto out; } release_page = 1; } page_do_bit17_swizzling = obj_do_bit17_swizzling && (page_to_phys(page) & (1 << 17)) != 0; ret = shmem_pwrite_fast(page, shmem_page_offset, page_length, user_data, page_do_bit17_swizzling, partial_cacheline_write, needs_clflush_after); if (ret == 0) goto next_page; hit_slowpath = 1; page_cache_get(page); mutex_unlock(&dev->struct_mutex); ret = shmem_pwrite_slow(page, shmem_page_offset, page_length, user_data, page_do_bit17_swizzling, partial_cacheline_write, needs_clflush_after); mutex_lock(&dev->struct_mutex); page_cache_release(page); next_page: set_page_dirty(page); mark_page_accessed(page); if (release_page) page_cache_release(page); if (ret) { ret = -EFAULT; goto out; } remain -= page_length; user_data += page_length; offset += page_length; } out: if (hit_slowpath) { /* Fixup: Kill any reinstated backing storage pages */ if (obj->madv == __I915_MADV_PURGED) i915_gem_object_truncate(obj); /* and flush dirty cachelines in case the object isn't in the cpu write * domain anymore. */ if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) { i915_gem_clflush_object(obj); intel_gtt_chipset_flush(); } } if (needs_clflush_after) intel_gtt_chipset_flush(); return ret; } /** * Writes data to the object referenced by handle. * * On error, the contents of the buffer that were to be modified are undefined. */ int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_pwrite *args = data; struct drm_i915_gem_object *obj; int ret; if (args->size == 0) return 0; if (!access_ok(VERIFY_READ, (char __user *)(uintptr_t)args->data_ptr, args->size)) return -EFAULT; ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr, args->size); if (ret) return -EFAULT; ret = i915_mutex_lock_interruptible(dev); if (ret) return ret; obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); if (&obj->base == NULL) { ret = -ENOENT; goto unlock; } /* Bounds check destination. */ if (args->offset > obj->base.size || args->size > obj->base.size - args->offset) { ret = -EINVAL; goto out; } trace_i915_gem_object_pwrite(obj, args->offset, args->size); ret = -EFAULT; /* We can only do the GTT pwrite on untiled buffers, as otherwise * it would end up going through the fenced access, and we'll get * different detiling behavior between reading and writing. * pread/pwrite currently are reading and writing from the CPU * perspective, requiring manual detiling by the client. */ if (obj->phys_obj) { ret = i915_gem_phys_pwrite(dev, obj, args, file); goto out; } if (obj->gtt_space && obj->cache_level == I915_CACHE_NONE && obj->tiling_mode == I915_TILING_NONE && obj->map_and_fenceable && obj->base.write_domain != I915_GEM_DOMAIN_CPU) { ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file); /* Note that the gtt paths might fail with non-page-backed user * pointers (e.g. gtt mappings when moving data between * textures). Fallback to the shmem path in that case. */ } if (ret == -EFAULT) ret = i915_gem_shmem_pwrite(dev, obj, args, file); out: drm_gem_object_unreference(&obj->base); unlock: mutex_unlock(&dev->struct_mutex); return ret; } /** * Called when user space prepares to use an object with the CPU, either * through the mmap ioctl's mapping or a GTT mapping. */ int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_set_domain *args = data; struct drm_i915_gem_object *obj; uint32_t read_domains = args->read_domains; uint32_t write_domain = args->write_domain; int ret; /* Only handle setting domains to types used by the CPU. */ if (write_domain & I915_GEM_GPU_DOMAINS) return -EINVAL; if (read_domains & I915_GEM_GPU_DOMAINS) return -EINVAL; /* Having something in the write domain implies it's in the read * domain, and only that read domain. Enforce that in the request. */ if (write_domain != 0 && read_domains != write_domain) return -EINVAL; ret = i915_mutex_lock_interruptible(dev); if (ret) return ret; obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); if (&obj->base == NULL) { ret = -ENOENT; goto unlock; } if (read_domains & I915_GEM_DOMAIN_GTT) { ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); /* Silently promote "you're not bound, there was nothing to do" * to success, since the client was just asking us to * make sure everything was done. */ if (ret == -EINVAL) ret = 0; } else { ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); } drm_gem_object_unreference(&obj->base); unlock: mutex_unlock(&dev->struct_mutex); return ret; } /** * Called when user space has done writes to this buffer */ int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_sw_finish *args = data; struct drm_i915_gem_object *obj; int ret = 0; ret = i915_mutex_lock_interruptible(dev); if (ret) return ret; obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); if (&obj->base == NULL) { ret = -ENOENT; goto unlock; } /* Pinned buffers may be scanout, so flush the cache */ if (obj->pin_count) i915_gem_object_flush_cpu_write_domain(obj); drm_gem_object_unreference(&obj->base); unlock: mutex_unlock(&dev->struct_mutex); return ret; } /** * Maps the contents of an object, returning the address it is mapped * into. * * While the mapping holds a reference on the contents of the object, it doesn't * imply a ref on the object itself. */ int i915_gem_mmap_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_mmap *args = data; struct drm_gem_object *obj; unsigned long addr; obj = drm_gem_object_lookup(dev, file, args->handle); if (obj == NULL) return -ENOENT; addr = vm_mmap(obj->filp, 0, args->size, PROT_READ | PROT_WRITE, MAP_SHARED, args->offset); drm_gem_object_unreference_unlocked(obj); if (IS_ERR((void *)addr)) return addr; args->addr_ptr = (uint64_t) addr; return 0; } /** * i915_gem_fault - fault a page into the GTT * vma: VMA in question * vmf: fault info * * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped * from userspace. The fault handler takes care of binding the object to * the GTT (if needed), allocating and programming a fence register (again, * only if needed based on whether the old reg is still valid or the object * is tiled) and inserting a new PTE into the faulting process. * * Note that the faulting process may involve evicting existing objects * from the GTT and/or fence registers to make room. So performance may * suffer if the GTT working set is large or there are few fence registers * left. */ int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) { struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data); struct drm_device *dev = obj->base.dev; drm_i915_private_t *dev_priv = dev->dev_private; pgoff_t page_offset; unsigned long pfn; int ret = 0; bool write = !!(vmf->flags & FAULT_FLAG_WRITE); /* We don't use vmf->pgoff since that has the fake offset */ page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >> PAGE_SHIFT; ret = i915_mutex_lock_interruptible(dev); if (ret) goto out; trace_i915_gem_object_fault(obj, page_offset, true, write); /* Now bind it into the GTT if needed */ if (!obj->map_and_fenceable) { ret = i915_gem_object_unbind(obj); if (ret) goto unlock; } if (!obj->gtt_space) { ret = i915_gem_object_bind_to_gtt(obj, 0, true); if (ret) goto unlock; ret = i915_gem_object_set_to_gtt_domain(obj, write); if (ret) goto unlock; } if (!obj->has_global_gtt_mapping) i915_gem_gtt_bind_object(obj, obj->cache_level); ret = i915_gem_object_get_fence(obj); if (ret) goto unlock; if (i915_gem_object_is_inactive(obj)) list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); obj->fault_mappable = true; pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) + page_offset; /* Finally, remap it using the new GTT offset */ ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn); unlock: mutex_unlock(&dev->struct_mutex); out: switch (ret) { case -EIO: case -EAGAIN: /* Give the error handler a chance to run and move the * objects off the GPU active list. Next time we service the * fault, we should be able to transition the page into the * GTT without touching the GPU (and so avoid further * EIO/EGAIN). If the GPU is wedged, then there is no issue * with coherency, just lost writes. */ set_need_resched(); case 0: case -ERESTARTSYS: case -EINTR: return VM_FAULT_NOPAGE; case -ENOMEM: return VM_FAULT_OOM; default: return VM_FAULT_SIGBUS; } } /** * i915_gem_release_mmap - remove physical page mappings * @obj: obj in question * * Preserve the reservation of the mmapping with the DRM core code, but * relinquish ownership of the pages back to the system. * * It is vital that we remove the page mapping if we have mapped a tiled * object through the GTT and then lose the fence register due to * resource pressure. Similarly if the object has been moved out of the * aperture, than pages mapped into userspace must be revoked. Removing the * mapping will then trigger a page fault on the next user access, allowing * fixup by i915_gem_fault(). */ void i915_gem_release_mmap(struct drm_i915_gem_object *obj) { if (!obj->fault_mappable) return; if (obj->base.dev->dev_mapping) unmap_mapping_range(obj->base.dev->dev_mapping, (loff_t)obj->base.map_list.hash.key<base.size, 1); obj->fault_mappable = false; } static uint32_t i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode) { uint32_t gtt_size; if (INTEL_INFO(dev)->gen >= 4 || tiling_mode == I915_TILING_NONE) return size; /* Previous chips need a power-of-two fence region when tiling */ if (INTEL_INFO(dev)->gen == 3) gtt_size = 1024*1024; else gtt_size = 512*1024; while (gtt_size < size) gtt_size <<= 1; return gtt_size; } /** * i915_gem_get_gtt_alignment - return required GTT alignment for an object * @obj: object to check * * Return the required GTT alignment for an object, taking into account * potential fence register mapping. */ static uint32_t i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size, int tiling_mode) { /* * Minimum alignment is 4k (GTT page size), but might be greater * if a fence register is needed for the object. */ if (INTEL_INFO(dev)->gen >= 4 || tiling_mode == I915_TILING_NONE) return 4096; /* * Previous chips need to be aligned to the size of the smallest * fence register that can contain the object. */ return i915_gem_get_gtt_size(dev, size, tiling_mode); } /** * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an * unfenced object * @dev: the device * @size: size of the object * @tiling_mode: tiling mode of the object * * Return the required GTT alignment for an object, only taking into account * unfenced tiled surface requirements. */ uint32_t i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev, uint32_t size, int tiling_mode) { /* * Minimum alignment is 4k (GTT page size) for sane hw. */ if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) || tiling_mode == I915_TILING_NONE) return 4096; /* Previous hardware however needs to be aligned to a power-of-two * tile height. The simplest method for determining this is to reuse * the power-of-tile object size. */ return i915_gem_get_gtt_size(dev, size, tiling_mode); } int i915_gem_mmap_gtt(struct drm_file *file, struct drm_device *dev, uint32_t handle, uint64_t *offset) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj; int ret; ret = i915_mutex_lock_interruptible(dev); if (ret) return ret; obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle)); if (&obj->base == NULL) { ret = -ENOENT; goto unlock; } if (obj->base.size > dev_priv->mm.gtt_mappable_end) { ret = -E2BIG; goto out; } if (obj->madv != I915_MADV_WILLNEED) { DRM_ERROR("Attempting to mmap a purgeable buffer\n"); ret = -EINVAL; goto out; } if (!obj->base.map_list.map) { ret = drm_gem_create_mmap_offset(&obj->base); if (ret) goto out; } *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT; out: drm_gem_object_unreference(&obj->base); unlock: mutex_unlock(&dev->struct_mutex); return ret; } /** * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing * @dev: DRM device * @data: GTT mapping ioctl data * @file: GEM object info * * Simply returns the fake offset to userspace so it can mmap it. * The mmap call will end up in drm_gem_mmap(), which will set things * up so we can get faults in the handler above. * * The fault handler will take care of binding the object into the GTT * (since it may have been evicted to make room for something), allocating * a fence register, and mapping the appropriate aperture address into * userspace. */ int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_mmap_gtt *args = data; return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); } static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj, gfp_t gfpmask) { int page_count, i; struct address_space *mapping; struct inode *inode; struct page *page; /* Get the list of pages out of our struct file. They'll be pinned * at this point until we release them. */ page_count = obj->base.size / PAGE_SIZE; BUG_ON(obj->pages != NULL); obj->pages = drm_malloc_ab(page_count, sizeof(struct page *)); if (obj->pages == NULL) return -ENOMEM; inode = obj->base.filp->f_path.dentry->d_inode; mapping = inode->i_mapping; gfpmask |= mapping_gfp_mask(mapping); for (i = 0; i < page_count; i++) { page = shmem_read_mapping_page_gfp(mapping, i, gfpmask); if (IS_ERR(page)) goto err_pages; obj->pages[i] = page; } if (i915_gem_object_needs_bit17_swizzle(obj)) i915_gem_object_do_bit_17_swizzle(obj); return 0; err_pages: while (i--) page_cache_release(obj->pages[i]); drm_free_large(obj->pages); obj->pages = NULL; return PTR_ERR(page); } static void i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj) { int page_count = obj->base.size / PAGE_SIZE; int i; BUG_ON(obj->madv == __I915_MADV_PURGED); if (i915_gem_object_needs_bit17_swizzle(obj)) i915_gem_object_save_bit_17_swizzle(obj); if (obj->madv == I915_MADV_DONTNEED) obj->dirty = 0; for (i = 0; i < page_count; i++) { if (obj->dirty) set_page_dirty(obj->pages[i]); if (obj->madv == I915_MADV_WILLNEED) mark_page_accessed(obj->pages[i]); page_cache_release(obj->pages[i]); } obj->dirty = 0; drm_free_large(obj->pages); obj->pages = NULL; } void i915_gem_object_move_to_active(struct drm_i915_gem_object *obj, struct intel_ring_buffer *ring, u32 seqno) { struct drm_device *dev = obj->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; BUG_ON(ring == NULL); obj->ring = ring; /* Add a reference if we're newly entering the active list. */ if (!obj->active) { drm_gem_object_reference(&obj->base); obj->active = 1; } /* Move from whatever list we were on to the tail of execution. */ list_move_tail(&obj->mm_list, &dev_priv->mm.active_list); list_move_tail(&obj->ring_list, &ring->active_list); obj->last_rendering_seqno = seqno; if (obj->fenced_gpu_access) { obj->last_fenced_seqno = seqno; /* Bump MRU to take account of the delayed flush */ if (obj->fence_reg != I915_FENCE_REG_NONE) { struct drm_i915_fence_reg *reg; reg = &dev_priv->fence_regs[obj->fence_reg]; list_move_tail(®->lru_list, &dev_priv->mm.fence_list); } } } static void i915_gem_object_move_off_active(struct drm_i915_gem_object *obj) { list_del_init(&obj->ring_list); obj->last_rendering_seqno = 0; obj->last_fenced_seqno = 0; } static void i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj) { struct drm_device *dev = obj->base.dev; drm_i915_private_t *dev_priv = dev->dev_private; BUG_ON(!obj->active); list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list); i915_gem_object_move_off_active(obj); } static void i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj) { struct drm_device *dev = obj->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); BUG_ON(!list_empty(&obj->gpu_write_list)); BUG_ON(!obj->active); obj->ring = NULL; i915_gem_object_move_off_active(obj); obj->fenced_gpu_access = false; obj->active = 0; obj->pending_gpu_write = false; drm_gem_object_unreference(&obj->base); WARN_ON(i915_verify_lists(dev)); } /* Immediately discard the backing storage */ static void i915_gem_object_truncate(struct drm_i915_gem_object *obj) { struct inode *inode; /* Our goal here is to return as much of the memory as * is possible back to the system as we are called from OOM. * To do this we must instruct the shmfs to drop all of its * backing pages, *now*. */ inode = obj->base.filp->f_path.dentry->d_inode; shmem_truncate_range(inode, 0, (loff_t)-1); if (obj->base.map_list.map) drm_gem_free_mmap_offset(&obj->base); obj->madv = __I915_MADV_PURGED; } static inline int i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj) { return obj->madv == I915_MADV_DONTNEED; } static void i915_gem_process_flushing_list(struct intel_ring_buffer *ring, uint32_t flush_domains) { struct drm_i915_gem_object *obj, *next; list_for_each_entry_safe(obj, next, &ring->gpu_write_list, gpu_write_list) { if (obj->base.write_domain & flush_domains) { uint32_t old_write_domain = obj->base.write_domain; obj->base.write_domain = 0; list_del_init(&obj->gpu_write_list); i915_gem_object_move_to_active(obj, ring, i915_gem_next_request_seqno(ring)); trace_i915_gem_object_change_domain(obj, obj->base.read_domains, old_write_domain); } } } static u32 i915_gem_get_seqno(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; u32 seqno = dev_priv->next_seqno; /* reserve 0 for non-seqno */ if (++dev_priv->next_seqno == 0) dev_priv->next_seqno = 1; return seqno; } u32 i915_gem_next_request_seqno(struct intel_ring_buffer *ring) { if (ring->outstanding_lazy_request == 0) ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev); return ring->outstanding_lazy_request; } int i915_add_request(struct intel_ring_buffer *ring, struct drm_file *file, struct drm_i915_gem_request *request) { drm_i915_private_t *dev_priv = ring->dev->dev_private; uint32_t seqno; u32 request_ring_position; int was_empty; int ret; BUG_ON(request == NULL); seqno = i915_gem_next_request_seqno(ring); /* Record the position of the start of the request so that * should we detect the updated seqno part-way through the * GPU processing the request, we never over-estimate the * position of the head. */ request_ring_position = intel_ring_get_tail(ring); ret = ring->add_request(ring, &seqno); if (ret) return ret; trace_i915_gem_request_add(ring, seqno); request->seqno = seqno; request->ring = ring; request->tail = request_ring_position; request->emitted_jiffies = jiffies; was_empty = list_empty(&ring->request_list); list_add_tail(&request->list, &ring->request_list); if (file) { struct drm_i915_file_private *file_priv = file->driver_priv; spin_lock(&file_priv->mm.lock); request->file_priv = file_priv; list_add_tail(&request->client_list, &file_priv->mm.request_list); spin_unlock(&file_priv->mm.lock); } ring->outstanding_lazy_request = 0; if (!dev_priv->mm.suspended) { if (i915_enable_hangcheck) { mod_timer(&dev_priv->hangcheck_timer, jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)); } if (was_empty) queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ); } return 0; } static inline void i915_gem_request_remove_from_client(struct drm_i915_gem_request *request) { struct drm_i915_file_private *file_priv = request->file_priv; if (!file_priv) return; spin_lock(&file_priv->mm.lock); if (request->file_priv) { list_del(&request->client_list); request->file_priv = NULL; } spin_unlock(&file_priv->mm.lock); } static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv, struct intel_ring_buffer *ring) { while (!list_empty(&ring->request_list)) { struct drm_i915_gem_request *request; request = list_first_entry(&ring->request_list, struct drm_i915_gem_request, list); list_del(&request->list); i915_gem_request_remove_from_client(request); kfree(request); } while (!list_empty(&ring->active_list)) { struct drm_i915_gem_object *obj; obj = list_first_entry(&ring->active_list, struct drm_i915_gem_object, ring_list); obj->base.write_domain = 0; list_del_init(&obj->gpu_write_list); i915_gem_object_move_to_inactive(obj); } } static void i915_gem_reset_fences(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; int i; for (i = 0; i < dev_priv->num_fence_regs; i++) { struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i]; i915_gem_write_fence(dev, i, NULL); if (reg->obj) i915_gem_object_fence_lost(reg->obj); reg->pin_count = 0; reg->obj = NULL; INIT_LIST_HEAD(®->lru_list); } INIT_LIST_HEAD(&dev_priv->mm.fence_list); } void i915_gem_reset(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj; struct intel_ring_buffer *ring; int i; for_each_ring(ring, dev_priv, i) i915_gem_reset_ring_lists(dev_priv, ring); /* Remove anything from the flushing lists. The GPU cache is likely * to be lost on reset along with the data, so simply move the * lost bo to the inactive list. */ while (!list_empty(&dev_priv->mm.flushing_list)) { obj = list_first_entry(&dev_priv->mm.flushing_list, struct drm_i915_gem_object, mm_list); obj->base.write_domain = 0; list_del_init(&obj->gpu_write_list); i915_gem_object_move_to_inactive(obj); } /* Move everything out of the GPU domains to ensure we do any * necessary invalidation upon reuse. */ list_for_each_entry(obj, &dev_priv->mm.inactive_list, mm_list) { obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; } /* The fence registers are invalidated so clear them out */ i915_gem_reset_fences(dev); } /** * This function clears the request list as sequence numbers are passed. */ void i915_gem_retire_requests_ring(struct intel_ring_buffer *ring) { uint32_t seqno; int i; if (list_empty(&ring->request_list)) return; WARN_ON(i915_verify_lists(ring->dev)); seqno = ring->get_seqno(ring); for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) if (seqno >= ring->sync_seqno[i]) ring->sync_seqno[i] = 0; while (!list_empty(&ring->request_list)) { struct drm_i915_gem_request *request; request = list_first_entry(&ring->request_list, struct drm_i915_gem_request, list); if (!i915_seqno_passed(seqno, request->seqno)) break; trace_i915_gem_request_retire(ring, request->seqno); /* We know the GPU must have read the request to have * sent us the seqno + interrupt, so use the position * of tail of the request to update the last known position * of the GPU head. */ ring->last_retired_head = request->tail; list_del(&request->list); i915_gem_request_remove_from_client(request); kfree(request); } /* Move any buffers on the active list that are no longer referenced * by the ringbuffer to the flushing/inactive lists as appropriate. */ while (!list_empty(&ring->active_list)) { struct drm_i915_gem_object *obj; obj = list_first_entry(&ring->active_list, struct drm_i915_gem_object, ring_list); if (!i915_seqno_passed(seqno, obj->last_rendering_seqno)) break; if (obj->base.write_domain != 0) i915_gem_object_move_to_flushing(obj); else i915_gem_object_move_to_inactive(obj); } if (unlikely(ring->trace_irq_seqno && i915_seqno_passed(seqno, ring->trace_irq_seqno))) { ring->irq_put(ring); ring->trace_irq_seqno = 0; } WARN_ON(i915_verify_lists(ring->dev)); } void i915_gem_retire_requests(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring; int i; for_each_ring(ring, dev_priv, i) i915_gem_retire_requests_ring(ring); } static void i915_gem_retire_work_handler(struct work_struct *work) { drm_i915_private_t *dev_priv; struct drm_device *dev; struct intel_ring_buffer *ring; bool idle; int i; dev_priv = container_of(work, drm_i915_private_t, mm.retire_work.work); dev = dev_priv->dev; /* Come back later if the device is busy... */ if (!mutex_trylock(&dev->struct_mutex)) { queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ); return; } i915_gem_retire_requests(dev); /* Send a periodic flush down the ring so we don't hold onto GEM * objects indefinitely. */ idle = true; for_each_ring(ring, dev_priv, i) { if (!list_empty(&ring->gpu_write_list)) { struct drm_i915_gem_request *request; int ret; ret = i915_gem_flush_ring(ring, 0, I915_GEM_GPU_DOMAINS); request = kzalloc(sizeof(*request), GFP_KERNEL); if (ret || request == NULL || i915_add_request(ring, NULL, request)) kfree(request); } idle &= list_empty(&ring->request_list); } if (!dev_priv->mm.suspended && !idle) queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ); mutex_unlock(&dev->struct_mutex); } static int i915_gem_check_wedge(struct drm_i915_private *dev_priv) { BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex)); if (atomic_read(&dev_priv->mm.wedged)) { struct completion *x = &dev_priv->error_completion; bool recovery_complete; unsigned long flags; /* Give the error handler a chance to run. */ spin_lock_irqsave(&x->wait.lock, flags); recovery_complete = x->done > 0; spin_unlock_irqrestore(&x->wait.lock, flags); return recovery_complete ? -EIO : -EAGAIN; } return 0; } /* * Compare seqno against outstanding lazy request. Emit a request if they are * equal. */ static int i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno) { int ret = 0; BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex)); if (seqno == ring->outstanding_lazy_request) { struct drm_i915_gem_request *request; request = kzalloc(sizeof(*request), GFP_KERNEL); if (request == NULL) return -ENOMEM; ret = i915_add_request(ring, NULL, request); if (ret) { kfree(request); return ret; } BUG_ON(seqno != request->seqno); } return ret; } /** * __wait_seqno - wait until execution of seqno has finished * @ring: the ring expected to report seqno * @seqno: duh! * @interruptible: do an interruptible wait (normally yes) * @timeout: in - how long to wait (NULL forever); out - how much time remaining * * Returns 0 if the seqno was found within the alloted time. Else returns the * errno with remaining time filled in timeout argument. */ static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno, bool interruptible, struct timespec *timeout) { drm_i915_private_t *dev_priv = ring->dev->dev_private; struct timespec before, now, wait_time={1,0}; unsigned long timeout_jiffies; long end; bool wait_forever = true; if (i915_seqno_passed(ring->get_seqno(ring), seqno)) return 0; trace_i915_gem_request_wait_begin(ring, seqno); if (timeout != NULL) { wait_time = *timeout; wait_forever = false; } timeout_jiffies = timespec_to_jiffies(&wait_time); if (WARN_ON(!ring->irq_get(ring))) return -ENODEV; /* Record current time in case interrupted by signal, or wedged * */ getrawmonotonic(&before); #define EXIT_COND \ (i915_seqno_passed(ring->get_seqno(ring), seqno) || \ atomic_read(&dev_priv->mm.wedged)) do { if (interruptible) end = wait_event_interruptible_timeout(ring->irq_queue, EXIT_COND, timeout_jiffies); else end = wait_event_timeout(ring->irq_queue, EXIT_COND, timeout_jiffies); if (atomic_read(&dev_priv->mm.wedged)) end = -EAGAIN; } while (end == 0 && wait_forever); getrawmonotonic(&now); ring->irq_put(ring); trace_i915_gem_request_wait_end(ring, seqno); #undef EXIT_COND if (timeout) { struct timespec sleep_time = timespec_sub(now, before); *timeout = timespec_sub(*timeout, sleep_time); } switch (end) { case -EAGAIN: /* Wedged */ case -ERESTARTSYS: /* Signal */ return (int)end; case 0: /* Timeout */ if (timeout) set_normalized_timespec(timeout, 0, 0); return -ETIME; default: /* Completed */ WARN_ON(end < 0); /* We're not aware of other errors */ return 0; } } /** * Waits for a sequence number to be signaled, and cleans up the * request and object lists appropriately for that event. */ int i915_wait_request(struct intel_ring_buffer *ring, uint32_t seqno) { drm_i915_private_t *dev_priv = ring->dev->dev_private; int ret = 0; BUG_ON(seqno == 0); ret = i915_gem_check_wedge(dev_priv); if (ret) return ret; ret = i915_gem_check_olr(ring, seqno); if (ret) return ret; ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL); return ret; } /** * Ensures that all rendering to the object has completed and the object is * safe to unbind from the GTT or access from the CPU. */ int i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj) { int ret; /* This function only exists to support waiting for existing rendering, * not for emitting required flushes. */ BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0); /* If there is rendering queued on the buffer being evicted, wait for * it. */ if (obj->active) { ret = i915_wait_request(obj->ring, obj->last_rendering_seqno); if (ret) return ret; i915_gem_retire_requests_ring(obj->ring); } return 0; } /** * i915_gem_object_sync - sync an object to a ring. * * @obj: object which may be in use on another ring. * @to: ring we wish to use the object on. May be NULL. * * This code is meant to abstract object synchronization with the GPU. * Calling with NULL implies synchronizing the object with the CPU * rather than a particular GPU ring. * * Returns 0 if successful, else propagates up the lower layer error. */ int i915_gem_object_sync(struct drm_i915_gem_object *obj, struct intel_ring_buffer *to) { struct intel_ring_buffer *from = obj->ring; u32 seqno; int ret, idx; if (from == NULL || to == from) return 0; if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev)) return i915_gem_object_wait_rendering(obj); idx = intel_ring_sync_index(from, to); seqno = obj->last_rendering_seqno; if (seqno <= from->sync_seqno[idx]) return 0; ret = i915_gem_check_olr(obj->ring, seqno); if (ret) return ret; ret = to->sync_to(to, from, seqno); if (!ret) from->sync_seqno[idx] = seqno; return ret; } static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj) { u32 old_write_domain, old_read_domains; /* Act a barrier for all accesses through the GTT */ mb(); /* Force a pagefault for domain tracking on next user access */ i915_gem_release_mmap(obj); if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) return; old_read_domains = obj->base.read_domains; old_write_domain = obj->base.write_domain; obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT; obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT; trace_i915_gem_object_change_domain(obj, old_read_domains, old_write_domain); } /** * Unbinds an object from the GTT aperture. */ int i915_gem_object_unbind(struct drm_i915_gem_object *obj) { drm_i915_private_t *dev_priv = obj->base.dev->dev_private; int ret = 0; if (obj->gtt_space == NULL) return 0; if (obj->pin_count != 0) { DRM_ERROR("Attempting to unbind pinned buffer\n"); return -EINVAL; } ret = i915_gem_object_finish_gpu(obj); if (ret) return ret; /* Continue on if we fail due to EIO, the GPU is hung so we * should be safe and we need to cleanup or else we might * cause memory corruption through use-after-free. */ i915_gem_object_finish_gtt(obj); /* Move the object to the CPU domain to ensure that * any possible CPU writes while it's not in the GTT * are flushed when we go to remap it. */ if (ret == 0) ret = i915_gem_object_set_to_cpu_domain(obj, 1); if (ret == -ERESTARTSYS) return ret; if (ret) { /* In the event of a disaster, abandon all caches and * hope for the best. */ i915_gem_clflush_object(obj); obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; } /* release the fence reg _after_ flushing */ ret = i915_gem_object_put_fence(obj); if (ret) return ret; trace_i915_gem_object_unbind(obj); if (obj->has_global_gtt_mapping) i915_gem_gtt_unbind_object(obj); if (obj->has_aliasing_ppgtt_mapping) { i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj); obj->has_aliasing_ppgtt_mapping = 0; } i915_gem_gtt_finish_object(obj); i915_gem_object_put_pages_gtt(obj); list_del_init(&obj->gtt_list); list_del_init(&obj->mm_list); /* Avoid an unnecessary call to unbind on rebind. */ obj->map_and_fenceable = true; drm_mm_put_block(obj->gtt_space); obj->gtt_space = NULL; obj->gtt_offset = 0; if (i915_gem_object_is_purgeable(obj)) i915_gem_object_truncate(obj); return ret; } int i915_gem_flush_ring(struct intel_ring_buffer *ring, uint32_t invalidate_domains, uint32_t flush_domains) { int ret; if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0) return 0; trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains); ret = ring->flush(ring, invalidate_domains, flush_domains); if (ret) return ret; if (flush_domains & I915_GEM_GPU_DOMAINS) i915_gem_process_flushing_list(ring, flush_domains); return 0; } static int i915_ring_idle(struct intel_ring_buffer *ring) { int ret; if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list)) return 0; if (!list_empty(&ring->gpu_write_list)) { ret = i915_gem_flush_ring(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS); if (ret) return ret; } return i915_wait_request(ring, i915_gem_next_request_seqno(ring)); } int i915_gpu_idle(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring; int ret, i; /* Flush everything onto the inactive list. */ for_each_ring(ring, dev_priv, i) { ret = i915_ring_idle(ring); if (ret) return ret; /* Is the device fubar? */ if (WARN_ON(!list_empty(&ring->gpu_write_list))) return -EBUSY; } return 0; } static void sandybridge_write_fence_reg(struct drm_device *dev, int reg, struct drm_i915_gem_object *obj) { drm_i915_private_t *dev_priv = dev->dev_private; uint64_t val; if (obj) { u32 size = obj->gtt_space->size; val = (uint64_t)((obj->gtt_offset + size - 4096) & 0xfffff000) << 32; val |= obj->gtt_offset & 0xfffff000; val |= (uint64_t)((obj->stride / 128) - 1) << SANDYBRIDGE_FENCE_PITCH_SHIFT; if (obj->tiling_mode == I915_TILING_Y) val |= 1 << I965_FENCE_TILING_Y_SHIFT; val |= I965_FENCE_REG_VALID; } else val = 0; I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val); POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8); } static void i965_write_fence_reg(struct drm_device *dev, int reg, struct drm_i915_gem_object *obj) { drm_i915_private_t *dev_priv = dev->dev_private; uint64_t val; if (obj) { u32 size = obj->gtt_space->size; val = (uint64_t)((obj->gtt_offset + size - 4096) & 0xfffff000) << 32; val |= obj->gtt_offset & 0xfffff000; val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT; if (obj->tiling_mode == I915_TILING_Y) val |= 1 << I965_FENCE_TILING_Y_SHIFT; val |= I965_FENCE_REG_VALID; } else val = 0; I915_WRITE64(FENCE_REG_965_0 + reg * 8, val); POSTING_READ(FENCE_REG_965_0 + reg * 8); } static void i915_write_fence_reg(struct drm_device *dev, int reg, struct drm_i915_gem_object *obj) { drm_i915_private_t *dev_priv = dev->dev_private; u32 val; if (obj) { u32 size = obj->gtt_space->size; int pitch_val; int tile_width; WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) || (size & -size) != size || (obj->gtt_offset & (size - 1)), "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n", obj->gtt_offset, obj->map_and_fenceable, size); if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)) tile_width = 128; else tile_width = 512; /* Note: pitch better be a power of two tile widths */ pitch_val = obj->stride / tile_width; pitch_val = ffs(pitch_val) - 1; val = obj->gtt_offset; if (obj->tiling_mode == I915_TILING_Y) val |= 1 << I830_FENCE_TILING_Y_SHIFT; val |= I915_FENCE_SIZE_BITS(size); val |= pitch_val << I830_FENCE_PITCH_SHIFT; val |= I830_FENCE_REG_VALID; } else val = 0; if (reg < 8) reg = FENCE_REG_830_0 + reg * 4; else reg = FENCE_REG_945_8 + (reg - 8) * 4; I915_WRITE(reg, val); POSTING_READ(reg); } static void i830_write_fence_reg(struct drm_device *dev, int reg, struct drm_i915_gem_object *obj) { drm_i915_private_t *dev_priv = dev->dev_private; uint32_t val; if (obj) { u32 size = obj->gtt_space->size; uint32_t pitch_val; WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) || (size & -size) != size || (obj->gtt_offset & (size - 1)), "object 0x%08x not 512K or pot-size 0x%08x aligned\n", obj->gtt_offset, size); pitch_val = obj->stride / 128; pitch_val = ffs(pitch_val) - 1; val = obj->gtt_offset; if (obj->tiling_mode == I915_TILING_Y) val |= 1 << I830_FENCE_TILING_Y_SHIFT; val |= I830_FENCE_SIZE_BITS(size); val |= pitch_val << I830_FENCE_PITCH_SHIFT; val |= I830_FENCE_REG_VALID; } else val = 0; I915_WRITE(FENCE_REG_830_0 + reg * 4, val); POSTING_READ(FENCE_REG_830_0 + reg * 4); } static void i915_gem_write_fence(struct drm_device *dev, int reg, struct drm_i915_gem_object *obj) { switch (INTEL_INFO(dev)->gen) { case 7: case 6: sandybridge_write_fence_reg(dev, reg, obj); break; case 5: case 4: i965_write_fence_reg(dev, reg, obj); break; case 3: i915_write_fence_reg(dev, reg, obj); break; case 2: i830_write_fence_reg(dev, reg, obj); break; default: break; } } static inline int fence_number(struct drm_i915_private *dev_priv, struct drm_i915_fence_reg *fence) { return fence - dev_priv->fence_regs; } static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, struct drm_i915_fence_reg *fence, bool enable) { struct drm_i915_private *dev_priv = obj->base.dev->dev_private; int reg = fence_number(dev_priv, fence); i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL); if (enable) { obj->fence_reg = reg; fence->obj = obj; list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list); } else { obj->fence_reg = I915_FENCE_REG_NONE; fence->obj = NULL; list_del_init(&fence->lru_list); } } static int i915_gem_object_flush_fence(struct drm_i915_gem_object *obj) { int ret; if (obj->fenced_gpu_access) { if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) { ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain); if (ret) return ret; } obj->fenced_gpu_access = false; } if (obj->last_fenced_seqno) { ret = i915_wait_request(obj->ring, obj->last_fenced_seqno); if (ret) return ret; obj->last_fenced_seqno = 0; } /* Ensure that all CPU reads are completed before installing a fence * and all writes before removing the fence. */ if (obj->base.read_domains & I915_GEM_DOMAIN_GTT) mb(); return 0; } int i915_gem_object_put_fence(struct drm_i915_gem_object *obj) { struct drm_i915_private *dev_priv = obj->base.dev->dev_private; int ret; ret = i915_gem_object_flush_fence(obj); if (ret) return ret; if (obj->fence_reg == I915_FENCE_REG_NONE) return 0; i915_gem_object_update_fence(obj, &dev_priv->fence_regs[obj->fence_reg], false); i915_gem_object_fence_lost(obj); return 0; } static struct drm_i915_fence_reg * i915_find_fence_reg(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_fence_reg *reg, *avail; int i; /* First try to find a free reg */ avail = NULL; for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) { reg = &dev_priv->fence_regs[i]; if (!reg->obj) return reg; if (!reg->pin_count) avail = reg; } if (avail == NULL) return NULL; /* None available, try to steal one or wait for a user to finish */ list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) { if (reg->pin_count) continue; return reg; } return NULL; } /** * i915_gem_object_get_fence - set up fencing for an object * @obj: object to map through a fence reg * * When mapping objects through the GTT, userspace wants to be able to write * to them without having to worry about swizzling if the object is tiled. * This function walks the fence regs looking for a free one for @obj, * stealing one if it can't find any. * * It then sets up the reg based on the object's properties: address, pitch * and tiling format. * * For an untiled surface, this removes any existing fence. */ int i915_gem_object_get_fence(struct drm_i915_gem_object *obj) { struct drm_device *dev = obj->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; bool enable = obj->tiling_mode != I915_TILING_NONE; struct drm_i915_fence_reg *reg; int ret; /* Have we updated the tiling parameters upon the object and so * will need to serialise the write to the associated fence register? */ if (obj->fence_dirty) { ret = i915_gem_object_flush_fence(obj); if (ret) return ret; } /* Just update our place in the LRU if our fence is getting reused. */ if (obj->fence_reg != I915_FENCE_REG_NONE) { reg = &dev_priv->fence_regs[obj->fence_reg]; if (!obj->fence_dirty) { list_move_tail(®->lru_list, &dev_priv->mm.fence_list); return 0; } } else if (enable) { reg = i915_find_fence_reg(dev); if (reg == NULL) return -EDEADLK; if (reg->obj) { struct drm_i915_gem_object *old = reg->obj; ret = i915_gem_object_flush_fence(old); if (ret) return ret; i915_gem_object_fence_lost(old); } } else return 0; i915_gem_object_update_fence(obj, reg, enable); obj->fence_dirty = false; return 0; } /** * Finds free space in the GTT aperture and binds the object there. */ static int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj, unsigned alignment, bool map_and_fenceable) { struct drm_device *dev = obj->base.dev; drm_i915_private_t *dev_priv = dev->dev_private; struct drm_mm_node *free_space; gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN; u32 size, fence_size, fence_alignment, unfenced_alignment; bool mappable, fenceable; int ret; if (obj->madv != I915_MADV_WILLNEED) { DRM_ERROR("Attempting to bind a purgeable object\n"); return -EINVAL; } fence_size = i915_gem_get_gtt_size(dev, obj->base.size, obj->tiling_mode); fence_alignment = i915_gem_get_gtt_alignment(dev, obj->base.size, obj->tiling_mode); unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(dev, obj->base.size, obj->tiling_mode); if (alignment == 0) alignment = map_and_fenceable ? fence_alignment : unfenced_alignment; if (map_and_fenceable && alignment & (fence_alignment - 1)) { DRM_ERROR("Invalid object alignment requested %u\n", alignment); return -EINVAL; } size = map_and_fenceable ? fence_size : obj->base.size; /* If the object is bigger than the entire aperture, reject it early * before evicting everything in a vain attempt to find space. */ if (obj->base.size > (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) { DRM_ERROR("Attempting to bind an object larger than the aperture\n"); return -E2BIG; } search_free: if (map_and_fenceable) free_space = drm_mm_search_free_in_range(&dev_priv->mm.gtt_space, size, alignment, 0, dev_priv->mm.gtt_mappable_end, 0); else free_space = drm_mm_search_free(&dev_priv->mm.gtt_space, size, alignment, 0); if (free_space != NULL) { if (map_and_fenceable) obj->gtt_space = drm_mm_get_block_range_generic(free_space, size, alignment, 0, dev_priv->mm.gtt_mappable_end, 0); else obj->gtt_space = drm_mm_get_block(free_space, size, alignment); } if (obj->gtt_space == NULL) { /* If the gtt is empty and we're still having trouble * fitting our object in, we're out of memory. */ ret = i915_gem_evict_something(dev, size, alignment, map_and_fenceable); if (ret) return ret; goto search_free; } ret = i915_gem_object_get_pages_gtt(obj, gfpmask); if (ret) { drm_mm_put_block(obj->gtt_space); obj->gtt_space = NULL; if (ret == -ENOMEM) { /* first try to reclaim some memory by clearing the GTT */ ret = i915_gem_evict_everything(dev, false); if (ret) { /* now try to shrink everyone else */ if (gfpmask) { gfpmask = 0; goto search_free; } return -ENOMEM; } goto search_free; } return ret; } ret = i915_gem_gtt_prepare_object(obj); if (ret) { i915_gem_object_put_pages_gtt(obj); drm_mm_put_block(obj->gtt_space); obj->gtt_space = NULL; if (i915_gem_evict_everything(dev, false)) return ret; goto search_free; } if (!dev_priv->mm.aliasing_ppgtt) i915_gem_gtt_bind_object(obj, obj->cache_level); list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list); list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list); /* Assert that the object is not currently in any GPU domain. As it * wasn't in the GTT, there shouldn't be any way it could have been in * a GPU cache */ BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); obj->gtt_offset = obj->gtt_space->start; fenceable = obj->gtt_space->size == fence_size && (obj->gtt_space->start & (fence_alignment - 1)) == 0; mappable = obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end; obj->map_and_fenceable = mappable && fenceable; trace_i915_gem_object_bind(obj, map_and_fenceable); return 0; } void i915_gem_clflush_object(struct drm_i915_gem_object *obj) { /* If we don't have a page list set up, then we're not pinned * to GPU, and we can ignore the cache flush because it'll happen * again at bind time. */ if (obj->pages == NULL) return; /* If the GPU is snooping the contents of the CPU cache, * we do not need to manually clear the CPU cache lines. However, * the caches are only snooped when the render cache is * flushed/invalidated. As we always have to emit invalidations * and flushes when moving into and out of the RENDER domain, correct * snooping behaviour occurs naturally as the result of our domain * tracking. */ if (obj->cache_level != I915_CACHE_NONE) return; trace_i915_gem_object_clflush(obj); drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE); } /** Flushes any GPU write domain for the object if it's dirty. */ static int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj) { if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0) return 0; /* Queue the GPU write cache flushing we need. */ return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain); } /** Flushes the GTT write domain for the object if it's dirty. */ static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj) { uint32_t old_write_domain; if (obj->base.write_domain != I915_GEM_DOMAIN_GTT) return; /* No actual flushing is required for the GTT write domain. Writes * to it immediately go to main memory as far as we know, so there's * no chipset flush. It also doesn't land in render cache. * * However, we do have to enforce the order so that all writes through * the GTT land before any writes to the device, such as updates to * the GATT itself. */ wmb(); old_write_domain = obj->base.write_domain; obj->base.write_domain = 0; trace_i915_gem_object_change_domain(obj, obj->base.read_domains, old_write_domain); } /** Flushes the CPU write domain for the object if it's dirty. */ static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj) { uint32_t old_write_domain; if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) return; i915_gem_clflush_object(obj); intel_gtt_chipset_flush(); old_write_domain = obj->base.write_domain; obj->base.write_domain = 0; trace_i915_gem_object_change_domain(obj, obj->base.read_domains, old_write_domain); } /** * Moves a single object to the GTT read, and possibly write domain. * * This function returns when the move is complete, including waiting on * flushes to occur. */ int i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) { drm_i915_private_t *dev_priv = obj->base.dev->dev_private; uint32_t old_write_domain, old_read_domains; int ret; /* Not valid to be called on unbound objects. */ if (obj->gtt_space == NULL) return -EINVAL; if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) return 0; ret = i915_gem_object_flush_gpu_write_domain(obj); if (ret) return ret; if (obj->pending_gpu_write || write) { ret = i915_gem_object_wait_rendering(obj); if (ret) return ret; } i915_gem_object_flush_cpu_write_domain(obj); old_write_domain = obj->base.write_domain; old_read_domains = obj->base.read_domains; /* It should now be out of any other write domains, and we can update * the domain values for our changes. */ BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); obj->base.read_domains |= I915_GEM_DOMAIN_GTT; if (write) { obj->base.read_domains = I915_GEM_DOMAIN_GTT; obj->base.write_domain = I915_GEM_DOMAIN_GTT; obj->dirty = 1; } trace_i915_gem_object_change_domain(obj, old_read_domains, old_write_domain); /* And bump the LRU for this access */ if (i915_gem_object_is_inactive(obj)) list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); return 0; } int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, enum i915_cache_level cache_level) { struct drm_device *dev = obj->base.dev; drm_i915_private_t *dev_priv = dev->dev_private; int ret; if (obj->cache_level == cache_level) return 0; if (obj->pin_count) { DRM_DEBUG("can not change the cache level of pinned objects\n"); return -EBUSY; } if (obj->gtt_space) { ret = i915_gem_object_finish_gpu(obj); if (ret) return ret; i915_gem_object_finish_gtt(obj); /* Before SandyBridge, you could not use tiling or fence * registers with snooped memory, so relinquish any fences * currently pointing to our region in the aperture. */ if (INTEL_INFO(obj->base.dev)->gen < 6) { ret = i915_gem_object_put_fence(obj); if (ret) return ret; } if (obj->has_global_gtt_mapping) i915_gem_gtt_bind_object(obj, cache_level); if (obj->has_aliasing_ppgtt_mapping) i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt, obj, cache_level); } if (cache_level == I915_CACHE_NONE) { u32 old_read_domains, old_write_domain; /* If we're coming from LLC cached, then we haven't * actually been tracking whether the data is in the * CPU cache or not, since we only allow one bit set * in obj->write_domain and have been skipping the clflushes. * Just set it to the CPU cache for now. */ WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU); WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU); old_read_domains = obj->base.read_domains; old_write_domain = obj->base.write_domain; obj->base.read_domains = I915_GEM_DOMAIN_CPU; obj->base.write_domain = I915_GEM_DOMAIN_CPU; trace_i915_gem_object_change_domain(obj, old_read_domains, old_write_domain); } obj->cache_level = cache_level; return 0; } /* * Prepare buffer for display plane (scanout, cursors, etc). * Can be called from an uninterruptible phase (modesetting) and allows * any flushes to be pipelined (for pageflips). */ int i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, u32 alignment, struct intel_ring_buffer *pipelined) { u32 old_read_domains, old_write_domain; int ret; ret = i915_gem_object_flush_gpu_write_domain(obj); if (ret) return ret; if (pipelined != obj->ring) { ret = i915_gem_object_sync(obj, pipelined); if (ret) return ret; } /* The display engine is not coherent with the LLC cache on gen6. As * a result, we make sure that the pinning that is about to occur is * done with uncached PTEs. This is lowest common denominator for all * chipsets. * * However for gen6+, we could do better by using the GFDT bit instead * of uncaching, which would allow us to flush all the LLC-cached data * with that bit in the PTE to main memory with just one PIPE_CONTROL. */ ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE); if (ret) return ret; /* As the user may map the buffer once pinned in the display plane * (e.g. libkms for the bootup splash), we have to ensure that we * always use map_and_fenceable for all scanout buffers. */ ret = i915_gem_object_pin(obj, alignment, true); if (ret) return ret; i915_gem_object_flush_cpu_write_domain(obj); old_write_domain = obj->base.write_domain; old_read_domains = obj->base.read_domains; /* It should now be out of any other write domains, and we can update * the domain values for our changes. */ BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); obj->base.read_domains |= I915_GEM_DOMAIN_GTT; trace_i915_gem_object_change_domain(obj, old_read_domains, old_write_domain); return 0; } int i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj) { int ret; if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0) return 0; if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) { ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain); if (ret) return ret; } ret = i915_gem_object_wait_rendering(obj); if (ret) return ret; /* Ensure that we invalidate the GPU's caches and TLBs. */ obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; return 0; } /** * Moves a single object to the CPU read, and possibly write domain. * * This function returns when the move is complete, including waiting on * flushes to occur. */ int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) { uint32_t old_write_domain, old_read_domains; int ret; if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) return 0; ret = i915_gem_object_flush_gpu_write_domain(obj); if (ret) return ret; if (write || obj->pending_gpu_write) { ret = i915_gem_object_wait_rendering(obj); if (ret) return ret; } i915_gem_object_flush_gtt_write_domain(obj); old_write_domain = obj->base.write_domain; old_read_domains = obj->base.read_domains; /* Flush the CPU cache if it's still invalid. */ if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { i915_gem_clflush_object(obj); obj->base.read_domains |= I915_GEM_DOMAIN_CPU; } /* It should now be out of any other write domains, and we can update * the domain values for our changes. */ BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0); /* If we're writing through the CPU, then the GPU read domains will * need to be invalidated at next use. */ if (write) { obj->base.read_domains = I915_GEM_DOMAIN_CPU; obj->base.write_domain = I915_GEM_DOMAIN_CPU; } trace_i915_gem_object_change_domain(obj, old_read_domains, old_write_domain); return 0; } /* Throttle our rendering by waiting until the ring has completed our requests * emitted over 20 msec ago. * * Note that if we were to use the current jiffies each time around the loop, * we wouldn't escape the function with any frames outstanding if the time to * render a frame was over 20ms. * * This should get us reasonable parallelism between CPU and GPU but also * relatively low latency when blocking on a particular request to finish. */ static int i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_file_private *file_priv = file->driver_priv; unsigned long recent_enough = jiffies - msecs_to_jiffies(20); struct drm_i915_gem_request *request; struct intel_ring_buffer *ring = NULL; u32 seqno = 0; int ret; if (atomic_read(&dev_priv->mm.wedged)) return -EIO; spin_lock(&file_priv->mm.lock); list_for_each_entry(request, &file_priv->mm.request_list, client_list) { if (time_after_eq(request->emitted_jiffies, recent_enough)) break; ring = request->ring; seqno = request->seqno; } spin_unlock(&file_priv->mm.lock); if (seqno == 0) return 0; ret = __wait_seqno(ring, seqno, true, NULL); if (ret == 0) queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0); return ret; } int i915_gem_object_pin(struct drm_i915_gem_object *obj, uint32_t alignment, bool map_and_fenceable) { int ret; BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT); if (obj->gtt_space != NULL) { if ((alignment && obj->gtt_offset & (alignment - 1)) || (map_and_fenceable && !obj->map_and_fenceable)) { WARN(obj->pin_count, "bo is already pinned with incorrect alignment:" " offset=%x, req.alignment=%x, req.map_and_fenceable=%d," " obj->map_and_fenceable=%d\n", obj->gtt_offset, alignment, map_and_fenceable, obj->map_and_fenceable); ret = i915_gem_object_unbind(obj); if (ret) return ret; } } if (obj->gtt_space == NULL) { ret = i915_gem_object_bind_to_gtt(obj, alignment, map_and_fenceable); if (ret) return ret; } if (!obj->has_global_gtt_mapping && map_and_fenceable) i915_gem_gtt_bind_object(obj, obj->cache_level); obj->pin_count++; obj->pin_mappable |= map_and_fenceable; return 0; } void i915_gem_object_unpin(struct drm_i915_gem_object *obj) { BUG_ON(obj->pin_count == 0); BUG_ON(obj->gtt_space == NULL); if (--obj->pin_count == 0) obj->pin_mappable = false; } int i915_gem_pin_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_pin *args = data; struct drm_i915_gem_object *obj; int ret; ret = i915_mutex_lock_interruptible(dev); if (ret) return ret; obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); if (&obj->base == NULL) { ret = -ENOENT; goto unlock; } if (obj->madv != I915_MADV_WILLNEED) { DRM_ERROR("Attempting to pin a purgeable buffer\n"); ret = -EINVAL; goto out; } if (obj->pin_filp != NULL && obj->pin_filp != file) { DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n", args->handle); ret = -EINVAL; goto out; } obj->user_pin_count++; obj->pin_filp = file; if (obj->user_pin_count == 1) { ret = i915_gem_object_pin(obj, args->alignment, true); if (ret) goto out; } /* XXX - flush the CPU caches for pinned objects * as the X server doesn't manage domains yet */ i915_gem_object_flush_cpu_write_domain(obj); args->offset = obj->gtt_offset; out: drm_gem_object_unreference(&obj->base); unlock: mutex_unlock(&dev->struct_mutex); return ret; } int i915_gem_unpin_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_pin *args = data; struct drm_i915_gem_object *obj; int ret; ret = i915_mutex_lock_interruptible(dev); if (ret) return ret; obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); if (&obj->base == NULL) { ret = -ENOENT; goto unlock; } if (obj->pin_filp != file) { DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n", args->handle); ret = -EINVAL; goto out; } obj->user_pin_count--; if (obj->user_pin_count == 0) { obj->pin_filp = NULL; i915_gem_object_unpin(obj); } out: drm_gem_object_unreference(&obj->base); unlock: mutex_unlock(&dev->struct_mutex); return ret; } int i915_gem_busy_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_busy *args = data; struct drm_i915_gem_object *obj; int ret; ret = i915_mutex_lock_interruptible(dev); if (ret) return ret; obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); if (&obj->base == NULL) { ret = -ENOENT; goto unlock; } /* Count all active objects as busy, even if they are currently not used * by the gpu. Users of this interface expect objects to eventually * become non-busy without any further actions, therefore emit any * necessary flushes here. */ args->busy = obj->active; if (args->busy) { /* Unconditionally flush objects, even when the gpu still uses this * object. Userspace calling this function indicates that it wants to * use this buffer rather sooner than later, so issuing the required * flush earlier is beneficial. */ if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) { ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain); } else { ret = i915_gem_check_olr(obj->ring, obj->last_rendering_seqno); } /* Update the active list for the hardware's current position. * Otherwise this only updates on a delayed timer or when irqs * are actually unmasked, and our working set ends up being * larger than required. */ i915_gem_retire_requests_ring(obj->ring); args->busy = obj->active; } drm_gem_object_unreference(&obj->base); unlock: mutex_unlock(&dev->struct_mutex); return ret; } int i915_gem_throttle_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { return i915_gem_ring_throttle(dev, file_priv); } int i915_gem_madvise_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_i915_gem_madvise *args = data; struct drm_i915_gem_object *obj; int ret; switch (args->madv) { case I915_MADV_DONTNEED: case I915_MADV_WILLNEED: break; default: return -EINVAL; } ret = i915_mutex_lock_interruptible(dev); if (ret) return ret; obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle)); if (&obj->base == NULL) { ret = -ENOENT; goto unlock; } if (obj->pin_count) { ret = -EINVAL; goto out; } if (obj->madv != __I915_MADV_PURGED) obj->madv = args->madv; /* if the object is no longer bound, discard its backing storage */ if (i915_gem_object_is_purgeable(obj) && obj->gtt_space == NULL) i915_gem_object_truncate(obj); args->retained = obj->madv != __I915_MADV_PURGED; out: drm_gem_object_unreference(&obj->base); unlock: mutex_unlock(&dev->struct_mutex); return ret; } struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev, size_t size) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj; struct address_space *mapping; obj = kzalloc(sizeof(*obj), GFP_KERNEL); if (obj == NULL) return NULL; if (drm_gem_object_init(dev, &obj->base, size) != 0) { kfree(obj); return NULL; } mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE); i915_gem_info_add_obj(dev_priv, size); obj->base.write_domain = I915_GEM_DOMAIN_CPU; obj->base.read_domains = I915_GEM_DOMAIN_CPU; if (HAS_LLC(dev)) { /* On some devices, we can have the GPU use the LLC (the CPU * cache) for about a 10% performance improvement * compared to uncached. Graphics requests other than * display scanout are coherent with the CPU in * accessing this cache. This means in this mode we * don't need to clflush on the CPU side, and on the * GPU side we only need to flush internal caches to * get data visible to the CPU. * * However, we maintain the display planes as UC, and so * need to rebind when first used as such. */ obj->cache_level = I915_CACHE_LLC; } else obj->cache_level = I915_CACHE_NONE; obj->base.driver_private = NULL; obj->fence_reg = I915_FENCE_REG_NONE; INIT_LIST_HEAD(&obj->mm_list); INIT_LIST_HEAD(&obj->gtt_list); INIT_LIST_HEAD(&obj->ring_list); INIT_LIST_HEAD(&obj->exec_list); INIT_LIST_HEAD(&obj->gpu_write_list); obj->madv = I915_MADV_WILLNEED; /* Avoid an unnecessary call to unbind on the first bind. */ obj->map_and_fenceable = true; return obj; } int i915_gem_init_object(struct drm_gem_object *obj) { BUG(); return 0; } void i915_gem_free_object(struct drm_gem_object *gem_obj) { struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); struct drm_device *dev = obj->base.dev; drm_i915_private_t *dev_priv = dev->dev_private; trace_i915_gem_object_destroy(obj); if (obj->phys_obj) i915_gem_detach_phys_object(dev, obj); obj->pin_count = 0; if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) { bool was_interruptible; was_interruptible = dev_priv->mm.interruptible; dev_priv->mm.interruptible = false; WARN_ON(i915_gem_object_unbind(obj)); dev_priv->mm.interruptible = was_interruptible; } if (obj->base.map_list.map) drm_gem_free_mmap_offset(&obj->base); drm_gem_object_release(&obj->base); i915_gem_info_remove_obj(dev_priv, obj->base.size); kfree(obj->bit_17); kfree(obj); } int i915_gem_idle(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; int ret; mutex_lock(&dev->struct_mutex); if (dev_priv->mm.suspended) { mutex_unlock(&dev->struct_mutex); return 0; } ret = i915_gpu_idle(dev); if (ret) { mutex_unlock(&dev->struct_mutex); return ret; } i915_gem_retire_requests(dev); /* Under UMS, be paranoid and evict. */ if (!drm_core_check_feature(dev, DRIVER_MODESET)) i915_gem_evict_everything(dev, false); i915_gem_reset_fences(dev); /* Hack! Don't let anybody do execbuf while we don't control the chip. * We need to replace this with a semaphore, or something. * And not confound mm.suspended! */ dev_priv->mm.suspended = 1; del_timer_sync(&dev_priv->hangcheck_timer); i915_kernel_lost_context(dev); i915_gem_cleanup_ringbuffer(dev); mutex_unlock(&dev->struct_mutex); /* Cancel the retire work handler, which should be idle now. */ cancel_delayed_work_sync(&dev_priv->mm.retire_work); return 0; } void i915_gem_init_swizzling(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; if (INTEL_INFO(dev)->gen < 5 || dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) return; I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | DISP_TILE_SURFACE_SWIZZLING); if (IS_GEN5(dev)) return; I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); if (IS_GEN6(dev)) I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); else I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); } void i915_gem_init_ppgtt(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; uint32_t pd_offset; struct intel_ring_buffer *ring; struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; uint32_t __iomem *pd_addr; uint32_t pd_entry; int i; if (!dev_priv->mm.aliasing_ppgtt) return; pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t); for (i = 0; i < ppgtt->num_pd_entries; i++) { dma_addr_t pt_addr; if (dev_priv->mm.gtt->needs_dmar) pt_addr = ppgtt->pt_dma_addr[i]; else pt_addr = page_to_phys(ppgtt->pt_pages[i]); pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr); pd_entry |= GEN6_PDE_VALID; writel(pd_entry, pd_addr + i); } readl(pd_addr); pd_offset = ppgtt->pd_offset; pd_offset /= 64; /* in cachelines, */ pd_offset <<= 16; if (INTEL_INFO(dev)->gen == 6) { uint32_t ecochk, gab_ctl, ecobits; ecobits = I915_READ(GAC_ECO_BITS); I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B); gab_ctl = I915_READ(GAB_CTL); I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT); ecochk = I915_READ(GAM_ECOCHK); I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B); I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); } else if (INTEL_INFO(dev)->gen >= 7) { I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B); /* GFX_MODE is per-ring on gen7+ */ } for_each_ring(ring, dev_priv, i) { if (INTEL_INFO(dev)->gen >= 7) I915_WRITE(RING_MODE_GEN7(ring), _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G); I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset); } } int i915_gem_init_hw(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; int ret; i915_gem_init_swizzling(dev); ret = intel_init_render_ring_buffer(dev); if (ret) return ret; if (HAS_BSD(dev)) { ret = intel_init_bsd_ring_buffer(dev); if (ret) goto cleanup_render_ring; } if (HAS_BLT(dev)) { ret = intel_init_blt_ring_buffer(dev); if (ret) goto cleanup_bsd_ring; } dev_priv->next_seqno = 1; i915_gem_init_ppgtt(dev); return 0; cleanup_bsd_ring: intel_cleanup_ring_buffer(&dev_priv->ring[VCS]); cleanup_render_ring: intel_cleanup_ring_buffer(&dev_priv->ring[RCS]); return ret; } static bool intel_enable_ppgtt(struct drm_device *dev) { if (i915_enable_ppgtt >= 0) return i915_enable_ppgtt; #ifdef CONFIG_INTEL_IOMMU /* Disable ppgtt on SNB if VT-d is on. */ if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) return false; #endif return true; } int i915_gem_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; unsigned long gtt_size, mappable_size; int ret; gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT; mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT; mutex_lock(&dev->struct_mutex); if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) { /* PPGTT pdes are stolen from global gtt ptes, so shrink the * aperture accordingly when using aliasing ppgtt. */ gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE; i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size); ret = i915_gem_init_aliasing_ppgtt(dev); if (ret) { mutex_unlock(&dev->struct_mutex); return ret; } } else { /* Let GEM Manage all of the aperture. * * However, leave one page at the end still bound to the scratch * page. There are a number of places where the hardware * apparently prefetches past the end of the object, and we've * seen multiple hangs with the GPU head pointer stuck in a * batchbuffer bound at the last page of the aperture. One page * should be enough to keep any prefetching inside of the * aperture. */ i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size); } ret = i915_gem_init_hw(dev); mutex_unlock(&dev->struct_mutex); if (ret) { i915_gem_cleanup_aliasing_ppgtt(dev); return ret; } /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */ if (!drm_core_check_feature(dev, DRIVER_MODESET)) dev_priv->dri1.allow_batchbuffer = 1; return 0; } void i915_gem_cleanup_ringbuffer(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring; int i; for_each_ring(ring, dev_priv, i) intel_cleanup_ring_buffer(ring); } int i915_gem_entervt_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { drm_i915_private_t *dev_priv = dev->dev_private; int ret; if (drm_core_check_feature(dev, DRIVER_MODESET)) return 0; if (atomic_read(&dev_priv->mm.wedged)) { DRM_ERROR("Reenabling wedged hardware, good luck\n"); atomic_set(&dev_priv->mm.wedged, 0); } mutex_lock(&dev->struct_mutex); dev_priv->mm.suspended = 0; ret = i915_gem_init_hw(dev); if (ret != 0) { mutex_unlock(&dev->struct_mutex); return ret; } BUG_ON(!list_empty(&dev_priv->mm.active_list)); BUG_ON(!list_empty(&dev_priv->mm.flushing_list)); BUG_ON(!list_empty(&dev_priv->mm.inactive_list)); mutex_unlock(&dev->struct_mutex); ret = drm_irq_install(dev); if (ret) goto cleanup_ringbuffer; return 0; cleanup_ringbuffer: mutex_lock(&dev->struct_mutex); i915_gem_cleanup_ringbuffer(dev); dev_priv->mm.suspended = 1; mutex_unlock(&dev->struct_mutex); return ret; } int i915_gem_leavevt_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { if (drm_core_check_feature(dev, DRIVER_MODESET)) return 0; drm_irq_uninstall(dev); return i915_gem_idle(dev); } void i915_gem_lastclose(struct drm_device *dev) { int ret; if (drm_core_check_feature(dev, DRIVER_MODESET)) return; ret = i915_gem_idle(dev); if (ret) DRM_ERROR("failed to idle hardware: %d\n", ret); } static void init_ring_lists(struct intel_ring_buffer *ring) { INIT_LIST_HEAD(&ring->active_list); INIT_LIST_HEAD(&ring->request_list); INIT_LIST_HEAD(&ring->gpu_write_list); } void i915_gem_load(struct drm_device *dev) { int i; drm_i915_private_t *dev_priv = dev->dev_private; INIT_LIST_HEAD(&dev_priv->mm.active_list); INIT_LIST_HEAD(&dev_priv->mm.flushing_list); INIT_LIST_HEAD(&dev_priv->mm.inactive_list); INIT_LIST_HEAD(&dev_priv->mm.fence_list); INIT_LIST_HEAD(&dev_priv->mm.gtt_list); for (i = 0; i < I915_NUM_RINGS; i++) init_ring_lists(&dev_priv->ring[i]); for (i = 0; i < I915_MAX_NUM_FENCES; i++) INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list); INIT_DELAYED_WORK(&dev_priv->mm.retire_work, i915_gem_retire_work_handler); init_completion(&dev_priv->error_completion); /* On GEN3 we really need to make sure the ARB C3 LP bit is set */ if (IS_GEN3(dev)) { I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE)); } dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL; /* Old X drivers will take 0-2 for front, back, depth buffers */ if (!drm_core_check_feature(dev, DRIVER_MODESET)) dev_priv->fence_reg_start = 3; if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) dev_priv->num_fence_regs = 16; else dev_priv->num_fence_regs = 8; /* Initialize fence registers to zero */ i915_gem_reset_fences(dev); i915_gem_detect_bit_6_swizzle(dev); init_waitqueue_head(&dev_priv->pending_flip_queue); dev_priv->mm.interruptible = true; dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink; dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS; register_shrinker(&dev_priv->mm.inactive_shrinker); } /* * Create a physically contiguous memory object for this object * e.g. for cursor + overlay regs */ static int i915_gem_init_phys_object(struct drm_device *dev, int id, int size, int align) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_phys_object *phys_obj; int ret; if (dev_priv->mm.phys_objs[id - 1] || !size) return 0; phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL); if (!phys_obj) return -ENOMEM; phys_obj->id = id; phys_obj->handle = drm_pci_alloc(dev, size, align); if (!phys_obj->handle) { ret = -ENOMEM; goto kfree_obj; } #ifdef CONFIG_X86 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); #endif dev_priv->mm.phys_objs[id - 1] = phys_obj; return 0; kfree_obj: kfree(phys_obj); return ret; } static void i915_gem_free_phys_object(struct drm_device *dev, int id) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_phys_object *phys_obj; if (!dev_priv->mm.phys_objs[id - 1]) return; phys_obj = dev_priv->mm.phys_objs[id - 1]; if (phys_obj->cur_obj) { i915_gem_detach_phys_object(dev, phys_obj->cur_obj); } #ifdef CONFIG_X86 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); #endif drm_pci_free(dev, phys_obj->handle); kfree(phys_obj); dev_priv->mm.phys_objs[id - 1] = NULL; } void i915_gem_free_all_phys_object(struct drm_device *dev) { int i; for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++) i915_gem_free_phys_object(dev, i); } void i915_gem_detach_phys_object(struct drm_device *dev, struct drm_i915_gem_object *obj) { struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; char *vaddr; int i; int page_count; if (!obj->phys_obj) return; vaddr = obj->phys_obj->handle->vaddr; page_count = obj->base.size / PAGE_SIZE; for (i = 0; i < page_count; i++) { struct page *page = shmem_read_mapping_page(mapping, i); if (!IS_ERR(page)) { char *dst = kmap_atomic(page); memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE); kunmap_atomic(dst); drm_clflush_pages(&page, 1); set_page_dirty(page); mark_page_accessed(page); page_cache_release(page); } } intel_gtt_chipset_flush(); obj->phys_obj->cur_obj = NULL; obj->phys_obj = NULL; } int i915_gem_attach_phys_object(struct drm_device *dev, struct drm_i915_gem_object *obj, int id, int align) { struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; drm_i915_private_t *dev_priv = dev->dev_private; int ret = 0; int page_count; int i; if (id > I915_MAX_PHYS_OBJECT) return -EINVAL; if (obj->phys_obj) { if (obj->phys_obj->id == id) return 0; i915_gem_detach_phys_object(dev, obj); } /* create a new object */ if (!dev_priv->mm.phys_objs[id - 1]) { ret = i915_gem_init_phys_object(dev, id, obj->base.size, align); if (ret) { DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->base.size); return ret; } } /* bind to the object */ obj->phys_obj = dev_priv->mm.phys_objs[id - 1]; obj->phys_obj->cur_obj = obj; page_count = obj->base.size / PAGE_SIZE; for (i = 0; i < page_count; i++) { struct page *page; char *dst, *src; page = shmem_read_mapping_page(mapping, i); if (IS_ERR(page)) return PTR_ERR(page); src = kmap_atomic(page); dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE); memcpy(dst, src, PAGE_SIZE); kunmap_atomic(src); mark_page_accessed(page); page_cache_release(page); } return 0; } static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_i915_gem_object *obj, struct drm_i915_gem_pwrite *args, struct drm_file *file_priv) { void *vaddr = obj->phys_obj->handle->vaddr + args->offset; char __user *user_data = (char __user *) (uintptr_t) args->data_ptr; if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) { unsigned long unwritten; /* The physical object once assigned is fixed for the lifetime * of the obj, so we can safely drop the lock and continue * to access vaddr. */ mutex_unlock(&dev->struct_mutex); unwritten = copy_from_user(vaddr, user_data, args->size); mutex_lock(&dev->struct_mutex); if (unwritten) return -EFAULT; } intel_gtt_chipset_flush(); return 0; } void i915_gem_release(struct drm_device *dev, struct drm_file *file) { struct drm_i915_file_private *file_priv = file->driver_priv; /* Clean up our request list when the client is going away, so that * later retire_requests won't dereference our soon-to-be-gone * file_priv. */ spin_lock(&file_priv->mm.lock); while (!list_empty(&file_priv->mm.request_list)) { struct drm_i915_gem_request *request; request = list_first_entry(&file_priv->mm.request_list, struct drm_i915_gem_request, client_list); list_del(&request->client_list); request->file_priv = NULL; } spin_unlock(&file_priv->mm.lock); } static int i915_gpu_is_active(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; int lists_empty; lists_empty = list_empty(&dev_priv->mm.flushing_list) && list_empty(&dev_priv->mm.active_list); return !lists_empty; } static int i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc) { struct drm_i915_private *dev_priv = container_of(shrinker, struct drm_i915_private, mm.inactive_shrinker); struct drm_device *dev = dev_priv->dev; struct drm_i915_gem_object *obj, *next; int nr_to_scan = sc->nr_to_scan; int cnt; if (!mutex_trylock(&dev->struct_mutex)) return 0; /* "fast-path" to count number of available objects */ if (nr_to_scan == 0) { cnt = 0; list_for_each_entry(obj, &dev_priv->mm.inactive_list, mm_list) cnt++; mutex_unlock(&dev->struct_mutex); return cnt / 100 * sysctl_vfs_cache_pressure; } rescan: /* first scan for clean buffers */ i915_gem_retire_requests(dev); list_for_each_entry_safe(obj, next, &dev_priv->mm.inactive_list, mm_list) { if (i915_gem_object_is_purgeable(obj)) { if (i915_gem_object_unbind(obj) == 0 && --nr_to_scan == 0) break; } } /* second pass, evict/count anything still on the inactive list */ cnt = 0; list_for_each_entry_safe(obj, next, &dev_priv->mm.inactive_list, mm_list) { if (nr_to_scan && i915_gem_object_unbind(obj) == 0) nr_to_scan--; else cnt++; } if (nr_to_scan && i915_gpu_is_active(dev)) { /* * We are desperate for pages, so as a last resort, wait * for the GPU to finish and discard whatever we can. * This has a dramatic impact to reduce the number of * OOM-killer events whilst running the GPU aggressively. */ if (i915_gpu_idle(dev) == 0) goto rescan; } mutex_unlock(&dev->struct_mutex); return cnt / 100 * sysctl_vfs_cache_pressure; }