tick-sched.c 31.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time/tick-sched.c
 *
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
 *
 *  No idle tick implementation for low and high resolution timers
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
P
Pavel Machek 已提交
12
 *  Distribute under GPLv2.
13 14 15 16 17 18 19 20 21
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
22
#include <linux/sched/clock.h>
23
#include <linux/module.h>
24
#include <linux/irq_work.h>
25
#include <linux/posix-timers.h>
26
#include <linux/context_tracking.h>
27

28 29
#include <asm/irq_regs.h>

30 31
#include "tick-internal.h"

F
Frederic Weisbecker 已提交
32 33
#include <trace/events/timer.h>

34
/*
35
 * Per-CPU nohz control structure
36
 */
37
static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38

39 40 41 42 43
struct tick_sched *tick_get_tick_sched(int cpu)
{
	return &per_cpu(tick_cpu_sched, cpu);
}

44 45 46 47 48 49
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
/*
 * The time, when the last jiffy update happened. Protected by jiffies_lock.
 */
static ktime_t last_jiffies_update;

50 51 52 53 54 55 56 57
/*
 * Must be called with interrupts disabled !
 */
static void tick_do_update_jiffies64(ktime_t now)
{
	unsigned long ticks = 0;
	ktime_t delta;

58
	/*
59
	 * Do a quick check without holding jiffies_lock:
60 61
	 */
	delta = ktime_sub(now, last_jiffies_update);
T
Thomas Gleixner 已提交
62
	if (delta < tick_period)
63 64
		return;

W
Wei Jiangang 已提交
65
	/* Reevaluate with jiffies_lock held */
66
	write_seqlock(&jiffies_lock);
67 68

	delta = ktime_sub(now, last_jiffies_update);
T
Thomas Gleixner 已提交
69
	if (delta >= tick_period) {
70 71 72 73 74 75

		delta = ktime_sub(delta, tick_period);
		last_jiffies_update = ktime_add(last_jiffies_update,
						tick_period);

		/* Slow path for long timeouts */
T
Thomas Gleixner 已提交
76
		if (unlikely(delta >= tick_period)) {
77 78 79 80 81 82 83 84
			s64 incr = ktime_to_ns(tick_period);

			ticks = ktime_divns(delta, incr);

			last_jiffies_update = ktime_add_ns(last_jiffies_update,
							   incr * ticks);
		}
		do_timer(++ticks);
85 86 87

		/* Keep the tick_next_period variable up to date */
		tick_next_period = ktime_add(last_jiffies_update, tick_period);
88 89 90
	} else {
		write_sequnlock(&jiffies_lock);
		return;
91
	}
92
	write_sequnlock(&jiffies_lock);
93
	update_wall_time();
94 95 96 97 98 99 100 101 102
}

/*
 * Initialize and return retrieve the jiffies update.
 */
static ktime_t tick_init_jiffy_update(void)
{
	ktime_t period;

103
	write_seqlock(&jiffies_lock);
104
	/* Did we start the jiffies update yet ? */
T
Thomas Gleixner 已提交
105
	if (last_jiffies_update == 0)
106 107
		last_jiffies_update = tick_next_period;
	period = last_jiffies_update;
108
	write_sequnlock(&jiffies_lock);
109 110 111
	return period;
}

112 113 114 115 116

static void tick_sched_do_timer(ktime_t now)
{
	int cpu = smp_processor_id();

117
#ifdef CONFIG_NO_HZ_COMMON
118 119
	/*
	 * Check if the do_timer duty was dropped. We don't care about
120 121
	 * concurrency: This happens only when the CPU in charge went
	 * into a long sleep. If two CPUs happen to assign themselves to
122
	 * this duty, then the jiffies update is still serialized by
123
	 * jiffies_lock.
124
	 */
125
	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
126
	    && !tick_nohz_full_cpu(cpu))
127 128 129 130 131 132 133 134
		tick_do_timer_cpu = cpu;
#endif

	/* Check, if the jiffies need an update */
	if (tick_do_timer_cpu == cpu)
		tick_do_update_jiffies64(now);
}

135 136
static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
{
137
#ifdef CONFIG_NO_HZ_COMMON
138 139 140 141 142 143 144 145 146
	/*
	 * When we are idle and the tick is stopped, we have to touch
	 * the watchdog as we might not schedule for a really long
	 * time. This happens on complete idle SMP systems while
	 * waiting on the login prompt. We also increment the "start of
	 * idle" jiffy stamp so the idle accounting adjustment we do
	 * when we go busy again does not account too much ticks.
	 */
	if (ts->tick_stopped) {
147
		touch_softlockup_watchdog_sched();
148 149 150
		if (is_idle_task(current))
			ts->idle_jiffies++;
	}
151
#endif
152 153 154
	update_process_times(user_mode(regs));
	profile_tick(CPU_PROFILING);
}
155
#endif
156

157
#ifdef CONFIG_NO_HZ_FULL
158
cpumask_var_t tick_nohz_full_mask;
159
cpumask_var_t housekeeping_mask;
160
bool tick_nohz_full_running;
161
static atomic_t tick_dep_mask;
162

163
static bool check_tick_dependency(atomic_t *dep)
164
{
165 166 167
	int val = atomic_read(dep);

	if (val & TICK_DEP_MASK_POSIX_TIMER) {
168
		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
169
		return true;
170 171
	}

172
	if (val & TICK_DEP_MASK_PERF_EVENTS) {
173
		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
174
		return true;
175 176
	}

177
	if (val & TICK_DEP_MASK_SCHED) {
178
		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
179
		return true;
180 181
	}

182
	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
183
		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
184 185 186 187
		return true;
	}

	return false;
188 189
}

190
static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
191 192 193
{
	WARN_ON_ONCE(!irqs_disabled());

194 195 196
	if (unlikely(!cpu_online(cpu)))
		return false;

197
	if (check_tick_dependency(&tick_dep_mask))
198 199
		return false;

200
	if (check_tick_dependency(&ts->tick_dep_mask))
201 202
		return false;

203
	if (check_tick_dependency(&current->tick_dep_mask))
204 205
		return false;

206
	if (check_tick_dependency(&current->signal->tick_dep_mask))
207 208
		return false;

209 210 211
	return true;
}

212
static void nohz_full_kick_func(struct irq_work *work)
213
{
214
	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
215 216 217
}

static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
218
	.func = nohz_full_kick_func,
219 220
};

221 222 223 224 225 226
/*
 * Kick this CPU if it's full dynticks in order to force it to
 * re-evaluate its dependency on the tick and restart it if necessary.
 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 * is NMI safe.
 */
227
static void tick_nohz_full_kick(void)
228 229 230 231
{
	if (!tick_nohz_full_cpu(smp_processor_id()))
		return;

232
	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
233 234
}

235
/*
236
 * Kick the CPU if it's full dynticks in order to force it to
237 238
 * re-evaluate its dependency on the tick and restart it if necessary.
 */
239
void tick_nohz_full_kick_cpu(int cpu)
240
{
241 242 243 244
	if (!tick_nohz_full_cpu(cpu))
		return;

	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
245 246 247 248 249 250
}

/*
 * Kick all full dynticks CPUs in order to force these to re-evaluate
 * their dependency on the tick and restart it if necessary.
 */
251
static void tick_nohz_full_kick_all(void)
252
{
253 254
	int cpu;

255
	if (!tick_nohz_full_running)
256 257 258
		return;

	preempt_disable();
259 260
	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
		tick_nohz_full_kick_cpu(cpu);
261 262 263
	preempt_enable();
}

264
static void tick_nohz_dep_set_all(atomic_t *dep,
265 266
				  enum tick_dep_bits bit)
{
267
	int prev;
268

269
	prev = atomic_fetch_or(BIT(bit), dep);
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
	if (!prev)
		tick_nohz_full_kick_all();
}

/*
 * Set a global tick dependency. Used by perf events that rely on freq and
 * by unstable clock.
 */
void tick_nohz_dep_set(enum tick_dep_bits bit)
{
	tick_nohz_dep_set_all(&tick_dep_mask, bit);
}

void tick_nohz_dep_clear(enum tick_dep_bits bit)
{
285
	atomic_andnot(BIT(bit), &tick_dep_mask);
286 287 288 289 290 291 292 293
}

/*
 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 * manage events throttling.
 */
void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
{
294
	int prev;
295 296 297 298
	struct tick_sched *ts;

	ts = per_cpu_ptr(&tick_cpu_sched, cpu);

299
	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
	if (!prev) {
		preempt_disable();
		/* Perf needs local kick that is NMI safe */
		if (cpu == smp_processor_id()) {
			tick_nohz_full_kick();
		} else {
			/* Remote irq work not NMI-safe */
			if (!WARN_ON_ONCE(in_nmi()))
				tick_nohz_full_kick_cpu(cpu);
		}
		preempt_enable();
	}
}

void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
{
	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);

318
	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
}

/*
 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
 * per task timers.
 */
void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
{
	/*
	 * We could optimize this with just kicking the target running the task
	 * if that noise matters for nohz full users.
	 */
	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
}

void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
{
336
	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
337 338 339 340 341 342 343 344 345 346 347 348 349
}

/*
 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 * per process timers.
 */
void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
{
	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
}

void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
{
350
	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
351 352
}

353 354 355
/*
 * Re-evaluate the need for the tick as we switch the current task.
 * It might need the tick due to per task/process properties:
356
 * perf events, posix CPU timers, ...
357
 */
358
void __tick_nohz_task_switch(void)
359 360
{
	unsigned long flags;
361
	struct tick_sched *ts;
362 363 364

	local_irq_save(flags);

365 366 367
	if (!tick_nohz_full_cpu(smp_processor_id()))
		goto out;

368
	ts = this_cpu_ptr(&tick_cpu_sched);
369

370
	if (ts->tick_stopped) {
371 372
		if (atomic_read(&current->tick_dep_mask) ||
		    atomic_read(&current->signal->tick_dep_mask))
373 374
			tick_nohz_full_kick();
	}
375
out:
376 377 378
	local_irq_restore(flags);
}

379
/* Parse the boot-time nohz CPU list from the kernel parameters. */
380
static int __init tick_nohz_full_setup(char *str)
381
{
382 383
	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
384
		pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
385
		free_bootmem_cpumask_var(tick_nohz_full_mask);
386 387
		return 1;
	}
388
	tick_nohz_full_running = true;
389

390 391
	return 1;
}
392
__setup("nohz_full=", tick_nohz_full_setup);
393

394
static int tick_nohz_cpu_down(unsigned int cpu)
395
{
396 397 398 399 400 401 402 403
	/*
	 * The boot CPU handles housekeeping duty (unbound timers,
	 * workqueues, timekeeping, ...) on behalf of full dynticks
	 * CPUs. It must remain online when nohz full is enabled.
	 */
	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
		return -EBUSY;
	return 0;
404 405
}

406 407 408 409 410
static int tick_nohz_init_all(void)
{
	int err = -1;

#ifdef CONFIG_NO_HZ_FULL_ALL
411
	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
412
		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
413 414
		return err;
	}
415
	err = 0;
416 417
	cpumask_setall(tick_nohz_full_mask);
	tick_nohz_full_running = true;
418 419 420 421
#endif
	return err;
}

422
void __init tick_nohz_init(void)
423
{
424
	int cpu, ret;
425

426
	if (!tick_nohz_full_running) {
427 428 429
		if (tick_nohz_init_all() < 0)
			return;
	}
430

431 432 433 434 435 436 437
	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
		cpumask_clear(tick_nohz_full_mask);
		tick_nohz_full_running = false;
		return;
	}

438 439 440 441 442 443
	/*
	 * Full dynticks uses irq work to drive the tick rescheduling on safe
	 * locking contexts. But then we need irq work to raise its own
	 * interrupts to avoid circular dependency on the tick
	 */
	if (!arch_irq_work_has_interrupt()) {
444
		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
445 446 447 448 449 450
		cpumask_clear(tick_nohz_full_mask);
		cpumask_copy(housekeeping_mask, cpu_possible_mask);
		tick_nohz_full_running = false;
		return;
	}

451 452 453
	cpu = smp_processor_id();

	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
454 455
		pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
			cpu);
456 457 458 459 460 461
		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
	}

	cpumask_andnot(housekeeping_mask,
		       cpu_possible_mask, tick_nohz_full_mask);

462
	for_each_cpu(cpu, tick_nohz_full_mask)
463 464
		context_tracking_cpu_set(cpu);

465 466 467 468
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"kernel/nohz:predown", NULL,
					tick_nohz_cpu_down);
	WARN_ON(ret < 0);
469 470
	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
		cpumask_pr_args(tick_nohz_full_mask));
471 472 473 474 475 476

	/*
	 * We need at least one CPU to handle housekeeping work such
	 * as timekeeping, unbound timers, workqueues, ...
	 */
	WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
477 478 479
}
#endif

480 481 482
/*
 * NOHZ - aka dynamic tick functionality
 */
483
#ifdef CONFIG_NO_HZ_COMMON
484 485 486
/*
 * NO HZ enabled ?
 */
487
bool tick_nohz_enabled __read_mostly  = true;
488
unsigned long tick_nohz_active  __read_mostly;
489 490 491 492 493
/*
 * Enable / Disable tickless mode
 */
static int __init setup_tick_nohz(char *str)
{
494
	return (kstrtobool(str, &tick_nohz_enabled) == 0);
495 496 497 498
}

__setup("nohz=", setup_tick_nohz);

499 500 501 502 503
int tick_nohz_tick_stopped(void)
{
	return __this_cpu_read(tick_cpu_sched.tick_stopped);
}

504 505 506 507 508 509 510
/**
 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 *
 * Called from interrupt entry when the CPU was idle
 *
 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 * must be updated. Otherwise an interrupt handler could use a stale jiffy
511 512
 * value. We do this unconditionally on any CPU, as we don't know whether the
 * CPU, which has the update task assigned is in a long sleep.
513
 */
514
static void tick_nohz_update_jiffies(ktime_t now)
515 516 517
{
	unsigned long flags;

518
	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
519 520 521 522

	local_irq_save(flags);
	tick_do_update_jiffies64(now);
	local_irq_restore(flags);
523

524
	touch_softlockup_watchdog_sched();
525 526
}

527
/*
528
 * Updates the per-CPU time idle statistics counters
529
 */
530
static void
531
update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
532
{
533
	ktime_t delta;
534

535 536
	if (ts->idle_active) {
		delta = ktime_sub(now, ts->idle_entrytime);
537
		if (nr_iowait_cpu(cpu) > 0)
538
			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
539 540
		else
			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
541
		ts->idle_entrytime = now;
542
	}
543

544
	if (last_update_time)
545 546
		*last_update_time = ktime_to_us(now);

547 548
}

549
static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
550
{
551
	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
552
	ts->idle_active = 0;
553

554
	sched_clock_idle_wakeup_event(0);
555 556
}

557
static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
558
{
559
	ktime_t now = ktime_get();
560

561 562
	ts->idle_entrytime = now;
	ts->idle_active = 1;
563
	sched_clock_idle_sleep_event();
564 565 566
	return now;
}

567
/**
568
 * get_cpu_idle_time_us - get the total idle time of a CPU
569
 * @cpu: CPU number to query
570 571
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
572
 *
W
Wei Jiangang 已提交
573
 * Return the cumulative idle time (since boot) for a given
574
 * CPU, in microseconds.
575 576 577 578 579 580
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
581 582 583
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
584
	ktime_t now, idle;
585

586
	if (!tick_nohz_active)
587 588
		return -1;

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		idle = ts->idle_sleeptime;
	} else {
		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);

			idle = ktime_add(ts->idle_sleeptime, delta);
		} else {
			idle = ts->idle_sleeptime;
		}
	}

	return ktime_to_us(idle);
604

605
}
606
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
607

608
/**
609
 * get_cpu_iowait_time_us - get the total iowait time of a CPU
610
 * @cpu: CPU number to query
611 612
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
613
 *
W
Wei Jiangang 已提交
614
 * Return the cumulative iowait time (since boot) for a given
615 616 617 618 619 620 621 622 623 624
 * CPU, in microseconds.
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
625
	ktime_t now, iowait;
626

627
	if (!tick_nohz_active)
628 629
		return -1;

630 631 632 633 634 635 636
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		iowait = ts->iowait_sleeptime;
	} else {
		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
637

638 639 640 641 642
			iowait = ktime_add(ts->iowait_sleeptime, delta);
		} else {
			iowait = ts->iowait_sleeptime;
		}
	}
643

644
	return ktime_to_us(iowait);
645 646 647
}
EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);

648 649 650 651 652 653 654 655 656 657 658 659 660 661
static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
{
	hrtimer_cancel(&ts->sched_timer);
	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);

	/* Forward the time to expire in the future */
	hrtimer_forward(&ts->sched_timer, now, tick_period);

	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
	else
		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
}

662 663
static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
					 ktime_t now, int cpu)
664
{
665
	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
666 667 668
	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
	unsigned long seq, basejiff;
	ktime_t	tick;
669

670 671
	/* Read jiffies and the time when jiffies were updated last */
	do {
672
		seq = read_seqbegin(&jiffies_lock);
T
Thomas Gleixner 已提交
673
		basemono = last_jiffies_update;
674
		basejiff = jiffies;
675
	} while (read_seqretry(&jiffies_lock, seq));
676
	ts->last_jiffies = basejiff;
677

678
	if (rcu_needs_cpu(basemono, &next_rcu) ||
679
	    arch_needs_cpu() || irq_work_needs_cpu()) {
680
		next_tick = basemono + TICK_NSEC;
681
	} else {
682 683 684 685 686 687 688 689 690 691 692
		/*
		 * Get the next pending timer. If high resolution
		 * timers are enabled this only takes the timer wheel
		 * timers into account. If high resolution timers are
		 * disabled this also looks at the next expiring
		 * hrtimer.
		 */
		next_tmr = get_next_timer_interrupt(basejiff, basemono);
		ts->next_timer = next_tmr;
		/* Take the next rcu event into account */
		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
693
	}
694

695 696
	/*
	 * If the tick is due in the next period, keep it ticking or
697
	 * force prod the timer.
698 699 700
	 */
	delta = next_tick - basemono;
	if (delta <= (u64)TICK_NSEC) {
T
Thomas Gleixner 已提交
701
		tick = 0;
702 703 704 705 706 707

		/*
		 * Tell the timer code that the base is not idle, i.e. undo
		 * the effect of get_next_timer_interrupt():
		 */
		timer_clear_idle();
708 709 710 711
		/*
		 * We've not stopped the tick yet, and there's a timer in the
		 * next period, so no point in stopping it either, bail.
		 */
T
Thomas Gleixner 已提交
712 713
		if (!ts->tick_stopped)
			goto out;
714 715 716 717 718 719 720 721 722 723 724 725 726

		/*
		 * If, OTOH, we did stop it, but there's a pending (expired)
		 * timer reprogram the timer hardware to fire now.
		 *
		 * We will not restart the tick proper, just prod the timer
		 * hardware into firing an interrupt to process the pending
		 * timers. Just like tick_irq_exit() will not restart the tick
		 * for 'normal' interrupts.
		 *
		 * Only once we exit the idle loop will we re-enable the tick,
		 * see tick_nohz_idle_exit().
		 */
727
		if (delta == 0) {
T
Thomas Gleixner 已提交
728 729 730 731 732
			tick_nohz_restart(ts, now);
			goto out;
		}
	}

733
	/*
734 735 736
	 * If this CPU is the one which updates jiffies, then give up
	 * the assignment and let it be taken by the CPU which runs
	 * the tick timer next, which might be this CPU as well. If we
T
Thomas Gleixner 已提交
737 738
	 * don't drop this here the jiffies might be stale and
	 * do_timer() never invoked. Keep track of the fact that it
739
	 * was the one which had the do_timer() duty last. If this CPU
T
Thomas Gleixner 已提交
740
	 * is the one which had the do_timer() duty last, we limit the
W
Wei Jiangang 已提交
741
	 * sleep time to the timekeeping max_deferment value.
742
	 * Otherwise we can sleep as long as we want.
743
	 */
744
	delta = timekeeping_max_deferment();
T
Thomas Gleixner 已提交
745 746 747 748
	if (cpu == tick_do_timer_cpu) {
		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
		ts->do_timer_last = 1;
	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
749
		delta = KTIME_MAX;
T
Thomas Gleixner 已提交
750 751
		ts->do_timer_last = 0;
	} else if (!ts->do_timer_last) {
752
		delta = KTIME_MAX;
T
Thomas Gleixner 已提交
753
	}
T
Thomas Gleixner 已提交
754

755
#ifdef CONFIG_NO_HZ_FULL
756
	/* Limit the tick delta to the maximum scheduler deferment */
T
Thomas Gleixner 已提交
757
	if (!ts->inidle)
758
		delta = min(delta, scheduler_tick_max_deferment());
759 760
#endif

761 762 763
	/* Calculate the next expiry time */
	if (delta < (KTIME_MAX - basemono))
		expires = basemono + delta;
T
Thomas Gleixner 已提交
764
	else
765 766 767
		expires = KTIME_MAX;

	expires = min_t(u64, expires, next_tick);
T
Thomas Gleixner 已提交
768
	tick = expires;
769

T
Thomas Gleixner 已提交
770
	/* Skip reprogram of event if its not changed */
771
	if (ts->tick_stopped && (expires == dev->next_event))
T
Thomas Gleixner 已提交
772
		goto out;
773

T
Thomas Gleixner 已提交
774 775 776 777 778 779 780 781 782 783
	/*
	 * nohz_stop_sched_tick can be called several times before
	 * the nohz_restart_sched_tick is called. This happens when
	 * interrupts arrive which do not cause a reschedule. In the
	 * first call we save the current tick time, so we can restart
	 * the scheduler tick in nohz_restart_sched_tick.
	 */
	if (!ts->tick_stopped) {
		nohz_balance_enter_idle(cpu);
		calc_load_enter_idle();
784
		cpu_load_update_nohz_start();
785

T
Thomas Gleixner 已提交
786 787
		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
		ts->tick_stopped = 1;
788
		trace_tick_stop(1, TICK_DEP_MASK_NONE);
T
Thomas Gleixner 已提交
789
	}
790

T
Thomas Gleixner 已提交
791
	/*
792 793
	 * If the expiration time == KTIME_MAX, then we simply stop
	 * the tick timer.
T
Thomas Gleixner 已提交
794
	 */
795
	if (unlikely(expires == KTIME_MAX)) {
T
Thomas Gleixner 已提交
796 797 798
		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
			hrtimer_cancel(&ts->sched_timer);
		goto out;
799
	}
800

T
Thomas Gleixner 已提交
801
	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
802
		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
T
Thomas Gleixner 已提交
803
	else
804
		tick_program_event(tick, 1);
805
out:
806
	/* Update the estimated sleep length */
807
	ts->sleep_length = ktime_sub(dev->next_event, now);
808
	return tick;
809 810
}

811
static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
812 813 814
{
	/* Update jiffies first */
	tick_do_update_jiffies64(now);
815
	cpu_load_update_nohz_stop();
816

817 818 819 820 821 822
	/*
	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
	 * the clock forward checks in the enqueue path:
	 */
	timer_clear_idle();

823
	calc_load_exit_idle();
824
	touch_softlockup_watchdog_sched();
825 826 827 828 829 830 831 832
	/*
	 * Cancel the scheduled timer and restore the tick
	 */
	ts->tick_stopped  = 0;
	ts->idle_exittime = now;

	tick_nohz_restart(ts, now);
}
833 834

static void tick_nohz_full_update_tick(struct tick_sched *ts)
835 836
{
#ifdef CONFIG_NO_HZ_FULL
837
	int cpu = smp_processor_id();
838

839
	if (!tick_nohz_full_cpu(cpu))
840
		return;
841

842 843
	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
		return;
844

845
	if (can_stop_full_tick(cpu, ts))
846 847
		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
	else if (ts->tick_stopped)
848
		tick_nohz_restart_sched_tick(ts, ktime_get());
849 850 851
#endif
}

852 853 854
static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
{
	/*
855
	 * If this CPU is offline and it is the one which updates
856
	 * jiffies, then give up the assignment and let it be taken by
857
	 * the CPU which runs the tick timer next. If we don't drop
858 859 860 861 862 863
	 * this here the jiffies might be stale and do_timer() never
	 * invoked.
	 */
	if (unlikely(!cpu_online(cpu))) {
		if (cpu == tick_do_timer_cpu)
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
864
		return false;
865 866
	}

867
	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
T
Thomas Gleixner 已提交
868
		ts->sleep_length = NSEC_PER_SEC / HZ;
869
		return false;
870
	}
871 872 873 874 875 876 877

	if (need_resched())
		return false;

	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
		static int ratelimit;

878 879
		if (ratelimit < 10 &&
		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
880 881
			pr_warn("NOHZ: local_softirq_pending %02x\n",
				(unsigned int) local_softirq_pending());
882 883 884 885 886
			ratelimit++;
		}
		return false;
	}

887
	if (tick_nohz_full_enabled()) {
888 889 890 891 892 893 894 895 896 897 898 899 900 901
		/*
		 * Keep the tick alive to guarantee timekeeping progression
		 * if there are full dynticks CPUs around
		 */
		if (tick_do_timer_cpu == cpu)
			return false;
		/*
		 * Boot safety: make sure the timekeeping duty has been
		 * assigned before entering dyntick-idle mode,
		 */
		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
			return false;
	}

902 903 904
	return true;
}

905 906
static void __tick_nohz_idle_enter(struct tick_sched *ts)
{
907
	ktime_t now, expires;
908
	int cpu = smp_processor_id();
909

910 911
	now = tick_nohz_start_idle(ts);

912 913 914 915
	if (can_stop_idle_tick(cpu, ts)) {
		int was_stopped = ts->tick_stopped;

		ts->idle_calls++;
916 917

		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
T
Thomas Gleixner 已提交
918
		if (expires > 0LL) {
919 920 921
			ts->idle_sleeps++;
			ts->idle_expires = expires;
		}
922 923 924 925

		if (!was_stopped && ts->tick_stopped)
			ts->idle_jiffies = ts->last_jiffies;
	}
926 927 928 929 930 931 932
}

/**
 * tick_nohz_idle_enter - stop the idle tick from the idle task
 *
 * When the next event is more than a tick into the future, stop the idle tick
 * Called when we start the idle loop.
933
 *
934
 * The arch is responsible of calling:
935 936 937 938
 *
 * - rcu_idle_enter() after its last use of RCU before the CPU is put
 *  to sleep.
 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
939
 */
940
void tick_nohz_idle_enter(void)
941 942 943
{
	struct tick_sched *ts;

944 945
	WARN_ON_ONCE(irqs_disabled());

946
	/*
947 948 949 950 951
	 * Update the idle state in the scheduler domain hierarchy
	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
	 * State will be updated to busy during the first busy tick after
	 * exiting idle.
	 */
952 953
	set_cpu_sd_state_idle();

954 955
	local_irq_disable();

956
	ts = this_cpu_ptr(&tick_cpu_sched);
957
	ts->inidle = 1;
958
	__tick_nohz_idle_enter(ts);
959 960

	local_irq_enable();
961 962 963 964 965 966 967 968 969 970 971 972
}

/**
 * tick_nohz_irq_exit - update next tick event from interrupt exit
 *
 * When an interrupt fires while we are idle and it doesn't cause
 * a reschedule, it may still add, modify or delete a timer, enqueue
 * an RCU callback, etc...
 * So we need to re-calculate and reprogram the next tick event.
 */
void tick_nohz_irq_exit(void)
{
973
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
974

975
	if (ts->inidle)
976
		__tick_nohz_idle_enter(ts);
977
	else
978
		tick_nohz_full_update_tick(ts);
979 980
}

981 982 983 984 985 986 987
/**
 * tick_nohz_get_sleep_length - return the length of the current sleep
 *
 * Called from power state control code with interrupts disabled
 */
ktime_t tick_nohz_get_sleep_length(void)
{
988
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
989 990 991 992

	return ts->sleep_length;
}

993 994
static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
{
995
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
996
	unsigned long ticks;
997

998
	if (vtime_accounting_cpu_enabled())
999
		return;
1000 1001 1002 1003 1004 1005 1006 1007 1008
	/*
	 * We stopped the tick in idle. Update process times would miss the
	 * time we slept as update_process_times does only a 1 tick
	 * accounting. Enforce that this is accounted to idle !
	 */
	ticks = jiffies - ts->idle_jiffies;
	/*
	 * We might be one off. Do not randomly account a huge number of ticks!
	 */
1009 1010 1011
	if (ticks && ticks < LONG_MAX)
		account_idle_ticks(ticks);
#endif
1012 1013
}

1014
/**
1015
 * tick_nohz_idle_exit - restart the idle tick from the idle task
1016 1017
 *
 * Restart the idle tick when the CPU is woken up from idle
1018 1019
 * This also exit the RCU extended quiescent state. The CPU
 * can use RCU again after this function is called.
1020
 */
1021
void tick_nohz_idle_exit(void)
1022
{
1023
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1024
	ktime_t now;
1025

1026
	local_irq_disable();
1027

1028 1029 1030 1031 1032
	WARN_ON_ONCE(!ts->inidle);

	ts->inidle = 0;

	if (ts->idle_active || ts->tick_stopped)
1033 1034 1035
		now = ktime_get();

	if (ts->idle_active)
1036
		tick_nohz_stop_idle(ts, now);
1037

1038
	if (ts->tick_stopped) {
1039
		tick_nohz_restart_sched_tick(ts, now);
1040
		tick_nohz_account_idle_ticks(ts);
1041
	}
1042 1043 1044 1045 1046 1047 1048 1049 1050

	local_irq_enable();
}

/*
 * The nohz low res interrupt handler
 */
static void tick_nohz_handler(struct clock_event_device *dev)
{
1051
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1052 1053 1054
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();

T
Thomas Gleixner 已提交
1055
	dev->next_event = KTIME_MAX;
1056

1057
	tick_sched_do_timer(now);
1058
	tick_sched_handle(ts, regs);
1059

1060 1061 1062 1063
	/* No need to reprogram if we are running tickless  */
	if (unlikely(ts->tick_stopped))
		return;

1064 1065
	hrtimer_forward(&ts->sched_timer, now, tick_period);
	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1066 1067
}

1068 1069 1070 1071 1072 1073 1074
static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
{
	if (!tick_nohz_enabled)
		return;
	ts->nohz_mode = mode;
	/* One update is enough */
	if (!test_and_set_bit(0, &tick_nohz_active))
1075
		timers_update_migration(true);
1076 1077
}

1078 1079 1080 1081 1082
/**
 * tick_nohz_switch_to_nohz - switch to nohz mode
 */
static void tick_nohz_switch_to_nohz(void)
{
1083
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1084 1085
	ktime_t next;

1086
	if (!tick_nohz_enabled)
1087 1088
		return;

1089
	if (tick_switch_to_oneshot(tick_nohz_handler))
1090
		return;
1091

1092 1093 1094 1095 1096 1097 1098 1099
	/*
	 * Recycle the hrtimer in ts, so we can share the
	 * hrtimer_forward with the highres code.
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	/* Get the next period */
	next = tick_init_jiffy_update();

1100
	hrtimer_set_expires(&ts->sched_timer, next);
1101 1102
	hrtimer_forward_now(&ts->sched_timer, tick_period);
	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1103
	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1104 1105
}

1106
static inline void tick_nohz_irq_enter(void)
1107
{
1108
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1109 1110 1111 1112 1113 1114
	ktime_t now;

	if (!ts->idle_active && !ts->tick_stopped)
		return;
	now = ktime_get();
	if (ts->idle_active)
1115
		tick_nohz_stop_idle(ts, now);
1116
	if (ts->tick_stopped)
1117 1118 1119
		tick_nohz_update_jiffies(now);
}

1120 1121 1122
#else

static inline void tick_nohz_switch_to_nohz(void) { }
1123
static inline void tick_nohz_irq_enter(void) { }
1124
static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1125

1126
#endif /* CONFIG_NO_HZ_COMMON */
1127

1128 1129 1130
/*
 * Called from irq_enter to notify about the possible interruption of idle()
 */
1131
void tick_irq_enter(void)
1132
{
1133
	tick_check_oneshot_broadcast_this_cpu();
1134
	tick_nohz_irq_enter();
1135 1136
}

1137 1138 1139 1140 1141
/*
 * High resolution timer specific code
 */
#ifdef CONFIG_HIGH_RES_TIMERS
/*
P
Pavel Machek 已提交
1142
 * We rearm the timer until we get disabled by the idle code.
1143
 * Called with interrupts disabled.
1144 1145 1146 1147 1148 1149 1150
 */
static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
{
	struct tick_sched *ts =
		container_of(timer, struct tick_sched, sched_timer);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();
1151

1152
	tick_sched_do_timer(now);
1153 1154 1155 1156 1157

	/*
	 * Do not call, when we are not in irq context and have
	 * no valid regs pointer
	 */
1158 1159
	if (regs)
		tick_sched_handle(ts, regs);
1160

1161 1162 1163 1164
	/* No need to reprogram if we are in idle or full dynticks mode */
	if (unlikely(ts->tick_stopped))
		return HRTIMER_NORESTART;

1165 1166 1167 1168 1169
	hrtimer_forward(timer, now, tick_period);

	return HRTIMER_RESTART;
}

M
Mike Galbraith 已提交
1170 1171
static int sched_skew_tick;

1172 1173 1174 1175 1176 1177 1178 1179
static int __init skew_tick(char *str)
{
	get_option(&str, &sched_skew_tick);

	return 0;
}
early_param("skew_tick", skew_tick);

1180 1181 1182 1183 1184
/**
 * tick_setup_sched_timer - setup the tick emulation timer
 */
void tick_setup_sched_timer(void)
{
1185
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1186 1187 1188 1189 1190 1191 1192 1193
	ktime_t now = ktime_get();

	/*
	 * Emulate tick processing via per-CPU hrtimers:
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	ts->sched_timer.function = tick_sched_timer;

1194
	/* Get the next period (per-CPU) */
1195
	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1196

1197
	/* Offset the tick to avert jiffies_lock contention. */
M
Mike Galbraith 已提交
1198 1199 1200 1201 1202 1203 1204
	if (sched_skew_tick) {
		u64 offset = ktime_to_ns(tick_period) >> 1;
		do_div(offset, num_possible_cpus());
		offset *= smp_processor_id();
		hrtimer_add_expires_ns(&ts->sched_timer, offset);
	}

1205 1206
	hrtimer_forward(&ts->sched_timer, now, tick_period);
	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1207
	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1208
}
1209
#endif /* HIGH_RES_TIMERS */
1210

1211
#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1212 1213 1214 1215
void tick_cancel_sched_timer(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

1216
# ifdef CONFIG_HIGH_RES_TIMERS
1217 1218
	if (ts->sched_timer.base)
		hrtimer_cancel(&ts->sched_timer);
1219
# endif
1220

1221
	memset(ts, 0, sizeof(*ts));
1222
}
1223
#endif
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240

/**
 * Async notification about clocksource changes
 */
void tick_clock_notify(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
}

/*
 * Async notification about clock event changes
 */
void tick_oneshot_notify(void)
{
1241
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251

	set_bit(0, &ts->check_clocks);
}

/**
 * Check, if a change happened, which makes oneshot possible.
 *
 * Called cyclic from the hrtimer softirq (driven by the timer
 * softirq) allow_nohz signals, that we can switch into low-res nohz
 * mode, because high resolution timers are disabled (either compile
1252
 * or runtime). Called with interrupts disabled.
1253 1254 1255
 */
int tick_check_oneshot_change(int allow_nohz)
{
1256
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1257 1258 1259 1260 1261 1262 1263

	if (!test_and_clear_bit(0, &ts->check_clocks))
		return 0;

	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
		return 0;

1264
	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1265 1266 1267 1268 1269 1270 1271 1272
		return 0;

	if (!allow_nohz)
		return 1;

	tick_nohz_switch_to_nohz();
	return 0;
}