i915_gem.c 100.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37

38
static int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj,
39
						  struct intel_ring_buffer *pipelined);
40 41 42
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
43
					     bool write);
44
static int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
45 46
						     uint64_t offset,
						     uint64_t size);
47 48
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
static int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
49
				       unsigned alignment,
50
				       bool map_and_fenceable);
51 52 53
static void i915_gem_clear_fence_reg(struct drm_i915_gem_object *obj);
static int i915_gem_phys_pwrite(struct drm_device *dev,
				struct drm_i915_gem_object *obj,
54
				struct drm_i915_gem_pwrite *args,
55 56
				struct drm_file *file);
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
57

58 59 60 61
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
				    int nr_to_scan,
				    gfp_t gfp_mask);

62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
int
i915_gem_check_is_wedged(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

	/* Success, we reset the GPU! */
	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	/* GPU is hung, bump the completion count to account for
	 * the token we just consumed so that we never hit zero and
	 * end up waiting upon a subsequent completion event that
	 * will never happen.
	 */
	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	spin_unlock_irqrestore(&x->wait.lock, flags);
	return -EIO;
}

108
int i915_mutex_lock_interruptible(struct drm_device *dev)
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	if (atomic_read(&dev_priv->mm.wedged)) {
		mutex_unlock(&dev->struct_mutex);
		return -EAGAIN;
	}

126
	WARN_ON(i915_verify_lists(dev));
127 128
	return 0;
}
129

130
static inline bool
131
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
132
{
133
	return obj->gtt_space && !obj->active && obj->pin_count == 0;
134 135
}

136 137 138 139
void i915_gem_do_init(struct drm_device *dev,
		      unsigned long start,
		      unsigned long mappable_end,
		      unsigned long end)
140 141 142
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
143 144
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
145

146
	dev_priv->mm.gtt_total = end - start;
147
	dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
D
Daniel Vetter 已提交
148
	dev_priv->mm.gtt_mappable_end = mappable_end;
J
Jesse Barnes 已提交
149
}
150

J
Jesse Barnes 已提交
151 152
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
153
		    struct drm_file *file)
J
Jesse Barnes 已提交
154 155
{
	struct drm_i915_gem_init *args = data;
156 157 158 159

	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
160 161

	mutex_lock(&dev->struct_mutex);
162
	i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
163 164
	mutex_unlock(&dev->struct_mutex);

165
	return 0;
166 167
}

168 169
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
170
			    struct drm_file *file)
171
{
172
	struct drm_i915_private *dev_priv = dev->dev_private;
173
	struct drm_i915_gem_get_aperture *args = data;
174 175
	struct drm_i915_gem_object *obj;
	size_t pinned;
176 177 178 179

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

180
	pinned = 0;
181
	mutex_lock(&dev->struct_mutex);
182 183
	list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
		pinned += obj->gtt_space->size;
184
	mutex_unlock(&dev->struct_mutex);
185

186 187 188
	args->aper_size = dev_priv->mm.gtt_total;
	args->aper_available_size = args->aper_size -pinned;

189 190 191
	return 0;
}

192 193 194 195 196
/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
197
		      struct drm_file *file)
198 199
{
	struct drm_i915_gem_create *args = data;
200
	struct drm_i915_gem_object *obj;
201 202
	int ret;
	u32 handle;
203 204 205 206

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
207
	obj = i915_gem_alloc_object(dev, args->size);
208 209 210
	if (obj == NULL)
		return -ENOMEM;

211
	ret = drm_gem_handle_create(file, &obj->base, &handle);
212
	if (ret) {
213 214
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
215
		kfree(obj);
216
		return ret;
217
	}
218

219
	/* drop reference from allocate - handle holds it now */
220
	drm_gem_object_unreference(&obj->base);
221 222
	trace_i915_gem_object_create(obj);

223
	args->handle = handle;
224 225 226
	return 0;
}

227
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
228
{
229
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
230 231

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
232
		obj->tiling_mode != I915_TILING_NONE;
233 234
}

235
static inline void
236 237 238 239 240 241 242 243
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

244 245
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
246 247 248

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

249 250
	kunmap(src_page);
	kunmap(dst_page);
251 252
}

253
static inline void
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

273 274
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

298 299
	kunmap(cpu_page);
	kunmap(gpu_page);
300 301
}

302 303 304 305 306 307
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
308 309
i915_gem_shmem_pread_fast(struct drm_device *dev,
			  struct drm_i915_gem_object *obj,
310
			  struct drm_i915_gem_pread *args,
311
			  struct drm_file *file)
312
{
313
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
314
	ssize_t remain;
315
	loff_t offset;
316 317 318 319 320 321 322 323 324
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

	offset = args->offset;

	while (remain > 0) {
325 326 327 328
		struct page *page;
		char *vaddr;
		int ret;

329 330 331 332 333 334 335 336 337 338
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

339 340 341 342 343 344 345 346 347 348 349 350 351 352
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

		vaddr = kmap_atomic(page);
		ret = __copy_to_user_inatomic(user_data,
					      vaddr + page_offset,
					      page_length);
		kunmap_atomic(vaddr);

		mark_page_accessed(page);
		page_cache_release(page);
		if (ret)
353
			return -EFAULT;
354 355 356 357 358 359

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

360
	return 0;
361 362 363 364 365 366 367 368 369
}

/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
370 371
i915_gem_shmem_pread_slow(struct drm_device *dev,
			  struct drm_i915_gem_object *obj,
372
			  struct drm_i915_gem_pread *args,
373
			  struct drm_file *file)
374
{
375
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
376 377 378 379 380
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
381 382
	int shmem_page_offset;
	int data_page_index, data_page_offset;
383 384 385
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
386
	int do_bit17_swizzling;
387 388 389 390 391 392 393 394 395 396 397

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

398
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
399 400 401
	if (user_pages == NULL)
		return -ENOMEM;

402
	mutex_unlock(&dev->struct_mutex);
403 404
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
405
				      num_pages, 1, 0, user_pages, NULL);
406
	up_read(&mm->mmap_sem);
407
	mutex_lock(&dev->struct_mutex);
408 409
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
410
		goto out;
411 412
	}

413 414 415
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
416
	if (ret)
417
		goto out;
418

419
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
420 421 422 423

	offset = args->offset;

	while (remain > 0) {
424 425
		struct page *page;

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

443 444 445 446 447
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

448
		if (do_bit17_swizzling) {
449
			slow_shmem_bit17_copy(page,
450
					      shmem_page_offset,
451 452 453 454 455 456 457
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
458
					page,
459 460
					shmem_page_offset,
					page_length);
461
		}
462

463 464 465
		mark_page_accessed(page);
		page_cache_release(page);

466 467 468 469 470
		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

471
out:
472 473
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
474
		mark_page_accessed(user_pages[i]);
475 476
		page_cache_release(user_pages[i]);
	}
477
	drm_free_large(user_pages);
478 479 480 481

	return ret;
}

482 483 484 485 486 487 488
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
489
		     struct drm_file *file)
490 491
{
	struct drm_i915_gem_pread *args = data;
492
	struct drm_i915_gem_object *obj;
493
	int ret = 0;
494

495 496 497 498 499 500 501 502 503 504 505 506 507
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

	ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
				       args->size);
	if (ret)
		return -EFAULT;

508
	ret = i915_mutex_lock_interruptible(dev);
509
	if (ret)
510
		return ret;
511

512
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
513 514 515
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
516
	}
517

518
	/* Bounds check source.  */
519 520
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
521
		ret = -EINVAL;
522
		goto out;
C
Chris Wilson 已提交
523 524
	}

525 526 527 528
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
	if (ret)
529
		goto out;
530 531 532

	ret = -EFAULT;
	if (!i915_gem_object_needs_bit17_swizzle(obj))
533
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
534
	if (ret == -EFAULT)
535
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
536

537
out:
538
	drm_gem_object_unreference(&obj->base);
539
unlock:
540
	mutex_unlock(&dev->struct_mutex);
541
	return ret;
542 543
}

544 545
/* This is the fast write path which cannot handle
 * page faults in the source data
546
 */
547 548 549 550 551 552

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
553 554
{
	char *vaddr_atomic;
555
	unsigned long unwritten;
556

P
Peter Zijlstra 已提交
557
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
558 559
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
P
Peter Zijlstra 已提交
560
	io_mapping_unmap_atomic(vaddr_atomic);
561
	return unwritten;
562 563 564 565 566 567
}

/* Here's the write path which can sleep for
 * page faults
 */

568
static inline void
569 570 571 572
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
573
{
574 575
	char __iomem *dst_vaddr;
	char *src_vaddr;
576

577 578 579 580 581 582 583 584 585
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
586 587
}

588 589 590 591
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
592
static int
593 594
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
595
			 struct drm_i915_gem_pwrite *args,
596
			 struct drm_file *file)
597
{
598
	drm_i915_private_t *dev_priv = dev->dev_private;
599
	ssize_t remain;
600
	loff_t offset, page_base;
601
	char __user *user_data;
602
	int page_offset, page_length;
603 604 605 606

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

607
	offset = obj->gtt_offset + args->offset;
608 609 610 611

	while (remain > 0) {
		/* Operation in this page
		 *
612 613 614
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
615
		 */
616 617 618 619 620 621 622
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
623 624
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
625
		 */
626 627 628 629
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
				    page_offset, user_data, page_length))

			return -EFAULT;
630

631 632 633
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
634 635
	}

636
	return 0;
637 638
}

639 640 641 642 643 644 645
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
646
static int
647 648
i915_gem_gtt_pwrite_slow(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
649
			 struct drm_i915_gem_pwrite *args,
650
			 struct drm_file *file)
651
{
652 653 654 655 656 657 658 659
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
660
	int ret;
661 662 663 664 665 666 667 668 669 670 671 672
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

673
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
674 675 676
	if (user_pages == NULL)
		return -ENOMEM;

677
	mutex_unlock(&dev->struct_mutex);
678 679 680 681
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
682
	mutex_lock(&dev->struct_mutex);
683 684 685 686
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
687

688 689
	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret)
690
		goto out_unpin_pages;
691

692
	offset = obj->gtt_offset + args->offset;
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

714 715 716 717 718
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
719 720 721 722 723 724 725 726 727

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
728
	drm_free_large(user_pages);
729 730 731 732

	return ret;
}

733 734 735 736
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
737
static int
738 739
i915_gem_shmem_pwrite_fast(struct drm_device *dev,
			   struct drm_i915_gem_object *obj,
740
			   struct drm_i915_gem_pwrite *args,
741
			   struct drm_file *file)
742
{
743
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
744
	ssize_t remain;
745
	loff_t offset;
746 747 748 749 750
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
751

752
	offset = args->offset;
753
	obj->dirty = 1;
754 755

	while (remain > 0) {
756 757 758 759
		struct page *page;
		char *vaddr;
		int ret;

760 761 762 763 764 765 766 767 768 769
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

		vaddr = kmap_atomic(page, KM_USER0);
		ret = __copy_from_user_inatomic(vaddr + page_offset,
						user_data,
						page_length);
		kunmap_atomic(vaddr, KM_USER0);

		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

		/* If we get a fault while copying data, then (presumably) our
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
		 */
		if (ret)
790
			return -EFAULT;
791 792 793 794 795 796

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

797
	return 0;
798 799 800 801 802 803 804 805 806 807
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
808 809
i915_gem_shmem_pwrite_slow(struct drm_device *dev,
			   struct drm_i915_gem_object *obj,
810
			   struct drm_i915_gem_pwrite *args,
811
			   struct drm_file *file)
812
{
813
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
814 815 816 817 818
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
819
	int shmem_page_offset;
820 821 822 823
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
824
	int do_bit17_swizzling;
825 826 827 828 829 830 831 832 833 834 835

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

836
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
837 838 839
	if (user_pages == NULL)
		return -ENOMEM;

840
	mutex_unlock(&dev->struct_mutex);
841 842 843 844
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
845
	mutex_lock(&dev->struct_mutex);
846 847
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
848
		goto out;
849 850
	}

851
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
852
	if (ret)
853
		goto out;
854

855
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
856

857
	offset = args->offset;
858
	obj->dirty = 1;
859

860
	while (remain > 0) {
861 862
		struct page *page;

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

880 881 882 883 884 885 886
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page)) {
			ret = PTR_ERR(page);
			goto out;
		}

887
		if (do_bit17_swizzling) {
888
			slow_shmem_bit17_copy(page,
889 890 891
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
892 893 894
					      page_length,
					      0);
		} else {
895
			slow_shmem_copy(page,
896 897 898 899
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
900
		}
901

902 903 904 905
		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

906 907 908
		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
909 910
	}

911
out:
912 913
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
914
	drm_free_large(user_pages);
915

916
	return ret;
917 918 919 920 921 922 923 924 925
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
926
		      struct drm_file *file)
927 928
{
	struct drm_i915_gem_pwrite *args = data;
929
	struct drm_i915_gem_object *obj;
930 931 932 933 934 935 936 937 938 939 940 941 942 943
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

	ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
				      args->size);
	if (ret)
		return -EFAULT;
944

945
	ret = i915_mutex_lock_interruptible(dev);
946
	if (ret)
947
		return ret;
948

949
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
950 951 952
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
953
	}
954

955
	/* Bounds check destination. */
956 957
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
958
		ret = -EINVAL;
959
		goto out;
C
Chris Wilson 已提交
960 961
	}

962 963 964 965 966 967
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
968
	if (obj->phys_obj)
969
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
970 971 972
	else if (obj->tiling_mode == I915_TILING_NONE &&
		 obj->gtt_space &&
		 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
973
		ret = i915_gem_object_pin(obj, 0, true);
974 975 976 977 978 979 980 981 982 983 984 985 986
		if (ret)
			goto out;

		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret)
			goto out_unpin;

		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);

out_unpin:
		i915_gem_object_unpin(obj);
987
	} else {
988 989
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
		if (ret)
990
			goto out;
991

992 993 994 995 996 997
		ret = -EFAULT;
		if (!i915_gem_object_needs_bit17_swizzle(obj))
			ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
	}
998

999
out:
1000
	drm_gem_object_unreference(&obj->base);
1001
unlock:
1002
	mutex_unlock(&dev->struct_mutex);
1003 1004 1005 1006
	return ret;
}

/**
1007 1008
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1009 1010 1011
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1012
			  struct drm_file *file)
1013
{
1014
	struct drm_i915_private *dev_priv = dev->dev_private;
1015
	struct drm_i915_gem_set_domain *args = data;
1016
	struct drm_i915_gem_object *obj;
1017 1018
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1019 1020 1021 1022 1023
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1024
	/* Only handle setting domains to types used by the CPU. */
1025
	if (write_domain & I915_GEM_GPU_DOMAINS)
1026 1027
		return -EINVAL;

1028
	if (read_domains & I915_GEM_GPU_DOMAINS)
1029 1030 1031 1032 1033 1034 1035 1036
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1037
	ret = i915_mutex_lock_interruptible(dev);
1038
	if (ret)
1039
		return ret;
1040

1041
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1042 1043 1044
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
1045
	}
1046

1047 1048
	intel_mark_busy(dev, obj);

1049 1050
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1051

1052 1053 1054
		/* Update the LRU on the fence for the CPU access that's
		 * about to occur.
		 */
1055
		if (obj->fence_reg != I915_FENCE_REG_NONE) {
1056
			struct drm_i915_fence_reg *reg =
1057
				&dev_priv->fence_regs[obj->fence_reg];
1058
			list_move_tail(&reg->lru_list,
1059 1060 1061
				       &dev_priv->mm.fence_list);
		}

1062 1063 1064 1065 1066 1067
		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1068
	} else {
1069
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1070 1071
	}

1072
	/* Maintain LRU order of "inactive" objects */
1073 1074
	if (ret == 0 && i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1075

1076
	drm_gem_object_unreference(&obj->base);
1077
unlock:
1078 1079 1080 1081 1082 1083 1084 1085 1086
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1087
			 struct drm_file *file)
1088 1089
{
	struct drm_i915_gem_sw_finish *args = data;
1090
	struct drm_i915_gem_object *obj;
1091 1092 1093 1094 1095
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1096
	ret = i915_mutex_lock_interruptible(dev);
1097
	if (ret)
1098
		return ret;
1099

1100
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1101
	if (obj == NULL) {
1102 1103
		ret = -ENOENT;
		goto unlock;
1104 1105 1106
	}

	/* Pinned buffers may be scanout, so flush the cache */
1107
	if (obj->pin_count)
1108 1109
		i915_gem_object_flush_cpu_write_domain(obj);

1110
	drm_gem_object_unreference(&obj->base);
1111
unlock:
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1125
		    struct drm_file *file)
1126
{
1127
	struct drm_i915_private *dev_priv = dev->dev_private;
1128 1129 1130 1131 1132 1133 1134 1135
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1136
	obj = drm_gem_object_lookup(dev, file, args->handle);
1137
	if (obj == NULL)
1138
		return -ENOENT;
1139

1140 1141 1142 1143 1144
	if (obj->size > dev_priv->mm.gtt_mappable_end) {
		drm_gem_object_unreference_unlocked(obj);
		return -E2BIG;
	}

1145 1146 1147 1148 1149 1150 1151
	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1152
	drm_gem_object_unreference_unlocked(obj);
1153 1154 1155 1156 1157 1158 1159 1160
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1179 1180
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1181
	drm_i915_private_t *dev_priv = dev->dev_private;
1182 1183 1184
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1185
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1186 1187 1188 1189 1190 1191 1192

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
1193

1194 1195 1196 1197
	if (!obj->map_and_fenceable) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			goto unlock;
1198
	}
1199
	if (!obj->gtt_space) {
1200
		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1201 1202
		if (ret)
			goto unlock;
1203 1204
	}

1205 1206 1207 1208
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unlock;

1209
	/* Need a new fence register? */
1210
	if (obj->tiling_mode != I915_TILING_NONE) {
1211
		ret = i915_gem_object_get_fence_reg(obj, true);
1212 1213
		if (ret)
			goto unlock;
1214
	}
1215

1216 1217
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1218

1219 1220
	obj->fault_mappable = true;

1221
	pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1222 1223 1224 1225
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1226
unlock:
1227 1228 1229
	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
1230 1231
	case -EAGAIN:
		set_need_resched();
1232 1233 1234
	case 0:
	case -ERESTARTSYS:
		return VM_FAULT_NOPAGE;
1235 1236 1237
	case -ENOMEM:
		return VM_FAULT_OOM;
	default:
1238
		return VM_FAULT_SIGBUS;
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
1254
i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
1255
{
1256
	struct drm_device *dev = obj->base.dev;
1257 1258
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;
1259
	struct drm_local_map *map;
1260 1261 1262
	int ret = 0;

	/* Set the object up for mmap'ing */
1263
	list = &obj->base.map_list;
1264
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1265 1266 1267 1268 1269
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
1270
	map->size = obj->base.size;
1271 1272 1273 1274
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1275 1276
						    obj->base.size / PAGE_SIZE,
						    0, 0);
1277
	if (!list->file_offset_node) {
1278 1279
		DRM_ERROR("failed to allocate offset for bo %d\n",
			  obj->base.name);
1280
		ret = -ENOSPC;
1281 1282 1283 1284
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1285 1286
						  obj->base.size / PAGE_SIZE,
						  0);
1287 1288 1289 1290 1291 1292
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
1293 1294
	ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
	if (ret) {
1295 1296 1297 1298 1299 1300 1301 1302 1303
		DRM_ERROR("failed to add to map hash\n");
		goto out_free_mm;
	}

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1304
	kfree(list->map);
C
Chris Wilson 已提交
1305
	list->map = NULL;
1306 1307 1308 1309

	return ret;
}

1310 1311 1312 1313
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1314
 * Preserve the reservation of the mmapping with the DRM core code, but
1315 1316 1317 1318 1319 1320 1321 1322 1323
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1324
void
1325
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1326
{
1327 1328
	if (!obj->fault_mappable)
		return;
1329

1330 1331 1332
	unmap_mapping_range(obj->base.dev->dev_mapping,
			    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
			    obj->base.size, 1);
1333

1334
	obj->fault_mappable = false;
1335 1336
}

1337
static void
1338
i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
1339
{
1340
	struct drm_device *dev = obj->base.dev;
1341
	struct drm_gem_mm *mm = dev->mm_private;
1342
	struct drm_map_list *list = &obj->base.map_list;
1343 1344

	drm_ht_remove_item(&mm->offset_hash, &list->hash);
C
Chris Wilson 已提交
1345 1346 1347
	drm_mm_put_block(list->file_offset_node);
	kfree(list->map);
	list->map = NULL;
1348 1349
}

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
static uint32_t
i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	uint32_t size;

	if (INTEL_INFO(dev)->gen >= 4 ||
	    obj->tiling_mode == I915_TILING_NONE)
		return obj->base.size;

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
		size = 1024*1024;
	else
		size = 512*1024;

	while (size < obj->base.size)
		size <<= 1;

	return size;
}

1372 1373 1374 1375 1376
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1377
 * potential fence register mapping.
1378 1379
 */
static uint32_t
1380
i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
1381
{
1382
	struct drm_device *dev = obj->base.dev;
1383 1384 1385 1386 1387

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1388
	if (INTEL_INFO(dev)->gen >= 4 ||
1389
	    obj->tiling_mode == I915_TILING_NONE)
1390 1391
		return 4096;

1392 1393 1394 1395
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1396
	return i915_gem_get_gtt_size(obj);
1397 1398
}

1399 1400 1401 1402 1403 1404 1405 1406 1407
/**
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
 *					 unfenced object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, only taking into account
 * unfenced tiled surface requirements.
 */
static uint32_t
1408
i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
1409
{
1410
	struct drm_device *dev = obj->base.dev;
1411 1412 1413 1414 1415 1416
	int tile_height;

	/*
	 * Minimum alignment is 4k (GTT page size) for sane hw.
	 */
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1417
	    obj->tiling_mode == I915_TILING_NONE)
1418 1419 1420 1421 1422 1423 1424 1425
		return 4096;

	/*
	 * Older chips need unfenced tiled buffers to be aligned to the left
	 * edge of an even tile row (where tile rows are counted as if the bo is
	 * placed in a fenced gtt region).
	 */
	if (IS_GEN2(dev) ||
1426
	    (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
1427 1428 1429 1430
		tile_height = 32;
	else
		tile_height = 8;

1431
	return tile_height * obj->stride * 2;
1432 1433
}

1434 1435 1436 1437
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
1438
 * @file: GEM object info
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1451
			struct drm_file *file)
1452
{
1453
	struct drm_i915_private *dev_priv = dev->dev_private;
1454
	struct drm_i915_gem_mmap_gtt *args = data;
1455
	struct drm_i915_gem_object *obj;
1456 1457 1458 1459 1460
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1461
	ret = i915_mutex_lock_interruptible(dev);
1462
	if (ret)
1463
		return ret;
1464

1465
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1466 1467 1468 1469
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
	}
1470

1471
	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1472 1473 1474 1475
		ret = -E2BIG;
		goto unlock;
	}

1476
	if (obj->madv != I915_MADV_WILLNEED) {
1477
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1478 1479
		ret = -EINVAL;
		goto out;
1480 1481
	}

1482
	if (!obj->base.map_list.map) {
1483
		ret = i915_gem_create_mmap_offset(obj);
1484 1485
		if (ret)
			goto out;
1486 1487
	}

1488
	args->offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1489

1490
out:
1491
	drm_gem_object_unreference(&obj->base);
1492
unlock:
1493
	mutex_unlock(&dev->struct_mutex);
1494
	return ret;
1495 1496
}

1497
static int
1498
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
			      gfp_t gfpmask)
{
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
1509 1510 1511 1512
	page_count = obj->base.size / PAGE_SIZE;
	BUG_ON(obj->pages != NULL);
	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj->pages == NULL)
1513 1514
		return -ENOMEM;

1515
	inode = obj->base.filp->f_path.dentry->d_inode;
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
		page = read_cache_page_gfp(mapping, i,
					   GFP_HIGHUSER |
					   __GFP_COLD |
					   __GFP_RECLAIMABLE |
					   gfpmask);
		if (IS_ERR(page))
			goto err_pages;

1526
		obj->pages[i] = page;
1527 1528
	}

1529
	if (obj->tiling_mode != I915_TILING_NONE)
1530 1531 1532 1533 1534 1535
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
	while (i--)
1536
		page_cache_release(obj->pages[i]);
1537

1538 1539
	drm_free_large(obj->pages);
	obj->pages = NULL;
1540 1541 1542
	return PTR_ERR(page);
}

1543
static void
1544
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1545
{
1546
	int page_count = obj->base.size / PAGE_SIZE;
1547 1548
	int i;

1549
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1550

1551
	if (obj->tiling_mode != I915_TILING_NONE)
1552 1553
		i915_gem_object_save_bit_17_swizzle(obj);

1554 1555
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1556 1557

	for (i = 0; i < page_count; i++) {
1558 1559
		if (obj->dirty)
			set_page_dirty(obj->pages[i]);
1560

1561 1562
		if (obj->madv == I915_MADV_WILLNEED)
			mark_page_accessed(obj->pages[i]);
1563

1564
		page_cache_release(obj->pages[i]);
1565
	}
1566
	obj->dirty = 0;
1567

1568 1569
	drm_free_large(obj->pages);
	obj->pages = NULL;
1570 1571
}

1572
void
1573
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1574
			       struct intel_ring_buffer *ring)
1575
{
1576
	struct drm_device *dev = obj->base.dev;
1577
	struct drm_i915_private *dev_priv = dev->dev_private;
1578
	uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1579

1580
	BUG_ON(ring == NULL);
1581
	obj->ring = ring;
1582 1583

	/* Add a reference if we're newly entering the active list. */
1584 1585 1586
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
1587
	}
1588

1589
	/* Move from whatever list we were on to the tail of execution. */
1590 1591
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj->ring_list, &ring->active_list);
1592

1593
	obj->last_rendering_seqno = seqno;
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
	if (obj->fenced_gpu_access) {
		struct drm_i915_fence_reg *reg;

		BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);

		obj->last_fenced_seqno = seqno;
		obj->last_fenced_ring = ring;

		reg = &dev_priv->fence_regs[obj->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
	}
}

static void
i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
{
	list_del_init(&obj->ring_list);
	obj->last_rendering_seqno = 0;
	obj->last_fenced_seqno = 0;
1613 1614
}

1615
static void
1616
i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1617
{
1618
	struct drm_device *dev = obj->base.dev;
1619 1620
	drm_i915_private_t *dev_priv = dev->dev_private;

1621 1622
	BUG_ON(!obj->active);
	list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649

	i915_gem_object_move_off_active(obj);
}

static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (obj->pin_count != 0)
		list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
	else
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

	BUG_ON(!list_empty(&obj->gpu_write_list));
	BUG_ON(!obj->active);
	obj->ring = NULL;

	i915_gem_object_move_off_active(obj);
	obj->fenced_gpu_access = false;
	obj->last_fenced_ring = NULL;

	obj->active = 0;
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
1650
}
1651

1652 1653
/* Immediately discard the backing storage */
static void
1654
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1655
{
C
Chris Wilson 已提交
1656
	struct inode *inode;
1657

1658 1659 1660 1661 1662 1663
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*. Here we mirror the actions taken
	 * when by shmem_delete_inode() to release the backing store.
	 */
1664
	inode = obj->base.filp->f_path.dentry->d_inode;
1665 1666 1667
	truncate_inode_pages(inode->i_mapping, 0);
	if (inode->i_op->truncate_range)
		inode->i_op->truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1668

1669
	obj->madv = __I915_MADV_PURGED;
1670 1671 1672
}

static inline int
1673
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1674
{
1675
	return obj->madv == I915_MADV_DONTNEED;
1676 1677
}

1678 1679
static void
i915_gem_process_flushing_list(struct drm_device *dev,
1680
			       uint32_t flush_domains,
1681
			       struct intel_ring_buffer *ring)
1682
{
1683
	struct drm_i915_gem_object *obj, *next;
1684

1685
	list_for_each_entry_safe(obj, next,
1686
				 &ring->gpu_write_list,
1687
				 gpu_write_list) {
1688 1689
		if (obj->base.write_domain & flush_domains) {
			uint32_t old_write_domain = obj->base.write_domain;
1690

1691 1692
			obj->base.write_domain = 0;
			list_del_init(&obj->gpu_write_list);
1693
			i915_gem_object_move_to_active(obj, ring);
1694 1695

			trace_i915_gem_object_change_domain(obj,
1696
							    obj->base.read_domains,
1697 1698 1699 1700
							    old_write_domain);
		}
	}
}
1701

1702
int
1703
i915_add_request(struct drm_device *dev,
1704
		 struct drm_file *file,
C
Chris Wilson 已提交
1705
		 struct drm_i915_gem_request *request,
1706
		 struct intel_ring_buffer *ring)
1707 1708
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1709
	struct drm_i915_file_private *file_priv = NULL;
1710 1711
	uint32_t seqno;
	int was_empty;
1712 1713 1714
	int ret;

	BUG_ON(request == NULL);
1715

1716 1717
	if (file != NULL)
		file_priv = file->driver_priv;
1718

1719 1720 1721
	ret = ring->add_request(ring, &seqno);
	if (ret)
	    return ret;
1722

1723
	ring->outstanding_lazy_request = false;
1724 1725

	request->seqno = seqno;
1726
	request->ring = ring;
1727
	request->emitted_jiffies = jiffies;
1728 1729 1730
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

1731
	if (file_priv) {
1732
		spin_lock(&file_priv->mm.lock);
1733
		request->file_priv = file_priv;
1734
		list_add_tail(&request->client_list,
1735
			      &file_priv->mm.request_list);
1736
		spin_unlock(&file_priv->mm.lock);
1737
	}
1738

B
Ben Gamari 已提交
1739
	if (!dev_priv->mm.suspended) {
1740 1741
		mod_timer(&dev_priv->hangcheck_timer,
			  jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
B
Ben Gamari 已提交
1742
		if (was_empty)
1743 1744
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1745
	}
1746
	return 0;
1747 1748
}

1749 1750
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1751
{
1752
	struct drm_i915_file_private *file_priv = request->file_priv;
1753

1754 1755
	if (!file_priv)
		return;
C
Chris Wilson 已提交
1756

1757 1758 1759 1760
	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1761 1762
}

1763 1764
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1765
{
1766 1767
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1768

1769 1770 1771
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
1772

1773
		list_del(&request->list);
1774
		i915_gem_request_remove_from_client(request);
1775 1776
		kfree(request);
	}
1777

1778
	while (!list_empty(&ring->active_list)) {
1779
		struct drm_i915_gem_object *obj;
1780

1781 1782 1783
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
1784

1785 1786 1787
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1788 1789 1790
	}
}

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
static void i915_gem_reset_fences(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

	for (i = 0; i < 16; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
		if (reg->obj)
			i915_gem_clear_fence_reg(reg->obj);
	}
}

1803
void i915_gem_reset(struct drm_device *dev)
1804
{
1805
	struct drm_i915_private *dev_priv = dev->dev_private;
1806
	struct drm_i915_gem_object *obj;
1807

1808
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1809
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1810
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
1811 1812 1813 1814 1815 1816

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
1817 1818 1819
		obj= list_first_entry(&dev_priv->mm.flushing_list,
				      struct drm_i915_gem_object,
				      mm_list);
1820

1821 1822 1823
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1824 1825 1826 1827 1828
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1829
	list_for_each_entry(obj,
1830
			    &dev_priv->mm.inactive_list,
1831
			    mm_list)
1832
	{
1833
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1834
	}
1835 1836

	/* The fence registers are invalidated so clear them out */
1837
	i915_gem_reset_fences(dev);
1838 1839 1840 1841 1842
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1843 1844 1845
static void
i915_gem_retire_requests_ring(struct drm_device *dev,
			      struct intel_ring_buffer *ring)
1846 1847 1848 1849
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;

1850 1851
	if (!ring->status_page.page_addr ||
	    list_empty(&ring->request_list))
1852 1853
		return;

1854
	WARN_ON(i915_verify_lists(dev));
1855

1856
	seqno = ring->get_seqno(ring);
1857
	while (!list_empty(&ring->request_list)) {
1858 1859
		struct drm_i915_gem_request *request;

1860
		request = list_first_entry(&ring->request_list,
1861 1862 1863
					   struct drm_i915_gem_request,
					   list);

1864
		if (!i915_seqno_passed(seqno, request->seqno))
1865 1866 1867 1868 1869
			break;

		trace_i915_gem_request_retire(dev, request->seqno);

		list_del(&request->list);
1870
		i915_gem_request_remove_from_client(request);
1871 1872
		kfree(request);
	}
1873

1874 1875 1876 1877
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
1878
		struct drm_i915_gem_object *obj;
1879

1880 1881 1882
		obj= list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
				      ring_list);
1883

1884
		if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1885
			break;
1886

1887
		if (obj->base.write_domain != 0)
1888 1889 1890
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1891
	}
1892 1893 1894

	if (unlikely (dev_priv->trace_irq_seqno &&
		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1895
		ring->user_irq_put(ring);
1896 1897
		dev_priv->trace_irq_seqno = 0;
	}
1898 1899

	WARN_ON(i915_verify_lists(dev));
1900 1901
}

1902 1903 1904 1905 1906
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

1907
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1908
	    struct drm_i915_gem_object *obj, *next;
1909 1910 1911 1912 1913 1914

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
1915
	    list_for_each_entry_safe(obj, next,
1916
				     &dev_priv->mm.deferred_free_list,
1917
				     mm_list)
1918
		    i915_gem_free_object_tail(obj);
1919 1920
	}

1921
	i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1922
	i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1923
	i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
1924 1925
}

1926
static void
1927 1928 1929 1930 1931 1932 1933 1934 1935
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1936 1937 1938 1939 1940 1941
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1942
	i915_gem_retire_requests(dev);
1943

1944
	if (!dev_priv->mm.suspended &&
1945
		(!list_empty(&dev_priv->render_ring.request_list) ||
1946 1947
		 !list_empty(&dev_priv->bsd_ring.request_list) ||
		 !list_empty(&dev_priv->blt_ring.request_list)))
1948
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1949 1950 1951
	mutex_unlock(&dev->struct_mutex);
}

1952
int
1953
i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1954
		     bool interruptible, struct intel_ring_buffer *ring)
1955 1956
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1957
	u32 ier;
1958 1959 1960 1961
	int ret = 0;

	BUG_ON(seqno == 0);

1962
	if (atomic_read(&dev_priv->mm.wedged))
1963 1964
		return -EAGAIN;

1965
	if (seqno == ring->outstanding_lazy_request) {
1966 1967 1968 1969
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
1970
			return -ENOMEM;
1971 1972 1973 1974 1975 1976 1977 1978

		ret = i915_add_request(dev, NULL, request, ring);
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
1979
	}
1980

1981
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
1982
		if (HAS_PCH_SPLIT(dev))
1983 1984 1985
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
1986 1987 1988 1989 1990 1991 1992
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
1993 1994
		trace_i915_gem_request_wait_begin(dev, seqno);

1995
		ring->waiting_seqno = seqno;
1996
		ring->user_irq_get(ring);
1997
		if (interruptible)
1998
			ret = wait_event_interruptible(ring->irq_queue,
1999
				i915_seqno_passed(ring->get_seqno(ring), seqno)
2000
				|| atomic_read(&dev_priv->mm.wedged));
2001
		else
2002
			wait_event(ring->irq_queue,
2003
				i915_seqno_passed(ring->get_seqno(ring), seqno)
2004
				|| atomic_read(&dev_priv->mm.wedged));
2005

2006
		ring->user_irq_put(ring);
2007
		ring->waiting_seqno = 0;
C
Chris Wilson 已提交
2008 2009

		trace_i915_gem_request_wait_end(dev, seqno);
2010
	}
2011
	if (atomic_read(&dev_priv->mm.wedged))
2012
		ret = -EAGAIN;
2013 2014

	if (ret && ret != -ERESTARTSYS)
2015
		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2016
			  __func__, ret, seqno, ring->get_seqno(ring),
2017
			  dev_priv->next_seqno);
2018 2019 2020 2021 2022 2023 2024

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
2025
		i915_gem_retire_requests_ring(dev, ring);
2026 2027 2028 2029

	return ret;
}

2030 2031 2032 2033 2034
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
static int
2035
i915_wait_request(struct drm_device *dev, uint32_t seqno,
2036
		  struct intel_ring_buffer *ring)
2037
{
2038
	return i915_do_wait_request(dev, seqno, 1, ring);
2039 2040
}

2041 2042 2043 2044
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
2045
int
2046
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
2047
			       bool interruptible)
2048
{
2049
	struct drm_device *dev = obj->base.dev;
2050 2051
	int ret;

2052 2053
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
2054
	 */
2055
	BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2056 2057 2058 2059

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
2060
	if (obj->active) {
2061
		ret = i915_do_wait_request(dev,
2062
					   obj->last_rendering_seqno,
2063
					   interruptible,
2064
					   obj->ring);
2065
		if (ret)
2066 2067 2068 2069 2070 2071 2072 2073 2074
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
2075
int
2076
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2077 2078 2079
{
	int ret = 0;

2080
	if (obj->gtt_space == NULL)
2081 2082
		return 0;

2083
	if (obj->pin_count != 0) {
2084 2085 2086 2087
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2088 2089 2090
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

2091 2092 2093 2094 2095 2096
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
2097
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2098
	if (ret == -ERESTARTSYS)
2099
		return ret;
2100 2101 2102 2103
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */
2104 2105
	if (ret) {
		i915_gem_clflush_object(obj);
2106
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2107
	}
2108

2109
	/* release the fence reg _after_ flushing */
2110
	if (obj->fence_reg != I915_FENCE_REG_NONE)
2111 2112
		i915_gem_clear_fence_reg(obj);

2113
	i915_gem_gtt_unbind_object(obj);
2114
	i915_gem_object_put_pages_gtt(obj);
2115

2116
	list_del_init(&obj->gtt_list);
2117
	list_del_init(&obj->mm_list);
2118
	/* Avoid an unnecessary call to unbind on rebind. */
2119
	obj->map_and_fenceable = true;
2120

2121 2122 2123
	drm_mm_put_block(obj->gtt_space);
	obj->gtt_space = NULL;
	obj->gtt_offset = 0;
2124

2125
	if (i915_gem_object_is_purgeable(obj))
2126 2127
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
2128 2129
	trace_i915_gem_object_unbind(obj);

2130
	return ret;
2131 2132
}

2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
void
i915_gem_flush_ring(struct drm_device *dev,
		    struct intel_ring_buffer *ring,
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
	ring->flush(ring, invalidate_domains, flush_domains);
	i915_gem_process_flushing_list(dev, flush_domains, ring);
}

2143 2144 2145
static int i915_ring_idle(struct drm_device *dev,
			  struct intel_ring_buffer *ring)
{
2146
	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2147 2148
		return 0;

2149
	i915_gem_flush_ring(dev, ring,
2150 2151 2152 2153 2154 2155
			    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
	return i915_wait_request(dev,
				 i915_gem_next_request_seqno(dev, ring),
				 ring);
}

2156
int
2157 2158 2159 2160
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2161
	int ret;
2162

2163
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2164
		       list_empty(&dev_priv->mm.active_list));
2165 2166 2167 2168
	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
2169
	ret = i915_ring_idle(dev, &dev_priv->render_ring);
2170 2171
	if (ret)
		return ret;
2172

2173 2174 2175
	ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
	if (ret)
		return ret;
2176

2177 2178 2179
	ret = i915_ring_idle(dev, &dev_priv->blt_ring);
	if (ret)
		return ret;
2180

2181
	return 0;
2182 2183
}

2184 2185
static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
				       struct intel_ring_buffer *pipelined)
2186
{
2187
	struct drm_device *dev = obj->base.dev;
2188
	drm_i915_private_t *dev_priv = dev->dev_private;
2189 2190
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2191 2192
	uint64_t val;

2193
	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2194
			 0xfffff000) << 32;
2195 2196
	val |= obj->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj->stride / 128) - 1) <<
2197 2198
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

2199
	if (obj->tiling_mode == I915_TILING_Y)
2200 2201 2202
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 6);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
		intel_ring_emit(pipelined, (u32)val);
		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
		intel_ring_emit(pipelined, (u32)(val >> 32));
		intel_ring_advance(pipelined);
	} else
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);

	return 0;
2219 2220
}

2221 2222
static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2223
{
2224
	struct drm_device *dev = obj->base.dev;
2225
	drm_i915_private_t *dev_priv = dev->dev_private;
2226 2227
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2228 2229
	uint64_t val;

2230
	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2231
		    0xfffff000) << 32;
2232 2233 2234
	val |= obj->gtt_offset & 0xfffff000;
	val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj->tiling_mode == I915_TILING_Y)
2235 2236 2237
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 6);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
		intel_ring_emit(pipelined, (u32)val);
		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
		intel_ring_emit(pipelined, (u32)(val >> 32));
		intel_ring_advance(pipelined);
	} else
		I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);

	return 0;
2254 2255
}

2256 2257
static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2258
{
2259
	struct drm_device *dev = obj->base.dev;
2260
	drm_i915_private_t *dev_priv = dev->dev_private;
2261
	u32 size = obj->gtt_space->size;
2262
	u32 fence_reg, val, pitch_val;
2263
	int tile_width;
2264

2265 2266 2267 2268 2269 2270
	if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
		 (size & -size) != size ||
		 (obj->gtt_offset & (size - 1)),
		 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		 obj->gtt_offset, obj->map_and_fenceable, size))
		return -EINVAL;
2271

2272
	if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2273
		tile_width = 128;
2274
	else
2275 2276 2277
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
2278
	pitch_val = obj->stride / tile_width;
2279
	pitch_val = ffs(pitch_val) - 1;
2280

2281 2282
	val = obj->gtt_offset;
	if (obj->tiling_mode == I915_TILING_Y)
2283
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2284
	val |= I915_FENCE_SIZE_BITS(size);
2285 2286 2287
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2288
	fence_reg = obj->fence_reg;
2289 2290
	if (fence_reg < 8)
		fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2291
	else
2292
		fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307

	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 4);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(pipelined, fence_reg);
		intel_ring_emit(pipelined, val);
		intel_ring_advance(pipelined);
	} else
		I915_WRITE(fence_reg, val);

	return 0;
2308 2309
}

2310 2311
static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2312
{
2313
	struct drm_device *dev = obj->base.dev;
2314
	drm_i915_private_t *dev_priv = dev->dev_private;
2315 2316
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2317 2318 2319
	uint32_t val;
	uint32_t pitch_val;

2320 2321 2322 2323 2324 2325
	if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
		 (size & -size) != size ||
		 (obj->gtt_offset & (size - 1)),
		 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
		 obj->gtt_offset, size))
		return -EINVAL;
2326

2327
	pitch_val = obj->stride / 128;
2328 2329
	pitch_val = ffs(pitch_val) - 1;

2330 2331
	val = obj->gtt_offset;
	if (obj->tiling_mode == I915_TILING_Y)
2332
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2333
	val |= I830_FENCE_SIZE_BITS(size);
2334 2335 2336
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 4);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
		intel_ring_emit(pipelined, val);
		intel_ring_advance(pipelined);
	} else
		I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);

	return 0;
2351 2352
}

2353 2354
static int i915_find_fence_reg(struct drm_device *dev,
			       bool interruptible)
2355 2356
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2357
	struct drm_i915_fence_reg *reg;
2358
	struct drm_i915_gem_object *obj = NULL;
2359 2360 2361 2362 2363 2364 2365 2366 2367
	int i, avail, ret;

	/* First try to find a free reg */
	avail = 0;
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			return i;

2368 2369
		if (!reg->obj->pin_count)
			avail++;
2370 2371 2372 2373 2374 2375
	}

	if (avail == 0)
		return -ENOSPC;

	/* None available, try to steal one or wait for a user to finish */
2376
	avail = I915_FENCE_REG_NONE;
2377 2378
	list_for_each_entry(reg, &dev_priv->mm.fence_list,
			    lru_list) {
2379 2380
		obj = reg->obj;
		if (obj->pin_count)
2381 2382 2383
			continue;

		/* found one! */
2384
		avail = obj->fence_reg;
2385 2386 2387
		break;
	}

2388
	BUG_ON(avail == I915_FENCE_REG_NONE);
2389 2390 2391 2392 2393

	/* We only have a reference on obj from the active list. put_fence_reg
	 * might drop that one, causing a use-after-free in it. So hold a
	 * private reference to obj like the other callers of put_fence_reg
	 * (set_tiling ioctl) do. */
2394 2395 2396
	drm_gem_object_reference(&obj->base);
	ret = i915_gem_object_put_fence_reg(obj, interruptible);
	drm_gem_object_unreference(&obj->base);
2397 2398 2399
	if (ret != 0)
		return ret;

2400
	return avail;
2401 2402
}

2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
/**
 * i915_gem_object_get_fence_reg - set up a fence reg for an object
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2416
int
2417
i915_gem_object_get_fence_reg(struct drm_i915_gem_object *obj,
2418
			      bool interruptible)
2419
{
2420
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
2421
	struct drm_i915_private *dev_priv = dev->dev_private;
2422
	struct drm_i915_fence_reg *reg = NULL;
2423
	struct intel_ring_buffer *pipelined = NULL;
2424
	int ret;
2425

2426
	/* Just update our place in the LRU if our fence is getting used. */
2427 2428
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
2429
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2430 2431 2432
		return 0;
	}

2433
	switch (obj->tiling_mode) {
2434 2435 2436 2437
	case I915_TILING_NONE:
		WARN(1, "allocating a fence for non-tiled object?\n");
		break;
	case I915_TILING_X:
2438
		if (!obj->stride)
2439
			return -EINVAL;
2440
		WARN((obj->stride & (512 - 1)),
2441
		     "object 0x%08x is X tiled but has non-512B pitch\n",
2442
		     obj->gtt_offset);
2443 2444
		break;
	case I915_TILING_Y:
2445
		if (!obj->stride)
2446
			return -EINVAL;
2447
		WARN((obj->stride & (128 - 1)),
2448
		     "object 0x%08x is Y tiled but has non-128B pitch\n",
2449
		     obj->gtt_offset);
2450 2451 2452
		break;
	}

2453
	ret = i915_find_fence_reg(dev, interruptible);
2454 2455
	if (ret < 0)
		return ret;
2456

2457 2458
	obj->fence_reg = ret;
	reg = &dev_priv->fence_regs[obj->fence_reg];
2459
	list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2460

2461 2462
	reg->obj = obj;

2463 2464
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2465
		ret = sandybridge_write_fence_reg(obj, pipelined);
2466 2467 2468
		break;
	case 5:
	case 4:
2469
		ret = i965_write_fence_reg(obj, pipelined);
2470 2471
		break;
	case 3:
2472
		ret = i915_write_fence_reg(obj, pipelined);
2473 2474
		break;
	case 2:
2475
		ret = i830_write_fence_reg(obj, pipelined);
2476 2477
		break;
	}
2478

2479
	trace_i915_gem_object_get_fence(obj,
2480 2481
					obj->fence_reg,
					obj->tiling_mode);
2482
	return ret;
2483 2484 2485 2486 2487 2488 2489
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
2490
 * data structures in dev_priv and obj.
2491 2492
 */
static void
2493
i915_gem_clear_fence_reg(struct drm_i915_gem_object *obj)
2494
{
2495
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
2496
	drm_i915_private_t *dev_priv = dev->dev_private;
2497
	struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[obj->fence_reg];
2498
	uint32_t fence_reg;
2499

2500 2501
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2502
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2503
			     (obj->fence_reg * 8), 0);
2504 2505 2506
		break;
	case 5:
	case 4:
2507
		I915_WRITE64(FENCE_REG_965_0 + (obj->fence_reg * 8), 0);
2508 2509
		break;
	case 3:
2510 2511
		if (obj->fence_reg >= 8)
			fence_reg = FENCE_REG_945_8 + (obj->fence_reg - 8) * 4;
2512
		else
2513
	case 2:
2514
			fence_reg = FENCE_REG_830_0 + obj->fence_reg * 4;
2515 2516

		I915_WRITE(fence_reg, 0);
2517
		break;
2518
	}
2519

2520
	reg->obj = NULL;
2521
	obj->fence_reg = I915_FENCE_REG_NONE;
2522
	list_del_init(&reg->lru_list);
2523 2524
}

2525 2526 2527 2528
/**
 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
 * to the buffer to finish, and then resets the fence register.
 * @obj: tiled object holding a fence register.
2529
 * @bool: whether the wait upon the fence is interruptible
2530 2531
 *
 * Zeroes out the fence register itself and clears out the associated
2532
 * data structures in dev_priv and obj.
2533 2534
 */
int
2535
i915_gem_object_put_fence_reg(struct drm_i915_gem_object *obj,
2536
			      bool interruptible)
2537
{
2538
	struct drm_device *dev = obj->base.dev;
2539
	int ret;
2540

2541
	if (obj->fence_reg == I915_FENCE_REG_NONE)
2542 2543
		return 0;

2544 2545 2546 2547 2548 2549
	/* If we've changed tiling, GTT-mappings of the object
	 * need to re-fault to ensure that the correct fence register
	 * setup is in place.
	 */
	i915_gem_release_mmap(obj);

2550 2551 2552 2553
	/* On the i915, GPU access to tiled buffers is via a fence,
	 * therefore we must wait for any outstanding access to complete
	 * before clearing the fence.
	 */
2554
	if (obj->fenced_gpu_access) {
2555
		ret = i915_gem_object_flush_gpu_write_domain(obj, NULL);
2556
		if (ret)
2557 2558
			return ret;

2559 2560 2561 2562 2563 2564 2565 2566
		obj->fenced_gpu_access = false;
	}

	if (obj->last_fenced_seqno) {
		ret = i915_do_wait_request(dev,
					   obj->last_fenced_seqno,
					   interruptible,
					   obj->last_fenced_ring);
2567
		if (ret)
2568
			return ret;
C
Chris Wilson 已提交
2569

2570
		obj->last_fenced_seqno = false;
2571 2572
	}

2573
	i915_gem_object_flush_gtt_write_domain(obj);
2574
	i915_gem_clear_fence_reg(obj);
2575 2576 2577 2578

	return 0;
}

2579 2580 2581 2582
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2583
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2584
			    unsigned alignment,
2585
			    bool map_and_fenceable)
2586
{
2587
	struct drm_device *dev = obj->base.dev;
2588 2589
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_mm_node *free_space;
2590
	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2591
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2592
	bool mappable, fenceable;
2593
	int ret;
2594

2595
	if (obj->madv != I915_MADV_WILLNEED) {
2596 2597 2598 2599
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2600 2601 2602
	fence_size = i915_gem_get_gtt_size(obj);
	fence_alignment = i915_gem_get_gtt_alignment(obj);
	unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
2603

2604
	if (alignment == 0)
2605 2606
		alignment = map_and_fenceable ? fence_alignment :
						unfenced_alignment;
2607
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2608 2609 2610 2611
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2612
	size = map_and_fenceable ? fence_size : obj->base.size;
2613

2614 2615 2616
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2617
	if (obj->base.size >
2618
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2619 2620 2621 2622
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2623
 search_free:
2624
	if (map_and_fenceable)
2625 2626
		free_space =
			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2627
						    size, alignment, 0,
2628 2629 2630 2631
						    dev_priv->mm.gtt_mappable_end,
						    0);
	else
		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2632
						size, alignment, 0);
2633 2634

	if (free_space != NULL) {
2635
		if (map_and_fenceable)
2636
			obj->gtt_space =
2637
				drm_mm_get_block_range_generic(free_space,
2638
							       size, alignment, 0,
2639 2640 2641
							       dev_priv->mm.gtt_mappable_end,
							       0);
		else
2642
			obj->gtt_space =
2643
				drm_mm_get_block(free_space, size, alignment);
2644
	}
2645
	if (obj->gtt_space == NULL) {
2646 2647 2648
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2649 2650
		ret = i915_gem_evict_something(dev, size, alignment,
					       map_and_fenceable);
2651
		if (ret)
2652
			return ret;
2653

2654 2655 2656
		goto search_free;
	}

2657
	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2658
	if (ret) {
2659 2660
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2661 2662 2663

		if (ret == -ENOMEM) {
			/* first try to clear up some space from the GTT */
2664
			ret = i915_gem_evict_something(dev, size,
2665 2666
						       alignment,
						       map_and_fenceable);
2667 2668
			if (ret) {
				/* now try to shrink everyone else */
2669 2670 2671
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2672 2673 2674 2675 2676 2677 2678 2679
				}

				return ret;
			}

			goto search_free;
		}

2680 2681 2682
		return ret;
	}

2683 2684
	ret = i915_gem_gtt_bind_object(obj);
	if (ret) {
2685
		i915_gem_object_put_pages_gtt(obj);
2686 2687
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2688

2689
		ret = i915_gem_evict_something(dev, size,
2690
					       alignment, map_and_fenceable);
2691
		if (ret)
2692 2693 2694
			return ret;

		goto search_free;
2695 2696
	}

2697
	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2698
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2699

2700 2701 2702 2703
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2704 2705
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2706

2707
	obj->gtt_offset = obj->gtt_space->start;
C
Chris Wilson 已提交
2708

2709
	fenceable =
2710 2711
		obj->gtt_space->size == fence_size &&
		(obj->gtt_space->start & (fence_alignment -1)) == 0;
2712

2713
	mappable =
2714
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2715

2716
	obj->map_and_fenceable = mappable && fenceable;
2717

2718
	trace_i915_gem_object_bind(obj, obj->gtt_offset, map_and_fenceable);
2719 2720 2721 2722
	return 0;
}

void
2723
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2724 2725 2726 2727 2728
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2729
	if (obj->pages == NULL)
2730 2731
		return;

C
Chris Wilson 已提交
2732
	trace_i915_gem_object_clflush(obj);
2733

2734
	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2735 2736
}

2737
/** Flushes any GPU write domain for the object if it's dirty. */
2738
static int
2739
i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj,
2740
				       struct intel_ring_buffer *pipelined)
2741
{
2742
	struct drm_device *dev = obj->base.dev;
2743

2744
	if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2745
		return 0;
2746 2747

	/* Queue the GPU write cache flushing we need. */
2748 2749
	i915_gem_flush_ring(dev, obj->ring, 0, obj->base.write_domain);
	BUG_ON(obj->base.write_domain);
C
Chris Wilson 已提交
2750

2751
	if (pipelined && pipelined == obj->ring)
2752 2753
		return 0;

2754
	return i915_gem_object_wait_rendering(obj, true);
2755 2756 2757 2758
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
2759
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2760
{
C
Chris Wilson 已提交
2761 2762
	uint32_t old_write_domain;

2763
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2764 2765 2766 2767 2768 2769
		return;

	/* No actual flushing is required for the GTT write domain.   Writes
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 */
2770 2771
	i915_gem_release_mmap(obj);

2772 2773
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2774 2775

	trace_i915_gem_object_change_domain(obj,
2776
					    obj->base.read_domains,
C
Chris Wilson 已提交
2777
					    old_write_domain);
2778 2779 2780 2781
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
2782
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2783
{
C
Chris Wilson 已提交
2784
	uint32_t old_write_domain;
2785

2786
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2787 2788 2789
		return;

	i915_gem_clflush_object(obj);
2790
	intel_gtt_chipset_flush();
2791 2792
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2793 2794

	trace_i915_gem_object_change_domain(obj,
2795
					    obj->base.read_domains,
C
Chris Wilson 已提交
2796
					    old_write_domain);
2797 2798
}

2799 2800 2801 2802 2803 2804
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2805
int
2806
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2807
{
C
Chris Wilson 已提交
2808
	uint32_t old_write_domain, old_read_domains;
2809
	int ret;
2810

2811
	/* Not valid to be called on unbound objects. */
2812
	if (obj->gtt_space == NULL)
2813 2814
		return -EINVAL;

2815
	ret = i915_gem_object_flush_gpu_write_domain(obj, NULL);
2816 2817 2818
	if (ret != 0)
		return ret;

2819
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2820

2821
	if (write) {
2822
		ret = i915_gem_object_wait_rendering(obj, true);
2823 2824 2825
		if (ret)
			return ret;
	}
2826

2827 2828
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
2829

2830 2831 2832
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2833 2834
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2835
	if (write) {
2836 2837 2838
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
2839 2840
	}

C
Chris Wilson 已提交
2841 2842 2843 2844
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2845 2846 2847
	return 0;
}

2848 2849 2850 2851 2852
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
2853
i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
2854
				     struct intel_ring_buffer *pipelined)
2855
{
2856
	uint32_t old_read_domains;
2857 2858 2859
	int ret;

	/* Not valid to be called on unbound objects. */
2860
	if (obj->gtt_space == NULL)
2861 2862
		return -EINVAL;

2863
	ret = i915_gem_object_flush_gpu_write_domain(obj, pipelined);
2864 2865
	if (ret)
		return ret;
2866

2867 2868 2869 2870
	/* Currently, we are always called from an non-interruptible context. */
	if (!pipelined) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
2871 2872 2873
			return ret;
	}

2874 2875
	i915_gem_object_flush_cpu_write_domain(obj);

2876 2877
	old_read_domains = obj->base.read_domains;
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2878 2879 2880

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
2881
					    obj->base.write_domain);
2882 2883 2884 2885

	return 0;
}

2886 2887 2888 2889 2890 2891 2892 2893
int
i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
			  bool interruptible)
{
	if (!obj->active)
		return 0;

	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
2894
		i915_gem_flush_ring(obj->base.dev, obj->ring,
2895 2896
				    0, obj->base.write_domain);

2897
	return i915_gem_object_wait_rendering(obj, interruptible);
2898 2899
}

2900 2901 2902 2903 2904 2905 2906
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
2907
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
2908
{
C
Chris Wilson 已提交
2909
	uint32_t old_write_domain, old_read_domains;
2910 2911
	int ret;

2912
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2913 2914
	if (ret != 0)
		return ret;
2915

2916
	i915_gem_object_flush_gtt_write_domain(obj);
2917

2918 2919
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
2920
	 */
2921
	i915_gem_object_set_to_full_cpu_read_domain(obj);
2922

2923
	if (write) {
2924
		ret = i915_gem_object_wait_rendering(obj, true);
2925 2926 2927 2928
		if (ret)
			return ret;
	}

2929 2930
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
2931

2932
	/* Flush the CPU cache if it's still invalid. */
2933
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2934 2935
		i915_gem_clflush_object(obj);

2936
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2937 2938 2939 2940 2941
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2942
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2943 2944 2945 2946 2947

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
2948 2949
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2950
	}
2951

C
Chris Wilson 已提交
2952 2953 2954 2955
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2956 2957 2958
	return 0;
}

2959
/**
2960
 * Moves the object from a partially CPU read to a full one.
2961
 *
2962 2963
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2964
 */
2965
static void
2966
i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
2967
{
2968
	if (!obj->page_cpu_valid)
2969 2970 2971 2972
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
2973
	if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
2974 2975
		int i;

2976 2977
		for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
			if (obj->page_cpu_valid[i])
2978
				continue;
2979
			drm_clflush_pages(obj->pages + i, 1);
2980 2981 2982 2983 2984 2985
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
2986 2987
	kfree(obj->page_cpu_valid);
	obj->page_cpu_valid = NULL;
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
3003
i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3004 3005
					  uint64_t offset, uint64_t size)
{
C
Chris Wilson 已提交
3006
	uint32_t old_read_domains;
3007
	int i, ret;
3008

3009
	if (offset == 0 && size == obj->base.size)
3010
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3011

3012
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3013
	if (ret != 0)
3014
		return ret;
3015 3016 3017
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
3018 3019
	if (obj->page_cpu_valid == NULL &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3020
		return 0;
3021

3022 3023 3024
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3025 3026 3027 3028
	if (obj->page_cpu_valid == NULL) {
		obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
					      GFP_KERNEL);
		if (obj->page_cpu_valid == NULL)
3029
			return -ENOMEM;
3030 3031
	} else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3032 3033 3034 3035

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3036 3037
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3038
		if (obj->page_cpu_valid[i])
3039 3040
			continue;

3041
		drm_clflush_pages(obj->pages + i, 1);
3042

3043
		obj->page_cpu_valid[i] = 1;
3044 3045
	}

3046 3047 3048
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3049
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3050

3051 3052
	old_read_domains = obj->base.read_domains;
	obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3053

C
Chris Wilson 已提交
3054 3055
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3056
					    obj->base.write_domain);
C
Chris Wilson 已提交
3057

3058 3059 3060 3061 3062 3063
	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3064 3065 3066 3067
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3068 3069 3070
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3071
static int
3072
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3073
{
3074 3075
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3076
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3077 3078 3079 3080
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3081

3082
	spin_lock(&file_priv->mm.lock);
3083
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3084 3085
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3086

3087 3088
		ring = request->ring;
		seqno = request->seqno;
3089
	}
3090
	spin_unlock(&file_priv->mm.lock);
3091

3092 3093
	if (seqno == 0)
		return 0;
3094

3095
	ret = 0;
3096
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3097 3098 3099 3100 3101
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
3102
		ring->user_irq_get(ring);
3103
		ret = wait_event_interruptible(ring->irq_queue,
3104
					       i915_seqno_passed(ring->get_seqno(ring), seqno)
3105
					       || atomic_read(&dev_priv->mm.wedged));
3106
		ring->user_irq_put(ring);
3107

3108 3109
		if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
			ret = -EIO;
3110 3111
	}

3112 3113
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3114 3115 3116 3117

	return ret;
}

3118
int
3119 3120
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    uint32_t alignment,
3121
		    bool map_and_fenceable)
3122
{
3123
	struct drm_device *dev = obj->base.dev;
C
Chris Wilson 已提交
3124
	struct drm_i915_private *dev_priv = dev->dev_private;
3125 3126
	int ret;

3127
	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3128
	WARN_ON(i915_verify_lists(dev));
3129

3130 3131 3132 3133
	if (obj->gtt_space != NULL) {
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
		    (map_and_fenceable && !obj->map_and_fenceable)) {
			WARN(obj->pin_count,
3134
			     "bo is already pinned with incorrect alignment:"
3135 3136
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
			     " obj->map_and_fenceable=%d\n",
3137
			     obj->gtt_offset, alignment,
3138
			     map_and_fenceable,
3139
			     obj->map_and_fenceable);
3140 3141 3142 3143 3144 3145
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

3146
	if (obj->gtt_space == NULL) {
3147
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3148
						  map_and_fenceable);
3149
		if (ret)
3150
			return ret;
3151
	}
J
Jesse Barnes 已提交
3152

3153 3154 3155
	if (obj->pin_count++ == 0) {
		if (!obj->active)
			list_move_tail(&obj->mm_list,
C
Chris Wilson 已提交
3156
				       &dev_priv->mm.pinned_list);
3157
	}
3158
	obj->pin_mappable |= map_and_fenceable;
3159

3160
	WARN_ON(i915_verify_lists(dev));
3161 3162 3163 3164
	return 0;
}

void
3165
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3166
{
3167
	struct drm_device *dev = obj->base.dev;
3168 3169
	drm_i915_private_t *dev_priv = dev->dev_private;

3170
	WARN_ON(i915_verify_lists(dev));
3171 3172
	BUG_ON(obj->pin_count == 0);
	BUG_ON(obj->gtt_space == NULL);
3173

3174 3175 3176
	if (--obj->pin_count == 0) {
		if (!obj->active)
			list_move_tail(&obj->mm_list,
3177
				       &dev_priv->mm.inactive_list);
3178
		obj->pin_mappable = false;
3179
	}
3180
	WARN_ON(i915_verify_lists(dev));
3181 3182 3183 3184
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3185
		   struct drm_file *file)
3186 3187
{
	struct drm_i915_gem_pin *args = data;
3188
	struct drm_i915_gem_object *obj;
3189 3190
	int ret;

3191 3192 3193
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3194

3195
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3196
	if (obj == NULL) {
3197 3198
		ret = -ENOENT;
		goto unlock;
3199 3200
	}

3201
	if (obj->madv != I915_MADV_WILLNEED) {
C
Chris Wilson 已提交
3202
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3203 3204
		ret = -EINVAL;
		goto out;
3205 3206
	}

3207
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
J
Jesse Barnes 已提交
3208 3209
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3210 3211
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3212 3213
	}

3214 3215 3216
	obj->user_pin_count++;
	obj->pin_filp = file;
	if (obj->user_pin_count == 1) {
3217
		ret = i915_gem_object_pin(obj, args->alignment, true);
3218 3219
		if (ret)
			goto out;
3220 3221 3222 3223 3224
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3225
	i915_gem_object_flush_cpu_write_domain(obj);
3226
	args->offset = obj->gtt_offset;
3227
out:
3228
	drm_gem_object_unreference(&obj->base);
3229
unlock:
3230
	mutex_unlock(&dev->struct_mutex);
3231
	return ret;
3232 3233 3234 3235
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3236
		     struct drm_file *file)
3237 3238
{
	struct drm_i915_gem_pin *args = data;
3239
	struct drm_i915_gem_object *obj;
3240
	int ret;
3241

3242 3243 3244
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3245

3246
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3247
	if (obj == NULL) {
3248 3249
		ret = -ENOENT;
		goto unlock;
3250
	}
3251

3252
	if (obj->pin_filp != file) {
J
Jesse Barnes 已提交
3253 3254
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3255 3256
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3257
	}
3258 3259 3260
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
J
Jesse Barnes 已提交
3261 3262
		i915_gem_object_unpin(obj);
	}
3263

3264
out:
3265
	drm_gem_object_unreference(&obj->base);
3266
unlock:
3267
	mutex_unlock(&dev->struct_mutex);
3268
	return ret;
3269 3270 3271 3272
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3273
		    struct drm_file *file)
3274 3275
{
	struct drm_i915_gem_busy *args = data;
3276
	struct drm_i915_gem_object *obj;
3277 3278
	int ret;

3279
	ret = i915_mutex_lock_interruptible(dev);
3280
	if (ret)
3281
		return ret;
3282

3283
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3284
	if (obj == NULL) {
3285 3286
		ret = -ENOENT;
		goto unlock;
3287
	}
3288

3289 3290 3291 3292
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
3293
	 */
3294
	args->busy = obj->active;
3295 3296 3297 3298 3299 3300
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
3301 3302 3303
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
			i915_gem_flush_ring(dev, obj->ring,
					    0, obj->base.write_domain);
3304 3305 3306 3307 3308 3309

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
3310
		i915_gem_retire_requests_ring(dev, obj->ring);
3311

3312
		args->busy = obj->active;
3313
	}
3314

3315
	drm_gem_object_unreference(&obj->base);
3316
unlock:
3317
	mutex_unlock(&dev->struct_mutex);
3318
	return ret;
3319 3320 3321 3322 3323 3324 3325 3326 3327
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

3328 3329 3330 3331 3332
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
3333
	struct drm_i915_gem_object *obj;
3334
	int ret;
3335 3336 3337 3338 3339 3340 3341 3342 3343

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3344 3345 3346 3347
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3348
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3349
	if (obj == NULL) {
3350 3351
		ret = -ENOENT;
		goto unlock;
3352 3353
	}

3354
	if (obj->pin_count) {
3355 3356
		ret = -EINVAL;
		goto out;
3357 3358
	}

3359 3360
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3361

3362
	/* if the object is no longer bound, discard its backing storage */
3363 3364
	if (i915_gem_object_is_purgeable(obj) &&
	    obj->gtt_space == NULL)
3365 3366
		i915_gem_object_truncate(obj);

3367
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3368

3369
out:
3370
	drm_gem_object_unreference(&obj->base);
3371
unlock:
3372
	mutex_unlock(&dev->struct_mutex);
3373
	return ret;
3374 3375
}

3376 3377
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
3378
{
3379
	struct drm_i915_private *dev_priv = dev->dev_private;
3380
	struct drm_i915_gem_object *obj;
3381

3382 3383 3384
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
3385

3386 3387 3388 3389
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
3390

3391 3392
	i915_gem_info_add_obj(dev_priv, size);

3393 3394
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3395

3396
	obj->agp_type = AGP_USER_MEMORY;
3397
	obj->base.driver_private = NULL;
3398
	obj->fence_reg = I915_FENCE_REG_NONE;
3399
	INIT_LIST_HEAD(&obj->mm_list);
D
Daniel Vetter 已提交
3400
	INIT_LIST_HEAD(&obj->gtt_list);
3401
	INIT_LIST_HEAD(&obj->ring_list);
3402
	INIT_LIST_HEAD(&obj->exec_list);
3403 3404
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
3405 3406
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;
3407

3408
	return obj;
3409 3410 3411 3412 3413
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
3414

3415 3416 3417
	return 0;
}

3418
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3419
{
3420
	struct drm_device *dev = obj->base.dev;
3421 3422
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3423

3424 3425
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
3426
		list_move(&obj->mm_list,
3427 3428 3429
			  &dev_priv->mm.deferred_free_list);
		return;
	}
3430

3431
	if (obj->base.map_list.map)
3432
		i915_gem_free_mmap_offset(obj);
3433

3434 3435
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3436

3437 3438 3439
	kfree(obj->page_cpu_valid);
	kfree(obj->bit_17);
	kfree(obj);
3440 3441
}

3442
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3443
{
3444 3445
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
	struct drm_device *dev = obj->base.dev;
3446 3447 3448

	trace_i915_gem_object_destroy(obj);

3449
	while (obj->pin_count > 0)
3450 3451
		i915_gem_object_unpin(obj);

3452
	if (obj->phys_obj)
3453 3454 3455 3456 3457
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

3458 3459 3460 3461 3462
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3463

3464
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
3465

3466
	if (dev_priv->mm.suspended) {
3467 3468
		mutex_unlock(&dev->struct_mutex);
		return 0;
3469 3470
	}

3471
	ret = i915_gpu_idle(dev);
3472 3473
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
3474
		return ret;
3475
	}
3476

3477 3478
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3479
		ret = i915_gem_evict_inactive(dev, false);
3480 3481 3482 3483 3484 3485
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

3486 3487
	i915_gem_reset_fences(dev);

3488 3489 3490 3491 3492
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
3493
	del_timer_sync(&dev_priv->hangcheck_timer);
3494 3495

	i915_kernel_lost_context(dev);
3496
	i915_gem_cleanup_ringbuffer(dev);
3497

3498 3499
	mutex_unlock(&dev->struct_mutex);

3500 3501 3502
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

3503 3504 3505
	return 0;
}

3506 3507 3508 3509 3510
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3511

3512
	ret = intel_init_render_ring_buffer(dev);
3513
	if (ret)
3514
		return ret;
3515 3516

	if (HAS_BSD(dev)) {
3517
		ret = intel_init_bsd_ring_buffer(dev);
3518 3519
		if (ret)
			goto cleanup_render_ring;
3520
	}
3521

3522 3523 3524 3525 3526 3527
	if (HAS_BLT(dev)) {
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

3528 3529
	dev_priv->next_seqno = 1;

3530 3531
	return 0;

3532
cleanup_bsd_ring:
3533
	intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
3534
cleanup_render_ring:
3535
	intel_cleanup_ring_buffer(&dev_priv->render_ring);
3536 3537 3538 3539 3540 3541 3542 3543
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

3544 3545 3546
	intel_cleanup_ring_buffer(&dev_priv->render_ring);
	intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
	intel_cleanup_ring_buffer(&dev_priv->blt_ring);
3547 3548
}

3549 3550 3551 3552 3553 3554 3555
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

J
Jesse Barnes 已提交
3556 3557 3558
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3559
	if (atomic_read(&dev_priv->mm.wedged)) {
3560
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3561
		atomic_set(&dev_priv->mm.wedged, 0);
3562 3563 3564
	}

	mutex_lock(&dev->struct_mutex);
3565 3566 3567
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
3568 3569
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
3570
		return ret;
3571
	}
3572

3573
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3574
	BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
3575
	BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
3576
	BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
3577 3578
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3579
	BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
3580
	BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
3581
	BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
3582
	mutex_unlock(&dev->struct_mutex);
3583

3584 3585 3586
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
3587

3588
	return 0;
3589 3590 3591 3592 3593 3594 3595 3596

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
3597 3598 3599 3600 3601 3602
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
3603 3604 3605
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3606
	drm_irq_uninstall(dev);
3607
	return i915_gem_idle(dev);
3608 3609 3610 3611 3612 3613 3614
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

3615 3616 3617
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

3618 3619 3620
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
3621 3622
}

3623 3624 3625 3626 3627 3628 3629 3630
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);
}

3631 3632 3633
void
i915_gem_load(struct drm_device *dev)
{
3634
	int i;
3635 3636
	drm_i915_private_t *dev_priv = dev->dev_private;

3637
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3638 3639
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
3640
	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3641
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3642
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
D
Daniel Vetter 已提交
3643
	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3644 3645 3646
	init_ring_lists(&dev_priv->render_ring);
	init_ring_lists(&dev_priv->bsd_ring);
	init_ring_lists(&dev_priv->blt_ring);
3647 3648
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3649 3650
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
3651
	init_completion(&dev_priv->error_completion);
3652

3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

3663
	/* Old X drivers will take 0-2 for front, back, depth buffers */
3664 3665
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
3666

3667
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3668 3669 3670 3671
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

3672
	/* Initialize fence registers to zero */
3673 3674 3675 3676 3677 3678 3679
	switch (INTEL_INFO(dev)->gen) {
	case 6:
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
		break;
	case 5:
	case 4:
3680 3681
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
3682 3683
		break;
	case 3:
3684 3685 3686
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
3687 3688 3689 3690
	case 2:
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		break;
3691
	}
3692
	i915_gem_detect_bit_6_swizzle(dev);
3693
	init_waitqueue_head(&dev_priv->pending_flip_queue);
3694 3695 3696 3697

	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
3698
}
3699 3700 3701 3702 3703

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
3704 3705
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
3706 3707 3708 3709 3710 3711 3712 3713
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

3714
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3715 3716 3717 3718 3719
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

3720
	phys_obj->handle = drm_pci_alloc(dev, size, align);
3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
3733
	kfree(phys_obj);
3734 3735 3736
	return ret;
}

3737
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

3762
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3763 3764 3765 3766
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
3767
				 struct drm_i915_gem_object *obj)
3768
{
3769
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3770
	char *vaddr;
3771 3772 3773
	int i;
	int page_count;

3774
	if (!obj->phys_obj)
3775
		return;
3776
	vaddr = obj->phys_obj->handle->vaddr;
3777

3778
	page_count = obj->base.size / PAGE_SIZE;
3779
	for (i = 0; i < page_count; i++) {
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
		struct page *page = read_cache_page_gfp(mapping, i,
							GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
3793
	}
3794
	intel_gtt_chipset_flush();
3795

3796 3797
	obj->phys_obj->cur_obj = NULL;
	obj->phys_obj = NULL;
3798 3799 3800 3801
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
3802
			    struct drm_i915_gem_object *obj,
3803 3804
			    int id,
			    int align)
3805
{
3806
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3807 3808 3809 3810 3811 3812 3813 3814
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

3815 3816
	if (obj->phys_obj) {
		if (obj->phys_obj->id == id)
3817 3818 3819 3820 3821 3822 3823
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
3824
						obj->base.size, align);
3825
		if (ret) {
3826 3827
			DRM_ERROR("failed to init phys object %d size: %zu\n",
				  id, obj->base.size);
3828
			return ret;
3829 3830 3831 3832
		}
	}

	/* bind to the object */
3833 3834
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj->phys_obj->cur_obj = obj;
3835

3836
	page_count = obj->base.size / PAGE_SIZE;
3837 3838

	for (i = 0; i < page_count; i++) {
3839 3840 3841 3842 3843 3844 3845
		struct page *page;
		char *dst, *src;

		page = read_cache_page_gfp(mapping, i,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);
3846

3847
		src = kmap_atomic(page);
3848
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3849
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
3850
		kunmap_atomic(src);
3851

3852 3853 3854
		mark_page_accessed(page);
		page_cache_release(page);
	}
3855

3856 3857 3858 3859
	return 0;
}

static int
3860 3861
i915_gem_phys_pwrite(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
3862 3863 3864
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
3865
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
3866
	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
3867

3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
3881

3882
	intel_gtt_chipset_flush();
3883 3884
	return 0;
}
3885

3886
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
3887
{
3888
	struct drm_i915_file_private *file_priv = file->driver_priv;
3889 3890 3891 3892 3893

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
3894
	spin_lock(&file_priv->mm.lock);
3895 3896 3897 3898 3899 3900 3901 3902 3903
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
3904
	spin_unlock(&file_priv->mm.lock);
3905
}
3906

3907 3908 3909 3910 3911 3912 3913
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
3914
		      list_empty(&dev_priv->mm.active_list);
3915 3916 3917 3918

	return !lists_empty;
}

3919
static int
3920 3921 3922
i915_gem_inactive_shrink(struct shrinker *shrinker,
			 int nr_to_scan,
			 gfp_t gfp_mask)
3923
{
3924 3925 3926 3927 3928 3929 3930 3931 3932
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj, *next;
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
3933
		return 0;
3934 3935 3936

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
3937 3938 3939 3940 3941 3942 3943
		cnt = 0;
		list_for_each_entry(obj,
				    &dev_priv->mm.inactive_list,
				    mm_list)
			cnt++;
		mutex_unlock(&dev->struct_mutex);
		return cnt / 100 * sysctl_vfs_cache_pressure;
3944 3945
	}

3946
rescan:
3947
	/* first scan for clean buffers */
3948
	i915_gem_retire_requests(dev);
3949

3950 3951 3952 3953
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj)) {
3954 3955
			if (i915_gem_object_unbind(obj) == 0 &&
			    --nr_to_scan == 0)
3956
				break;
3957 3958 3959 3960
		}
	}

	/* second pass, evict/count anything still on the inactive list */
3961 3962 3963 3964
	cnt = 0;
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
3965 3966
		if (nr_to_scan &&
		    i915_gem_object_unbind(obj) == 0)
3967
			nr_to_scan--;
3968
		else
3969 3970 3971 3972
			cnt++;
	}

	if (nr_to_scan && i915_gpu_is_active(dev)) {
3973 3974 3975 3976 3977 3978
		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
3979
		if (i915_gpu_idle(dev) == 0)
3980 3981
			goto rescan;
	}
3982 3983
	mutex_unlock(&dev->struct_mutex);
	return cnt / 100 * sysctl_vfs_cache_pressure;
3984
}