tick-sched.c 23.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time/tick-sched.c
 *
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
 *
 *  No idle tick implementation for low and high resolution timers
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
P
Pavel Machek 已提交
12
 *  Distribute under GPLv2.
13 14 15 16 17 18 19 20 21
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
22
#include <linux/module.h>
23

24 25
#include <asm/irq_regs.h>

26 27 28 29 30 31 32 33 34 35 36 37
#include "tick-internal.h"

/*
 * Per cpu nohz control structure
 */
static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);

/*
 * The time, when the last jiffy update happened. Protected by xtime_lock.
 */
static ktime_t last_jiffies_update;

38 39 40 41 42
struct tick_sched *tick_get_tick_sched(int cpu)
{
	return &per_cpu(tick_cpu_sched, cpu);
}

43 44 45 46 47 48 49 50
/*
 * Must be called with interrupts disabled !
 */
static void tick_do_update_jiffies64(ktime_t now)
{
	unsigned long ticks = 0;
	ktime_t delta;

51 52 53 54 55 56 57
	/*
	 * Do a quick check without holding xtime_lock:
	 */
	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 < tick_period.tv64)
		return;

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
	/* Reevalute with xtime_lock held */
	write_seqlock(&xtime_lock);

	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 >= tick_period.tv64) {

		delta = ktime_sub(delta, tick_period);
		last_jiffies_update = ktime_add(last_jiffies_update,
						tick_period);

		/* Slow path for long timeouts */
		if (unlikely(delta.tv64 >= tick_period.tv64)) {
			s64 incr = ktime_to_ns(tick_period);

			ticks = ktime_divns(delta, incr);

			last_jiffies_update = ktime_add_ns(last_jiffies_update,
							   incr * ticks);
		}
		do_timer(++ticks);
78 79 80

		/* Keep the tick_next_period variable up to date */
		tick_next_period = ktime_add(last_jiffies_update, tick_period);
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
	}
	write_sequnlock(&xtime_lock);
}

/*
 * Initialize and return retrieve the jiffies update.
 */
static ktime_t tick_init_jiffy_update(void)
{
	ktime_t period;

	write_seqlock(&xtime_lock);
	/* Did we start the jiffies update yet ? */
	if (last_jiffies_update.tv64 == 0)
		last_jiffies_update = tick_next_period;
	period = last_jiffies_update;
	write_sequnlock(&xtime_lock);
	return period;
}

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

static void tick_sched_do_timer(ktime_t now)
{
	int cpu = smp_processor_id();

#ifdef CONFIG_NO_HZ
	/*
	 * Check if the do_timer duty was dropped. We don't care about
	 * concurrency: This happens only when the cpu in charge went
	 * into a long sleep. If two cpus happen to assign themself to
	 * this duty, then the jiffies update is still serialized by
	 * xtime_lock.
	 */
	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
		tick_do_timer_cpu = cpu;
#endif

	/* Check, if the jiffies need an update */
	if (tick_do_timer_cpu == cpu)
		tick_do_update_jiffies64(now);
}

123 124 125 126 127 128 129
/*
 * NOHZ - aka dynamic tick functionality
 */
#ifdef CONFIG_NO_HZ
/*
 * NO HZ enabled ?
 */
130
int tick_nohz_enabled __read_mostly  = 1;
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

/*
 * Enable / Disable tickless mode
 */
static int __init setup_tick_nohz(char *str)
{
	if (!strcmp(str, "off"))
		tick_nohz_enabled = 0;
	else if (!strcmp(str, "on"))
		tick_nohz_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("nohz=", setup_tick_nohz);

/**
 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 *
 * Called from interrupt entry when the CPU was idle
 *
 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 * value. We do this unconditionally on any cpu, as we don't know whether the
 * cpu, which has the update task assigned is in a long sleep.
 */
158
static void tick_nohz_update_jiffies(ktime_t now)
159 160 161 162 163
{
	int cpu = smp_processor_id();
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
	unsigned long flags;

164
	ts->idle_waketime = now;
165 166 167 168

	local_irq_save(flags);
	tick_do_update_jiffies64(now);
	local_irq_restore(flags);
169 170

	touch_softlockup_watchdog();
171 172
}

173 174 175
/*
 * Updates the per cpu time idle statistics counters
 */
176
static void
177
update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
178
{
179
	ktime_t delta;
180

181 182
	if (ts->idle_active) {
		delta = ktime_sub(now, ts->idle_entrytime);
183
		if (nr_iowait_cpu(cpu) > 0)
184
			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
185 186
		else
			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
187
		ts->idle_entrytime = now;
188
	}
189

190
	if (last_update_time)
191 192
		*last_update_time = ktime_to_us(now);

193 194 195 196 197 198
}

static void tick_nohz_stop_idle(int cpu, ktime_t now)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

199
	update_ts_time_stats(cpu, ts, now, NULL);
200
	ts->idle_active = 0;
201

202
	sched_clock_idle_wakeup_event(0);
203 204
}

205
static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
206
{
207
	ktime_t now = ktime_get();
208

209 210
	ts->idle_entrytime = now;
	ts->idle_active = 1;
211
	sched_clock_idle_sleep_event();
212 213 214
	return now;
}

215 216 217
/**
 * get_cpu_idle_time_us - get the total idle time of a cpu
 * @cpu: CPU number to query
218 219
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
220 221
 *
 * Return the cummulative idle time (since boot) for a given
222
 * CPU, in microseconds.
223 224 225 226 227 228
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
229 230 231
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
232
	ktime_t now, idle;
233

234 235 236
	if (!tick_nohz_enabled)
		return -1;

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		idle = ts->idle_sleeptime;
	} else {
		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);

			idle = ktime_add(ts->idle_sleeptime, delta);
		} else {
			idle = ts->idle_sleeptime;
		}
	}

	return ktime_to_us(idle);
252

253
}
254
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
255

256
/**
257 258
 * get_cpu_iowait_time_us - get the total iowait time of a cpu
 * @cpu: CPU number to query
259 260
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
261 262 263 264 265 266 267 268 269 270 271 272
 *
 * Return the cummulative iowait time (since boot) for a given
 * CPU, in microseconds.
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
273
	ktime_t now, iowait;
274 275 276 277

	if (!tick_nohz_enabled)
		return -1;

278 279 280 281 282 283 284
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		iowait = ts->iowait_sleeptime;
	} else {
		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
285

286 287 288 289 290
			iowait = ktime_add(ts->iowait_sleeptime, delta);
		} else {
			iowait = ts->iowait_sleeptime;
		}
	}
291

292
	return ktime_to_us(iowait);
293 294 295
}
EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);

296 297
static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
					 ktime_t now, int cpu)
298
{
299
	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
300
	ktime_t last_update, expires, ret = { .tv64 = 0 };
301
	unsigned long rcu_delta_jiffies;
302
	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
303
	u64 time_delta;
304 305 306 307 308 309

	/* Read jiffies and the time when jiffies were updated last */
	do {
		seq = read_seqbegin(&xtime_lock);
		last_update = last_jiffies_update;
		last_jiffies = jiffies;
T
Thomas Gleixner 已提交
310
		time_delta = timekeeping_max_deferment();
311 312
	} while (read_seqretry(&xtime_lock, seq));

313
	if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) || printk_needs_cpu(cpu) ||
314
	    arch_needs_cpu(cpu)) {
315
		next_jiffies = last_jiffies + 1;
I
Ingo Molnar 已提交
316
		delta_jiffies = 1;
317 318 319 320
	} else {
		/* Get the next timer wheel timer */
		next_jiffies = get_next_timer_interrupt(last_jiffies);
		delta_jiffies = next_jiffies - last_jiffies;
321 322 323 324
		if (rcu_delta_jiffies < delta_jiffies) {
			next_jiffies = last_jiffies + rcu_delta_jiffies;
			delta_jiffies = rcu_delta_jiffies;
		}
325
	}
326 327 328 329
	/*
	 * Do not stop the tick, if we are only one off
	 * or if the cpu is required for rcu
	 */
I
Ingo Molnar 已提交
330
	if (!ts->tick_stopped && delta_jiffies == 1)
331 332 333 334 335
		goto out;

	/* Schedule the tick, if we are at least one jiffie off */
	if ((long)delta_jiffies >= 1) {

336 337 338 339 340 341
		/*
		 * If this cpu is the one which updates jiffies, then
		 * give up the assignment and let it be taken by the
		 * cpu which runs the tick timer next, which might be
		 * this cpu as well. If we don't drop this here the
		 * jiffies might be stale and do_timer() never
T
Thomas Gleixner 已提交
342 343 344 345 346 347
		 * invoked. Keep track of the fact that it was the one
		 * which had the do_timer() duty last. If this cpu is
		 * the one which had the do_timer() duty last, we
		 * limit the sleep time to the timekeeping
		 * max_deferement value which we retrieved
		 * above. Otherwise we can sleep as long as we want.
348
		 */
T
Thomas Gleixner 已提交
349
		if (cpu == tick_do_timer_cpu) {
350
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
T
Thomas Gleixner 已提交
351 352 353 354 355 356 357 358
			ts->do_timer_last = 1;
		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
			time_delta = KTIME_MAX;
			ts->do_timer_last = 0;
		} else if (!ts->do_timer_last) {
			time_delta = KTIME_MAX;
		}

359
		/*
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
		 * calculate the expiry time for the next timer wheel
		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
		 * that there is no timer pending or at least extremely
		 * far into the future (12 days for HZ=1000). In this
		 * case we set the expiry to the end of time.
		 */
		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
			/*
			 * Calculate the time delta for the next timer event.
			 * If the time delta exceeds the maximum time delta
			 * permitted by the current clocksource then adjust
			 * the time delta accordingly to ensure the
			 * clocksource does not wrap.
			 */
			time_delta = min_t(u64, time_delta,
					   tick_period.tv64 * delta_jiffies);
		}
377

T
Thomas Gleixner 已提交
378 379 380 381
		if (time_delta < KTIME_MAX)
			expires = ktime_add_ns(last_update, time_delta);
		else
			expires.tv64 = KTIME_MAX;
382 383 384 385 386

		/* Skip reprogram of event if its not changed */
		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
			goto out;

387 388
		ret = expires;

389 390 391 392 393 394 395 396
		/*
		 * nohz_stop_sched_tick can be called several times before
		 * the nohz_restart_sched_tick is called. This happens when
		 * interrupts arrive which do not cause a reschedule. In the
		 * first call we save the current tick time, so we can restart
		 * the scheduler tick in nohz_restart_sched_tick.
		 */
		if (!ts->tick_stopped) {
397
			nohz_balance_enter_idle(cpu);
398
			calc_load_enter_idle();
399

400
			ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
401 402
			ts->tick_stopped = 1;
		}
403

404
		/*
405 406
		 * If the expiration time == KTIME_MAX, then
		 * in this case we simply stop the tick timer.
407
		 */
408
		 if (unlikely(expires.tv64 == KTIME_MAX)) {
409 410 411 412 413
			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
				hrtimer_cancel(&ts->sched_timer);
			goto out;
		}

414 415
		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
			hrtimer_start(&ts->sched_timer, expires,
416
				      HRTIMER_MODE_ABS_PINNED);
417 418 419
			/* Check, if the timer was already in the past */
			if (hrtimer_active(&ts->sched_timer))
				goto out;
P
Pavel Machek 已提交
420
		} else if (!tick_program_event(expires, 0))
421 422 423 424 425 426 427 428 429 430 431 432
				goto out;
		/*
		 * We are past the event already. So we crossed a
		 * jiffie boundary. Update jiffies and raise the
		 * softirq.
		 */
		tick_do_update_jiffies64(ktime_get());
	}
	raise_softirq_irqoff(TIMER_SOFTIRQ);
out:
	ts->next_jiffies = next_jiffies;
	ts->last_jiffies = last_jiffies;
433
	ts->sleep_length = ktime_sub(dev->next_event, now);
434 435

	return ret;
436 437
}

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
{
	/*
	 * If this cpu is offline and it is the one which updates
	 * jiffies, then give up the assignment and let it be taken by
	 * the cpu which runs the tick timer next. If we don't drop
	 * this here the jiffies might be stale and do_timer() never
	 * invoked.
	 */
	if (unlikely(!cpu_online(cpu))) {
		if (cpu == tick_do_timer_cpu)
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
	}

	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
		return false;

	if (need_resched())
		return false;

	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
		static int ratelimit;

461 462
		if (ratelimit < 10 &&
		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
463 464 465 466 467 468 469 470 471 472
			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
			       (unsigned int) local_softirq_pending());
			ratelimit++;
		}
		return false;
	}

	return true;
}

473 474
static void __tick_nohz_idle_enter(struct tick_sched *ts)
{
475
	ktime_t now, expires;
476
	int cpu = smp_processor_id();
477

478
	now = tick_nohz_start_idle(cpu, ts);
479

480 481 482 483
	if (can_stop_idle_tick(cpu, ts)) {
		int was_stopped = ts->tick_stopped;

		ts->idle_calls++;
484 485 486 487 488 489

		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
		if (expires.tv64 > 0LL) {
			ts->idle_sleeps++;
			ts->idle_expires = expires;
		}
490 491 492 493

		if (!was_stopped && ts->tick_stopped)
			ts->idle_jiffies = ts->last_jiffies;
	}
494 495 496 497 498 499 500
}

/**
 * tick_nohz_idle_enter - stop the idle tick from the idle task
 *
 * When the next event is more than a tick into the future, stop the idle tick
 * Called when we start the idle loop.
501
 *
502
 * The arch is responsible of calling:
503 504 505 506
 *
 * - rcu_idle_enter() after its last use of RCU before the CPU is put
 *  to sleep.
 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
507
 */
508
void tick_nohz_idle_enter(void)
509 510 511
{
	struct tick_sched *ts;

512 513
	WARN_ON_ONCE(irqs_disabled());

514 515 516 517 518 519 520 521
	/*
 	 * Update the idle state in the scheduler domain hierarchy
 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
 	 * State will be updated to busy during the first busy tick after
 	 * exiting idle.
 	 */
	set_cpu_sd_state_idle();

522 523
	local_irq_disable();

524 525 526 527 528 529 530
	ts = &__get_cpu_var(tick_cpu_sched);
	/*
	 * set ts->inidle unconditionally. even if the system did not
	 * switch to nohz mode the cpu frequency governers rely on the
	 * update of the idle time accounting in tick_nohz_start_idle().
	 */
	ts->inidle = 1;
531
	__tick_nohz_idle_enter(ts);
532 533

	local_irq_enable();
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
}

/**
 * tick_nohz_irq_exit - update next tick event from interrupt exit
 *
 * When an interrupt fires while we are idle and it doesn't cause
 * a reschedule, it may still add, modify or delete a timer, enqueue
 * an RCU callback, etc...
 * So we need to re-calculate and reprogram the next tick event.
 */
void tick_nohz_irq_exit(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	if (!ts->inidle)
		return;

551
	__tick_nohz_idle_enter(ts);
552 553
}

554 555 556 557 558 559 560 561 562 563 564 565
/**
 * tick_nohz_get_sleep_length - return the length of the current sleep
 *
 * Called from power state control code with interrupts disabled
 */
ktime_t tick_nohz_get_sleep_length(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	return ts->sleep_length;
}

566 567 568
static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
{
	hrtimer_cancel(&ts->sched_timer);
569
	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
570 571 572 573 574 575

	while (1) {
		/* Forward the time to expire in the future */
		hrtimer_forward(&ts->sched_timer, now, tick_period);

		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
576
			hrtimer_start_expires(&ts->sched_timer,
577
					      HRTIMER_MODE_ABS_PINNED);
578 579 580 581
			/* Check, if the timer was already in the past */
			if (hrtimer_active(&ts->sched_timer))
				break;
		} else {
582 583
			if (!tick_program_event(
				hrtimer_get_expires(&ts->sched_timer), 0))
584 585
				break;
		}
586
		/* Reread time and update jiffies */
587
		now = ktime_get();
588
		tick_do_update_jiffies64(now);
589 590 591
	}
}

592
static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
593 594 595
{
	/* Update jiffies first */
	tick_do_update_jiffies64(now);
596
	update_cpu_load_nohz();
597

598
	calc_load_exit_idle();
599 600 601 602 603 604 605 606 607 608 609 610
	touch_softlockup_watchdog();
	/*
	 * Cancel the scheduled timer and restore the tick
	 */
	ts->tick_stopped  = 0;
	ts->idle_exittime = now;

	tick_nohz_restart(ts, now);
}

static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
{
611
#ifndef CONFIG_VIRT_CPU_ACCOUNTING
612
	unsigned long ticks;
613 614 615 616 617 618 619 620 621
	/*
	 * We stopped the tick in idle. Update process times would miss the
	 * time we slept as update_process_times does only a 1 tick
	 * accounting. Enforce that this is accounted to idle !
	 */
	ticks = jiffies - ts->idle_jiffies;
	/*
	 * We might be one off. Do not randomly account a huge number of ticks!
	 */
622 623 624
	if (ticks && ticks < LONG_MAX)
		account_idle_ticks(ticks);
#endif
625 626
}

627
/**
628
 * tick_nohz_idle_exit - restart the idle tick from the idle task
629 630
 *
 * Restart the idle tick when the CPU is woken up from idle
631 632
 * This also exit the RCU extended quiescent state. The CPU
 * can use RCU again after this function is called.
633
 */
634
void tick_nohz_idle_exit(void)
635 636 637
{
	int cpu = smp_processor_id();
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
638
	ktime_t now;
639

640
	local_irq_disable();
641

642 643 644 645 646
	WARN_ON_ONCE(!ts->inidle);

	ts->inidle = 0;

	if (ts->idle_active || ts->tick_stopped)
647 648 649 650
		now = ktime_get();

	if (ts->idle_active)
		tick_nohz_stop_idle(cpu, now);
651

652
	if (ts->tick_stopped) {
653
		tick_nohz_restart_sched_tick(ts, now);
654
		tick_nohz_account_idle_ticks(ts);
655
	}
656 657 658 659 660 661 662

	local_irq_enable();
}

static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
{
	hrtimer_forward(&ts->sched_timer, now, tick_period);
663
	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
664 665 666 667 668 669 670 671 672 673 674 675 676
}

/*
 * The nohz low res interrupt handler
 */
static void tick_nohz_handler(struct clock_event_device *dev)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();

	dev->next_event.tv64 = KTIME_MAX;

677
	tick_sched_do_timer(now);
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728

	/*
	 * When we are idle and the tick is stopped, we have to touch
	 * the watchdog as we might not schedule for a really long
	 * time. This happens on complete idle SMP systems while
	 * waiting on the login prompt. We also increment the "start
	 * of idle" jiffy stamp so the idle accounting adjustment we
	 * do when we go busy again does not account too much ticks.
	 */
	if (ts->tick_stopped) {
		touch_softlockup_watchdog();
		ts->idle_jiffies++;
	}

	update_process_times(user_mode(regs));
	profile_tick(CPU_PROFILING);

	while (tick_nohz_reprogram(ts, now)) {
		now = ktime_get();
		tick_do_update_jiffies64(now);
	}
}

/**
 * tick_nohz_switch_to_nohz - switch to nohz mode
 */
static void tick_nohz_switch_to_nohz(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	ktime_t next;

	if (!tick_nohz_enabled)
		return;

	local_irq_disable();
	if (tick_switch_to_oneshot(tick_nohz_handler)) {
		local_irq_enable();
		return;
	}

	ts->nohz_mode = NOHZ_MODE_LOWRES;

	/*
	 * Recycle the hrtimer in ts, so we can share the
	 * hrtimer_forward with the highres code.
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	/* Get the next period */
	next = tick_init_jiffy_update();

	for (;;) {
729
		hrtimer_set_expires(&ts->sched_timer, next);
730 731 732 733 734 735 736
		if (!tick_program_event(next, 0))
			break;
		next = ktime_add(next, tick_period);
	}
	local_irq_enable();
}

737 738 739 740 741 742 743 744 745 746 747
/*
 * When NOHZ is enabled and the tick is stopped, we need to kick the
 * tick timer from irq_enter() so that the jiffies update is kept
 * alive during long running softirqs. That's ugly as hell, but
 * correctness is key even if we need to fix the offending softirq in
 * the first place.
 *
 * Note, this is different to tick_nohz_restart. We just kick the
 * timer and do not touch the other magic bits which need to be done
 * when idle is left.
 */
748
static void tick_nohz_kick_tick(int cpu, ktime_t now)
749
{
750 751 752
#if 0
	/* Switch back to 2.6.27 behaviour */

753
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
754
	ktime_t delta;
755

756 757 758 759
	/*
	 * Do not touch the tick device, when the next expiry is either
	 * already reached or less/equal than the tick period.
	 */
760
	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
761 762 763 764
	if (delta.tv64 <= tick_period.tv64)
		return;

	tick_nohz_restart(ts, now);
765
#endif
766 767
}

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
static inline void tick_check_nohz(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
	ktime_t now;

	if (!ts->idle_active && !ts->tick_stopped)
		return;
	now = ktime_get();
	if (ts->idle_active)
		tick_nohz_stop_idle(cpu, now);
	if (ts->tick_stopped) {
		tick_nohz_update_jiffies(now);
		tick_nohz_kick_tick(cpu, now);
	}
}

784 785 786
#else

static inline void tick_nohz_switch_to_nohz(void) { }
787
static inline void tick_check_nohz(int cpu) { }
788 789 790

#endif /* NO_HZ */

791 792 793 794 795
/*
 * Called from irq_enter to notify about the possible interruption of idle()
 */
void tick_check_idle(int cpu)
{
796
	tick_check_oneshot_broadcast(cpu);
797
	tick_check_nohz(cpu);
798 799
}

800 801 802 803 804
/*
 * High resolution timer specific code
 */
#ifdef CONFIG_HIGH_RES_TIMERS
/*
P
Pavel Machek 已提交
805
 * We rearm the timer until we get disabled by the idle code.
806 807 808 809 810 811 812 813
 * Called with interrupts disabled and timer->base->cpu_base->lock held.
 */
static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
{
	struct tick_sched *ts =
		container_of(timer, struct tick_sched, sched_timer);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();
814

815
	tick_sched_do_timer(now);
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831

	/*
	 * Do not call, when we are not in irq context and have
	 * no valid regs pointer
	 */
	if (regs) {
		/*
		 * When we are idle and the tick is stopped, we have to touch
		 * the watchdog as we might not schedule for a really long
		 * time. This happens on complete idle SMP systems while
		 * waiting on the login prompt. We also increment the "start of
		 * idle" jiffy stamp so the idle accounting adjustment we do
		 * when we go busy again does not account too much ticks.
		 */
		if (ts->tick_stopped) {
			touch_softlockup_watchdog();
832
			if (is_idle_task(current))
833
				ts->idle_jiffies++;
834 835 836 837 838 839 840 841 842 843
		}
		update_process_times(user_mode(regs));
		profile_tick(CPU_PROFILING);
	}

	hrtimer_forward(timer, now, tick_period);

	return HRTIMER_RESTART;
}

M
Mike Galbraith 已提交
844 845
static int sched_skew_tick;

846 847 848 849 850 851 852 853
static int __init skew_tick(char *str)
{
	get_option(&str, &sched_skew_tick);

	return 0;
}
early_param("skew_tick", skew_tick);

854 855 856 857 858 859 860 861 862 863 864 865 866 867
/**
 * tick_setup_sched_timer - setup the tick emulation timer
 */
void tick_setup_sched_timer(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	ktime_t now = ktime_get();

	/*
	 * Emulate tick processing via per-CPU hrtimers:
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	ts->sched_timer.function = tick_sched_timer;

868
	/* Get the next period (per cpu) */
869
	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
870

M
Mike Galbraith 已提交
871 872 873 874 875 876 877 878
	/* Offset the tick to avert xtime_lock contention. */
	if (sched_skew_tick) {
		u64 offset = ktime_to_ns(tick_period) >> 1;
		do_div(offset, num_possible_cpus());
		offset *= smp_processor_id();
		hrtimer_add_expires_ns(&ts->sched_timer, offset);
	}

879 880
	for (;;) {
		hrtimer_forward(&ts->sched_timer, now, tick_period);
881 882
		hrtimer_start_expires(&ts->sched_timer,
				      HRTIMER_MODE_ABS_PINNED);
883 884 885 886 887 888 889
		/* Check, if the timer was already in the past */
		if (hrtimer_active(&ts->sched_timer))
			break;
		now = ktime_get();
	}

#ifdef CONFIG_NO_HZ
890
	if (tick_nohz_enabled)
891 892 893
		ts->nohz_mode = NOHZ_MODE_HIGHRES;
#endif
}
894
#endif /* HIGH_RES_TIMERS */
895

896
#if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
897 898 899 900
void tick_cancel_sched_timer(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

901
# ifdef CONFIG_HIGH_RES_TIMERS
902 903
	if (ts->sched_timer.base)
		hrtimer_cancel(&ts->sched_timer);
904
# endif
905

906 907
	ts->nohz_mode = NOHZ_MODE_INACTIVE;
}
908
#endif
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948

/**
 * Async notification about clocksource changes
 */
void tick_clock_notify(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
}

/*
 * Async notification about clock event changes
 */
void tick_oneshot_notify(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	set_bit(0, &ts->check_clocks);
}

/**
 * Check, if a change happened, which makes oneshot possible.
 *
 * Called cyclic from the hrtimer softirq (driven by the timer
 * softirq) allow_nohz signals, that we can switch into low-res nohz
 * mode, because high resolution timers are disabled (either compile
 * or runtime).
 */
int tick_check_oneshot_change(int allow_nohz)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	if (!test_and_clear_bit(0, &ts->check_clocks))
		return 0;

	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
		return 0;

949
	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
950 951 952 953 954 955 956 957
		return 0;

	if (!allow_nohz)
		return 1;

	tick_nohz_switch_to_nohz();
	return 0;
}