tick-sched.c 29.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time/tick-sched.c
 *
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
 *
 *  No idle tick implementation for low and high resolution timers
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
P
Pavel Machek 已提交
12
 *  Distribute under GPLv2.
13 14 15 16 17 18 19 20 21
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
22
#include <linux/module.h>
23
#include <linux/irq_work.h>
24 25
#include <linux/posix-timers.h>
#include <linux/perf_event.h>
26
#include <linux/context_tracking.h>
27

28 29
#include <asm/irq_regs.h>

30 31
#include "tick-internal.h"

F
Frederic Weisbecker 已提交
32 33
#include <trace/events/timer.h>

34 35 36
/*
 * Per cpu nohz control structure
 */
37
DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38 39

/*
40
 * The time, when the last jiffy update happened. Protected by jiffies_lock.
41 42 43
 */
static ktime_t last_jiffies_update;

44 45 46 47 48
struct tick_sched *tick_get_tick_sched(int cpu)
{
	return &per_cpu(tick_cpu_sched, cpu);
}

49 50 51 52 53 54 55 56
/*
 * Must be called with interrupts disabled !
 */
static void tick_do_update_jiffies64(ktime_t now)
{
	unsigned long ticks = 0;
	ktime_t delta;

57
	/*
58
	 * Do a quick check without holding jiffies_lock:
59 60 61 62 63
	 */
	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 < tick_period.tv64)
		return;

64 65
	/* Reevalute with jiffies_lock held */
	write_seqlock(&jiffies_lock);
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 >= tick_period.tv64) {

		delta = ktime_sub(delta, tick_period);
		last_jiffies_update = ktime_add(last_jiffies_update,
						tick_period);

		/* Slow path for long timeouts */
		if (unlikely(delta.tv64 >= tick_period.tv64)) {
			s64 incr = ktime_to_ns(tick_period);

			ticks = ktime_divns(delta, incr);

			last_jiffies_update = ktime_add_ns(last_jiffies_update,
							   incr * ticks);
		}
		do_timer(++ticks);
84 85 86

		/* Keep the tick_next_period variable up to date */
		tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 88 89
	} else {
		write_sequnlock(&jiffies_lock);
		return;
90
	}
91
	write_sequnlock(&jiffies_lock);
92
	update_wall_time();
93 94 95 96 97 98 99 100 101
}

/*
 * Initialize and return retrieve the jiffies update.
 */
static ktime_t tick_init_jiffy_update(void)
{
	ktime_t period;

102
	write_seqlock(&jiffies_lock);
103 104 105 106
	/* Did we start the jiffies update yet ? */
	if (last_jiffies_update.tv64 == 0)
		last_jiffies_update = tick_next_period;
	period = last_jiffies_update;
107
	write_sequnlock(&jiffies_lock);
108 109 110
	return period;
}

111 112 113 114 115

static void tick_sched_do_timer(ktime_t now)
{
	int cpu = smp_processor_id();

116
#ifdef CONFIG_NO_HZ_COMMON
117 118 119 120 121
	/*
	 * Check if the do_timer duty was dropped. We don't care about
	 * concurrency: This happens only when the cpu in charge went
	 * into a long sleep. If two cpus happen to assign themself to
	 * this duty, then the jiffies update is still serialized by
122
	 * jiffies_lock.
123
	 */
124
	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125
	    && !tick_nohz_full_cpu(cpu))
126 127 128 129 130 131 132 133
		tick_do_timer_cpu = cpu;
#endif

	/* Check, if the jiffies need an update */
	if (tick_do_timer_cpu == cpu)
		tick_do_update_jiffies64(now);
}

134 135
static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
{
136
#ifdef CONFIG_NO_HZ_COMMON
137 138 139 140 141 142 143 144 145 146 147 148 149
	/*
	 * When we are idle and the tick is stopped, we have to touch
	 * the watchdog as we might not schedule for a really long
	 * time. This happens on complete idle SMP systems while
	 * waiting on the login prompt. We also increment the "start of
	 * idle" jiffy stamp so the idle accounting adjustment we do
	 * when we go busy again does not account too much ticks.
	 */
	if (ts->tick_stopped) {
		touch_softlockup_watchdog();
		if (is_idle_task(current))
			ts->idle_jiffies++;
	}
150
#endif
151 152 153 154
	update_process_times(user_mode(regs));
	profile_tick(CPU_PROFILING);
}

155
#ifdef CONFIG_NO_HZ_FULL
156
cpumask_var_t tick_nohz_full_mask;
157
cpumask_var_t housekeeping_mask;
158
bool tick_nohz_full_running;
159

160 161 162 163
static bool can_stop_full_tick(void)
{
	WARN_ON_ONCE(!irqs_disabled());

F
Frederic Weisbecker 已提交
164 165
	if (!sched_can_stop_tick()) {
		trace_tick_stop(0, "more than 1 task in runqueue\n");
166
		return false;
F
Frederic Weisbecker 已提交
167
	}
168

F
Frederic Weisbecker 已提交
169 170
	if (!posix_cpu_timers_can_stop_tick(current)) {
		trace_tick_stop(0, "posix timers running\n");
171
		return false;
F
Frederic Weisbecker 已提交
172
	}
173

F
Frederic Weisbecker 已提交
174 175
	if (!perf_event_can_stop_tick()) {
		trace_tick_stop(0, "perf events running\n");
176
		return false;
F
Frederic Weisbecker 已提交
177
	}
178 179 180 181 182 183 184

	/* sched_clock_tick() needs us? */
#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
	/*
	 * TODO: kick full dynticks CPUs when
	 * sched_clock_stable is set.
	 */
185
	if (!sched_clock_stable()) {
F
Frederic Weisbecker 已提交
186
		trace_tick_stop(0, "unstable sched clock\n");
187 188 189 190
		/*
		 * Don't allow the user to think they can get
		 * full NO_HZ with this machine.
		 */
191
		WARN_ONCE(tick_nohz_full_running,
192
			  "NO_HZ FULL will not work with unstable sched clock");
193
		return false;
F
Frederic Weisbecker 已提交
194
	}
195 196 197 198 199 200 201
#endif

	return true;
}

static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);

202 203 204 205
/*
 * Re-evaluate the need for the tick on the current CPU
 * and restart it if necessary.
 */
206
void __tick_nohz_full_check(void)
207
{
208 209 210 211 212 213 214 215
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	if (tick_nohz_full_cpu(smp_processor_id())) {
		if (ts->tick_stopped && !is_idle_task(current)) {
			if (!can_stop_full_tick())
				tick_nohz_restart_sched_tick(ts, ktime_get());
		}
	}
216 217 218 219
}

static void nohz_full_kick_work_func(struct irq_work *work)
{
220
	__tick_nohz_full_check();
221 222 223 224 225 226
}

static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
	.func = nohz_full_kick_work_func,
};

227 228 229 230 231 232 233 234 235 236 237 238 239 240
/*
 * Kick this CPU if it's full dynticks in order to force it to
 * re-evaluate its dependency on the tick and restart it if necessary.
 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 * is NMI safe.
 */
void tick_nohz_full_kick(void)
{
	if (!tick_nohz_full_cpu(smp_processor_id()))
		return;

	irq_work_queue(&__get_cpu_var(nohz_full_kick_work));
}

241
/*
242
 * Kick the CPU if it's full dynticks in order to force it to
243 244
 * re-evaluate its dependency on the tick and restart it if necessary.
 */
245
void tick_nohz_full_kick_cpu(int cpu)
246
{
247 248 249 250
	if (!tick_nohz_full_cpu(cpu))
		return;

	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
251 252 253 254
}

static void nohz_full_kick_ipi(void *info)
{
255
	__tick_nohz_full_check();
256 257 258 259 260 261 262 263
}

/*
 * Kick all full dynticks CPUs in order to force these to re-evaluate
 * their dependency on the tick and restart it if necessary.
 */
void tick_nohz_full_kick_all(void)
{
264
	if (!tick_nohz_full_running)
265 266 267
		return;

	preempt_disable();
268
	smp_call_function_many(tick_nohz_full_mask,
269
			       nohz_full_kick_ipi, NULL, false);
270
	tick_nohz_full_kick();
271 272 273
	preempt_enable();
}

274 275 276 277 278
/*
 * Re-evaluate the need for the tick as we switch the current task.
 * It might need the tick due to per task/process properties:
 * perf events, posix cpu timers, ...
 */
279
void __tick_nohz_task_switch(struct task_struct *tsk)
280 281 282 283 284
{
	unsigned long flags;

	local_irq_save(flags);

285 286 287
	if (!tick_nohz_full_cpu(smp_processor_id()))
		goto out;

288 289 290
	if (tick_nohz_tick_stopped() && !can_stop_full_tick())
		tick_nohz_full_kick();

291
out:
292 293 294
	local_irq_restore(flags);
}

295
/* Parse the boot-time nohz CPU list from the kernel parameters. */
296
static int __init tick_nohz_full_setup(char *str)
297
{
298 299
	int cpu;

300
	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
301
	alloc_bootmem_cpumask_var(&housekeeping_mask);
302
	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
303
		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
304 305 306 307
		return 1;
	}

	cpu = smp_processor_id();
308
	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
309
		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
310
		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
311
	}
312 313
	cpumask_andnot(housekeeping_mask,
		       cpu_possible_mask, tick_nohz_full_mask);
314
	tick_nohz_full_running = true;
315

316 317
	return 1;
}
318
__setup("nohz_full=", tick_nohz_full_setup);
319

320
static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
321 322 323 324 325 326 327 328 329 330 331
						 unsigned long action,
						 void *hcpu)
{
	unsigned int cpu = (unsigned long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		/*
		 * If we handle the timekeeping duty for full dynticks CPUs,
		 * we can't safely shutdown that CPU.
		 */
332
		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
333
			return NOTIFY_BAD;
334 335 336 337 338
		break;
	}
	return NOTIFY_OK;
}

339 340 341 342 343
/*
 * Worst case string length in chunks of CPU range seems 2 steps
 * separations: 0,2,4,6,...
 * This is NR_CPUS + sizeof('\0')
 */
344
static char __initdata nohz_full_buf[NR_CPUS + 1];
345

346 347 348 349 350
static int tick_nohz_init_all(void)
{
	int err = -1;

#ifdef CONFIG_NO_HZ_FULL_ALL
351
	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
352 353 354
		pr_err("NO_HZ: Can't allocate full dynticks cpumask\n");
		return err;
	}
355 356 357 358
	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
		pr_err("NO_HZ: Can't allocate not-full dynticks cpumask\n");
		return err;
	}
359
	err = 0;
360 361
	cpumask_setall(tick_nohz_full_mask);
	cpumask_clear_cpu(smp_processor_id(), tick_nohz_full_mask);
362 363
	cpumask_clear(housekeeping_mask);
	cpumask_set_cpu(smp_processor_id(), housekeeping_mask);
364
	tick_nohz_full_running = true;
365 366 367 368
#endif
	return err;
}

369
void __init tick_nohz_init(void)
370
{
371 372
	int cpu;

373
	if (!tick_nohz_full_running) {
374 375 376
		if (tick_nohz_init_all() < 0)
			return;
	}
377

378
	for_each_cpu(cpu, tick_nohz_full_mask)
379 380
		context_tracking_cpu_set(cpu);

381
	cpu_notifier(tick_nohz_cpu_down_callback, 0);
382
	cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), tick_nohz_full_mask);
383
	pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
384 385 386
}
#endif

387 388 389
/*
 * NOHZ - aka dynamic tick functionality
 */
390
#ifdef CONFIG_NO_HZ_COMMON
391 392 393
/*
 * NO HZ enabled ?
 */
394 395
static int tick_nohz_enabled __read_mostly  = 1;
int tick_nohz_active  __read_mostly;
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
/*
 * Enable / Disable tickless mode
 */
static int __init setup_tick_nohz(char *str)
{
	if (!strcmp(str, "off"))
		tick_nohz_enabled = 0;
	else if (!strcmp(str, "on"))
		tick_nohz_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("nohz=", setup_tick_nohz);

/**
 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 *
 * Called from interrupt entry when the CPU was idle
 *
 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 * value. We do this unconditionally on any cpu, as we don't know whether the
 * cpu, which has the update task assigned is in a long sleep.
 */
422
static void tick_nohz_update_jiffies(ktime_t now)
423 424 425
{
	unsigned long flags;

426
	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
427 428 429 430

	local_irq_save(flags);
	tick_do_update_jiffies64(now);
	local_irq_restore(flags);
431 432

	touch_softlockup_watchdog();
433 434
}

435 436 437
/*
 * Updates the per cpu time idle statistics counters
 */
438
static void
439
update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
440
{
441
	ktime_t delta;
442

443 444
	if (ts->idle_active) {
		delta = ktime_sub(now, ts->idle_entrytime);
445
		if (nr_iowait_cpu(cpu) > 0)
446
			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
447 448
		else
			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
449
		ts->idle_entrytime = now;
450
	}
451

452
	if (last_update_time)
453 454
		*last_update_time = ktime_to_us(now);

455 456
}

457
static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
458
{
459
	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
460
	ts->idle_active = 0;
461

462
	sched_clock_idle_wakeup_event(0);
463 464
}

465
static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
466
{
467
	ktime_t now = ktime_get();
468

469 470
	ts->idle_entrytime = now;
	ts->idle_active = 1;
471
	sched_clock_idle_sleep_event();
472 473 474
	return now;
}

475 476 477
/**
 * get_cpu_idle_time_us - get the total idle time of a cpu
 * @cpu: CPU number to query
478 479
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
480 481
 *
 * Return the cummulative idle time (since boot) for a given
482
 * CPU, in microseconds.
483 484 485 486 487 488
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
489 490 491
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
492
	ktime_t now, idle;
493

494
	if (!tick_nohz_active)
495 496
		return -1;

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		idle = ts->idle_sleeptime;
	} else {
		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);

			idle = ktime_add(ts->idle_sleeptime, delta);
		} else {
			idle = ts->idle_sleeptime;
		}
	}

	return ktime_to_us(idle);
512

513
}
514
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
515

516
/**
517 518
 * get_cpu_iowait_time_us - get the total iowait time of a cpu
 * @cpu: CPU number to query
519 520
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
521 522 523 524 525 526 527 528 529 530 531 532
 *
 * Return the cummulative iowait time (since boot) for a given
 * CPU, in microseconds.
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
533
	ktime_t now, iowait;
534

535
	if (!tick_nohz_active)
536 537
		return -1;

538 539 540 541 542 543 544
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		iowait = ts->iowait_sleeptime;
	} else {
		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
545

546 547 548 549 550
			iowait = ktime_add(ts->iowait_sleeptime, delta);
		} else {
			iowait = ts->iowait_sleeptime;
		}
	}
551

552
	return ktime_to_us(iowait);
553 554 555
}
EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);

556 557
static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
					 ktime_t now, int cpu)
558
{
559
	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
560
	ktime_t last_update, expires, ret = { .tv64 = 0 };
561
	unsigned long rcu_delta_jiffies;
562
	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
563
	u64 time_delta;
564

565 566
	time_delta = timekeeping_max_deferment();

567 568
	/* Read jiffies and the time when jiffies were updated last */
	do {
569
		seq = read_seqbegin(&jiffies_lock);
570 571
		last_update = last_jiffies_update;
		last_jiffies = jiffies;
572
	} while (read_seqretry(&jiffies_lock, seq));
573

574
	if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
575
	    arch_needs_cpu(cpu) || irq_work_needs_cpu()) {
576
		next_jiffies = last_jiffies + 1;
I
Ingo Molnar 已提交
577
		delta_jiffies = 1;
578 579 580 581
	} else {
		/* Get the next timer wheel timer */
		next_jiffies = get_next_timer_interrupt(last_jiffies);
		delta_jiffies = next_jiffies - last_jiffies;
582 583 584 585
		if (rcu_delta_jiffies < delta_jiffies) {
			next_jiffies = last_jiffies + rcu_delta_jiffies;
			delta_jiffies = rcu_delta_jiffies;
		}
586
	}
587

588
	/*
589 590
	 * Do not stop the tick, if we are only one off (or less)
	 * or if the cpu is required for RCU:
591
	 */
592
	if (!ts->tick_stopped && delta_jiffies <= 1)
593 594 595 596 597
		goto out;

	/* Schedule the tick, if we are at least one jiffie off */
	if ((long)delta_jiffies >= 1) {

598 599 600 601 602 603
		/*
		 * If this cpu is the one which updates jiffies, then
		 * give up the assignment and let it be taken by the
		 * cpu which runs the tick timer next, which might be
		 * this cpu as well. If we don't drop this here the
		 * jiffies might be stale and do_timer() never
T
Thomas Gleixner 已提交
604 605 606 607 608 609
		 * invoked. Keep track of the fact that it was the one
		 * which had the do_timer() duty last. If this cpu is
		 * the one which had the do_timer() duty last, we
		 * limit the sleep time to the timekeeping
		 * max_deferement value which we retrieved
		 * above. Otherwise we can sleep as long as we want.
610
		 */
T
Thomas Gleixner 已提交
611
		if (cpu == tick_do_timer_cpu) {
612
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
T
Thomas Gleixner 已提交
613 614 615 616 617 618 619 620
			ts->do_timer_last = 1;
		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
			time_delta = KTIME_MAX;
			ts->do_timer_last = 0;
		} else if (!ts->do_timer_last) {
			time_delta = KTIME_MAX;
		}

621 622 623 624 625 626 627
#ifdef CONFIG_NO_HZ_FULL
		if (!ts->inidle) {
			time_delta = min(time_delta,
					 scheduler_tick_max_deferment());
		}
#endif

628
		/*
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
		 * calculate the expiry time for the next timer wheel
		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
		 * that there is no timer pending or at least extremely
		 * far into the future (12 days for HZ=1000). In this
		 * case we set the expiry to the end of time.
		 */
		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
			/*
			 * Calculate the time delta for the next timer event.
			 * If the time delta exceeds the maximum time delta
			 * permitted by the current clocksource then adjust
			 * the time delta accordingly to ensure the
			 * clocksource does not wrap.
			 */
			time_delta = min_t(u64, time_delta,
					   tick_period.tv64 * delta_jiffies);
		}
646

T
Thomas Gleixner 已提交
647 648 649 650
		if (time_delta < KTIME_MAX)
			expires = ktime_add_ns(last_update, time_delta);
		else
			expires.tv64 = KTIME_MAX;
651 652 653 654 655

		/* Skip reprogram of event if its not changed */
		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
			goto out;

656 657
		ret = expires;

658 659 660 661 662 663 664 665
		/*
		 * nohz_stop_sched_tick can be called several times before
		 * the nohz_restart_sched_tick is called. This happens when
		 * interrupts arrive which do not cause a reschedule. In the
		 * first call we save the current tick time, so we can restart
		 * the scheduler tick in nohz_restart_sched_tick.
		 */
		if (!ts->tick_stopped) {
666
			nohz_balance_enter_idle(cpu);
667
			calc_load_enter_idle();
668

669
			ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
670
			ts->tick_stopped = 1;
F
Frederic Weisbecker 已提交
671
			trace_tick_stop(1, " ");
672
		}
673

674
		/*
675 676
		 * If the expiration time == KTIME_MAX, then
		 * in this case we simply stop the tick timer.
677
		 */
678
		 if (unlikely(expires.tv64 == KTIME_MAX)) {
679 680 681 682 683
			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
				hrtimer_cancel(&ts->sched_timer);
			goto out;
		}

684 685
		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
			hrtimer_start(&ts->sched_timer, expires,
686
				      HRTIMER_MODE_ABS_PINNED);
687 688 689
			/* Check, if the timer was already in the past */
			if (hrtimer_active(&ts->sched_timer))
				goto out;
P
Pavel Machek 已提交
690
		} else if (!tick_program_event(expires, 0))
691 692 693 694 695 696 697 698 699 700 701 702
				goto out;
		/*
		 * We are past the event already. So we crossed a
		 * jiffie boundary. Update jiffies and raise the
		 * softirq.
		 */
		tick_do_update_jiffies64(ktime_get());
	}
	raise_softirq_irqoff(TIMER_SOFTIRQ);
out:
	ts->next_jiffies = next_jiffies;
	ts->last_jiffies = last_jiffies;
703
	ts->sleep_length = ktime_sub(dev->next_event, now);
704 705

	return ret;
706 707
}

708 709 710
static void tick_nohz_full_stop_tick(struct tick_sched *ts)
{
#ifdef CONFIG_NO_HZ_FULL
711
	int cpu = smp_processor_id();
712

713 714
	if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
		return;
715

716 717
	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
		return;
718

719 720
	if (!can_stop_full_tick())
		return;
721

722
	tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
723 724 725
#endif
}

726 727 728 729 730 731 732 733 734 735 736 737
static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
{
	/*
	 * If this cpu is offline and it is the one which updates
	 * jiffies, then give up the assignment and let it be taken by
	 * the cpu which runs the tick timer next. If we don't drop
	 * this here the jiffies might be stale and do_timer() never
	 * invoked.
	 */
	if (unlikely(!cpu_online(cpu))) {
		if (cpu == tick_do_timer_cpu)
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
738
		return false;
739 740
	}

741 742
	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
743
		return false;
744
	}
745 746 747 748 749 750 751

	if (need_resched())
		return false;

	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
		static int ratelimit;

752 753
		if (ratelimit < 10 &&
		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
754 755
			pr_warn("NOHZ: local_softirq_pending %02x\n",
				(unsigned int) local_softirq_pending());
756 757 758 759 760
			ratelimit++;
		}
		return false;
	}

761
	if (tick_nohz_full_enabled()) {
762 763 764 765 766 767 768 769 770 771 772 773 774 775
		/*
		 * Keep the tick alive to guarantee timekeeping progression
		 * if there are full dynticks CPUs around
		 */
		if (tick_do_timer_cpu == cpu)
			return false;
		/*
		 * Boot safety: make sure the timekeeping duty has been
		 * assigned before entering dyntick-idle mode,
		 */
		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
			return false;
	}

776 777 778
	return true;
}

779 780
static void __tick_nohz_idle_enter(struct tick_sched *ts)
{
781
	ktime_t now, expires;
782
	int cpu = smp_processor_id();
783

784
	now = tick_nohz_start_idle(ts);
785

786 787 788 789
	if (can_stop_idle_tick(cpu, ts)) {
		int was_stopped = ts->tick_stopped;

		ts->idle_calls++;
790 791 792 793 794 795

		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
		if (expires.tv64 > 0LL) {
			ts->idle_sleeps++;
			ts->idle_expires = expires;
		}
796 797 798 799

		if (!was_stopped && ts->tick_stopped)
			ts->idle_jiffies = ts->last_jiffies;
	}
800 801 802 803 804 805 806
}

/**
 * tick_nohz_idle_enter - stop the idle tick from the idle task
 *
 * When the next event is more than a tick into the future, stop the idle tick
 * Called when we start the idle loop.
807
 *
808
 * The arch is responsible of calling:
809 810 811 812
 *
 * - rcu_idle_enter() after its last use of RCU before the CPU is put
 *  to sleep.
 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
813
 */
814
void tick_nohz_idle_enter(void)
815 816 817
{
	struct tick_sched *ts;

818 819
	WARN_ON_ONCE(irqs_disabled());

820 821 822 823 824 825 826 827
	/*
 	 * Update the idle state in the scheduler domain hierarchy
 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
 	 * State will be updated to busy during the first busy tick after
 	 * exiting idle.
 	 */
	set_cpu_sd_state_idle();

828 829
	local_irq_disable();

830 831
	ts = &__get_cpu_var(tick_cpu_sched);
	ts->inidle = 1;
832
	__tick_nohz_idle_enter(ts);
833 834

	local_irq_enable();
835
}
836
EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);
837 838 839 840 841 842 843 844 845 846 847 848 849

/**
 * tick_nohz_irq_exit - update next tick event from interrupt exit
 *
 * When an interrupt fires while we are idle and it doesn't cause
 * a reschedule, it may still add, modify or delete a timer, enqueue
 * an RCU callback, etc...
 * So we need to re-calculate and reprogram the next tick event.
 */
void tick_nohz_irq_exit(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

850
	if (ts->inidle)
851
		__tick_nohz_idle_enter(ts);
852
	else
853
		tick_nohz_full_stop_tick(ts);
854 855
}

856 857 858 859 860 861 862 863 864 865 866 867
/**
 * tick_nohz_get_sleep_length - return the length of the current sleep
 *
 * Called from power state control code with interrupts disabled
 */
ktime_t tick_nohz_get_sleep_length(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	return ts->sleep_length;
}

868 869 870
static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
{
	hrtimer_cancel(&ts->sched_timer);
871
	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
872 873 874 875 876 877

	while (1) {
		/* Forward the time to expire in the future */
		hrtimer_forward(&ts->sched_timer, now, tick_period);

		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
878
			hrtimer_start_expires(&ts->sched_timer,
879
					      HRTIMER_MODE_ABS_PINNED);
880 881 882 883
			/* Check, if the timer was already in the past */
			if (hrtimer_active(&ts->sched_timer))
				break;
		} else {
884 885
			if (!tick_program_event(
				hrtimer_get_expires(&ts->sched_timer), 0))
886 887
				break;
		}
888
		/* Reread time and update jiffies */
889
		now = ktime_get();
890
		tick_do_update_jiffies64(now);
891 892 893
	}
}

894
static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
895 896 897
{
	/* Update jiffies first */
	tick_do_update_jiffies64(now);
898
	update_cpu_load_nohz();
899

900
	calc_load_exit_idle();
901 902 903 904 905 906 907 908 909 910 911 912
	touch_softlockup_watchdog();
	/*
	 * Cancel the scheduled timer and restore the tick
	 */
	ts->tick_stopped  = 0;
	ts->idle_exittime = now;

	tick_nohz_restart(ts, now);
}

static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
{
913
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
914
	unsigned long ticks;
915 916 917

	if (vtime_accounting_enabled())
		return;
918 919 920 921 922 923 924 925 926
	/*
	 * We stopped the tick in idle. Update process times would miss the
	 * time we slept as update_process_times does only a 1 tick
	 * accounting. Enforce that this is accounted to idle !
	 */
	ticks = jiffies - ts->idle_jiffies;
	/*
	 * We might be one off. Do not randomly account a huge number of ticks!
	 */
927 928 929
	if (ticks && ticks < LONG_MAX)
		account_idle_ticks(ticks);
#endif
930 931
}

932
/**
933
 * tick_nohz_idle_exit - restart the idle tick from the idle task
934 935
 *
 * Restart the idle tick when the CPU is woken up from idle
936 937
 * This also exit the RCU extended quiescent state. The CPU
 * can use RCU again after this function is called.
938
 */
939
void tick_nohz_idle_exit(void)
940
{
941
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
942
	ktime_t now;
943

944
	local_irq_disable();
945

946 947 948 949 950
	WARN_ON_ONCE(!ts->inidle);

	ts->inidle = 0;

	if (ts->idle_active || ts->tick_stopped)
951 952 953
		now = ktime_get();

	if (ts->idle_active)
954
		tick_nohz_stop_idle(ts, now);
955

956
	if (ts->tick_stopped) {
957
		tick_nohz_restart_sched_tick(ts, now);
958
		tick_nohz_account_idle_ticks(ts);
959
	}
960 961 962

	local_irq_enable();
}
963
EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);
964 965 966 967

static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
{
	hrtimer_forward(&ts->sched_timer, now, tick_period);
968
	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
969 970 971 972 973 974 975 976 977 978 979 980 981
}

/*
 * The nohz low res interrupt handler
 */
static void tick_nohz_handler(struct clock_event_device *dev)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();

	dev->next_event.tv64 = KTIME_MAX;

982
	tick_sched_do_timer(now);
983
	tick_sched_handle(ts, regs);
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998

	while (tick_nohz_reprogram(ts, now)) {
		now = ktime_get();
		tick_do_update_jiffies64(now);
	}
}

/**
 * tick_nohz_switch_to_nohz - switch to nohz mode
 */
static void tick_nohz_switch_to_nohz(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	ktime_t next;

999
	if (!tick_nohz_enabled)
1000 1001 1002 1003 1004 1005 1006
		return;

	local_irq_disable();
	if (tick_switch_to_oneshot(tick_nohz_handler)) {
		local_irq_enable();
		return;
	}
1007
	tick_nohz_active = 1;
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
	ts->nohz_mode = NOHZ_MODE_LOWRES;

	/*
	 * Recycle the hrtimer in ts, so we can share the
	 * hrtimer_forward with the highres code.
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	/* Get the next period */
	next = tick_init_jiffy_update();

	for (;;) {
1019
		hrtimer_set_expires(&ts->sched_timer, next);
1020 1021 1022 1023 1024 1025 1026
		if (!tick_program_event(next, 0))
			break;
		next = ktime_add(next, tick_period);
	}
	local_irq_enable();
}

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
/*
 * When NOHZ is enabled and the tick is stopped, we need to kick the
 * tick timer from irq_enter() so that the jiffies update is kept
 * alive during long running softirqs. That's ugly as hell, but
 * correctness is key even if we need to fix the offending softirq in
 * the first place.
 *
 * Note, this is different to tick_nohz_restart. We just kick the
 * timer and do not touch the other magic bits which need to be done
 * when idle is left.
 */
1038
static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1039
{
1040 1041
#if 0
	/* Switch back to 2.6.27 behaviour */
1042
	ktime_t delta;
1043

1044 1045 1046 1047
	/*
	 * Do not touch the tick device, when the next expiry is either
	 * already reached or less/equal than the tick period.
	 */
1048
	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1049 1050 1051 1052
	if (delta.tv64 <= tick_period.tv64)
		return;

	tick_nohz_restart(ts, now);
1053
#endif
1054 1055
}

1056
static inline void tick_nohz_irq_enter(void)
1057
{
1058
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1059 1060 1061 1062 1063 1064
	ktime_t now;

	if (!ts->idle_active && !ts->tick_stopped)
		return;
	now = ktime_get();
	if (ts->idle_active)
1065
		tick_nohz_stop_idle(ts, now);
1066 1067
	if (ts->tick_stopped) {
		tick_nohz_update_jiffies(now);
1068
		tick_nohz_kick_tick(ts, now);
1069 1070 1071
	}
}

1072 1073 1074
#else

static inline void tick_nohz_switch_to_nohz(void) { }
1075
static inline void tick_nohz_irq_enter(void) { }
1076

1077
#endif /* CONFIG_NO_HZ_COMMON */
1078

1079 1080 1081
/*
 * Called from irq_enter to notify about the possible interruption of idle()
 */
1082
void tick_irq_enter(void)
1083
{
1084
	tick_check_oneshot_broadcast_this_cpu();
1085
	tick_nohz_irq_enter();
1086 1087
}

1088 1089 1090 1091 1092
/*
 * High resolution timer specific code
 */
#ifdef CONFIG_HIGH_RES_TIMERS
/*
P
Pavel Machek 已提交
1093
 * We rearm the timer until we get disabled by the idle code.
1094
 * Called with interrupts disabled.
1095 1096 1097 1098 1099 1100 1101
 */
static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
{
	struct tick_sched *ts =
		container_of(timer, struct tick_sched, sched_timer);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();
1102

1103
	tick_sched_do_timer(now);
1104 1105 1106 1107 1108

	/*
	 * Do not call, when we are not in irq context and have
	 * no valid regs pointer
	 */
1109 1110
	if (regs)
		tick_sched_handle(ts, regs);
1111 1112 1113 1114 1115 1116

	hrtimer_forward(timer, now, tick_period);

	return HRTIMER_RESTART;
}

M
Mike Galbraith 已提交
1117 1118
static int sched_skew_tick;

1119 1120 1121 1122 1123 1124 1125 1126
static int __init skew_tick(char *str)
{
	get_option(&str, &sched_skew_tick);

	return 0;
}
early_param("skew_tick", skew_tick);

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
/**
 * tick_setup_sched_timer - setup the tick emulation timer
 */
void tick_setup_sched_timer(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	ktime_t now = ktime_get();

	/*
	 * Emulate tick processing via per-CPU hrtimers:
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	ts->sched_timer.function = tick_sched_timer;

1141
	/* Get the next period (per cpu) */
1142
	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1143

1144
	/* Offset the tick to avert jiffies_lock contention. */
M
Mike Galbraith 已提交
1145 1146 1147 1148 1149 1150 1151
	if (sched_skew_tick) {
		u64 offset = ktime_to_ns(tick_period) >> 1;
		do_div(offset, num_possible_cpus());
		offset *= smp_processor_id();
		hrtimer_add_expires_ns(&ts->sched_timer, offset);
	}

1152 1153
	for (;;) {
		hrtimer_forward(&ts->sched_timer, now, tick_period);
1154 1155
		hrtimer_start_expires(&ts->sched_timer,
				      HRTIMER_MODE_ABS_PINNED);
1156 1157 1158 1159 1160 1161
		/* Check, if the timer was already in the past */
		if (hrtimer_active(&ts->sched_timer))
			break;
		now = ktime_get();
	}

1162
#ifdef CONFIG_NO_HZ_COMMON
1163
	if (tick_nohz_enabled) {
1164
		ts->nohz_mode = NOHZ_MODE_HIGHRES;
1165 1166
		tick_nohz_active = 1;
	}
1167 1168
#endif
}
1169
#endif /* HIGH_RES_TIMERS */
1170

1171
#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1172 1173 1174 1175
void tick_cancel_sched_timer(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

1176
# ifdef CONFIG_HIGH_RES_TIMERS
1177 1178
	if (ts->sched_timer.base)
		hrtimer_cancel(&ts->sched_timer);
1179
# endif
1180

1181
	memset(ts, 0, sizeof(*ts));
1182
}
1183
#endif
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223

/**
 * Async notification about clocksource changes
 */
void tick_clock_notify(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
}

/*
 * Async notification about clock event changes
 */
void tick_oneshot_notify(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	set_bit(0, &ts->check_clocks);
}

/**
 * Check, if a change happened, which makes oneshot possible.
 *
 * Called cyclic from the hrtimer softirq (driven by the timer
 * softirq) allow_nohz signals, that we can switch into low-res nohz
 * mode, because high resolution timers are disabled (either compile
 * or runtime).
 */
int tick_check_oneshot_change(int allow_nohz)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	if (!test_and_clear_bit(0, &ts->check_clocks))
		return 0;

	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
		return 0;

1224
	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1225 1226 1227 1228 1229 1230 1231 1232
		return 0;

	if (!allow_nohz)
		return 1;

	tick_nohz_switch_to_nohz();
	return 0;
}