tick-sched.c 31.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time/tick-sched.c
 *
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
 *
 *  No idle tick implementation for low and high resolution timers
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
P
Pavel Machek 已提交
12
 *  Distribute under GPLv2.
13 14 15 16 17 18 19 20 21
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
22
#include <linux/module.h>
23
#include <linux/irq_work.h>
24
#include <linux/posix-timers.h>
25
#include <linux/context_tracking.h>
26

27 28
#include <asm/irq_regs.h>

29 30
#include "tick-internal.h"

F
Frederic Weisbecker 已提交
31 32
#include <trace/events/timer.h>

33 34 35
/*
 * Per cpu nohz control structure
 */
36
static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
37

38 39 40 41 42
struct tick_sched *tick_get_tick_sched(int cpu)
{
	return &per_cpu(tick_cpu_sched, cpu);
}

43 44 45 46 47 48
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
/*
 * The time, when the last jiffy update happened. Protected by jiffies_lock.
 */
static ktime_t last_jiffies_update;

49 50 51 52 53 54 55 56
/*
 * Must be called with interrupts disabled !
 */
static void tick_do_update_jiffies64(ktime_t now)
{
	unsigned long ticks = 0;
	ktime_t delta;

57
	/*
58
	 * Do a quick check without holding jiffies_lock:
59 60 61 62 63
	 */
	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 < tick_period.tv64)
		return;

64 65
	/* Reevalute with jiffies_lock held */
	write_seqlock(&jiffies_lock);
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 >= tick_period.tv64) {

		delta = ktime_sub(delta, tick_period);
		last_jiffies_update = ktime_add(last_jiffies_update,
						tick_period);

		/* Slow path for long timeouts */
		if (unlikely(delta.tv64 >= tick_period.tv64)) {
			s64 incr = ktime_to_ns(tick_period);

			ticks = ktime_divns(delta, incr);

			last_jiffies_update = ktime_add_ns(last_jiffies_update,
							   incr * ticks);
		}
		do_timer(++ticks);
84 85 86

		/* Keep the tick_next_period variable up to date */
		tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 88 89
	} else {
		write_sequnlock(&jiffies_lock);
		return;
90
	}
91
	write_sequnlock(&jiffies_lock);
92
	update_wall_time();
93 94 95 96 97 98 99 100 101
}

/*
 * Initialize and return retrieve the jiffies update.
 */
static ktime_t tick_init_jiffy_update(void)
{
	ktime_t period;

102
	write_seqlock(&jiffies_lock);
103 104 105 106
	/* Did we start the jiffies update yet ? */
	if (last_jiffies_update.tv64 == 0)
		last_jiffies_update = tick_next_period;
	period = last_jiffies_update;
107
	write_sequnlock(&jiffies_lock);
108 109 110
	return period;
}

111 112 113 114 115

static void tick_sched_do_timer(ktime_t now)
{
	int cpu = smp_processor_id();

116
#ifdef CONFIG_NO_HZ_COMMON
117 118 119 120 121
	/*
	 * Check if the do_timer duty was dropped. We don't care about
	 * concurrency: This happens only when the cpu in charge went
	 * into a long sleep. If two cpus happen to assign themself to
	 * this duty, then the jiffies update is still serialized by
122
	 * jiffies_lock.
123
	 */
124
	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125
	    && !tick_nohz_full_cpu(cpu))
126 127 128 129 130 131 132 133
		tick_do_timer_cpu = cpu;
#endif

	/* Check, if the jiffies need an update */
	if (tick_do_timer_cpu == cpu)
		tick_do_update_jiffies64(now);
}

134 135
static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
{
136
#ifdef CONFIG_NO_HZ_COMMON
137 138 139 140 141 142 143 144 145
	/*
	 * When we are idle and the tick is stopped, we have to touch
	 * the watchdog as we might not schedule for a really long
	 * time. This happens on complete idle SMP systems while
	 * waiting on the login prompt. We also increment the "start of
	 * idle" jiffy stamp so the idle accounting adjustment we do
	 * when we go busy again does not account too much ticks.
	 */
	if (ts->tick_stopped) {
146
		touch_softlockup_watchdog_sched();
147 148 149
		if (is_idle_task(current))
			ts->idle_jiffies++;
	}
150
#endif
151 152 153
	update_process_times(user_mode(regs));
	profile_tick(CPU_PROFILING);
}
154
#endif
155

156
#ifdef CONFIG_NO_HZ_FULL
157
cpumask_var_t tick_nohz_full_mask;
158
cpumask_var_t housekeeping_mask;
159
bool tick_nohz_full_running;
160
static unsigned long tick_dep_mask;
161

162 163 164
static void trace_tick_dependency(unsigned long dep)
{
	if (dep & TICK_DEP_MASK_POSIX_TIMER) {
165
		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
166 167 168 169
		return;
	}

	if (dep & TICK_DEP_MASK_PERF_EVENTS) {
170
		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
171 172 173 174
		return;
	}

	if (dep & TICK_DEP_MASK_SCHED) {
175
		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
176 177 178 179
		return;
	}

	if (dep & TICK_DEP_MASK_CLOCK_UNSTABLE)
180
		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
181 182 183
}

static bool can_stop_full_tick(struct tick_sched *ts)
184 185 186
{
	WARN_ON_ONCE(!irqs_disabled());

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
	if (tick_dep_mask) {
		trace_tick_dependency(tick_dep_mask);
		return false;
	}

	if (ts->tick_dep_mask) {
		trace_tick_dependency(ts->tick_dep_mask);
		return false;
	}

	if (current->tick_dep_mask) {
		trace_tick_dependency(current->tick_dep_mask);
		return false;
	}

	if (current->signal->tick_dep_mask) {
		trace_tick_dependency(current->signal->tick_dep_mask);
		return false;
	}

207 208 209
	return true;
}

210
static void nohz_full_kick_func(struct irq_work *work)
211
{
212
	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
213 214 215
}

static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
216
	.func = nohz_full_kick_func,
217 218
};

219 220 221 222 223 224
/*
 * Kick this CPU if it's full dynticks in order to force it to
 * re-evaluate its dependency on the tick and restart it if necessary.
 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 * is NMI safe.
 */
225
static void tick_nohz_full_kick(void)
226 227 228 229
{
	if (!tick_nohz_full_cpu(smp_processor_id()))
		return;

230
	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
231 232
}

233
/*
234
 * Kick the CPU if it's full dynticks in order to force it to
235 236
 * re-evaluate its dependency on the tick and restart it if necessary.
 */
237
void tick_nohz_full_kick_cpu(int cpu)
238
{
239 240 241 242
	if (!tick_nohz_full_cpu(cpu))
		return;

	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
243 244 245 246 247 248
}

/*
 * Kick all full dynticks CPUs in order to force these to re-evaluate
 * their dependency on the tick and restart it if necessary.
 */
249
static void tick_nohz_full_kick_all(void)
250
{
251 252
	int cpu;

253
	if (!tick_nohz_full_running)
254 255 256
		return;

	preempt_disable();
257 258
	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
		tick_nohz_full_kick_cpu(cpu);
259 260 261
	preempt_enable();
}

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
static void tick_nohz_dep_set_all(unsigned long *dep,
				  enum tick_dep_bits bit)
{
	unsigned long prev;

	prev = fetch_or(dep, BIT_MASK(bit));
	if (!prev)
		tick_nohz_full_kick_all();
}

/*
 * Set a global tick dependency. Used by perf events that rely on freq and
 * by unstable clock.
 */
void tick_nohz_dep_set(enum tick_dep_bits bit)
{
	tick_nohz_dep_set_all(&tick_dep_mask, bit);
}

void tick_nohz_dep_clear(enum tick_dep_bits bit)
{
	clear_bit(bit, &tick_dep_mask);
}

/*
 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 * manage events throttling.
 */
void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
{
	unsigned long prev;
	struct tick_sched *ts;

	ts = per_cpu_ptr(&tick_cpu_sched, cpu);

	prev = fetch_or(&ts->tick_dep_mask, BIT_MASK(bit));
	if (!prev) {
		preempt_disable();
		/* Perf needs local kick that is NMI safe */
		if (cpu == smp_processor_id()) {
			tick_nohz_full_kick();
		} else {
			/* Remote irq work not NMI-safe */
			if (!WARN_ON_ONCE(in_nmi()))
				tick_nohz_full_kick_cpu(cpu);
		}
		preempt_enable();
	}
}

void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
{
	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);

	clear_bit(bit, &ts->tick_dep_mask);
}

/*
 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
 * per task timers.
 */
void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
{
	/*
	 * We could optimize this with just kicking the target running the task
	 * if that noise matters for nohz full users.
	 */
	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
}

void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
{
	clear_bit(bit, &tsk->tick_dep_mask);
}

/*
 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 * per process timers.
 */
void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
{
	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
}

void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
{
	clear_bit(bit, &sig->tick_dep_mask);
}

351 352 353 354 355
/*
 * Re-evaluate the need for the tick as we switch the current task.
 * It might need the tick due to per task/process properties:
 * perf events, posix cpu timers, ...
 */
356
void __tick_nohz_task_switch(void)
357 358
{
	unsigned long flags;
359
	struct tick_sched *ts;
360 361 362

	local_irq_save(flags);

363 364 365
	if (!tick_nohz_full_cpu(smp_processor_id()))
		goto out;

366
	ts = this_cpu_ptr(&tick_cpu_sched);
367

368 369 370 371
	if (ts->tick_stopped) {
		if (current->tick_dep_mask || current->signal->tick_dep_mask)
			tick_nohz_full_kick();
	}
372
out:
373 374 375
	local_irq_restore(flags);
}

376
/* Parse the boot-time nohz CPU list from the kernel parameters. */
377
static int __init tick_nohz_full_setup(char *str)
378
{
379 380
	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
381
		pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
382
		free_bootmem_cpumask_var(tick_nohz_full_mask);
383 384
		return 1;
	}
385
	tick_nohz_full_running = true;
386

387 388
	return 1;
}
389
__setup("nohz_full=", tick_nohz_full_setup);
390

391
static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
392 393
				       unsigned long action,
				       void *hcpu)
394 395 396 397 398 399
{
	unsigned int cpu = (unsigned long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		/*
400 401 402
		 * The boot CPU handles housekeeping duty (unbound timers,
		 * workqueues, timekeeping, ...) on behalf of full dynticks
		 * CPUs. It must remain online when nohz full is enabled.
403
		 */
404
		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
405
			return NOTIFY_BAD;
406 407 408 409 410
		break;
	}
	return NOTIFY_OK;
}

411 412 413 414 415
static int tick_nohz_init_all(void)
{
	int err = -1;

#ifdef CONFIG_NO_HZ_FULL_ALL
416
	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
417
		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
418 419
		return err;
	}
420
	err = 0;
421 422
	cpumask_setall(tick_nohz_full_mask);
	tick_nohz_full_running = true;
423 424 425 426
#endif
	return err;
}

427
void __init tick_nohz_init(void)
428
{
429 430
	int cpu;

431
	if (!tick_nohz_full_running) {
432 433 434
		if (tick_nohz_init_all() < 0)
			return;
	}
435

436 437 438 439 440 441 442
	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
		cpumask_clear(tick_nohz_full_mask);
		tick_nohz_full_running = false;
		return;
	}

443 444 445 446 447 448
	/*
	 * Full dynticks uses irq work to drive the tick rescheduling on safe
	 * locking contexts. But then we need irq work to raise its own
	 * interrupts to avoid circular dependency on the tick
	 */
	if (!arch_irq_work_has_interrupt()) {
449
		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
450 451 452 453 454 455
		cpumask_clear(tick_nohz_full_mask);
		cpumask_copy(housekeeping_mask, cpu_possible_mask);
		tick_nohz_full_running = false;
		return;
	}

456 457 458
	cpu = smp_processor_id();

	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
459 460
		pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
			cpu);
461 462 463 464 465 466
		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
	}

	cpumask_andnot(housekeeping_mask,
		       cpu_possible_mask, tick_nohz_full_mask);

467
	for_each_cpu(cpu, tick_nohz_full_mask)
468 469
		context_tracking_cpu_set(cpu);

470
	cpu_notifier(tick_nohz_cpu_down_callback, 0);
471 472
	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
		cpumask_pr_args(tick_nohz_full_mask));
473 474 475 476 477 478

	/*
	 * We need at least one CPU to handle housekeeping work such
	 * as timekeeping, unbound timers, workqueues, ...
	 */
	WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
479 480 481
}
#endif

482 483 484
/*
 * NOHZ - aka dynamic tick functionality
 */
485
#ifdef CONFIG_NO_HZ_COMMON
486 487 488
/*
 * NO HZ enabled ?
 */
489
bool tick_nohz_enabled __read_mostly  = true;
490
unsigned long tick_nohz_active  __read_mostly;
491 492 493 494 495
/*
 * Enable / Disable tickless mode
 */
static int __init setup_tick_nohz(char *str)
{
496
	return (kstrtobool(str, &tick_nohz_enabled) == 0);
497 498 499 500
}

__setup("nohz=", setup_tick_nohz);

501 502 503 504 505
int tick_nohz_tick_stopped(void)
{
	return __this_cpu_read(tick_cpu_sched.tick_stopped);
}

506 507 508 509 510 511 512 513 514 515
/**
 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 *
 * Called from interrupt entry when the CPU was idle
 *
 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 * value. We do this unconditionally on any cpu, as we don't know whether the
 * cpu, which has the update task assigned is in a long sleep.
 */
516
static void tick_nohz_update_jiffies(ktime_t now)
517 518 519
{
	unsigned long flags;

520
	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
521 522 523 524

	local_irq_save(flags);
	tick_do_update_jiffies64(now);
	local_irq_restore(flags);
525

526
	touch_softlockup_watchdog_sched();
527 528
}

529 530 531
/*
 * Updates the per cpu time idle statistics counters
 */
532
static void
533
update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
534
{
535
	ktime_t delta;
536

537 538
	if (ts->idle_active) {
		delta = ktime_sub(now, ts->idle_entrytime);
539
		if (nr_iowait_cpu(cpu) > 0)
540
			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
541 542
		else
			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
543
		ts->idle_entrytime = now;
544
	}
545

546
	if (last_update_time)
547 548
		*last_update_time = ktime_to_us(now);

549 550
}

551
static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
552
{
553
	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
554
	ts->idle_active = 0;
555

556
	sched_clock_idle_wakeup_event(0);
557 558
}

559
static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
560
{
561
	ktime_t now = ktime_get();
562

563 564
	ts->idle_entrytime = now;
	ts->idle_active = 1;
565
	sched_clock_idle_sleep_event();
566 567 568
	return now;
}

569 570 571
/**
 * get_cpu_idle_time_us - get the total idle time of a cpu
 * @cpu: CPU number to query
572 573
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
574 575
 *
 * Return the cummulative idle time (since boot) for a given
576
 * CPU, in microseconds.
577 578 579 580 581 582
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
583 584 585
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
586
	ktime_t now, idle;
587

588
	if (!tick_nohz_active)
589 590
		return -1;

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		idle = ts->idle_sleeptime;
	} else {
		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);

			idle = ktime_add(ts->idle_sleeptime, delta);
		} else {
			idle = ts->idle_sleeptime;
		}
	}

	return ktime_to_us(idle);
606

607
}
608
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
609

610
/**
611 612
 * get_cpu_iowait_time_us - get the total iowait time of a cpu
 * @cpu: CPU number to query
613 614
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
615 616 617 618 619 620 621 622 623 624 625 626
 *
 * Return the cummulative iowait time (since boot) for a given
 * CPU, in microseconds.
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
627
	ktime_t now, iowait;
628

629
	if (!tick_nohz_active)
630 631
		return -1;

632 633 634 635 636 637 638
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		iowait = ts->iowait_sleeptime;
	} else {
		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
639

640 641 642 643 644
			iowait = ktime_add(ts->iowait_sleeptime, delta);
		} else {
			iowait = ts->iowait_sleeptime;
		}
	}
645

646
	return ktime_to_us(iowait);
647 648 649
}
EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);

650 651 652 653 654 655 656 657 658 659 660 661 662 663
static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
{
	hrtimer_cancel(&ts->sched_timer);
	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);

	/* Forward the time to expire in the future */
	hrtimer_forward(&ts->sched_timer, now, tick_period);

	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
	else
		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
}

664 665
static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
					 ktime_t now, int cpu)
666
{
667
	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
668 669 670
	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
	unsigned long seq, basejiff;
	ktime_t	tick;
671

672 673
	/* Read jiffies and the time when jiffies were updated last */
	do {
674
		seq = read_seqbegin(&jiffies_lock);
675 676
		basemono = last_jiffies_update.tv64;
		basejiff = jiffies;
677
	} while (read_seqretry(&jiffies_lock, seq));
678
	ts->last_jiffies = basejiff;
679

680
	if (rcu_needs_cpu(basemono, &next_rcu) ||
681
	    arch_needs_cpu() || irq_work_needs_cpu()) {
682
		next_tick = basemono + TICK_NSEC;
683
	} else {
684 685 686 687 688 689 690 691 692 693 694
		/*
		 * Get the next pending timer. If high resolution
		 * timers are enabled this only takes the timer wheel
		 * timers into account. If high resolution timers are
		 * disabled this also looks at the next expiring
		 * hrtimer.
		 */
		next_tmr = get_next_timer_interrupt(basejiff, basemono);
		ts->next_timer = next_tmr;
		/* Take the next rcu event into account */
		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
695
	}
696

697 698
	/*
	 * If the tick is due in the next period, keep it ticking or
699
	 * force prod the timer.
700 701 702 703
	 */
	delta = next_tick - basemono;
	if (delta <= (u64)TICK_NSEC) {
		tick.tv64 = 0;
704 705 706 707
		/*
		 * We've not stopped the tick yet, and there's a timer in the
		 * next period, so no point in stopping it either, bail.
		 */
T
Thomas Gleixner 已提交
708 709
		if (!ts->tick_stopped)
			goto out;
710 711 712 713 714 715 716 717 718 719 720 721 722

		/*
		 * If, OTOH, we did stop it, but there's a pending (expired)
		 * timer reprogram the timer hardware to fire now.
		 *
		 * We will not restart the tick proper, just prod the timer
		 * hardware into firing an interrupt to process the pending
		 * timers. Just like tick_irq_exit() will not restart the tick
		 * for 'normal' interrupts.
		 *
		 * Only once we exit the idle loop will we re-enable the tick,
		 * see tick_nohz_idle_exit().
		 */
723
		if (delta == 0) {
T
Thomas Gleixner 已提交
724 725 726 727 728
			tick_nohz_restart(ts, now);
			goto out;
		}
	}

729
	/*
T
Thomas Gleixner 已提交
730 731 732 733 734 735 736
	 * If this cpu is the one which updates jiffies, then give up
	 * the assignment and let it be taken by the cpu which runs
	 * the tick timer next, which might be this cpu as well. If we
	 * don't drop this here the jiffies might be stale and
	 * do_timer() never invoked. Keep track of the fact that it
	 * was the one which had the do_timer() duty last. If this cpu
	 * is the one which had the do_timer() duty last, we limit the
737 738
	 * sleep time to the timekeeping max_deferement value.
	 * Otherwise we can sleep as long as we want.
739
	 */
740
	delta = timekeeping_max_deferment();
T
Thomas Gleixner 已提交
741 742 743 744
	if (cpu == tick_do_timer_cpu) {
		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
		ts->do_timer_last = 1;
	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
745
		delta = KTIME_MAX;
T
Thomas Gleixner 已提交
746 747
		ts->do_timer_last = 0;
	} else if (!ts->do_timer_last) {
748
		delta = KTIME_MAX;
T
Thomas Gleixner 已提交
749
	}
T
Thomas Gleixner 已提交
750

751
#ifdef CONFIG_NO_HZ_FULL
752
	/* Limit the tick delta to the maximum scheduler deferment */
T
Thomas Gleixner 已提交
753
	if (!ts->inidle)
754
		delta = min(delta, scheduler_tick_max_deferment());
755 756
#endif

757 758 759
	/* Calculate the next expiry time */
	if (delta < (KTIME_MAX - basemono))
		expires = basemono + delta;
T
Thomas Gleixner 已提交
760
	else
761 762 763 764
		expires = KTIME_MAX;

	expires = min_t(u64, expires, next_tick);
	tick.tv64 = expires;
765

T
Thomas Gleixner 已提交
766
	/* Skip reprogram of event if its not changed */
767
	if (ts->tick_stopped && (expires == dev->next_event.tv64))
T
Thomas Gleixner 已提交
768
		goto out;
769

T
Thomas Gleixner 已提交
770 771 772 773 774 775 776 777 778 779
	/*
	 * nohz_stop_sched_tick can be called several times before
	 * the nohz_restart_sched_tick is called. This happens when
	 * interrupts arrive which do not cause a reschedule. In the
	 * first call we save the current tick time, so we can restart
	 * the scheduler tick in nohz_restart_sched_tick.
	 */
	if (!ts->tick_stopped) {
		nohz_balance_enter_idle(cpu);
		calc_load_enter_idle();
780

T
Thomas Gleixner 已提交
781 782
		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
		ts->tick_stopped = 1;
783
		trace_tick_stop(1, TICK_DEP_MASK_NONE);
T
Thomas Gleixner 已提交
784
	}
785

T
Thomas Gleixner 已提交
786
	/*
787 788
	 * If the expiration time == KTIME_MAX, then we simply stop
	 * the tick timer.
T
Thomas Gleixner 已提交
789
	 */
790
	if (unlikely(expires == KTIME_MAX)) {
T
Thomas Gleixner 已提交
791 792 793
		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
			hrtimer_cancel(&ts->sched_timer);
		goto out;
794
	}
795

T
Thomas Gleixner 已提交
796
	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
797
		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
T
Thomas Gleixner 已提交
798
	else
799
		tick_program_event(tick, 1);
800
out:
801
	/* Update the estimated sleep length */
802
	ts->sleep_length = ktime_sub(dev->next_event, now);
803
	return tick;
804 805
}

806
static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now, int active)
807 808 809
{
	/* Update jiffies first */
	tick_do_update_jiffies64(now);
810
	update_cpu_load_nohz(active);
811 812

	calc_load_exit_idle();
813
	touch_softlockup_watchdog_sched();
814 815 816 817 818 819 820 821
	/*
	 * Cancel the scheduled timer and restore the tick
	 */
	ts->tick_stopped  = 0;
	ts->idle_exittime = now;

	tick_nohz_restart(ts, now);
}
822 823

static void tick_nohz_full_update_tick(struct tick_sched *ts)
824 825
{
#ifdef CONFIG_NO_HZ_FULL
826
	int cpu = smp_processor_id();
827

828
	if (!tick_nohz_full_cpu(cpu))
829
		return;
830

831 832
	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
		return;
833

834
	if (can_stop_full_tick(ts))
835 836
		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
	else if (ts->tick_stopped)
837
		tick_nohz_restart_sched_tick(ts, ktime_get(), 1);
838 839 840
#endif
}

841 842 843 844 845 846 847 848 849 850 851 852
static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
{
	/*
	 * If this cpu is offline and it is the one which updates
	 * jiffies, then give up the assignment and let it be taken by
	 * the cpu which runs the tick timer next. If we don't drop
	 * this here the jiffies might be stale and do_timer() never
	 * invoked.
	 */
	if (unlikely(!cpu_online(cpu))) {
		if (cpu == tick_do_timer_cpu)
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
853
		return false;
854 855
	}

856 857
	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
858
		return false;
859
	}
860 861 862 863 864 865 866

	if (need_resched())
		return false;

	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
		static int ratelimit;

867 868
		if (ratelimit < 10 &&
		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
869 870
			pr_warn("NOHZ: local_softirq_pending %02x\n",
				(unsigned int) local_softirq_pending());
871 872 873 874 875
			ratelimit++;
		}
		return false;
	}

876
	if (tick_nohz_full_enabled()) {
877 878 879 880 881 882 883 884 885 886 887 888 889 890
		/*
		 * Keep the tick alive to guarantee timekeeping progression
		 * if there are full dynticks CPUs around
		 */
		if (tick_do_timer_cpu == cpu)
			return false;
		/*
		 * Boot safety: make sure the timekeeping duty has been
		 * assigned before entering dyntick-idle mode,
		 */
		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
			return false;
	}

891 892 893
	return true;
}

894 895
static void __tick_nohz_idle_enter(struct tick_sched *ts)
{
896
	ktime_t now, expires;
897
	int cpu = smp_processor_id();
898

899
	now = tick_nohz_start_idle(ts);
900

901 902 903 904
	if (can_stop_idle_tick(cpu, ts)) {
		int was_stopped = ts->tick_stopped;

		ts->idle_calls++;
905 906 907 908 909 910

		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
		if (expires.tv64 > 0LL) {
			ts->idle_sleeps++;
			ts->idle_expires = expires;
		}
911 912 913 914

		if (!was_stopped && ts->tick_stopped)
			ts->idle_jiffies = ts->last_jiffies;
	}
915 916 917 918 919 920 921
}

/**
 * tick_nohz_idle_enter - stop the idle tick from the idle task
 *
 * When the next event is more than a tick into the future, stop the idle tick
 * Called when we start the idle loop.
922
 *
923
 * The arch is responsible of calling:
924 925 926 927
 *
 * - rcu_idle_enter() after its last use of RCU before the CPU is put
 *  to sleep.
 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
928
 */
929
void tick_nohz_idle_enter(void)
930 931 932
{
	struct tick_sched *ts;

933 934
	WARN_ON_ONCE(irqs_disabled());

935 936 937 938 939 940 941 942
	/*
 	 * Update the idle state in the scheduler domain hierarchy
 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
 	 * State will be updated to busy during the first busy tick after
 	 * exiting idle.
 	 */
	set_cpu_sd_state_idle();

943 944
	local_irq_disable();

945
	ts = this_cpu_ptr(&tick_cpu_sched);
946
	ts->inidle = 1;
947
	__tick_nohz_idle_enter(ts);
948 949

	local_irq_enable();
950 951 952 953 954 955 956 957 958 959 960 961
}

/**
 * tick_nohz_irq_exit - update next tick event from interrupt exit
 *
 * When an interrupt fires while we are idle and it doesn't cause
 * a reschedule, it may still add, modify or delete a timer, enqueue
 * an RCU callback, etc...
 * So we need to re-calculate and reprogram the next tick event.
 */
void tick_nohz_irq_exit(void)
{
962
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
963

964
	if (ts->inidle)
965
		__tick_nohz_idle_enter(ts);
966
	else
967
		tick_nohz_full_update_tick(ts);
968 969
}

970 971 972 973 974 975 976
/**
 * tick_nohz_get_sleep_length - return the length of the current sleep
 *
 * Called from power state control code with interrupts disabled
 */
ktime_t tick_nohz_get_sleep_length(void)
{
977
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
978 979 980 981

	return ts->sleep_length;
}

982 983
static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
{
984
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
985
	unsigned long ticks;
986

987
	if (vtime_accounting_cpu_enabled())
988
		return;
989 990 991 992 993 994 995 996 997
	/*
	 * We stopped the tick in idle. Update process times would miss the
	 * time we slept as update_process_times does only a 1 tick
	 * accounting. Enforce that this is accounted to idle !
	 */
	ticks = jiffies - ts->idle_jiffies;
	/*
	 * We might be one off. Do not randomly account a huge number of ticks!
	 */
998 999 1000
	if (ticks && ticks < LONG_MAX)
		account_idle_ticks(ticks);
#endif
1001 1002
}

1003
/**
1004
 * tick_nohz_idle_exit - restart the idle tick from the idle task
1005 1006
 *
 * Restart the idle tick when the CPU is woken up from idle
1007 1008
 * This also exit the RCU extended quiescent state. The CPU
 * can use RCU again after this function is called.
1009
 */
1010
void tick_nohz_idle_exit(void)
1011
{
1012
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1013
	ktime_t now;
1014

1015
	local_irq_disable();
1016

1017 1018 1019 1020 1021
	WARN_ON_ONCE(!ts->inidle);

	ts->inidle = 0;

	if (ts->idle_active || ts->tick_stopped)
1022 1023 1024
		now = ktime_get();

	if (ts->idle_active)
1025
		tick_nohz_stop_idle(ts, now);
1026

1027
	if (ts->tick_stopped) {
1028
		tick_nohz_restart_sched_tick(ts, now, 0);
1029
		tick_nohz_account_idle_ticks(ts);
1030
	}
1031 1032 1033 1034 1035 1036 1037 1038 1039

	local_irq_enable();
}

/*
 * The nohz low res interrupt handler
 */
static void tick_nohz_handler(struct clock_event_device *dev)
{
1040
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1041 1042 1043 1044 1045
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();

	dev->next_event.tv64 = KTIME_MAX;

1046
	tick_sched_do_timer(now);
1047
	tick_sched_handle(ts, regs);
1048

1049 1050 1051 1052
	/* No need to reprogram if we are running tickless  */
	if (unlikely(ts->tick_stopped))
		return;

1053 1054
	hrtimer_forward(&ts->sched_timer, now, tick_period);
	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1055 1056
}

1057 1058 1059 1060 1061 1062 1063
static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
{
	if (!tick_nohz_enabled)
		return;
	ts->nohz_mode = mode;
	/* One update is enough */
	if (!test_and_set_bit(0, &tick_nohz_active))
1064
		timers_update_migration(true);
1065 1066
}

1067 1068 1069 1070 1071
/**
 * tick_nohz_switch_to_nohz - switch to nohz mode
 */
static void tick_nohz_switch_to_nohz(void)
{
1072
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1073 1074
	ktime_t next;

1075
	if (!tick_nohz_enabled)
1076 1077
		return;

1078
	if (tick_switch_to_oneshot(tick_nohz_handler))
1079
		return;
1080

1081 1082 1083 1084 1085 1086 1087 1088
	/*
	 * Recycle the hrtimer in ts, so we can share the
	 * hrtimer_forward with the highres code.
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	/* Get the next period */
	next = tick_init_jiffy_update();

1089
	hrtimer_set_expires(&ts->sched_timer, next);
1090 1091
	hrtimer_forward_now(&ts->sched_timer, tick_period);
	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1092
	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1093 1094
}

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
/*
 * When NOHZ is enabled and the tick is stopped, we need to kick the
 * tick timer from irq_enter() so that the jiffies update is kept
 * alive during long running softirqs. That's ugly as hell, but
 * correctness is key even if we need to fix the offending softirq in
 * the first place.
 *
 * Note, this is different to tick_nohz_restart. We just kick the
 * timer and do not touch the other magic bits which need to be done
 * when idle is left.
 */
1106
static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1107
{
1108 1109
#if 0
	/* Switch back to 2.6.27 behaviour */
1110
	ktime_t delta;
1111

1112 1113 1114 1115
	/*
	 * Do not touch the tick device, when the next expiry is either
	 * already reached or less/equal than the tick period.
	 */
1116
	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1117 1118 1119 1120
	if (delta.tv64 <= tick_period.tv64)
		return;

	tick_nohz_restart(ts, now);
1121
#endif
1122 1123
}

1124
static inline void tick_nohz_irq_enter(void)
1125
{
1126
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1127 1128 1129 1130 1131 1132
	ktime_t now;

	if (!ts->idle_active && !ts->tick_stopped)
		return;
	now = ktime_get();
	if (ts->idle_active)
1133
		tick_nohz_stop_idle(ts, now);
1134 1135
	if (ts->tick_stopped) {
		tick_nohz_update_jiffies(now);
1136
		tick_nohz_kick_tick(ts, now);
1137 1138 1139
	}
}

1140 1141 1142
#else

static inline void tick_nohz_switch_to_nohz(void) { }
1143
static inline void tick_nohz_irq_enter(void) { }
1144
static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1145

1146
#endif /* CONFIG_NO_HZ_COMMON */
1147

1148 1149 1150
/*
 * Called from irq_enter to notify about the possible interruption of idle()
 */
1151
void tick_irq_enter(void)
1152
{
1153
	tick_check_oneshot_broadcast_this_cpu();
1154
	tick_nohz_irq_enter();
1155 1156
}

1157 1158 1159 1160 1161
/*
 * High resolution timer specific code
 */
#ifdef CONFIG_HIGH_RES_TIMERS
/*
P
Pavel Machek 已提交
1162
 * We rearm the timer until we get disabled by the idle code.
1163
 * Called with interrupts disabled.
1164 1165 1166 1167 1168 1169 1170
 */
static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
{
	struct tick_sched *ts =
		container_of(timer, struct tick_sched, sched_timer);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();
1171

1172
	tick_sched_do_timer(now);
1173 1174 1175 1176 1177

	/*
	 * Do not call, when we are not in irq context and have
	 * no valid regs pointer
	 */
1178 1179
	if (regs)
		tick_sched_handle(ts, regs);
1180

1181 1182 1183 1184
	/* No need to reprogram if we are in idle or full dynticks mode */
	if (unlikely(ts->tick_stopped))
		return HRTIMER_NORESTART;

1185 1186 1187 1188 1189
	hrtimer_forward(timer, now, tick_period);

	return HRTIMER_RESTART;
}

M
Mike Galbraith 已提交
1190 1191
static int sched_skew_tick;

1192 1193 1194 1195 1196 1197 1198 1199
static int __init skew_tick(char *str)
{
	get_option(&str, &sched_skew_tick);

	return 0;
}
early_param("skew_tick", skew_tick);

1200 1201 1202 1203 1204
/**
 * tick_setup_sched_timer - setup the tick emulation timer
 */
void tick_setup_sched_timer(void)
{
1205
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1206 1207 1208 1209 1210 1211 1212 1213
	ktime_t now = ktime_get();

	/*
	 * Emulate tick processing via per-CPU hrtimers:
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	ts->sched_timer.function = tick_sched_timer;

1214
	/* Get the next period (per cpu) */
1215
	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1216

1217
	/* Offset the tick to avert jiffies_lock contention. */
M
Mike Galbraith 已提交
1218 1219 1220 1221 1222 1223 1224
	if (sched_skew_tick) {
		u64 offset = ktime_to_ns(tick_period) >> 1;
		do_div(offset, num_possible_cpus());
		offset *= smp_processor_id();
		hrtimer_add_expires_ns(&ts->sched_timer, offset);
	}

1225 1226
	hrtimer_forward(&ts->sched_timer, now, tick_period);
	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1227
	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1228
}
1229
#endif /* HIGH_RES_TIMERS */
1230

1231
#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1232 1233 1234 1235
void tick_cancel_sched_timer(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

1236
# ifdef CONFIG_HIGH_RES_TIMERS
1237 1238
	if (ts->sched_timer.base)
		hrtimer_cancel(&ts->sched_timer);
1239
# endif
1240

1241
	memset(ts, 0, sizeof(*ts));
1242
}
1243
#endif
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260

/**
 * Async notification about clocksource changes
 */
void tick_clock_notify(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
}

/*
 * Async notification about clock event changes
 */
void tick_oneshot_notify(void)
{
1261
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271

	set_bit(0, &ts->check_clocks);
}

/**
 * Check, if a change happened, which makes oneshot possible.
 *
 * Called cyclic from the hrtimer softirq (driven by the timer
 * softirq) allow_nohz signals, that we can switch into low-res nohz
 * mode, because high resolution timers are disabled (either compile
1272
 * or runtime). Called with interrupts disabled.
1273 1274 1275
 */
int tick_check_oneshot_change(int allow_nohz)
{
1276
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1277 1278 1279 1280 1281 1282 1283

	if (!test_and_clear_bit(0, &ts->check_clocks))
		return 0;

	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
		return 0;

1284
	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1285 1286 1287 1288 1289 1290 1291 1292
		return 0;

	if (!allow_nohz)
		return 1;

	tick_nohz_switch_to_nohz();
	return 0;
}