tick-sched.c 30.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time/tick-sched.c
 *
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
 *
 *  No idle tick implementation for low and high resolution timers
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
P
Pavel Machek 已提交
12
 *  Distribute under GPLv2.
13 14 15 16 17 18 19 20 21
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
22
#include <linux/module.h>
23
#include <linux/irq_work.h>
24
#include <linux/posix-timers.h>
25
#include <linux/context_tracking.h>
26

27 28
#include <asm/irq_regs.h>

29 30
#include "tick-internal.h"

F
Frederic Weisbecker 已提交
31 32
#include <trace/events/timer.h>

33
/*
34
 * Per-CPU nohz control structure
35
 */
36
static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
37

38 39 40 41 42
struct tick_sched *tick_get_tick_sched(int cpu)
{
	return &per_cpu(tick_cpu_sched, cpu);
}

43 44 45 46 47 48
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
/*
 * The time, when the last jiffy update happened. Protected by jiffies_lock.
 */
static ktime_t last_jiffies_update;

49 50 51 52 53 54 55 56
/*
 * Must be called with interrupts disabled !
 */
static void tick_do_update_jiffies64(ktime_t now)
{
	unsigned long ticks = 0;
	ktime_t delta;

57
	/*
58
	 * Do a quick check without holding jiffies_lock:
59 60
	 */
	delta = ktime_sub(now, last_jiffies_update);
T
Thomas Gleixner 已提交
61
	if (delta < tick_period)
62 63
		return;

W
Wei Jiangang 已提交
64
	/* Reevaluate with jiffies_lock held */
65
	write_seqlock(&jiffies_lock);
66 67

	delta = ktime_sub(now, last_jiffies_update);
T
Thomas Gleixner 已提交
68
	if (delta >= tick_period) {
69 70 71 72 73 74

		delta = ktime_sub(delta, tick_period);
		last_jiffies_update = ktime_add(last_jiffies_update,
						tick_period);

		/* Slow path for long timeouts */
T
Thomas Gleixner 已提交
75
		if (unlikely(delta >= tick_period)) {
76 77 78 79 80 81 82 83
			s64 incr = ktime_to_ns(tick_period);

			ticks = ktime_divns(delta, incr);

			last_jiffies_update = ktime_add_ns(last_jiffies_update,
							   incr * ticks);
		}
		do_timer(++ticks);
84 85 86

		/* Keep the tick_next_period variable up to date */
		tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 88 89
	} else {
		write_sequnlock(&jiffies_lock);
		return;
90
	}
91
	write_sequnlock(&jiffies_lock);
92
	update_wall_time();
93 94 95 96 97 98 99 100 101
}

/*
 * Initialize and return retrieve the jiffies update.
 */
static ktime_t tick_init_jiffy_update(void)
{
	ktime_t period;

102
	write_seqlock(&jiffies_lock);
103
	/* Did we start the jiffies update yet ? */
T
Thomas Gleixner 已提交
104
	if (last_jiffies_update == 0)
105 106
		last_jiffies_update = tick_next_period;
	period = last_jiffies_update;
107
	write_sequnlock(&jiffies_lock);
108 109 110
	return period;
}

111 112 113 114 115

static void tick_sched_do_timer(ktime_t now)
{
	int cpu = smp_processor_id();

116
#ifdef CONFIG_NO_HZ_COMMON
117 118
	/*
	 * Check if the do_timer duty was dropped. We don't care about
119 120
	 * concurrency: This happens only when the CPU in charge went
	 * into a long sleep. If two CPUs happen to assign themselves to
121
	 * this duty, then the jiffies update is still serialized by
122
	 * jiffies_lock.
123
	 */
124
	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125
	    && !tick_nohz_full_cpu(cpu))
126 127 128 129 130 131 132 133
		tick_do_timer_cpu = cpu;
#endif

	/* Check, if the jiffies need an update */
	if (tick_do_timer_cpu == cpu)
		tick_do_update_jiffies64(now);
}

134 135
static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
{
136
#ifdef CONFIG_NO_HZ_COMMON
137 138 139 140 141 142 143 144 145
	/*
	 * When we are idle and the tick is stopped, we have to touch
	 * the watchdog as we might not schedule for a really long
	 * time. This happens on complete idle SMP systems while
	 * waiting on the login prompt. We also increment the "start of
	 * idle" jiffy stamp so the idle accounting adjustment we do
	 * when we go busy again does not account too much ticks.
	 */
	if (ts->tick_stopped) {
146
		touch_softlockup_watchdog_sched();
147 148 149
		if (is_idle_task(current))
			ts->idle_jiffies++;
	}
150
#endif
151 152 153
	update_process_times(user_mode(regs));
	profile_tick(CPU_PROFILING);
}
154
#endif
155

156
#ifdef CONFIG_NO_HZ_FULL
157
cpumask_var_t tick_nohz_full_mask;
158
cpumask_var_t housekeeping_mask;
159
bool tick_nohz_full_running;
160
static atomic_t tick_dep_mask;
161

162
static bool check_tick_dependency(atomic_t *dep)
163
{
164 165 166
	int val = atomic_read(dep);

	if (val & TICK_DEP_MASK_POSIX_TIMER) {
167
		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
168
		return true;
169 170
	}

171
	if (val & TICK_DEP_MASK_PERF_EVENTS) {
172
		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
173
		return true;
174 175
	}

176
	if (val & TICK_DEP_MASK_SCHED) {
177
		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
178
		return true;
179 180
	}

181
	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
182
		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
183 184 185 186
		return true;
	}

	return false;
187 188
}

189
static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
190 191 192
{
	WARN_ON_ONCE(!irqs_disabled());

193 194 195
	if (unlikely(!cpu_online(cpu)))
		return false;

196
	if (check_tick_dependency(&tick_dep_mask))
197 198
		return false;

199
	if (check_tick_dependency(&ts->tick_dep_mask))
200 201
		return false;

202
	if (check_tick_dependency(&current->tick_dep_mask))
203 204
		return false;

205
	if (check_tick_dependency(&current->signal->tick_dep_mask))
206 207
		return false;

208 209 210
	return true;
}

211
static void nohz_full_kick_func(struct irq_work *work)
212
{
213
	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
214 215 216
}

static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
217
	.func = nohz_full_kick_func,
218 219
};

220 221 222 223 224 225
/*
 * Kick this CPU if it's full dynticks in order to force it to
 * re-evaluate its dependency on the tick and restart it if necessary.
 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 * is NMI safe.
 */
226
static void tick_nohz_full_kick(void)
227 228 229 230
{
	if (!tick_nohz_full_cpu(smp_processor_id()))
		return;

231
	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
232 233
}

234
/*
235
 * Kick the CPU if it's full dynticks in order to force it to
236 237
 * re-evaluate its dependency on the tick and restart it if necessary.
 */
238
void tick_nohz_full_kick_cpu(int cpu)
239
{
240 241 242 243
	if (!tick_nohz_full_cpu(cpu))
		return;

	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
244 245 246 247 248 249
}

/*
 * Kick all full dynticks CPUs in order to force these to re-evaluate
 * their dependency on the tick and restart it if necessary.
 */
250
static void tick_nohz_full_kick_all(void)
251
{
252 253
	int cpu;

254
	if (!tick_nohz_full_running)
255 256 257
		return;

	preempt_disable();
258 259
	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
		tick_nohz_full_kick_cpu(cpu);
260 261 262
	preempt_enable();
}

263
static void tick_nohz_dep_set_all(atomic_t *dep,
264 265
				  enum tick_dep_bits bit)
{
266
	int prev;
267

268
	prev = atomic_fetch_or(BIT(bit), dep);
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
	if (!prev)
		tick_nohz_full_kick_all();
}

/*
 * Set a global tick dependency. Used by perf events that rely on freq and
 * by unstable clock.
 */
void tick_nohz_dep_set(enum tick_dep_bits bit)
{
	tick_nohz_dep_set_all(&tick_dep_mask, bit);
}

void tick_nohz_dep_clear(enum tick_dep_bits bit)
{
284
	atomic_andnot(BIT(bit), &tick_dep_mask);
285 286 287 288 289 290 291 292
}

/*
 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 * manage events throttling.
 */
void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
{
293
	int prev;
294 295 296 297
	struct tick_sched *ts;

	ts = per_cpu_ptr(&tick_cpu_sched, cpu);

298
	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
	if (!prev) {
		preempt_disable();
		/* Perf needs local kick that is NMI safe */
		if (cpu == smp_processor_id()) {
			tick_nohz_full_kick();
		} else {
			/* Remote irq work not NMI-safe */
			if (!WARN_ON_ONCE(in_nmi()))
				tick_nohz_full_kick_cpu(cpu);
		}
		preempt_enable();
	}
}

void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
{
	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);

317
	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
}

/*
 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
 * per task timers.
 */
void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
{
	/*
	 * We could optimize this with just kicking the target running the task
	 * if that noise matters for nohz full users.
	 */
	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
}

void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
{
335
	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
336 337 338 339 340 341 342 343 344 345 346 347 348
}

/*
 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 * per process timers.
 */
void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
{
	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
}

void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
{
349
	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
350 351
}

352 353 354
/*
 * Re-evaluate the need for the tick as we switch the current task.
 * It might need the tick due to per task/process properties:
355
 * perf events, posix CPU timers, ...
356
 */
357
void __tick_nohz_task_switch(void)
358 359
{
	unsigned long flags;
360
	struct tick_sched *ts;
361 362 363

	local_irq_save(flags);

364 365 366
	if (!tick_nohz_full_cpu(smp_processor_id()))
		goto out;

367
	ts = this_cpu_ptr(&tick_cpu_sched);
368

369
	if (ts->tick_stopped) {
370 371
		if (atomic_read(&current->tick_dep_mask) ||
		    atomic_read(&current->signal->tick_dep_mask))
372 373
			tick_nohz_full_kick();
	}
374
out:
375 376 377
	local_irq_restore(flags);
}

378
/* Parse the boot-time nohz CPU list from the kernel parameters. */
379
static int __init tick_nohz_full_setup(char *str)
380
{
381 382
	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
383
		pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
384
		free_bootmem_cpumask_var(tick_nohz_full_mask);
385 386
		return 1;
	}
387
	tick_nohz_full_running = true;
388

389 390
	return 1;
}
391
__setup("nohz_full=", tick_nohz_full_setup);
392

393
static int tick_nohz_cpu_down(unsigned int cpu)
394
{
395 396 397 398 399 400 401 402
	/*
	 * The boot CPU handles housekeeping duty (unbound timers,
	 * workqueues, timekeeping, ...) on behalf of full dynticks
	 * CPUs. It must remain online when nohz full is enabled.
	 */
	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
		return -EBUSY;
	return 0;
403 404
}

405 406 407 408 409
static int tick_nohz_init_all(void)
{
	int err = -1;

#ifdef CONFIG_NO_HZ_FULL_ALL
410
	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
411
		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
412 413
		return err;
	}
414
	err = 0;
415 416
	cpumask_setall(tick_nohz_full_mask);
	tick_nohz_full_running = true;
417 418 419 420
#endif
	return err;
}

421
void __init tick_nohz_init(void)
422
{
423
	int cpu, ret;
424

425
	if (!tick_nohz_full_running) {
426 427 428
		if (tick_nohz_init_all() < 0)
			return;
	}
429

430 431 432 433 434 435 436
	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
		cpumask_clear(tick_nohz_full_mask);
		tick_nohz_full_running = false;
		return;
	}

437 438 439 440 441 442
	/*
	 * Full dynticks uses irq work to drive the tick rescheduling on safe
	 * locking contexts. But then we need irq work to raise its own
	 * interrupts to avoid circular dependency on the tick
	 */
	if (!arch_irq_work_has_interrupt()) {
443
		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
444 445 446 447 448 449
		cpumask_clear(tick_nohz_full_mask);
		cpumask_copy(housekeeping_mask, cpu_possible_mask);
		tick_nohz_full_running = false;
		return;
	}

450 451 452
	cpu = smp_processor_id();

	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
453 454
		pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
			cpu);
455 456 457 458 459 460
		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
	}

	cpumask_andnot(housekeeping_mask,
		       cpu_possible_mask, tick_nohz_full_mask);

461
	for_each_cpu(cpu, tick_nohz_full_mask)
462 463
		context_tracking_cpu_set(cpu);

464 465 466 467
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"kernel/nohz:predown", NULL,
					tick_nohz_cpu_down);
	WARN_ON(ret < 0);
468 469
	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
		cpumask_pr_args(tick_nohz_full_mask));
470 471 472 473 474 475

	/*
	 * We need at least one CPU to handle housekeeping work such
	 * as timekeeping, unbound timers, workqueues, ...
	 */
	WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
476 477 478
}
#endif

479 480 481
/*
 * NOHZ - aka dynamic tick functionality
 */
482
#ifdef CONFIG_NO_HZ_COMMON
483 484 485
/*
 * NO HZ enabled ?
 */
486
bool tick_nohz_enabled __read_mostly  = true;
487
unsigned long tick_nohz_active  __read_mostly;
488 489 490 491 492
/*
 * Enable / Disable tickless mode
 */
static int __init setup_tick_nohz(char *str)
{
493
	return (kstrtobool(str, &tick_nohz_enabled) == 0);
494 495 496 497
}

__setup("nohz=", setup_tick_nohz);

498 499 500 501 502
int tick_nohz_tick_stopped(void)
{
	return __this_cpu_read(tick_cpu_sched.tick_stopped);
}

503 504 505 506 507 508 509
/**
 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 *
 * Called from interrupt entry when the CPU was idle
 *
 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 * must be updated. Otherwise an interrupt handler could use a stale jiffy
510 511
 * value. We do this unconditionally on any CPU, as we don't know whether the
 * CPU, which has the update task assigned is in a long sleep.
512
 */
513
static void tick_nohz_update_jiffies(ktime_t now)
514 515 516
{
	unsigned long flags;

517
	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
518 519 520 521

	local_irq_save(flags);
	tick_do_update_jiffies64(now);
	local_irq_restore(flags);
522

523
	touch_softlockup_watchdog_sched();
524 525
}

526
/*
527
 * Updates the per-CPU time idle statistics counters
528
 */
529
static void
530
update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
531
{
532
	ktime_t delta;
533

534 535
	if (ts->idle_active) {
		delta = ktime_sub(now, ts->idle_entrytime);
536
		if (nr_iowait_cpu(cpu) > 0)
537
			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
538 539
		else
			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
540
		ts->idle_entrytime = now;
541
	}
542

543
	if (last_update_time)
544 545
		*last_update_time = ktime_to_us(now);

546 547
}

548
static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
549
{
550
	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
551
	ts->idle_active = 0;
552

553
	sched_clock_idle_wakeup_event(0);
554 555
}

556
static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
557
{
558
	ktime_t now = ktime_get();
559

560 561
	ts->idle_entrytime = now;
	ts->idle_active = 1;
562
	sched_clock_idle_sleep_event();
563 564 565
	return now;
}

566
/**
567
 * get_cpu_idle_time_us - get the total idle time of a CPU
568
 * @cpu: CPU number to query
569 570
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
571
 *
W
Wei Jiangang 已提交
572
 * Return the cumulative idle time (since boot) for a given
573
 * CPU, in microseconds.
574 575 576 577 578 579
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
580 581 582
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
583
	ktime_t now, idle;
584

585
	if (!tick_nohz_active)
586 587
		return -1;

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		idle = ts->idle_sleeptime;
	} else {
		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);

			idle = ktime_add(ts->idle_sleeptime, delta);
		} else {
			idle = ts->idle_sleeptime;
		}
	}

	return ktime_to_us(idle);
603

604
}
605
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
606

607
/**
608
 * get_cpu_iowait_time_us - get the total iowait time of a CPU
609
 * @cpu: CPU number to query
610 611
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
612
 *
W
Wei Jiangang 已提交
613
 * Return the cumulative iowait time (since boot) for a given
614 615 616 617 618 619 620 621 622 623
 * CPU, in microseconds.
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
624
	ktime_t now, iowait;
625

626
	if (!tick_nohz_active)
627 628
		return -1;

629 630 631 632 633 634 635
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		iowait = ts->iowait_sleeptime;
	} else {
		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
636

637 638 639 640 641
			iowait = ktime_add(ts->iowait_sleeptime, delta);
		} else {
			iowait = ts->iowait_sleeptime;
		}
	}
642

643
	return ktime_to_us(iowait);
644 645 646
}
EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);

647 648 649 650 651 652 653 654 655 656 657 658 659 660
static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
{
	hrtimer_cancel(&ts->sched_timer);
	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);

	/* Forward the time to expire in the future */
	hrtimer_forward(&ts->sched_timer, now, tick_period);

	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
	else
		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
}

661 662
static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
					 ktime_t now, int cpu)
663
{
664
	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
665 666 667
	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
	unsigned long seq, basejiff;
	ktime_t	tick;
668

669 670
	/* Read jiffies and the time when jiffies were updated last */
	do {
671
		seq = read_seqbegin(&jiffies_lock);
T
Thomas Gleixner 已提交
672
		basemono = last_jiffies_update;
673
		basejiff = jiffies;
674
	} while (read_seqretry(&jiffies_lock, seq));
675
	ts->last_jiffies = basejiff;
676

677
	if (rcu_needs_cpu(basemono, &next_rcu) ||
678
	    arch_needs_cpu() || irq_work_needs_cpu()) {
679
		next_tick = basemono + TICK_NSEC;
680
	} else {
681 682 683 684 685 686 687 688 689 690 691
		/*
		 * Get the next pending timer. If high resolution
		 * timers are enabled this only takes the timer wheel
		 * timers into account. If high resolution timers are
		 * disabled this also looks at the next expiring
		 * hrtimer.
		 */
		next_tmr = get_next_timer_interrupt(basejiff, basemono);
		ts->next_timer = next_tmr;
		/* Take the next rcu event into account */
		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
692
	}
693

694 695
	/*
	 * If the tick is due in the next period, keep it ticking or
696
	 * force prod the timer.
697 698 699
	 */
	delta = next_tick - basemono;
	if (delta <= (u64)TICK_NSEC) {
T
Thomas Gleixner 已提交
700
		tick = 0;
701 702 703 704 705 706

		/*
		 * Tell the timer code that the base is not idle, i.e. undo
		 * the effect of get_next_timer_interrupt():
		 */
		timer_clear_idle();
707 708 709 710
		/*
		 * We've not stopped the tick yet, and there's a timer in the
		 * next period, so no point in stopping it either, bail.
		 */
T
Thomas Gleixner 已提交
711 712
		if (!ts->tick_stopped)
			goto out;
713 714 715 716 717 718 719 720 721 722 723 724 725

		/*
		 * If, OTOH, we did stop it, but there's a pending (expired)
		 * timer reprogram the timer hardware to fire now.
		 *
		 * We will not restart the tick proper, just prod the timer
		 * hardware into firing an interrupt to process the pending
		 * timers. Just like tick_irq_exit() will not restart the tick
		 * for 'normal' interrupts.
		 *
		 * Only once we exit the idle loop will we re-enable the tick,
		 * see tick_nohz_idle_exit().
		 */
726
		if (delta == 0) {
T
Thomas Gleixner 已提交
727 728 729 730 731
			tick_nohz_restart(ts, now);
			goto out;
		}
	}

732
	/*
733 734 735
	 * If this CPU is the one which updates jiffies, then give up
	 * the assignment and let it be taken by the CPU which runs
	 * the tick timer next, which might be this CPU as well. If we
T
Thomas Gleixner 已提交
736 737
	 * don't drop this here the jiffies might be stale and
	 * do_timer() never invoked. Keep track of the fact that it
738
	 * was the one which had the do_timer() duty last. If this CPU
T
Thomas Gleixner 已提交
739
	 * is the one which had the do_timer() duty last, we limit the
W
Wei Jiangang 已提交
740
	 * sleep time to the timekeeping max_deferment value.
741
	 * Otherwise we can sleep as long as we want.
742
	 */
743
	delta = timekeeping_max_deferment();
T
Thomas Gleixner 已提交
744 745 746 747
	if (cpu == tick_do_timer_cpu) {
		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
		ts->do_timer_last = 1;
	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
748
		delta = KTIME_MAX;
T
Thomas Gleixner 已提交
749 750
		ts->do_timer_last = 0;
	} else if (!ts->do_timer_last) {
751
		delta = KTIME_MAX;
T
Thomas Gleixner 已提交
752
	}
T
Thomas Gleixner 已提交
753

754
#ifdef CONFIG_NO_HZ_FULL
755
	/* Limit the tick delta to the maximum scheduler deferment */
T
Thomas Gleixner 已提交
756
	if (!ts->inidle)
757
		delta = min(delta, scheduler_tick_max_deferment());
758 759
#endif

760 761 762
	/* Calculate the next expiry time */
	if (delta < (KTIME_MAX - basemono))
		expires = basemono + delta;
T
Thomas Gleixner 已提交
763
	else
764 765 766
		expires = KTIME_MAX;

	expires = min_t(u64, expires, next_tick);
T
Thomas Gleixner 已提交
767
	tick = expires;
768

T
Thomas Gleixner 已提交
769
	/* Skip reprogram of event if its not changed */
770
	if (ts->tick_stopped && (expires == dev->next_event))
T
Thomas Gleixner 已提交
771
		goto out;
772

T
Thomas Gleixner 已提交
773 774 775 776 777 778 779 780 781 782
	/*
	 * nohz_stop_sched_tick can be called several times before
	 * the nohz_restart_sched_tick is called. This happens when
	 * interrupts arrive which do not cause a reschedule. In the
	 * first call we save the current tick time, so we can restart
	 * the scheduler tick in nohz_restart_sched_tick.
	 */
	if (!ts->tick_stopped) {
		nohz_balance_enter_idle(cpu);
		calc_load_enter_idle();
783
		cpu_load_update_nohz_start();
784

T
Thomas Gleixner 已提交
785 786
		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
		ts->tick_stopped = 1;
787
		trace_tick_stop(1, TICK_DEP_MASK_NONE);
T
Thomas Gleixner 已提交
788
	}
789

T
Thomas Gleixner 已提交
790
	/*
791 792
	 * If the expiration time == KTIME_MAX, then we simply stop
	 * the tick timer.
T
Thomas Gleixner 已提交
793
	 */
794
	if (unlikely(expires == KTIME_MAX)) {
T
Thomas Gleixner 已提交
795 796 797
		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
			hrtimer_cancel(&ts->sched_timer);
		goto out;
798
	}
799

T
Thomas Gleixner 已提交
800
	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
801
		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
T
Thomas Gleixner 已提交
802
	else
803
		tick_program_event(tick, 1);
804
out:
805
	/* Update the estimated sleep length */
806
	ts->sleep_length = ktime_sub(dev->next_event, now);
807
	return tick;
808 809
}

810
static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
811 812 813
{
	/* Update jiffies first */
	tick_do_update_jiffies64(now);
814
	cpu_load_update_nohz_stop();
815

816 817 818 819 820 821
	/*
	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
	 * the clock forward checks in the enqueue path:
	 */
	timer_clear_idle();

822
	calc_load_exit_idle();
823
	touch_softlockup_watchdog_sched();
824 825 826 827 828 829 830 831
	/*
	 * Cancel the scheduled timer and restore the tick
	 */
	ts->tick_stopped  = 0;
	ts->idle_exittime = now;

	tick_nohz_restart(ts, now);
}
832 833

static void tick_nohz_full_update_tick(struct tick_sched *ts)
834 835
{
#ifdef CONFIG_NO_HZ_FULL
836
	int cpu = smp_processor_id();
837

838
	if (!tick_nohz_full_cpu(cpu))
839
		return;
840

841 842
	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
		return;
843

844
	if (can_stop_full_tick(cpu, ts))
845 846
		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
	else if (ts->tick_stopped)
847
		tick_nohz_restart_sched_tick(ts, ktime_get());
848 849 850
#endif
}

851 852 853
static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
{
	/*
854
	 * If this CPU is offline and it is the one which updates
855
	 * jiffies, then give up the assignment and let it be taken by
856
	 * the CPU which runs the tick timer next. If we don't drop
857 858 859 860 861 862
	 * this here the jiffies might be stale and do_timer() never
	 * invoked.
	 */
	if (unlikely(!cpu_online(cpu))) {
		if (cpu == tick_do_timer_cpu)
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
863
		return false;
864 865
	}

866
	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
T
Thomas Gleixner 已提交
867
		ts->sleep_length = NSEC_PER_SEC / HZ;
868
		return false;
869
	}
870 871 872 873 874 875 876

	if (need_resched())
		return false;

	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
		static int ratelimit;

877 878
		if (ratelimit < 10 &&
		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
879 880
			pr_warn("NOHZ: local_softirq_pending %02x\n",
				(unsigned int) local_softirq_pending());
881 882 883 884 885
			ratelimit++;
		}
		return false;
	}

886
	if (tick_nohz_full_enabled()) {
887 888 889 890 891 892 893 894 895 896 897 898 899 900
		/*
		 * Keep the tick alive to guarantee timekeeping progression
		 * if there are full dynticks CPUs around
		 */
		if (tick_do_timer_cpu == cpu)
			return false;
		/*
		 * Boot safety: make sure the timekeeping duty has been
		 * assigned before entering dyntick-idle mode,
		 */
		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
			return false;
	}

901 902 903
	return true;
}

904 905
static void __tick_nohz_idle_enter(struct tick_sched *ts)
{
906
	ktime_t now, expires;
907
	int cpu = smp_processor_id();
908

909 910
	now = tick_nohz_start_idle(ts);

911 912 913 914
	if (can_stop_idle_tick(cpu, ts)) {
		int was_stopped = ts->tick_stopped;

		ts->idle_calls++;
915 916

		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
T
Thomas Gleixner 已提交
917
		if (expires > 0LL) {
918 919 920
			ts->idle_sleeps++;
			ts->idle_expires = expires;
		}
921 922 923 924

		if (!was_stopped && ts->tick_stopped)
			ts->idle_jiffies = ts->last_jiffies;
	}
925 926 927 928 929 930 931
}

/**
 * tick_nohz_idle_enter - stop the idle tick from the idle task
 *
 * When the next event is more than a tick into the future, stop the idle tick
 * Called when we start the idle loop.
932
 *
933
 * The arch is responsible of calling:
934 935 936 937
 *
 * - rcu_idle_enter() after its last use of RCU before the CPU is put
 *  to sleep.
 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
938
 */
939
void tick_nohz_idle_enter(void)
940 941 942
{
	struct tick_sched *ts;

943 944
	WARN_ON_ONCE(irqs_disabled());

945
	/*
946 947 948 949 950
	 * Update the idle state in the scheduler domain hierarchy
	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
	 * State will be updated to busy during the first busy tick after
	 * exiting idle.
	 */
951 952
	set_cpu_sd_state_idle();

953 954
	local_irq_disable();

955
	ts = this_cpu_ptr(&tick_cpu_sched);
956
	ts->inidle = 1;
957
	__tick_nohz_idle_enter(ts);
958 959

	local_irq_enable();
960 961 962 963 964 965 966 967 968 969 970 971
}

/**
 * tick_nohz_irq_exit - update next tick event from interrupt exit
 *
 * When an interrupt fires while we are idle and it doesn't cause
 * a reschedule, it may still add, modify or delete a timer, enqueue
 * an RCU callback, etc...
 * So we need to re-calculate and reprogram the next tick event.
 */
void tick_nohz_irq_exit(void)
{
972
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
973

974
	if (ts->inidle)
975
		__tick_nohz_idle_enter(ts);
976
	else
977
		tick_nohz_full_update_tick(ts);
978 979
}

980 981 982 983 984 985 986
/**
 * tick_nohz_get_sleep_length - return the length of the current sleep
 *
 * Called from power state control code with interrupts disabled
 */
ktime_t tick_nohz_get_sleep_length(void)
{
987
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
988 989 990 991

	return ts->sleep_length;
}

992 993
static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
{
994
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
995
	unsigned long ticks;
996

997
	if (vtime_accounting_cpu_enabled())
998
		return;
999 1000 1001 1002 1003 1004 1005 1006 1007
	/*
	 * We stopped the tick in idle. Update process times would miss the
	 * time we slept as update_process_times does only a 1 tick
	 * accounting. Enforce that this is accounted to idle !
	 */
	ticks = jiffies - ts->idle_jiffies;
	/*
	 * We might be one off. Do not randomly account a huge number of ticks!
	 */
1008 1009 1010
	if (ticks && ticks < LONG_MAX)
		account_idle_ticks(ticks);
#endif
1011 1012
}

1013
/**
1014
 * tick_nohz_idle_exit - restart the idle tick from the idle task
1015 1016
 *
 * Restart the idle tick when the CPU is woken up from idle
1017 1018
 * This also exit the RCU extended quiescent state. The CPU
 * can use RCU again after this function is called.
1019
 */
1020
void tick_nohz_idle_exit(void)
1021
{
1022
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1023
	ktime_t now;
1024

1025
	local_irq_disable();
1026

1027 1028 1029 1030 1031
	WARN_ON_ONCE(!ts->inidle);

	ts->inidle = 0;

	if (ts->idle_active || ts->tick_stopped)
1032 1033 1034
		now = ktime_get();

	if (ts->idle_active)
1035
		tick_nohz_stop_idle(ts, now);
1036

1037
	if (ts->tick_stopped) {
1038
		tick_nohz_restart_sched_tick(ts, now);
1039
		tick_nohz_account_idle_ticks(ts);
1040
	}
1041 1042 1043 1044 1045 1046 1047 1048 1049

	local_irq_enable();
}

/*
 * The nohz low res interrupt handler
 */
static void tick_nohz_handler(struct clock_event_device *dev)
{
1050
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1051 1052 1053
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();

T
Thomas Gleixner 已提交
1054
	dev->next_event = KTIME_MAX;
1055

1056
	tick_sched_do_timer(now);
1057
	tick_sched_handle(ts, regs);
1058

1059 1060 1061 1062
	/* No need to reprogram if we are running tickless  */
	if (unlikely(ts->tick_stopped))
		return;

1063 1064
	hrtimer_forward(&ts->sched_timer, now, tick_period);
	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1065 1066
}

1067 1068 1069 1070 1071 1072 1073
static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
{
	if (!tick_nohz_enabled)
		return;
	ts->nohz_mode = mode;
	/* One update is enough */
	if (!test_and_set_bit(0, &tick_nohz_active))
1074
		timers_update_migration(true);
1075 1076
}

1077 1078 1079 1080 1081
/**
 * tick_nohz_switch_to_nohz - switch to nohz mode
 */
static void tick_nohz_switch_to_nohz(void)
{
1082
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1083 1084
	ktime_t next;

1085
	if (!tick_nohz_enabled)
1086 1087
		return;

1088
	if (tick_switch_to_oneshot(tick_nohz_handler))
1089
		return;
1090

1091 1092 1093 1094 1095 1096 1097 1098
	/*
	 * Recycle the hrtimer in ts, so we can share the
	 * hrtimer_forward with the highres code.
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	/* Get the next period */
	next = tick_init_jiffy_update();

1099
	hrtimer_set_expires(&ts->sched_timer, next);
1100 1101
	hrtimer_forward_now(&ts->sched_timer, tick_period);
	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1102
	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1103 1104
}

1105
static inline void tick_nohz_irq_enter(void)
1106
{
1107
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1108 1109 1110 1111 1112 1113
	ktime_t now;

	if (!ts->idle_active && !ts->tick_stopped)
		return;
	now = ktime_get();
	if (ts->idle_active)
1114
		tick_nohz_stop_idle(ts, now);
1115
	if (ts->tick_stopped)
1116 1117 1118
		tick_nohz_update_jiffies(now);
}

1119 1120 1121
#else

static inline void tick_nohz_switch_to_nohz(void) { }
1122
static inline void tick_nohz_irq_enter(void) { }
1123
static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1124

1125
#endif /* CONFIG_NO_HZ_COMMON */
1126

1127 1128 1129
/*
 * Called from irq_enter to notify about the possible interruption of idle()
 */
1130
void tick_irq_enter(void)
1131
{
1132
	tick_check_oneshot_broadcast_this_cpu();
1133
	tick_nohz_irq_enter();
1134 1135
}

1136 1137 1138 1139 1140
/*
 * High resolution timer specific code
 */
#ifdef CONFIG_HIGH_RES_TIMERS
/*
P
Pavel Machek 已提交
1141
 * We rearm the timer until we get disabled by the idle code.
1142
 * Called with interrupts disabled.
1143 1144 1145 1146 1147 1148 1149
 */
static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
{
	struct tick_sched *ts =
		container_of(timer, struct tick_sched, sched_timer);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();
1150

1151
	tick_sched_do_timer(now);
1152 1153 1154 1155 1156

	/*
	 * Do not call, when we are not in irq context and have
	 * no valid regs pointer
	 */
1157 1158
	if (regs)
		tick_sched_handle(ts, regs);
1159

1160 1161 1162 1163
	/* No need to reprogram if we are in idle or full dynticks mode */
	if (unlikely(ts->tick_stopped))
		return HRTIMER_NORESTART;

1164 1165 1166 1167 1168
	hrtimer_forward(timer, now, tick_period);

	return HRTIMER_RESTART;
}

M
Mike Galbraith 已提交
1169 1170
static int sched_skew_tick;

1171 1172 1173 1174 1175 1176 1177 1178
static int __init skew_tick(char *str)
{
	get_option(&str, &sched_skew_tick);

	return 0;
}
early_param("skew_tick", skew_tick);

1179 1180 1181 1182 1183
/**
 * tick_setup_sched_timer - setup the tick emulation timer
 */
void tick_setup_sched_timer(void)
{
1184
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1185 1186 1187 1188 1189 1190 1191 1192
	ktime_t now = ktime_get();

	/*
	 * Emulate tick processing via per-CPU hrtimers:
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	ts->sched_timer.function = tick_sched_timer;

1193
	/* Get the next period (per-CPU) */
1194
	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1195

1196
	/* Offset the tick to avert jiffies_lock contention. */
M
Mike Galbraith 已提交
1197 1198 1199 1200 1201 1202 1203
	if (sched_skew_tick) {
		u64 offset = ktime_to_ns(tick_period) >> 1;
		do_div(offset, num_possible_cpus());
		offset *= smp_processor_id();
		hrtimer_add_expires_ns(&ts->sched_timer, offset);
	}

1204 1205
	hrtimer_forward(&ts->sched_timer, now, tick_period);
	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1206
	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1207
}
1208
#endif /* HIGH_RES_TIMERS */
1209

1210
#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1211 1212 1213 1214
void tick_cancel_sched_timer(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

1215
# ifdef CONFIG_HIGH_RES_TIMERS
1216 1217
	if (ts->sched_timer.base)
		hrtimer_cancel(&ts->sched_timer);
1218
# endif
1219

1220
	memset(ts, 0, sizeof(*ts));
1221
}
1222
#endif
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239

/**
 * Async notification about clocksource changes
 */
void tick_clock_notify(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
}

/*
 * Async notification about clock event changes
 */
void tick_oneshot_notify(void)
{
1240
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250

	set_bit(0, &ts->check_clocks);
}

/**
 * Check, if a change happened, which makes oneshot possible.
 *
 * Called cyclic from the hrtimer softirq (driven by the timer
 * softirq) allow_nohz signals, that we can switch into low-res nohz
 * mode, because high resolution timers are disabled (either compile
1251
 * or runtime). Called with interrupts disabled.
1252 1253 1254
 */
int tick_check_oneshot_change(int allow_nohz)
{
1255
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1256 1257 1258 1259 1260 1261 1262

	if (!test_and_clear_bit(0, &ts->check_clocks))
		return 0;

	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
		return 0;

1263
	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1264 1265 1266 1267 1268 1269 1270 1271
		return 0;

	if (!allow_nohz)
		return 1;

	tick_nohz_switch_to_nohz();
	return 0;
}