tick-sched.c 31.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time/tick-sched.c
 *
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
 *
 *  No idle tick implementation for low and high resolution timers
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
P
Pavel Machek 已提交
12
 *  Distribute under GPLv2.
13 14 15 16 17 18 19
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
20
#include <linux/nmi.h>
21
#include <linux/profile.h>
22
#include <linux/sched/signal.h>
23
#include <linux/sched/clock.h>
24
#include <linux/sched/stat.h>
25
#include <linux/sched/nohz.h>
26
#include <linux/module.h>
27
#include <linux/irq_work.h>
28
#include <linux/posix-timers.h>
29
#include <linux/context_tracking.h>
30
#include <linux/mm.h>
31

32 33
#include <asm/irq_regs.h>

34 35
#include "tick-internal.h"

F
Frederic Weisbecker 已提交
36 37
#include <trace/events/timer.h>

38
/*
39
 * Per-CPU nohz control structure
40
 */
41
static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
42

43 44 45 46 47
struct tick_sched *tick_get_tick_sched(int cpu)
{
	return &per_cpu(tick_cpu_sched, cpu);
}

48 49 50 51 52 53
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
/*
 * The time, when the last jiffy update happened. Protected by jiffies_lock.
 */
static ktime_t last_jiffies_update;

54 55 56 57 58 59 60 61
/*
 * Must be called with interrupts disabled !
 */
static void tick_do_update_jiffies64(ktime_t now)
{
	unsigned long ticks = 0;
	ktime_t delta;

62
	/*
63
	 * Do a quick check without holding jiffies_lock:
64 65
	 */
	delta = ktime_sub(now, last_jiffies_update);
T
Thomas Gleixner 已提交
66
	if (delta < tick_period)
67 68
		return;

W
Wei Jiangang 已提交
69
	/* Reevaluate with jiffies_lock held */
70
	write_seqlock(&jiffies_lock);
71 72

	delta = ktime_sub(now, last_jiffies_update);
T
Thomas Gleixner 已提交
73
	if (delta >= tick_period) {
74 75 76 77 78 79

		delta = ktime_sub(delta, tick_period);
		last_jiffies_update = ktime_add(last_jiffies_update,
						tick_period);

		/* Slow path for long timeouts */
T
Thomas Gleixner 已提交
80
		if (unlikely(delta >= tick_period)) {
81 82 83 84 85 86 87 88
			s64 incr = ktime_to_ns(tick_period);

			ticks = ktime_divns(delta, incr);

			last_jiffies_update = ktime_add_ns(last_jiffies_update,
							   incr * ticks);
		}
		do_timer(++ticks);
89 90 91

		/* Keep the tick_next_period variable up to date */
		tick_next_period = ktime_add(last_jiffies_update, tick_period);
92 93 94
	} else {
		write_sequnlock(&jiffies_lock);
		return;
95
	}
96
	write_sequnlock(&jiffies_lock);
97
	update_wall_time();
98 99 100 101 102 103 104 105 106
}

/*
 * Initialize and return retrieve the jiffies update.
 */
static ktime_t tick_init_jiffy_update(void)
{
	ktime_t period;

107
	write_seqlock(&jiffies_lock);
108
	/* Did we start the jiffies update yet ? */
T
Thomas Gleixner 已提交
109
	if (last_jiffies_update == 0)
110 111
		last_jiffies_update = tick_next_period;
	period = last_jiffies_update;
112
	write_sequnlock(&jiffies_lock);
113 114 115
	return period;
}

116 117 118 119 120

static void tick_sched_do_timer(ktime_t now)
{
	int cpu = smp_processor_id();

121
#ifdef CONFIG_NO_HZ_COMMON
122 123
	/*
	 * Check if the do_timer duty was dropped. We don't care about
124 125
	 * concurrency: This happens only when the CPU in charge went
	 * into a long sleep. If two CPUs happen to assign themselves to
126
	 * this duty, then the jiffies update is still serialized by
127
	 * jiffies_lock.
128
	 */
129
	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
130
	    && !tick_nohz_full_cpu(cpu))
131 132 133 134 135 136 137 138
		tick_do_timer_cpu = cpu;
#endif

	/* Check, if the jiffies need an update */
	if (tick_do_timer_cpu == cpu)
		tick_do_update_jiffies64(now);
}

139 140
static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
{
141
#ifdef CONFIG_NO_HZ_COMMON
142 143 144 145 146 147 148 149 150
	/*
	 * When we are idle and the tick is stopped, we have to touch
	 * the watchdog as we might not schedule for a really long
	 * time. This happens on complete idle SMP systems while
	 * waiting on the login prompt. We also increment the "start of
	 * idle" jiffy stamp so the idle accounting adjustment we do
	 * when we go busy again does not account too much ticks.
	 */
	if (ts->tick_stopped) {
151
		touch_softlockup_watchdog_sched();
152 153
		if (is_idle_task(current))
			ts->idle_jiffies++;
154 155 156 157 158 159
		/*
		 * In case the current tick fired too early past its expected
		 * expiration, make sure we don't bypass the next clock reprogramming
		 * to the same deadline.
		 */
		ts->next_tick = 0;
160
	}
161
#endif
162 163 164
	update_process_times(user_mode(regs));
	profile_tick(CPU_PROFILING);
}
165
#endif
166

167
#ifdef CONFIG_NO_HZ_FULL
168
cpumask_var_t tick_nohz_full_mask;
169
bool tick_nohz_full_running;
170
static atomic_t tick_dep_mask;
171

172
static bool check_tick_dependency(atomic_t *dep)
173
{
174 175 176
	int val = atomic_read(dep);

	if (val & TICK_DEP_MASK_POSIX_TIMER) {
177
		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
178
		return true;
179 180
	}

181
	if (val & TICK_DEP_MASK_PERF_EVENTS) {
182
		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
183
		return true;
184 185
	}

186
	if (val & TICK_DEP_MASK_SCHED) {
187
		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
188
		return true;
189 190
	}

191
	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
192
		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
193 194 195 196
		return true;
	}

	return false;
197 198
}

199
static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
200
{
201
	lockdep_assert_irqs_disabled();
202

203 204 205
	if (unlikely(!cpu_online(cpu)))
		return false;

206
	if (check_tick_dependency(&tick_dep_mask))
207 208
		return false;

209
	if (check_tick_dependency(&ts->tick_dep_mask))
210 211
		return false;

212
	if (check_tick_dependency(&current->tick_dep_mask))
213 214
		return false;

215
	if (check_tick_dependency(&current->signal->tick_dep_mask))
216 217
		return false;

218 219 220
	return true;
}

221
static void nohz_full_kick_func(struct irq_work *work)
222
{
223
	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
224 225 226
}

static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
227
	.func = nohz_full_kick_func,
228 229
};

230 231 232 233 234 235
/*
 * Kick this CPU if it's full dynticks in order to force it to
 * re-evaluate its dependency on the tick and restart it if necessary.
 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 * is NMI safe.
 */
236
static void tick_nohz_full_kick(void)
237 238 239 240
{
	if (!tick_nohz_full_cpu(smp_processor_id()))
		return;

241
	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
242 243
}

244
/*
245
 * Kick the CPU if it's full dynticks in order to force it to
246 247
 * re-evaluate its dependency on the tick and restart it if necessary.
 */
248
void tick_nohz_full_kick_cpu(int cpu)
249
{
250 251 252 253
	if (!tick_nohz_full_cpu(cpu))
		return;

	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
254 255 256 257 258 259
}

/*
 * Kick all full dynticks CPUs in order to force these to re-evaluate
 * their dependency on the tick and restart it if necessary.
 */
260
static void tick_nohz_full_kick_all(void)
261
{
262 263
	int cpu;

264
	if (!tick_nohz_full_running)
265 266 267
		return;

	preempt_disable();
268 269
	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
		tick_nohz_full_kick_cpu(cpu);
270 271 272
	preempt_enable();
}

273
static void tick_nohz_dep_set_all(atomic_t *dep,
274 275
				  enum tick_dep_bits bit)
{
276
	int prev;
277

278
	prev = atomic_fetch_or(BIT(bit), dep);
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
	if (!prev)
		tick_nohz_full_kick_all();
}

/*
 * Set a global tick dependency. Used by perf events that rely on freq and
 * by unstable clock.
 */
void tick_nohz_dep_set(enum tick_dep_bits bit)
{
	tick_nohz_dep_set_all(&tick_dep_mask, bit);
}

void tick_nohz_dep_clear(enum tick_dep_bits bit)
{
294
	atomic_andnot(BIT(bit), &tick_dep_mask);
295 296 297 298 299 300 301 302
}

/*
 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 * manage events throttling.
 */
void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
{
303
	int prev;
304 305 306 307
	struct tick_sched *ts;

	ts = per_cpu_ptr(&tick_cpu_sched, cpu);

308
	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
	if (!prev) {
		preempt_disable();
		/* Perf needs local kick that is NMI safe */
		if (cpu == smp_processor_id()) {
			tick_nohz_full_kick();
		} else {
			/* Remote irq work not NMI-safe */
			if (!WARN_ON_ONCE(in_nmi()))
				tick_nohz_full_kick_cpu(cpu);
		}
		preempt_enable();
	}
}

void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
{
	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);

327
	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
}

/*
 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
 * per task timers.
 */
void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
{
	/*
	 * We could optimize this with just kicking the target running the task
	 * if that noise matters for nohz full users.
	 */
	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
}

void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
{
345
	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
346 347 348 349 350 351 352 353 354 355 356 357 358
}

/*
 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 * per process timers.
 */
void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
{
	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
}

void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
{
359
	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
360 361
}

362 363 364
/*
 * Re-evaluate the need for the tick as we switch the current task.
 * It might need the tick due to per task/process properties:
365
 * perf events, posix CPU timers, ...
366
 */
367
void __tick_nohz_task_switch(void)
368 369
{
	unsigned long flags;
370
	struct tick_sched *ts;
371 372 373

	local_irq_save(flags);

374 375 376
	if (!tick_nohz_full_cpu(smp_processor_id()))
		goto out;

377
	ts = this_cpu_ptr(&tick_cpu_sched);
378

379
	if (ts->tick_stopped) {
380 381
		if (atomic_read(&current->tick_dep_mask) ||
		    atomic_read(&current->signal->tick_dep_mask))
382 383
			tick_nohz_full_kick();
	}
384
out:
385 386 387
	local_irq_restore(flags);
}

388 389
/* Get the boot-time nohz CPU list from the kernel parameters. */
void __init tick_nohz_full_setup(cpumask_var_t cpumask)
390
{
391
	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
392
	cpumask_copy(tick_nohz_full_mask, cpumask);
393
	tick_nohz_full_running = true;
394 395
}

396
static int tick_nohz_cpu_down(unsigned int cpu)
397
{
398 399 400 401 402 403 404 405
	/*
	 * The boot CPU handles housekeeping duty (unbound timers,
	 * workqueues, timekeeping, ...) on behalf of full dynticks
	 * CPUs. It must remain online when nohz full is enabled.
	 */
	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
		return -EBUSY;
	return 0;
406 407
}

408 409 410 411 412
static int tick_nohz_init_all(void)
{
	int err = -1;

#ifdef CONFIG_NO_HZ_FULL_ALL
413
	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
414
		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
415 416
		return err;
	}
417
	err = 0;
418 419
	cpumask_setall(tick_nohz_full_mask);
	tick_nohz_full_running = true;
420 421 422 423
#endif
	return err;
}

424
void __init tick_nohz_init(void)
425
{
426
	int cpu, ret;
427

428
	if (!tick_nohz_full_running) {
429 430 431
		if (tick_nohz_init_all() < 0)
			return;
	}
432

433 434 435 436 437 438
	/*
	 * Full dynticks uses irq work to drive the tick rescheduling on safe
	 * locking contexts. But then we need irq work to raise its own
	 * interrupts to avoid circular dependency on the tick
	 */
	if (!arch_irq_work_has_interrupt()) {
439
		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
440 441 442 443 444
		cpumask_clear(tick_nohz_full_mask);
		tick_nohz_full_running = false;
		return;
	}

445 446 447
	cpu = smp_processor_id();

	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
448 449
		pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
			cpu);
450 451 452
		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
	}

453
	for_each_cpu(cpu, tick_nohz_full_mask)
454 455
		context_tracking_cpu_set(cpu);

456 457 458 459
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"kernel/nohz:predown", NULL,
					tick_nohz_cpu_down);
	WARN_ON(ret < 0);
460 461
	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
		cpumask_pr_args(tick_nohz_full_mask));
462 463 464
}
#endif

465 466 467
/*
 * NOHZ - aka dynamic tick functionality
 */
468
#ifdef CONFIG_NO_HZ_COMMON
469 470 471
/*
 * NO HZ enabled ?
 */
472
bool tick_nohz_enabled __read_mostly  = true;
473
unsigned long tick_nohz_active  __read_mostly;
474 475 476 477 478
/*
 * Enable / Disable tickless mode
 */
static int __init setup_tick_nohz(char *str)
{
479
	return (kstrtobool(str, &tick_nohz_enabled) == 0);
480 481 482 483
}

__setup("nohz=", setup_tick_nohz);

484 485 486 487 488
int tick_nohz_tick_stopped(void)
{
	return __this_cpu_read(tick_cpu_sched.tick_stopped);
}

489 490 491 492 493 494 495
/**
 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 *
 * Called from interrupt entry when the CPU was idle
 *
 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 * must be updated. Otherwise an interrupt handler could use a stale jiffy
496 497
 * value. We do this unconditionally on any CPU, as we don't know whether the
 * CPU, which has the update task assigned is in a long sleep.
498
 */
499
static void tick_nohz_update_jiffies(ktime_t now)
500 501 502
{
	unsigned long flags;

503
	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
504 505 506 507

	local_irq_save(flags);
	tick_do_update_jiffies64(now);
	local_irq_restore(flags);
508

509
	touch_softlockup_watchdog_sched();
510 511
}

512
/*
513
 * Updates the per-CPU time idle statistics counters
514
 */
515
static void
516
update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
517
{
518
	ktime_t delta;
519

520 521
	if (ts->idle_active) {
		delta = ktime_sub(now, ts->idle_entrytime);
522
		if (nr_iowait_cpu(cpu) > 0)
523
			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
524 525
		else
			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
526
		ts->idle_entrytime = now;
527
	}
528

529
	if (last_update_time)
530 531
		*last_update_time = ktime_to_us(now);

532 533
}

534
static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
535
{
536
	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
537
	ts->idle_active = 0;
538

539
	sched_clock_idle_wakeup_event();
540 541
}

542
static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
543
{
544
	ktime_t now = ktime_get();
545

546 547
	ts->idle_entrytime = now;
	ts->idle_active = 1;
548
	sched_clock_idle_sleep_event();
549 550 551
	return now;
}

552
/**
553
 * get_cpu_idle_time_us - get the total idle time of a CPU
554
 * @cpu: CPU number to query
555 556
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
557
 *
W
Wei Jiangang 已提交
558
 * Return the cumulative idle time (since boot) for a given
559
 * CPU, in microseconds.
560 561 562 563 564 565
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
566 567 568
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
569
	ktime_t now, idle;
570

571
	if (!tick_nohz_active)
572 573
		return -1;

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		idle = ts->idle_sleeptime;
	} else {
		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);

			idle = ktime_add(ts->idle_sleeptime, delta);
		} else {
			idle = ts->idle_sleeptime;
		}
	}

	return ktime_to_us(idle);
589

590
}
591
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
592

593
/**
594
 * get_cpu_iowait_time_us - get the total iowait time of a CPU
595
 * @cpu: CPU number to query
596 597
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
598
 *
W
Wei Jiangang 已提交
599
 * Return the cumulative iowait time (since boot) for a given
600 601 602 603 604 605 606 607 608 609
 * CPU, in microseconds.
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
610
	ktime_t now, iowait;
611

612
	if (!tick_nohz_active)
613 614
		return -1;

615 616 617 618 619 620 621
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		iowait = ts->iowait_sleeptime;
	} else {
		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
622

623 624 625 626 627
			iowait = ktime_add(ts->iowait_sleeptime, delta);
		} else {
			iowait = ts->iowait_sleeptime;
		}
	}
628

629
	return ktime_to_us(iowait);
630 631 632
}
EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);

633 634 635 636 637 638 639 640 641 642 643 644
static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
{
	hrtimer_cancel(&ts->sched_timer);
	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);

	/* Forward the time to expire in the future */
	hrtimer_forward(&ts->sched_timer, now, tick_period);

	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
	else
		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
645 646 647 648 649 650

	/*
	 * Reset to make sure next tick stop doesn't get fooled by past
	 * cached clock deadline.
	 */
	ts->next_tick = 0;
651 652
}

653 654
static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
					 ktime_t now, int cpu)
655
{
656
	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
657 658 659
	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
	unsigned long seq, basejiff;
	ktime_t	tick;
660

661 662
	/* Read jiffies and the time when jiffies were updated last */
	do {
663
		seq = read_seqbegin(&jiffies_lock);
T
Thomas Gleixner 已提交
664
		basemono = last_jiffies_update;
665
		basejiff = jiffies;
666
	} while (read_seqretry(&jiffies_lock, seq));
667
	ts->last_jiffies = basejiff;
668

669
	if (rcu_needs_cpu(basemono, &next_rcu) ||
670
	    arch_needs_cpu() || irq_work_needs_cpu()) {
671
		next_tick = basemono + TICK_NSEC;
672
	} else {
673 674 675 676 677 678 679 680 681 682 683
		/*
		 * Get the next pending timer. If high resolution
		 * timers are enabled this only takes the timer wheel
		 * timers into account. If high resolution timers are
		 * disabled this also looks at the next expiring
		 * hrtimer.
		 */
		next_tmr = get_next_timer_interrupt(basejiff, basemono);
		ts->next_timer = next_tmr;
		/* Take the next rcu event into account */
		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
684
	}
685

686 687
	/*
	 * If the tick is due in the next period, keep it ticking or
688
	 * force prod the timer.
689 690 691
	 */
	delta = next_tick - basemono;
	if (delta <= (u64)TICK_NSEC) {
692 693 694 695 696
		/*
		 * Tell the timer code that the base is not idle, i.e. undo
		 * the effect of get_next_timer_interrupt():
		 */
		timer_clear_idle();
697 698 699 700
		/*
		 * We've not stopped the tick yet, and there's a timer in the
		 * next period, so no point in stopping it either, bail.
		 */
701 702
		if (!ts->tick_stopped) {
			tick = 0;
T
Thomas Gleixner 已提交
703 704 705 706
			goto out;
		}
	}

707
	/*
708 709 710
	 * If this CPU is the one which updates jiffies, then give up
	 * the assignment and let it be taken by the CPU which runs
	 * the tick timer next, which might be this CPU as well. If we
T
Thomas Gleixner 已提交
711 712
	 * don't drop this here the jiffies might be stale and
	 * do_timer() never invoked. Keep track of the fact that it
713
	 * was the one which had the do_timer() duty last. If this CPU
T
Thomas Gleixner 已提交
714
	 * is the one which had the do_timer() duty last, we limit the
W
Wei Jiangang 已提交
715
	 * sleep time to the timekeeping max_deferment value.
716
	 * Otherwise we can sleep as long as we want.
717
	 */
718
	delta = timekeeping_max_deferment();
T
Thomas Gleixner 已提交
719 720 721 722
	if (cpu == tick_do_timer_cpu) {
		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
		ts->do_timer_last = 1;
	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
723
		delta = KTIME_MAX;
T
Thomas Gleixner 已提交
724 725
		ts->do_timer_last = 0;
	} else if (!ts->do_timer_last) {
726
		delta = KTIME_MAX;
T
Thomas Gleixner 已提交
727
	}
T
Thomas Gleixner 已提交
728

729
#ifdef CONFIG_NO_HZ_FULL
730
	/* Limit the tick delta to the maximum scheduler deferment */
T
Thomas Gleixner 已提交
731
	if (!ts->inidle)
732
		delta = min(delta, scheduler_tick_max_deferment());
733 734
#endif

735 736 737
	/* Calculate the next expiry time */
	if (delta < (KTIME_MAX - basemono))
		expires = basemono + delta;
T
Thomas Gleixner 已提交
738
	else
739 740 741
		expires = KTIME_MAX;

	expires = min_t(u64, expires, next_tick);
T
Thomas Gleixner 已提交
742
	tick = expires;
743

T
Thomas Gleixner 已提交
744
	/* Skip reprogram of event if its not changed */
745 746
	if (ts->tick_stopped && (expires == ts->next_tick)) {
		/* Sanity check: make sure clockevent is actually programmed */
747
		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
748
			goto out;
749 750 751 752 753

		WARN_ON_ONCE(1);
		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
			    basemono, ts->next_tick, dev->next_event,
			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
754
	}
755

T
Thomas Gleixner 已提交
756 757 758 759 760 761 762 763
	/*
	 * nohz_stop_sched_tick can be called several times before
	 * the nohz_restart_sched_tick is called. This happens when
	 * interrupts arrive which do not cause a reschedule. In the
	 * first call we save the current tick time, so we can restart
	 * the scheduler tick in nohz_restart_sched_tick.
	 */
	if (!ts->tick_stopped) {
764
		calc_load_nohz_start();
765
		cpu_load_update_nohz_start();
766
		quiet_vmstat();
767

T
Thomas Gleixner 已提交
768 769
		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
		ts->tick_stopped = 1;
770
		trace_tick_stop(1, TICK_DEP_MASK_NONE);
T
Thomas Gleixner 已提交
771
	}
772

773 774
	ts->next_tick = tick;

T
Thomas Gleixner 已提交
775
	/*
776 777
	 * If the expiration time == KTIME_MAX, then we simply stop
	 * the tick timer.
T
Thomas Gleixner 已提交
778
	 */
779
	if (unlikely(expires == KTIME_MAX)) {
T
Thomas Gleixner 已提交
780 781 782
		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
			hrtimer_cancel(&ts->sched_timer);
		goto out;
783
	}
784

785 786
	hrtimer_set_expires(&ts->sched_timer, tick);

T
Thomas Gleixner 已提交
787
	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
788
		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
T
Thomas Gleixner 已提交
789
	else
790
		tick_program_event(tick, 1);
791
out:
792 793 794 795
	/*
	 * Update the estimated sleep length until the next timer
	 * (not only the tick).
	 */
796
	ts->sleep_length = ktime_sub(dev->next_event, now);
797
	return tick;
798 799
}

800
static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
801 802 803
{
	/* Update jiffies first */
	tick_do_update_jiffies64(now);
804
	cpu_load_update_nohz_stop();
805

806 807 808 809 810 811
	/*
	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
	 * the clock forward checks in the enqueue path:
	 */
	timer_clear_idle();

812
	calc_load_nohz_stop();
813
	touch_softlockup_watchdog_sched();
814 815 816 817 818 819 820 821
	/*
	 * Cancel the scheduled timer and restore the tick
	 */
	ts->tick_stopped  = 0;
	ts->idle_exittime = now;

	tick_nohz_restart(ts, now);
}
822 823

static void tick_nohz_full_update_tick(struct tick_sched *ts)
824 825
{
#ifdef CONFIG_NO_HZ_FULL
826
	int cpu = smp_processor_id();
827

828
	if (!tick_nohz_full_cpu(cpu))
829
		return;
830

831 832
	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
		return;
833

834
	if (can_stop_full_tick(cpu, ts))
835 836
		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
	else if (ts->tick_stopped)
837
		tick_nohz_restart_sched_tick(ts, ktime_get());
838 839 840
#endif
}

841 842 843
static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
{
	/*
844
	 * If this CPU is offline and it is the one which updates
845
	 * jiffies, then give up the assignment and let it be taken by
846
	 * the CPU which runs the tick timer next. If we don't drop
847 848 849 850 851 852
	 * this here the jiffies might be stale and do_timer() never
	 * invoked.
	 */
	if (unlikely(!cpu_online(cpu))) {
		if (cpu == tick_do_timer_cpu)
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
853 854 855 856 857
		/*
		 * Make sure the CPU doesn't get fooled by obsolete tick
		 * deadline if it comes back online later.
		 */
		ts->next_tick = 0;
858
		return false;
859 860
	}

861
	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
T
Thomas Gleixner 已提交
862
		ts->sleep_length = NSEC_PER_SEC / HZ;
863
		return false;
864
	}
865 866 867 868 869 870 871

	if (need_resched())
		return false;

	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
		static int ratelimit;

872 873
		if (ratelimit < 10 &&
		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
874 875
			pr_warn("NOHZ: local_softirq_pending %02x\n",
				(unsigned int) local_softirq_pending());
876 877 878 879 880
			ratelimit++;
		}
		return false;
	}

881
	if (tick_nohz_full_enabled()) {
882 883 884 885 886 887 888 889 890 891 892 893 894 895
		/*
		 * Keep the tick alive to guarantee timekeeping progression
		 * if there are full dynticks CPUs around
		 */
		if (tick_do_timer_cpu == cpu)
			return false;
		/*
		 * Boot safety: make sure the timekeeping duty has been
		 * assigned before entering dyntick-idle mode,
		 */
		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
			return false;
	}

896 897 898
	return true;
}

899 900
static void __tick_nohz_idle_enter(struct tick_sched *ts)
{
901
	ktime_t now, expires;
902
	int cpu = smp_processor_id();
903

904 905
	now = tick_nohz_start_idle(ts);

906 907 908 909
	if (can_stop_idle_tick(cpu, ts)) {
		int was_stopped = ts->tick_stopped;

		ts->idle_calls++;
910 911

		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
T
Thomas Gleixner 已提交
912
		if (expires > 0LL) {
913 914 915
			ts->idle_sleeps++;
			ts->idle_expires = expires;
		}
916

917
		if (!was_stopped && ts->tick_stopped) {
918
			ts->idle_jiffies = ts->last_jiffies;
919 920
			nohz_balance_enter_idle(cpu);
		}
921
	}
922 923 924 925 926 927 928
}

/**
 * tick_nohz_idle_enter - stop the idle tick from the idle task
 *
 * When the next event is more than a tick into the future, stop the idle tick
 * Called when we start the idle loop.
929
 *
930
 * The arch is responsible of calling:
931 932 933 934
 *
 * - rcu_idle_enter() after its last use of RCU before the CPU is put
 *  to sleep.
 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
935
 */
936
void tick_nohz_idle_enter(void)
937 938 939
{
	struct tick_sched *ts;

940
	lockdep_assert_irqs_enabled();
941
	/*
942 943 944 945 946
	 * Update the idle state in the scheduler domain hierarchy
	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
	 * State will be updated to busy during the first busy tick after
	 * exiting idle.
	 */
947 948
	set_cpu_sd_state_idle();

949 950
	local_irq_disable();

951
	ts = this_cpu_ptr(&tick_cpu_sched);
952
	ts->inidle = 1;
953
	__tick_nohz_idle_enter(ts);
954 955

	local_irq_enable();
956 957 958 959 960 961 962 963 964 965 966 967
}

/**
 * tick_nohz_irq_exit - update next tick event from interrupt exit
 *
 * When an interrupt fires while we are idle and it doesn't cause
 * a reschedule, it may still add, modify or delete a timer, enqueue
 * an RCU callback, etc...
 * So we need to re-calculate and reprogram the next tick event.
 */
void tick_nohz_irq_exit(void)
{
968
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
969

970
	if (ts->inidle)
971
		__tick_nohz_idle_enter(ts);
972
	else
973
		tick_nohz_full_update_tick(ts);
974 975
}

976 977 978 979 980 981 982
/**
 * tick_nohz_get_sleep_length - return the length of the current sleep
 *
 * Called from power state control code with interrupts disabled
 */
ktime_t tick_nohz_get_sleep_length(void)
{
983
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
984 985 986 987

	return ts->sleep_length;
}

988 989 990 991 992 993 994 995 996 997 998 999
/**
 * tick_nohz_get_idle_calls - return the current idle calls counter value
 *
 * Called from the schedutil frequency scaling governor in scheduler context.
 */
unsigned long tick_nohz_get_idle_calls(void)
{
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);

	return ts->idle_calls;
}

1000 1001
static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
{
1002
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1003
	unsigned long ticks;
1004

1005
	if (vtime_accounting_cpu_enabled())
1006
		return;
1007 1008 1009 1010 1011 1012 1013 1014 1015
	/*
	 * We stopped the tick in idle. Update process times would miss the
	 * time we slept as update_process_times does only a 1 tick
	 * accounting. Enforce that this is accounted to idle !
	 */
	ticks = jiffies - ts->idle_jiffies;
	/*
	 * We might be one off. Do not randomly account a huge number of ticks!
	 */
1016 1017 1018
	if (ticks && ticks < LONG_MAX)
		account_idle_ticks(ticks);
#endif
1019 1020
}

1021
/**
1022
 * tick_nohz_idle_exit - restart the idle tick from the idle task
1023 1024
 *
 * Restart the idle tick when the CPU is woken up from idle
1025 1026
 * This also exit the RCU extended quiescent state. The CPU
 * can use RCU again after this function is called.
1027
 */
1028
void tick_nohz_idle_exit(void)
1029
{
1030
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1031
	ktime_t now;
1032

1033
	local_irq_disable();
1034

1035 1036 1037 1038 1039
	WARN_ON_ONCE(!ts->inidle);

	ts->inidle = 0;

	if (ts->idle_active || ts->tick_stopped)
1040 1041 1042
		now = ktime_get();

	if (ts->idle_active)
1043
		tick_nohz_stop_idle(ts, now);
1044

1045
	if (ts->tick_stopped) {
1046
		tick_nohz_restart_sched_tick(ts, now);
1047
		tick_nohz_account_idle_ticks(ts);
1048
	}
1049 1050 1051 1052 1053 1054 1055 1056 1057

	local_irq_enable();
}

/*
 * The nohz low res interrupt handler
 */
static void tick_nohz_handler(struct clock_event_device *dev)
{
1058
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1059 1060 1061
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();

T
Thomas Gleixner 已提交
1062
	dev->next_event = KTIME_MAX;
1063

1064
	tick_sched_do_timer(now);
1065
	tick_sched_handle(ts, regs);
1066

1067 1068 1069 1070
	/* No need to reprogram if we are running tickless  */
	if (unlikely(ts->tick_stopped))
		return;

1071 1072
	hrtimer_forward(&ts->sched_timer, now, tick_period);
	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1073 1074
}

1075 1076 1077 1078 1079 1080 1081
static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
{
	if (!tick_nohz_enabled)
		return;
	ts->nohz_mode = mode;
	/* One update is enough */
	if (!test_and_set_bit(0, &tick_nohz_active))
1082
		timers_update_migration(true);
1083 1084
}

1085 1086 1087 1088 1089
/**
 * tick_nohz_switch_to_nohz - switch to nohz mode
 */
static void tick_nohz_switch_to_nohz(void)
{
1090
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1091 1092
	ktime_t next;

1093
	if (!tick_nohz_enabled)
1094 1095
		return;

1096
	if (tick_switch_to_oneshot(tick_nohz_handler))
1097
		return;
1098

1099 1100 1101 1102 1103 1104 1105 1106
	/*
	 * Recycle the hrtimer in ts, so we can share the
	 * hrtimer_forward with the highres code.
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	/* Get the next period */
	next = tick_init_jiffy_update();

1107
	hrtimer_set_expires(&ts->sched_timer, next);
1108 1109
	hrtimer_forward_now(&ts->sched_timer, tick_period);
	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1110
	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1111 1112
}

1113
static inline void tick_nohz_irq_enter(void)
1114
{
1115
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1116 1117 1118 1119 1120 1121
	ktime_t now;

	if (!ts->idle_active && !ts->tick_stopped)
		return;
	now = ktime_get();
	if (ts->idle_active)
1122
		tick_nohz_stop_idle(ts, now);
1123
	if (ts->tick_stopped)
1124 1125 1126
		tick_nohz_update_jiffies(now);
}

1127 1128 1129
#else

static inline void tick_nohz_switch_to_nohz(void) { }
1130
static inline void tick_nohz_irq_enter(void) { }
1131
static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1132

1133
#endif /* CONFIG_NO_HZ_COMMON */
1134

1135 1136 1137
/*
 * Called from irq_enter to notify about the possible interruption of idle()
 */
1138
void tick_irq_enter(void)
1139
{
1140
	tick_check_oneshot_broadcast_this_cpu();
1141
	tick_nohz_irq_enter();
1142 1143
}

1144 1145 1146 1147 1148
/*
 * High resolution timer specific code
 */
#ifdef CONFIG_HIGH_RES_TIMERS
/*
P
Pavel Machek 已提交
1149
 * We rearm the timer until we get disabled by the idle code.
1150
 * Called with interrupts disabled.
1151 1152 1153 1154 1155 1156 1157
 */
static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
{
	struct tick_sched *ts =
		container_of(timer, struct tick_sched, sched_timer);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();
1158

1159
	tick_sched_do_timer(now);
1160 1161 1162 1163 1164

	/*
	 * Do not call, when we are not in irq context and have
	 * no valid regs pointer
	 */
1165 1166
	if (regs)
		tick_sched_handle(ts, regs);
1167 1168
	else
		ts->next_tick = 0;
1169

1170 1171 1172 1173
	/* No need to reprogram if we are in idle or full dynticks mode */
	if (unlikely(ts->tick_stopped))
		return HRTIMER_NORESTART;

1174 1175 1176 1177 1178
	hrtimer_forward(timer, now, tick_period);

	return HRTIMER_RESTART;
}

M
Mike Galbraith 已提交
1179 1180
static int sched_skew_tick;

1181 1182 1183 1184 1185 1186 1187 1188
static int __init skew_tick(char *str)
{
	get_option(&str, &sched_skew_tick);

	return 0;
}
early_param("skew_tick", skew_tick);

1189 1190 1191 1192 1193
/**
 * tick_setup_sched_timer - setup the tick emulation timer
 */
void tick_setup_sched_timer(void)
{
1194
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1195 1196 1197 1198 1199 1200 1201 1202
	ktime_t now = ktime_get();

	/*
	 * Emulate tick processing via per-CPU hrtimers:
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	ts->sched_timer.function = tick_sched_timer;

1203
	/* Get the next period (per-CPU) */
1204
	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1205

1206
	/* Offset the tick to avert jiffies_lock contention. */
M
Mike Galbraith 已提交
1207 1208 1209 1210 1211 1212 1213
	if (sched_skew_tick) {
		u64 offset = ktime_to_ns(tick_period) >> 1;
		do_div(offset, num_possible_cpus());
		offset *= smp_processor_id();
		hrtimer_add_expires_ns(&ts->sched_timer, offset);
	}

1214 1215
	hrtimer_forward(&ts->sched_timer, now, tick_period);
	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1216
	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1217
}
1218
#endif /* HIGH_RES_TIMERS */
1219

1220
#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1221 1222 1223 1224
void tick_cancel_sched_timer(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

1225
# ifdef CONFIG_HIGH_RES_TIMERS
1226 1227
	if (ts->sched_timer.base)
		hrtimer_cancel(&ts->sched_timer);
1228
# endif
1229

1230
	memset(ts, 0, sizeof(*ts));
1231
}
1232
#endif
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249

/**
 * Async notification about clocksource changes
 */
void tick_clock_notify(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
}

/*
 * Async notification about clock event changes
 */
void tick_oneshot_notify(void)
{
1250
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260

	set_bit(0, &ts->check_clocks);
}

/**
 * Check, if a change happened, which makes oneshot possible.
 *
 * Called cyclic from the hrtimer softirq (driven by the timer
 * softirq) allow_nohz signals, that we can switch into low-res nohz
 * mode, because high resolution timers are disabled (either compile
1261
 * or runtime). Called with interrupts disabled.
1262 1263 1264
 */
int tick_check_oneshot_change(int allow_nohz)
{
1265
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1266 1267 1268 1269 1270 1271 1272

	if (!test_and_clear_bit(0, &ts->check_clocks))
		return 0;

	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
		return 0;

1273
	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1274 1275 1276 1277 1278 1279 1280 1281
		return 0;

	if (!allow_nohz)
		return 1;

	tick_nohz_switch_to_nohz();
	return 0;
}