tick-sched.c 22.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time/tick-sched.c
 *
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
 *
 *  No idle tick implementation for low and high resolution timers
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
P
Pavel Machek 已提交
12
 *  Distribute under GPLv2.
13 14 15 16 17 18 19 20 21
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
22
#include <linux/module.h>
23

24 25
#include <asm/irq_regs.h>

26 27 28 29 30 31 32 33 34 35 36 37
#include "tick-internal.h"

/*
 * Per cpu nohz control structure
 */
static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);

/*
 * The time, when the last jiffy update happened. Protected by xtime_lock.
 */
static ktime_t last_jiffies_update;

38 39 40 41 42
struct tick_sched *tick_get_tick_sched(int cpu)
{
	return &per_cpu(tick_cpu_sched, cpu);
}

43 44 45 46 47 48 49 50
/*
 * Must be called with interrupts disabled !
 */
static void tick_do_update_jiffies64(ktime_t now)
{
	unsigned long ticks = 0;
	ktime_t delta;

51 52 53 54 55 56 57
	/*
	 * Do a quick check without holding xtime_lock:
	 */
	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 < tick_period.tv64)
		return;

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
	/* Reevalute with xtime_lock held */
	write_seqlock(&xtime_lock);

	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 >= tick_period.tv64) {

		delta = ktime_sub(delta, tick_period);
		last_jiffies_update = ktime_add(last_jiffies_update,
						tick_period);

		/* Slow path for long timeouts */
		if (unlikely(delta.tv64 >= tick_period.tv64)) {
			s64 incr = ktime_to_ns(tick_period);

			ticks = ktime_divns(delta, incr);

			last_jiffies_update = ktime_add_ns(last_jiffies_update,
							   incr * ticks);
		}
		do_timer(++ticks);
78 79 80

		/* Keep the tick_next_period variable up to date */
		tick_next_period = ktime_add(last_jiffies_update, tick_period);
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
	}
	write_sequnlock(&xtime_lock);
}

/*
 * Initialize and return retrieve the jiffies update.
 */
static ktime_t tick_init_jiffy_update(void)
{
	ktime_t period;

	write_seqlock(&xtime_lock);
	/* Did we start the jiffies update yet ? */
	if (last_jiffies_update.tv64 == 0)
		last_jiffies_update = tick_next_period;
	period = last_jiffies_update;
	write_sequnlock(&xtime_lock);
	return period;
}

/*
 * NOHZ - aka dynamic tick functionality
 */
#ifdef CONFIG_NO_HZ
/*
 * NO HZ enabled ?
 */
static int tick_nohz_enabled __read_mostly  = 1;

/*
 * Enable / Disable tickless mode
 */
static int __init setup_tick_nohz(char *str)
{
	if (!strcmp(str, "off"))
		tick_nohz_enabled = 0;
	else if (!strcmp(str, "on"))
		tick_nohz_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("nohz=", setup_tick_nohz);

/**
 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 *
 * Called from interrupt entry when the CPU was idle
 *
 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 * value. We do this unconditionally on any cpu, as we don't know whether the
 * cpu, which has the update task assigned is in a long sleep.
 */
136
static void tick_nohz_update_jiffies(ktime_t now)
137 138 139 140 141
{
	int cpu = smp_processor_id();
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
	unsigned long flags;

142
	ts->idle_waketime = now;
143 144 145 146

	local_irq_save(flags);
	tick_do_update_jiffies64(now);
	local_irq_restore(flags);
147 148

	touch_softlockup_watchdog();
149 150
}

151 152 153
/*
 * Updates the per cpu time idle statistics counters
 */
154
static void
155
update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
156
{
157
	ktime_t delta;
158

159 160
	if (ts->idle_active) {
		delta = ktime_sub(now, ts->idle_entrytime);
161
		if (nr_iowait_cpu(cpu) > 0)
162
			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
163 164
		else
			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
165
		ts->idle_entrytime = now;
166
	}
167

168
	if (last_update_time)
169 170
		*last_update_time = ktime_to_us(now);

171 172 173 174 175 176
}

static void tick_nohz_stop_idle(int cpu, ktime_t now)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

177
	update_ts_time_stats(cpu, ts, now, NULL);
178
	ts->idle_active = 0;
179

180
	sched_clock_idle_wakeup_event(0);
181 182
}

183
static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
184
{
185
	ktime_t now;
186 187

	now = ktime_get();
188

189
	update_ts_time_stats(cpu, ts, now, NULL);
190

191 192
	ts->idle_entrytime = now;
	ts->idle_active = 1;
193
	sched_clock_idle_sleep_event();
194 195 196
	return now;
}

197 198 199
/**
 * get_cpu_idle_time_us - get the total idle time of a cpu
 * @cpu: CPU number to query
200 201
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
202 203
 *
 * Return the cummulative idle time (since boot) for a given
204
 * CPU, in microseconds.
205 206 207 208 209 210
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
211 212 213
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
214
	ktime_t now, idle;
215

216 217 218
	if (!tick_nohz_enabled)
		return -1;

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		idle = ts->idle_sleeptime;
	} else {
		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);

			idle = ktime_add(ts->idle_sleeptime, delta);
		} else {
			idle = ts->idle_sleeptime;
		}
	}

	return ktime_to_us(idle);
234

235
}
236
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
237

238
/**
239 240
 * get_cpu_iowait_time_us - get the total iowait time of a cpu
 * @cpu: CPU number to query
241 242
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
243 244 245 246 247 248 249 250 251 252 253 254
 *
 * Return the cummulative iowait time (since boot) for a given
 * CPU, in microseconds.
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
255
	ktime_t now, iowait;
256 257 258 259

	if (!tick_nohz_enabled)
		return -1;

260 261 262 263 264 265 266
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		iowait = ts->iowait_sleeptime;
	} else {
		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
267

268 269 270 271 272
			iowait = ktime_add(ts->iowait_sleeptime, delta);
		} else {
			iowait = ts->iowait_sleeptime;
		}
	}
273

274
	return ktime_to_us(iowait);
275 276 277
}
EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);

278
static void tick_nohz_stop_sched_tick(struct tick_sched *ts)
279
{
280
	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
281
	ktime_t last_update, expires, now;
282
	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
283
	u64 time_delta;
284 285 286 287
	int cpu;

	cpu = smp_processor_id();
	ts = &per_cpu(tick_cpu_sched, cpu);
288

289
	now = tick_nohz_start_idle(cpu, ts);
290

291 292 293 294 295 296 297 298 299
	/*
	 * If this cpu is offline and it is the one which updates
	 * jiffies, then give up the assignment and let it be taken by
	 * the cpu which runs the tick timer next. If we don't drop
	 * this here the jiffies might be stale and do_timer() never
	 * invoked.
	 */
	if (unlikely(!cpu_online(cpu))) {
		if (cpu == tick_do_timer_cpu)
300
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
301 302
	}

303
	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
304
		return;
305 306

	if (need_resched())
307
		return;
308

309
	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
310 311 312 313
		static int ratelimit;

		if (ratelimit < 10) {
			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
T
Thomas Gleixner 已提交
314
			       (unsigned int) local_softirq_pending());
315 316
			ratelimit++;
		}
317
		return;
318
	}
319 320 321 322 323 324 325

	ts->idle_calls++;
	/* Read jiffies and the time when jiffies were updated last */
	do {
		seq = read_seqbegin(&xtime_lock);
		last_update = last_jiffies_update;
		last_jiffies = jiffies;
T
Thomas Gleixner 已提交
326
		time_delta = timekeeping_max_deferment();
327 328
	} while (read_seqretry(&xtime_lock, seq));

329
	if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
330
	    arch_needs_cpu(cpu)) {
331
		next_jiffies = last_jiffies + 1;
I
Ingo Molnar 已提交
332
		delta_jiffies = 1;
333 334 335 336 337
	} else {
		/* Get the next timer wheel timer */
		next_jiffies = get_next_timer_interrupt(last_jiffies);
		delta_jiffies = next_jiffies - last_jiffies;
	}
338 339 340 341
	/*
	 * Do not stop the tick, if we are only one off
	 * or if the cpu is required for rcu
	 */
I
Ingo Molnar 已提交
342
	if (!ts->tick_stopped && delta_jiffies == 1)
343 344 345 346 347
		goto out;

	/* Schedule the tick, if we are at least one jiffie off */
	if ((long)delta_jiffies >= 1) {

348 349 350 351 352 353
		/*
		 * If this cpu is the one which updates jiffies, then
		 * give up the assignment and let it be taken by the
		 * cpu which runs the tick timer next, which might be
		 * this cpu as well. If we don't drop this here the
		 * jiffies might be stale and do_timer() never
T
Thomas Gleixner 已提交
354 355 356 357 358 359
		 * invoked. Keep track of the fact that it was the one
		 * which had the do_timer() duty last. If this cpu is
		 * the one which had the do_timer() duty last, we
		 * limit the sleep time to the timekeeping
		 * max_deferement value which we retrieved
		 * above. Otherwise we can sleep as long as we want.
360
		 */
T
Thomas Gleixner 已提交
361
		if (cpu == tick_do_timer_cpu) {
362
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
T
Thomas Gleixner 已提交
363 364 365 366 367 368 369 370
			ts->do_timer_last = 1;
		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
			time_delta = KTIME_MAX;
			ts->do_timer_last = 0;
		} else if (!ts->do_timer_last) {
			time_delta = KTIME_MAX;
		}

371
		/*
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
		 * calculate the expiry time for the next timer wheel
		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
		 * that there is no timer pending or at least extremely
		 * far into the future (12 days for HZ=1000). In this
		 * case we set the expiry to the end of time.
		 */
		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
			/*
			 * Calculate the time delta for the next timer event.
			 * If the time delta exceeds the maximum time delta
			 * permitted by the current clocksource then adjust
			 * the time delta accordingly to ensure the
			 * clocksource does not wrap.
			 */
			time_delta = min_t(u64, time_delta,
					   tick_period.tv64 * delta_jiffies);
		}
389

T
Thomas Gleixner 已提交
390 391 392 393
		if (time_delta < KTIME_MAX)
			expires = ktime_add_ns(last_update, time_delta);
		else
			expires.tv64 = KTIME_MAX;
394 395 396 397 398

		/* Skip reprogram of event if its not changed */
		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
			goto out;

399 400 401 402 403 404 405 406
		/*
		 * nohz_stop_sched_tick can be called several times before
		 * the nohz_restart_sched_tick is called. This happens when
		 * interrupts arrive which do not cause a reschedule. In the
		 * first call we save the current tick time, so we can restart
		 * the scheduler tick in nohz_restart_sched_tick.
		 */
		if (!ts->tick_stopped) {
407
			select_nohz_load_balancer(1);
408

409
			ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
410 411 412
			ts->tick_stopped = 1;
			ts->idle_jiffies = last_jiffies;
		}
413

414 415
		ts->idle_sleeps++;

416 417 418
		/* Mark expires */
		ts->idle_expires = expires;

419
		/*
420 421
		 * If the expiration time == KTIME_MAX, then
		 * in this case we simply stop the tick timer.
422
		 */
423
		 if (unlikely(expires.tv64 == KTIME_MAX)) {
424 425 426 427 428
			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
				hrtimer_cancel(&ts->sched_timer);
			goto out;
		}

429 430
		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
			hrtimer_start(&ts->sched_timer, expires,
431
				      HRTIMER_MODE_ABS_PINNED);
432 433 434
			/* Check, if the timer was already in the past */
			if (hrtimer_active(&ts->sched_timer))
				goto out;
P
Pavel Machek 已提交
435
		} else if (!tick_program_event(expires, 0))
436 437 438 439 440 441 442 443 444 445 446 447
				goto out;
		/*
		 * We are past the event already. So we crossed a
		 * jiffie boundary. Update jiffies and raise the
		 * softirq.
		 */
		tick_do_update_jiffies64(ktime_get());
	}
	raise_softirq_irqoff(TIMER_SOFTIRQ);
out:
	ts->next_jiffies = next_jiffies;
	ts->last_jiffies = last_jiffies;
448
	ts->sleep_length = ktime_sub(dev->next_event, now);
449 450 451 452 453 454 455
}

/**
 * tick_nohz_idle_enter - stop the idle tick from the idle task
 *
 * When the next event is more than a tick into the future, stop the idle tick
 * Called when we start the idle loop.
456
 *
457
 * The arch is responsible of calling:
458 459 460 461
 *
 * - rcu_idle_enter() after its last use of RCU before the CPU is put
 *  to sleep.
 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
462
 */
463
void tick_nohz_idle_enter(void)
464 465 466
{
	struct tick_sched *ts;

467 468
	WARN_ON_ONCE(irqs_disabled());

469 470 471 472 473 474 475 476
	/*
 	 * Update the idle state in the scheduler domain hierarchy
 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
 	 * State will be updated to busy during the first busy tick after
 	 * exiting idle.
 	 */
	set_cpu_sd_state_idle();

477 478
	local_irq_disable();

479 480 481 482 483 484 485 486
	ts = &__get_cpu_var(tick_cpu_sched);
	/*
	 * set ts->inidle unconditionally. even if the system did not
	 * switch to nohz mode the cpu frequency governers rely on the
	 * update of the idle time accounting in tick_nohz_start_idle().
	 */
	ts->inidle = 1;
	tick_nohz_stop_sched_tick(ts);
487 488

	local_irq_enable();
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
}

/**
 * tick_nohz_irq_exit - update next tick event from interrupt exit
 *
 * When an interrupt fires while we are idle and it doesn't cause
 * a reschedule, it may still add, modify or delete a timer, enqueue
 * an RCU callback, etc...
 * So we need to re-calculate and reprogram the next tick event.
 */
void tick_nohz_irq_exit(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	if (!ts->inidle)
		return;

	tick_nohz_stop_sched_tick(ts);
507 508
}

509 510 511 512 513 514 515 516 517 518 519 520
/**
 * tick_nohz_get_sleep_length - return the length of the current sleep
 *
 * Called from power state control code with interrupts disabled
 */
ktime_t tick_nohz_get_sleep_length(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	return ts->sleep_length;
}

521 522 523
static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
{
	hrtimer_cancel(&ts->sched_timer);
524
	hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
525 526 527 528 529 530

	while (1) {
		/* Forward the time to expire in the future */
		hrtimer_forward(&ts->sched_timer, now, tick_period);

		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
531
			hrtimer_start_expires(&ts->sched_timer,
532
					      HRTIMER_MODE_ABS_PINNED);
533 534 535 536
			/* Check, if the timer was already in the past */
			if (hrtimer_active(&ts->sched_timer))
				break;
		} else {
537 538
			if (!tick_program_event(
				hrtimer_get_expires(&ts->sched_timer), 0))
539 540 541 542 543 544 545 546
				break;
		}
		/* Update jiffies and reread time */
		tick_do_update_jiffies64(now);
		now = ktime_get();
	}
}

547
/**
548
 * tick_nohz_idle_exit - restart the idle tick from the idle task
549 550
 *
 * Restart the idle tick when the CPU is woken up from idle
551 552
 * This also exit the RCU extended quiescent state. The CPU
 * can use RCU again after this function is called.
553
 */
554
void tick_nohz_idle_exit(void)
555 556 557
{
	int cpu = smp_processor_id();
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
558
#ifndef CONFIG_VIRT_CPU_ACCOUNTING
559
	unsigned long ticks;
560
#endif
561
	ktime_t now;
562

563
	local_irq_disable();
564

565 566 567 568 569
	if (ts->idle_active || (ts->inidle && ts->tick_stopped))
		now = ktime_get();

	if (ts->idle_active)
		tick_nohz_stop_idle(cpu, now);
570

571 572
	if (!ts->inidle || !ts->tick_stopped) {
		ts->inidle = 0;
573
		local_irq_enable();
574
		return;
575
	}
576

577 578
	ts->inidle = 0;

579
	/* Update jiffies first */
580
	select_nohz_load_balancer(0);
581 582
	tick_do_update_jiffies64(now);

583
#ifndef CONFIG_VIRT_CPU_ACCOUNTING
584 585 586 587 588 589 590 591 592
	/*
	 * We stopped the tick in idle. Update process times would miss the
	 * time we slept as update_process_times does only a 1 tick
	 * accounting. Enforce that this is accounted to idle !
	 */
	ticks = jiffies - ts->idle_jiffies;
	/*
	 * We might be one off. Do not randomly account a huge number of ticks!
	 */
593 594 595
	if (ticks && ticks < LONG_MAX)
		account_idle_ticks(ticks);
#endif
596

I
Ingo Molnar 已提交
597
	touch_softlockup_watchdog();
598 599 600 601
	/*
	 * Cancel the scheduled timer and restore the tick
	 */
	ts->tick_stopped  = 0;
602
	ts->idle_exittime = now;
603

604
	tick_nohz_restart(ts, now);
605 606 607 608 609 610 611

	local_irq_enable();
}

static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
{
	hrtimer_forward(&ts->sched_timer, now, tick_period);
612
	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
613 614 615 616 617 618 619 620 621
}

/*
 * The nohz low res interrupt handler
 */
static void tick_nohz_handler(struct clock_event_device *dev)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	struct pt_regs *regs = get_irq_regs();
622
	int cpu = smp_processor_id();
623 624 625 626
	ktime_t now = ktime_get();

	dev->next_event.tv64 = KTIME_MAX;

627 628 629 630 631 632 633
	/*
	 * Check if the do_timer duty was dropped. We don't care about
	 * concurrency: This happens only when the cpu in charge went
	 * into a long sleep. If two cpus happen to assign themself to
	 * this duty, then the jiffies update is still serialized by
	 * xtime_lock.
	 */
634
	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
635 636
		tick_do_timer_cpu = cpu;

637
	/* Check, if the jiffies need an update */
638 639
	if (tick_do_timer_cpu == cpu)
		tick_do_update_jiffies64(now);
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690

	/*
	 * When we are idle and the tick is stopped, we have to touch
	 * the watchdog as we might not schedule for a really long
	 * time. This happens on complete idle SMP systems while
	 * waiting on the login prompt. We also increment the "start
	 * of idle" jiffy stamp so the idle accounting adjustment we
	 * do when we go busy again does not account too much ticks.
	 */
	if (ts->tick_stopped) {
		touch_softlockup_watchdog();
		ts->idle_jiffies++;
	}

	update_process_times(user_mode(regs));
	profile_tick(CPU_PROFILING);

	while (tick_nohz_reprogram(ts, now)) {
		now = ktime_get();
		tick_do_update_jiffies64(now);
	}
}

/**
 * tick_nohz_switch_to_nohz - switch to nohz mode
 */
static void tick_nohz_switch_to_nohz(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	ktime_t next;

	if (!tick_nohz_enabled)
		return;

	local_irq_disable();
	if (tick_switch_to_oneshot(tick_nohz_handler)) {
		local_irq_enable();
		return;
	}

	ts->nohz_mode = NOHZ_MODE_LOWRES;

	/*
	 * Recycle the hrtimer in ts, so we can share the
	 * hrtimer_forward with the highres code.
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	/* Get the next period */
	next = tick_init_jiffy_update();

	for (;;) {
691
		hrtimer_set_expires(&ts->sched_timer, next);
692 693 694 695 696 697 698
		if (!tick_program_event(next, 0))
			break;
		next = ktime_add(next, tick_period);
	}
	local_irq_enable();
}

699 700 701 702 703 704 705 706 707 708 709
/*
 * When NOHZ is enabled and the tick is stopped, we need to kick the
 * tick timer from irq_enter() so that the jiffies update is kept
 * alive during long running softirqs. That's ugly as hell, but
 * correctness is key even if we need to fix the offending softirq in
 * the first place.
 *
 * Note, this is different to tick_nohz_restart. We just kick the
 * timer and do not touch the other magic bits which need to be done
 * when idle is left.
 */
710
static void tick_nohz_kick_tick(int cpu, ktime_t now)
711
{
712 713 714
#if 0
	/* Switch back to 2.6.27 behaviour */

715
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
716
	ktime_t delta;
717

718 719 720 721
	/*
	 * Do not touch the tick device, when the next expiry is either
	 * already reached or less/equal than the tick period.
	 */
722
	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
723 724 725 726
	if (delta.tv64 <= tick_period.tv64)
		return;

	tick_nohz_restart(ts, now);
727
#endif
728 729
}

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
static inline void tick_check_nohz(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
	ktime_t now;

	if (!ts->idle_active && !ts->tick_stopped)
		return;
	now = ktime_get();
	if (ts->idle_active)
		tick_nohz_stop_idle(cpu, now);
	if (ts->tick_stopped) {
		tick_nohz_update_jiffies(now);
		tick_nohz_kick_tick(cpu, now);
	}
}

746 747 748
#else

static inline void tick_nohz_switch_to_nohz(void) { }
749
static inline void tick_check_nohz(int cpu) { }
750 751 752

#endif /* NO_HZ */

753 754 755 756 757
/*
 * Called from irq_enter to notify about the possible interruption of idle()
 */
void tick_check_idle(int cpu)
{
758
	tick_check_oneshot_broadcast(cpu);
759
	tick_check_nohz(cpu);
760 761
}

762 763 764 765 766
/*
 * High resolution timer specific code
 */
#ifdef CONFIG_HIGH_RES_TIMERS
/*
P
Pavel Machek 已提交
767
 * We rearm the timer until we get disabled by the idle code.
768 769 770 771 772 773 774 775
 * Called with interrupts disabled and timer->base->cpu_base->lock held.
 */
static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
{
	struct tick_sched *ts =
		container_of(timer, struct tick_sched, sched_timer);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();
776 777 778 779 780 781 782 783 784 785
	int cpu = smp_processor_id();

#ifdef CONFIG_NO_HZ
	/*
	 * Check if the do_timer duty was dropped. We don't care about
	 * concurrency: This happens only when the cpu in charge went
	 * into a long sleep. If two cpus happen to assign themself to
	 * this duty, then the jiffies update is still serialized by
	 * xtime_lock.
	 */
786
	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
787 788
		tick_do_timer_cpu = cpu;
#endif
789 790

	/* Check, if the jiffies need an update */
791 792
	if (tick_do_timer_cpu == cpu)
		tick_do_update_jiffies64(now);
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833

	/*
	 * Do not call, when we are not in irq context and have
	 * no valid regs pointer
	 */
	if (regs) {
		/*
		 * When we are idle and the tick is stopped, we have to touch
		 * the watchdog as we might not schedule for a really long
		 * time. This happens on complete idle SMP systems while
		 * waiting on the login prompt. We also increment the "start of
		 * idle" jiffy stamp so the idle accounting adjustment we do
		 * when we go busy again does not account too much ticks.
		 */
		if (ts->tick_stopped) {
			touch_softlockup_watchdog();
			ts->idle_jiffies++;
		}
		update_process_times(user_mode(regs));
		profile_tick(CPU_PROFILING);
	}

	hrtimer_forward(timer, now, tick_period);

	return HRTIMER_RESTART;
}

/**
 * tick_setup_sched_timer - setup the tick emulation timer
 */
void tick_setup_sched_timer(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	ktime_t now = ktime_get();

	/*
	 * Emulate tick processing via per-CPU hrtimers:
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	ts->sched_timer.function = tick_sched_timer;

834
	/* Get the next period (per cpu) */
835
	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
836 837 838

	for (;;) {
		hrtimer_forward(&ts->sched_timer, now, tick_period);
839 840
		hrtimer_start_expires(&ts->sched_timer,
				      HRTIMER_MODE_ABS_PINNED);
841 842 843 844 845 846 847
		/* Check, if the timer was already in the past */
		if (hrtimer_active(&ts->sched_timer))
			break;
		now = ktime_get();
	}

#ifdef CONFIG_NO_HZ
848
	if (tick_nohz_enabled)
849 850 851
		ts->nohz_mode = NOHZ_MODE_HIGHRES;
#endif
}
852
#endif /* HIGH_RES_TIMERS */
853

854
#if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
855 856 857 858
void tick_cancel_sched_timer(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

859
# ifdef CONFIG_HIGH_RES_TIMERS
860 861
	if (ts->sched_timer.base)
		hrtimer_cancel(&ts->sched_timer);
862
# endif
863

864 865
	ts->nohz_mode = NOHZ_MODE_INACTIVE;
}
866
#endif
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906

/**
 * Async notification about clocksource changes
 */
void tick_clock_notify(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
}

/*
 * Async notification about clock event changes
 */
void tick_oneshot_notify(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	set_bit(0, &ts->check_clocks);
}

/**
 * Check, if a change happened, which makes oneshot possible.
 *
 * Called cyclic from the hrtimer softirq (driven by the timer
 * softirq) allow_nohz signals, that we can switch into low-res nohz
 * mode, because high resolution timers are disabled (either compile
 * or runtime).
 */
int tick_check_oneshot_change(int allow_nohz)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	if (!test_and_clear_bit(0, &ts->check_clocks))
		return 0;

	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
		return 0;

907
	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
908 909 910 911 912 913 914 915
		return 0;

	if (!allow_nohz)
		return 1;

	tick_nohz_switch_to_nohz();
	return 0;
}