tick-sched.c 29.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time/tick-sched.c
 *
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
 *
 *  No idle tick implementation for low and high resolution timers
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
P
Pavel Machek 已提交
12
 *  Distribute under GPLv2.
13 14 15 16 17 18 19 20 21
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
22
#include <linux/module.h>
23
#include <linux/irq_work.h>
24 25
#include <linux/posix-timers.h>
#include <linux/perf_event.h>
26
#include <linux/context_tracking.h>
27

28 29
#include <asm/irq_regs.h>

30 31
#include "tick-internal.h"

F
Frederic Weisbecker 已提交
32 33
#include <trace/events/timer.h>

34 35 36
/*
 * Per cpu nohz control structure
 */
37
static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38

39 40 41 42 43
struct tick_sched *tick_get_tick_sched(int cpu)
{
	return &per_cpu(tick_cpu_sched, cpu);
}

44 45 46 47 48 49
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
/*
 * The time, when the last jiffy update happened. Protected by jiffies_lock.
 */
static ktime_t last_jiffies_update;

50 51 52 53 54 55 56 57
/*
 * Must be called with interrupts disabled !
 */
static void tick_do_update_jiffies64(ktime_t now)
{
	unsigned long ticks = 0;
	ktime_t delta;

58
	/*
59
	 * Do a quick check without holding jiffies_lock:
60 61 62 63 64
	 */
	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 < tick_period.tv64)
		return;

65 66
	/* Reevalute with jiffies_lock held */
	write_seqlock(&jiffies_lock);
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 >= tick_period.tv64) {

		delta = ktime_sub(delta, tick_period);
		last_jiffies_update = ktime_add(last_jiffies_update,
						tick_period);

		/* Slow path for long timeouts */
		if (unlikely(delta.tv64 >= tick_period.tv64)) {
			s64 incr = ktime_to_ns(tick_period);

			ticks = ktime_divns(delta, incr);

			last_jiffies_update = ktime_add_ns(last_jiffies_update,
							   incr * ticks);
		}
		do_timer(++ticks);
85 86 87

		/* Keep the tick_next_period variable up to date */
		tick_next_period = ktime_add(last_jiffies_update, tick_period);
88 89 90
	} else {
		write_sequnlock(&jiffies_lock);
		return;
91
	}
92
	write_sequnlock(&jiffies_lock);
93
	update_wall_time();
94 95 96 97 98 99 100 101 102
}

/*
 * Initialize and return retrieve the jiffies update.
 */
static ktime_t tick_init_jiffy_update(void)
{
	ktime_t period;

103
	write_seqlock(&jiffies_lock);
104 105 106 107
	/* Did we start the jiffies update yet ? */
	if (last_jiffies_update.tv64 == 0)
		last_jiffies_update = tick_next_period;
	period = last_jiffies_update;
108
	write_sequnlock(&jiffies_lock);
109 110 111
	return period;
}

112 113 114 115 116

static void tick_sched_do_timer(ktime_t now)
{
	int cpu = smp_processor_id();

117
#ifdef CONFIG_NO_HZ_COMMON
118 119 120 121 122
	/*
	 * Check if the do_timer duty was dropped. We don't care about
	 * concurrency: This happens only when the cpu in charge went
	 * into a long sleep. If two cpus happen to assign themself to
	 * this duty, then the jiffies update is still serialized by
123
	 * jiffies_lock.
124
	 */
125
	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
126
	    && !tick_nohz_full_cpu(cpu))
127 128 129 130 131 132 133 134
		tick_do_timer_cpu = cpu;
#endif

	/* Check, if the jiffies need an update */
	if (tick_do_timer_cpu == cpu)
		tick_do_update_jiffies64(now);
}

135 136
static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
{
137
#ifdef CONFIG_NO_HZ_COMMON
138 139 140 141 142 143 144 145 146
	/*
	 * When we are idle and the tick is stopped, we have to touch
	 * the watchdog as we might not schedule for a really long
	 * time. This happens on complete idle SMP systems while
	 * waiting on the login prompt. We also increment the "start of
	 * idle" jiffy stamp so the idle accounting adjustment we do
	 * when we go busy again does not account too much ticks.
	 */
	if (ts->tick_stopped) {
147
		touch_softlockup_watchdog_sched();
148 149 150
		if (is_idle_task(current))
			ts->idle_jiffies++;
	}
151
#endif
152 153 154
	update_process_times(user_mode(regs));
	profile_tick(CPU_PROFILING);
}
155
#endif
156

157
#ifdef CONFIG_NO_HZ_FULL
158
cpumask_var_t tick_nohz_full_mask;
159
cpumask_var_t housekeeping_mask;
160
bool tick_nohz_full_running;
161

162 163 164 165
static bool can_stop_full_tick(void)
{
	WARN_ON_ONCE(!irqs_disabled());

F
Frederic Weisbecker 已提交
166 167
	if (!sched_can_stop_tick()) {
		trace_tick_stop(0, "more than 1 task in runqueue\n");
168
		return false;
F
Frederic Weisbecker 已提交
169
	}
170

F
Frederic Weisbecker 已提交
171 172
	if (!posix_cpu_timers_can_stop_tick(current)) {
		trace_tick_stop(0, "posix timers running\n");
173
		return false;
F
Frederic Weisbecker 已提交
174
	}
175

F
Frederic Weisbecker 已提交
176 177
	if (!perf_event_can_stop_tick()) {
		trace_tick_stop(0, "perf events running\n");
178
		return false;
F
Frederic Weisbecker 已提交
179
	}
180 181 182 183 184 185 186

	/* sched_clock_tick() needs us? */
#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
	/*
	 * TODO: kick full dynticks CPUs when
	 * sched_clock_stable is set.
	 */
187
	if (!sched_clock_stable()) {
F
Frederic Weisbecker 已提交
188
		trace_tick_stop(0, "unstable sched clock\n");
189 190 191 192
		/*
		 * Don't allow the user to think they can get
		 * full NO_HZ with this machine.
		 */
193
		WARN_ONCE(tick_nohz_full_running,
194
			  "NO_HZ FULL will not work with unstable sched clock");
195
		return false;
F
Frederic Weisbecker 已提交
196
	}
197 198 199 200 201
#endif

	return true;
}

202 203
static void nohz_full_kick_work_func(struct irq_work *work)
{
204
	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
205 206 207 208 209 210
}

static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
	.func = nohz_full_kick_work_func,
};

211 212 213 214 215 216 217 218 219 220 221
/*
 * Kick this CPU if it's full dynticks in order to force it to
 * re-evaluate its dependency on the tick and restart it if necessary.
 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 * is NMI safe.
 */
void tick_nohz_full_kick(void)
{
	if (!tick_nohz_full_cpu(smp_processor_id()))
		return;

222
	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
223 224
}

225
/*
226
 * Kick the CPU if it's full dynticks in order to force it to
227 228
 * re-evaluate its dependency on the tick and restart it if necessary.
 */
229
void tick_nohz_full_kick_cpu(int cpu)
230
{
231 232 233 234
	if (!tick_nohz_full_cpu(cpu))
		return;

	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
235 236 237 238
}

static void nohz_full_kick_ipi(void *info)
{
239
	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
240 241 242 243 244 245 246 247
}

/*
 * Kick all full dynticks CPUs in order to force these to re-evaluate
 * their dependency on the tick and restart it if necessary.
 */
void tick_nohz_full_kick_all(void)
{
248
	if (!tick_nohz_full_running)
249 250 251
		return;

	preempt_disable();
252
	smp_call_function_many(tick_nohz_full_mask,
253
			       nohz_full_kick_ipi, NULL, false);
254
	tick_nohz_full_kick();
255 256 257
	preempt_enable();
}

258 259 260 261 262
/*
 * Re-evaluate the need for the tick as we switch the current task.
 * It might need the tick due to per task/process properties:
 * perf events, posix cpu timers, ...
 */
263
void __tick_nohz_task_switch(void)
264 265 266 267 268
{
	unsigned long flags;

	local_irq_save(flags);

269 270 271
	if (!tick_nohz_full_cpu(smp_processor_id()))
		goto out;

272 273 274
	if (tick_nohz_tick_stopped() && !can_stop_full_tick())
		tick_nohz_full_kick();

275
out:
276 277 278
	local_irq_restore(flags);
}

279
/* Parse the boot-time nohz CPU list from the kernel parameters. */
280
static int __init tick_nohz_full_setup(char *str)
281
{
282 283
	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
284
		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
285
		free_bootmem_cpumask_var(tick_nohz_full_mask);
286 287
		return 1;
	}
288
	tick_nohz_full_running = true;
289

290 291
	return 1;
}
292
__setup("nohz_full=", tick_nohz_full_setup);
293

294
static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
295 296
				       unsigned long action,
				       void *hcpu)
297 298 299 300 301 302
{
	unsigned int cpu = (unsigned long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		/*
303 304 305
		 * The boot CPU handles housekeeping duty (unbound timers,
		 * workqueues, timekeeping, ...) on behalf of full dynticks
		 * CPUs. It must remain online when nohz full is enabled.
306
		 */
307
		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
308
			return NOTIFY_BAD;
309 310 311 312 313
		break;
	}
	return NOTIFY_OK;
}

314 315 316 317 318
static int tick_nohz_init_all(void)
{
	int err = -1;

#ifdef CONFIG_NO_HZ_FULL_ALL
319
	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
320
		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
321 322
		return err;
	}
323
	err = 0;
324 325
	cpumask_setall(tick_nohz_full_mask);
	tick_nohz_full_running = true;
326 327 328 329
#endif
	return err;
}

330
void __init tick_nohz_init(void)
331
{
332 333
	int cpu;

334
	if (!tick_nohz_full_running) {
335 336 337
		if (tick_nohz_init_all() < 0)
			return;
	}
338

339 340 341 342 343 344 345
	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
		cpumask_clear(tick_nohz_full_mask);
		tick_nohz_full_running = false;
		return;
	}

346 347 348 349 350 351 352 353 354 355 356 357 358 359
	/*
	 * Full dynticks uses irq work to drive the tick rescheduling on safe
	 * locking contexts. But then we need irq work to raise its own
	 * interrupts to avoid circular dependency on the tick
	 */
	if (!arch_irq_work_has_interrupt()) {
		pr_warning("NO_HZ: Can't run full dynticks because arch doesn't "
			   "support irq work self-IPIs\n");
		cpumask_clear(tick_nohz_full_mask);
		cpumask_copy(housekeeping_mask, cpu_possible_mask);
		tick_nohz_full_running = false;
		return;
	}

360 361 362 363 364 365 366 367 368 369
	cpu = smp_processor_id();

	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
	}

	cpumask_andnot(housekeeping_mask,
		       cpu_possible_mask, tick_nohz_full_mask);

370
	for_each_cpu(cpu, tick_nohz_full_mask)
371 372
		context_tracking_cpu_set(cpu);

373
	cpu_notifier(tick_nohz_cpu_down_callback, 0);
374 375
	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
		cpumask_pr_args(tick_nohz_full_mask));
376 377 378 379 380 381

	/*
	 * We need at least one CPU to handle housekeeping work such
	 * as timekeeping, unbound timers, workqueues, ...
	 */
	WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
382 383 384
}
#endif

385 386 387
/*
 * NOHZ - aka dynamic tick functionality
 */
388
#ifdef CONFIG_NO_HZ_COMMON
389 390 391
/*
 * NO HZ enabled ?
 */
392
int tick_nohz_enabled __read_mostly = 1;
393
unsigned long tick_nohz_active  __read_mostly;
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
/*
 * Enable / Disable tickless mode
 */
static int __init setup_tick_nohz(char *str)
{
	if (!strcmp(str, "off"))
		tick_nohz_enabled = 0;
	else if (!strcmp(str, "on"))
		tick_nohz_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("nohz=", setup_tick_nohz);

410 411 412 413 414
int tick_nohz_tick_stopped(void)
{
	return __this_cpu_read(tick_cpu_sched.tick_stopped);
}

415 416 417 418 419 420 421 422 423 424
/**
 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 *
 * Called from interrupt entry when the CPU was idle
 *
 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 * value. We do this unconditionally on any cpu, as we don't know whether the
 * cpu, which has the update task assigned is in a long sleep.
 */
425
static void tick_nohz_update_jiffies(ktime_t now)
426 427 428
{
	unsigned long flags;

429
	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
430 431 432 433

	local_irq_save(flags);
	tick_do_update_jiffies64(now);
	local_irq_restore(flags);
434

435
	touch_softlockup_watchdog_sched();
436 437
}

438 439 440
/*
 * Updates the per cpu time idle statistics counters
 */
441
static void
442
update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
443
{
444
	ktime_t delta;
445

446 447
	if (ts->idle_active) {
		delta = ktime_sub(now, ts->idle_entrytime);
448
		if (nr_iowait_cpu(cpu) > 0)
449
			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
450 451
		else
			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
452
		ts->idle_entrytime = now;
453
	}
454

455
	if (last_update_time)
456 457
		*last_update_time = ktime_to_us(now);

458 459
}

460
static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
461
{
462
	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
463
	ts->idle_active = 0;
464

465
	sched_clock_idle_wakeup_event(0);
466 467
}

468
static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
469
{
470
	ktime_t now = ktime_get();
471

472 473
	ts->idle_entrytime = now;
	ts->idle_active = 1;
474
	sched_clock_idle_sleep_event();
475 476 477
	return now;
}

478 479 480
/**
 * get_cpu_idle_time_us - get the total idle time of a cpu
 * @cpu: CPU number to query
481 482
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
483 484
 *
 * Return the cummulative idle time (since boot) for a given
485
 * CPU, in microseconds.
486 487 488 489 490 491
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
492 493 494
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
495
	ktime_t now, idle;
496

497
	if (!tick_nohz_active)
498 499
		return -1;

500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		idle = ts->idle_sleeptime;
	} else {
		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);

			idle = ktime_add(ts->idle_sleeptime, delta);
		} else {
			idle = ts->idle_sleeptime;
		}
	}

	return ktime_to_us(idle);
515

516
}
517
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
518

519
/**
520 521
 * get_cpu_iowait_time_us - get the total iowait time of a cpu
 * @cpu: CPU number to query
522 523
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
524 525 526 527 528 529 530 531 532 533 534 535
 *
 * Return the cummulative iowait time (since boot) for a given
 * CPU, in microseconds.
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
536
	ktime_t now, iowait;
537

538
	if (!tick_nohz_active)
539 540
		return -1;

541 542 543 544 545 546 547
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		iowait = ts->iowait_sleeptime;
	} else {
		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
548

549 550 551 552 553
			iowait = ktime_add(ts->iowait_sleeptime, delta);
		} else {
			iowait = ts->iowait_sleeptime;
		}
	}
554

555
	return ktime_to_us(iowait);
556 557 558
}
EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);

559 560 561 562 563 564 565 566 567 568 569 570 571 572
static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
{
	hrtimer_cancel(&ts->sched_timer);
	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);

	/* Forward the time to expire in the future */
	hrtimer_forward(&ts->sched_timer, now, tick_period);

	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
	else
		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
}

573 574
static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
					 ktime_t now, int cpu)
575
{
576
	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
577 578 579
	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
	unsigned long seq, basejiff;
	ktime_t	tick;
580

581 582
	/* Read jiffies and the time when jiffies were updated last */
	do {
583
		seq = read_seqbegin(&jiffies_lock);
584 585
		basemono = last_jiffies_update.tv64;
		basejiff = jiffies;
586
	} while (read_seqretry(&jiffies_lock, seq));
587
	ts->last_jiffies = basejiff;
588

589
	if (rcu_needs_cpu(basemono, &next_rcu) ||
590
	    arch_needs_cpu() || irq_work_needs_cpu()) {
591
		next_tick = basemono + TICK_NSEC;
592
	} else {
593 594 595 596 597 598 599 600 601 602 603
		/*
		 * Get the next pending timer. If high resolution
		 * timers are enabled this only takes the timer wheel
		 * timers into account. If high resolution timers are
		 * disabled this also looks at the next expiring
		 * hrtimer.
		 */
		next_tmr = get_next_timer_interrupt(basejiff, basemono);
		ts->next_timer = next_tmr;
		/* Take the next rcu event into account */
		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
604
	}
605

606 607
	/*
	 * If the tick is due in the next period, keep it ticking or
608
	 * force prod the timer.
609 610 611 612
	 */
	delta = next_tick - basemono;
	if (delta <= (u64)TICK_NSEC) {
		tick.tv64 = 0;
613 614 615 616
		/*
		 * We've not stopped the tick yet, and there's a timer in the
		 * next period, so no point in stopping it either, bail.
		 */
T
Thomas Gleixner 已提交
617 618
		if (!ts->tick_stopped)
			goto out;
619 620 621 622 623 624 625 626 627 628 629 630 631

		/*
		 * If, OTOH, we did stop it, but there's a pending (expired)
		 * timer reprogram the timer hardware to fire now.
		 *
		 * We will not restart the tick proper, just prod the timer
		 * hardware into firing an interrupt to process the pending
		 * timers. Just like tick_irq_exit() will not restart the tick
		 * for 'normal' interrupts.
		 *
		 * Only once we exit the idle loop will we re-enable the tick,
		 * see tick_nohz_idle_exit().
		 */
632
		if (delta == 0) {
T
Thomas Gleixner 已提交
633 634 635 636 637
			tick_nohz_restart(ts, now);
			goto out;
		}
	}

638
	/*
T
Thomas Gleixner 已提交
639 640 641 642 643 644 645
	 * If this cpu is the one which updates jiffies, then give up
	 * the assignment and let it be taken by the cpu which runs
	 * the tick timer next, which might be this cpu as well. If we
	 * don't drop this here the jiffies might be stale and
	 * do_timer() never invoked. Keep track of the fact that it
	 * was the one which had the do_timer() duty last. If this cpu
	 * is the one which had the do_timer() duty last, we limit the
646 647
	 * sleep time to the timekeeping max_deferement value.
	 * Otherwise we can sleep as long as we want.
648
	 */
649
	delta = timekeeping_max_deferment();
T
Thomas Gleixner 已提交
650 651 652 653
	if (cpu == tick_do_timer_cpu) {
		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
		ts->do_timer_last = 1;
	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
654
		delta = KTIME_MAX;
T
Thomas Gleixner 已提交
655 656
		ts->do_timer_last = 0;
	} else if (!ts->do_timer_last) {
657
		delta = KTIME_MAX;
T
Thomas Gleixner 已提交
658
	}
T
Thomas Gleixner 已提交
659

660
#ifdef CONFIG_NO_HZ_FULL
661
	/* Limit the tick delta to the maximum scheduler deferment */
T
Thomas Gleixner 已提交
662
	if (!ts->inidle)
663
		delta = min(delta, scheduler_tick_max_deferment());
664 665
#endif

666 667 668
	/* Calculate the next expiry time */
	if (delta < (KTIME_MAX - basemono))
		expires = basemono + delta;
T
Thomas Gleixner 已提交
669
	else
670 671 672 673
		expires = KTIME_MAX;

	expires = min_t(u64, expires, next_tick);
	tick.tv64 = expires;
674

T
Thomas Gleixner 已提交
675
	/* Skip reprogram of event if its not changed */
676
	if (ts->tick_stopped && (expires == dev->next_event.tv64))
T
Thomas Gleixner 已提交
677
		goto out;
678

T
Thomas Gleixner 已提交
679 680 681 682 683 684 685 686 687 688
	/*
	 * nohz_stop_sched_tick can be called several times before
	 * the nohz_restart_sched_tick is called. This happens when
	 * interrupts arrive which do not cause a reschedule. In the
	 * first call we save the current tick time, so we can restart
	 * the scheduler tick in nohz_restart_sched_tick.
	 */
	if (!ts->tick_stopped) {
		nohz_balance_enter_idle(cpu);
		calc_load_enter_idle();
689

T
Thomas Gleixner 已提交
690 691 692 693
		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
		ts->tick_stopped = 1;
		trace_tick_stop(1, " ");
	}
694

T
Thomas Gleixner 已提交
695
	/*
696 697
	 * If the expiration time == KTIME_MAX, then we simply stop
	 * the tick timer.
T
Thomas Gleixner 已提交
698
	 */
699
	if (unlikely(expires == KTIME_MAX)) {
T
Thomas Gleixner 已提交
700 701 702
		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
			hrtimer_cancel(&ts->sched_timer);
		goto out;
703
	}
704

T
Thomas Gleixner 已提交
705
	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
706
		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
T
Thomas Gleixner 已提交
707
	else
708
		tick_program_event(tick, 1);
709
out:
710
	/* Update the estimated sleep length */
711
	ts->sleep_length = ktime_sub(dev->next_event, now);
712
	return tick;
713 714
}

715
static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now, int active)
716 717 718
{
	/* Update jiffies first */
	tick_do_update_jiffies64(now);
719
	update_cpu_load_nohz(active);
720 721

	calc_load_exit_idle();
722
	touch_softlockup_watchdog_sched();
723 724 725 726 727 728 729 730
	/*
	 * Cancel the scheduled timer and restore the tick
	 */
	ts->tick_stopped  = 0;
	ts->idle_exittime = now;

	tick_nohz_restart(ts, now);
}
731 732

static void tick_nohz_full_update_tick(struct tick_sched *ts)
733 734
{
#ifdef CONFIG_NO_HZ_FULL
735
	int cpu = smp_processor_id();
736

737
	if (!tick_nohz_full_cpu(cpu))
738
		return;
739

740 741
	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
		return;
742

743 744 745
	if (can_stop_full_tick())
		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
	else if (ts->tick_stopped)
746
		tick_nohz_restart_sched_tick(ts, ktime_get(), 1);
747 748 749
#endif
}

750 751 752 753 754 755 756 757 758 759 760 761
static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
{
	/*
	 * If this cpu is offline and it is the one which updates
	 * jiffies, then give up the assignment and let it be taken by
	 * the cpu which runs the tick timer next. If we don't drop
	 * this here the jiffies might be stale and do_timer() never
	 * invoked.
	 */
	if (unlikely(!cpu_online(cpu))) {
		if (cpu == tick_do_timer_cpu)
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
762
		return false;
763 764
	}

765 766
	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
767
		return false;
768
	}
769 770 771 772 773 774 775

	if (need_resched())
		return false;

	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
		static int ratelimit;

776 777
		if (ratelimit < 10 &&
		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
778 779
			pr_warn("NOHZ: local_softirq_pending %02x\n",
				(unsigned int) local_softirq_pending());
780 781 782 783 784
			ratelimit++;
		}
		return false;
	}

785
	if (tick_nohz_full_enabled()) {
786 787 788 789 790 791 792 793 794 795 796 797 798 799
		/*
		 * Keep the tick alive to guarantee timekeeping progression
		 * if there are full dynticks CPUs around
		 */
		if (tick_do_timer_cpu == cpu)
			return false;
		/*
		 * Boot safety: make sure the timekeeping duty has been
		 * assigned before entering dyntick-idle mode,
		 */
		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
			return false;
	}

800 801 802
	return true;
}

803 804
static void __tick_nohz_idle_enter(struct tick_sched *ts)
{
805
	ktime_t now, expires;
806
	int cpu = smp_processor_id();
807

808
	now = tick_nohz_start_idle(ts);
809

810 811 812 813
	if (can_stop_idle_tick(cpu, ts)) {
		int was_stopped = ts->tick_stopped;

		ts->idle_calls++;
814 815 816 817 818 819

		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
		if (expires.tv64 > 0LL) {
			ts->idle_sleeps++;
			ts->idle_expires = expires;
		}
820 821 822 823

		if (!was_stopped && ts->tick_stopped)
			ts->idle_jiffies = ts->last_jiffies;
	}
824 825 826 827 828 829 830
}

/**
 * tick_nohz_idle_enter - stop the idle tick from the idle task
 *
 * When the next event is more than a tick into the future, stop the idle tick
 * Called when we start the idle loop.
831
 *
832
 * The arch is responsible of calling:
833 834 835 836
 *
 * - rcu_idle_enter() after its last use of RCU before the CPU is put
 *  to sleep.
 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
837
 */
838
void tick_nohz_idle_enter(void)
839 840 841
{
	struct tick_sched *ts;

842 843
	WARN_ON_ONCE(irqs_disabled());

844 845 846 847 848 849 850 851
	/*
 	 * Update the idle state in the scheduler domain hierarchy
 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
 	 * State will be updated to busy during the first busy tick after
 	 * exiting idle.
 	 */
	set_cpu_sd_state_idle();

852 853
	local_irq_disable();

854
	ts = this_cpu_ptr(&tick_cpu_sched);
855
	ts->inidle = 1;
856
	__tick_nohz_idle_enter(ts);
857 858

	local_irq_enable();
859 860 861 862 863 864 865 866 867 868 869 870
}

/**
 * tick_nohz_irq_exit - update next tick event from interrupt exit
 *
 * When an interrupt fires while we are idle and it doesn't cause
 * a reschedule, it may still add, modify or delete a timer, enqueue
 * an RCU callback, etc...
 * So we need to re-calculate and reprogram the next tick event.
 */
void tick_nohz_irq_exit(void)
{
871
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
872

873
	if (ts->inidle)
874
		__tick_nohz_idle_enter(ts);
875
	else
876
		tick_nohz_full_update_tick(ts);
877 878
}

879 880 881 882 883 884 885
/**
 * tick_nohz_get_sleep_length - return the length of the current sleep
 *
 * Called from power state control code with interrupts disabled
 */
ktime_t tick_nohz_get_sleep_length(void)
{
886
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
887 888 889 890

	return ts->sleep_length;
}

891 892
static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
{
893
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
894
	unsigned long ticks;
895

896
	if (vtime_accounting_cpu_enabled())
897
		return;
898 899 900 901 902 903 904 905 906
	/*
	 * We stopped the tick in idle. Update process times would miss the
	 * time we slept as update_process_times does only a 1 tick
	 * accounting. Enforce that this is accounted to idle !
	 */
	ticks = jiffies - ts->idle_jiffies;
	/*
	 * We might be one off. Do not randomly account a huge number of ticks!
	 */
907 908 909
	if (ticks && ticks < LONG_MAX)
		account_idle_ticks(ticks);
#endif
910 911
}

912
/**
913
 * tick_nohz_idle_exit - restart the idle tick from the idle task
914 915
 *
 * Restart the idle tick when the CPU is woken up from idle
916 917
 * This also exit the RCU extended quiescent state. The CPU
 * can use RCU again after this function is called.
918
 */
919
void tick_nohz_idle_exit(void)
920
{
921
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
922
	ktime_t now;
923

924
	local_irq_disable();
925

926 927 928 929 930
	WARN_ON_ONCE(!ts->inidle);

	ts->inidle = 0;

	if (ts->idle_active || ts->tick_stopped)
931 932 933
		now = ktime_get();

	if (ts->idle_active)
934
		tick_nohz_stop_idle(ts, now);
935

936
	if (ts->tick_stopped) {
937
		tick_nohz_restart_sched_tick(ts, now, 0);
938
		tick_nohz_account_idle_ticks(ts);
939
	}
940 941 942 943 944 945 946 947 948

	local_irq_enable();
}

/*
 * The nohz low res interrupt handler
 */
static void tick_nohz_handler(struct clock_event_device *dev)
{
949
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
950 951 952 953 954
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();

	dev->next_event.tv64 = KTIME_MAX;

955
	tick_sched_do_timer(now);
956
	tick_sched_handle(ts, regs);
957

958 959 960 961
	/* No need to reprogram if we are running tickless  */
	if (unlikely(ts->tick_stopped))
		return;

962 963
	hrtimer_forward(&ts->sched_timer, now, tick_period);
	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
964 965
}

966 967 968 969 970 971 972
static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
{
	if (!tick_nohz_enabled)
		return;
	ts->nohz_mode = mode;
	/* One update is enough */
	if (!test_and_set_bit(0, &tick_nohz_active))
973
		timers_update_migration(true);
974 975
}

976 977 978 979 980
/**
 * tick_nohz_switch_to_nohz - switch to nohz mode
 */
static void tick_nohz_switch_to_nohz(void)
{
981
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
982 983
	ktime_t next;

984
	if (!tick_nohz_enabled)
985 986
		return;

987
	if (tick_switch_to_oneshot(tick_nohz_handler))
988
		return;
989

990 991 992 993 994 995 996 997
	/*
	 * Recycle the hrtimer in ts, so we can share the
	 * hrtimer_forward with the highres code.
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	/* Get the next period */
	next = tick_init_jiffy_update();

998
	hrtimer_set_expires(&ts->sched_timer, next);
999 1000
	hrtimer_forward_now(&ts->sched_timer, tick_period);
	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1001
	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1002 1003
}

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
/*
 * When NOHZ is enabled and the tick is stopped, we need to kick the
 * tick timer from irq_enter() so that the jiffies update is kept
 * alive during long running softirqs. That's ugly as hell, but
 * correctness is key even if we need to fix the offending softirq in
 * the first place.
 *
 * Note, this is different to tick_nohz_restart. We just kick the
 * timer and do not touch the other magic bits which need to be done
 * when idle is left.
 */
1015
static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1016
{
1017 1018
#if 0
	/* Switch back to 2.6.27 behaviour */
1019
	ktime_t delta;
1020

1021 1022 1023 1024
	/*
	 * Do not touch the tick device, when the next expiry is either
	 * already reached or less/equal than the tick period.
	 */
1025
	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1026 1027 1028 1029
	if (delta.tv64 <= tick_period.tv64)
		return;

	tick_nohz_restart(ts, now);
1030
#endif
1031 1032
}

1033
static inline void tick_nohz_irq_enter(void)
1034
{
1035
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1036 1037 1038 1039 1040 1041
	ktime_t now;

	if (!ts->idle_active && !ts->tick_stopped)
		return;
	now = ktime_get();
	if (ts->idle_active)
1042
		tick_nohz_stop_idle(ts, now);
1043 1044
	if (ts->tick_stopped) {
		tick_nohz_update_jiffies(now);
1045
		tick_nohz_kick_tick(ts, now);
1046 1047 1048
	}
}

1049 1050 1051
#else

static inline void tick_nohz_switch_to_nohz(void) { }
1052
static inline void tick_nohz_irq_enter(void) { }
1053
static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1054

1055
#endif /* CONFIG_NO_HZ_COMMON */
1056

1057 1058 1059
/*
 * Called from irq_enter to notify about the possible interruption of idle()
 */
1060
void tick_irq_enter(void)
1061
{
1062
	tick_check_oneshot_broadcast_this_cpu();
1063
	tick_nohz_irq_enter();
1064 1065
}

1066 1067 1068 1069 1070
/*
 * High resolution timer specific code
 */
#ifdef CONFIG_HIGH_RES_TIMERS
/*
P
Pavel Machek 已提交
1071
 * We rearm the timer until we get disabled by the idle code.
1072
 * Called with interrupts disabled.
1073 1074 1075 1076 1077 1078 1079
 */
static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
{
	struct tick_sched *ts =
		container_of(timer, struct tick_sched, sched_timer);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();
1080

1081
	tick_sched_do_timer(now);
1082 1083 1084 1085 1086

	/*
	 * Do not call, when we are not in irq context and have
	 * no valid regs pointer
	 */
1087 1088
	if (regs)
		tick_sched_handle(ts, regs);
1089

1090 1091 1092 1093
	/* No need to reprogram if we are in idle or full dynticks mode */
	if (unlikely(ts->tick_stopped))
		return HRTIMER_NORESTART;

1094 1095 1096 1097 1098
	hrtimer_forward(timer, now, tick_period);

	return HRTIMER_RESTART;
}

M
Mike Galbraith 已提交
1099 1100
static int sched_skew_tick;

1101 1102 1103 1104 1105 1106 1107 1108
static int __init skew_tick(char *str)
{
	get_option(&str, &sched_skew_tick);

	return 0;
}
early_param("skew_tick", skew_tick);

1109 1110 1111 1112 1113
/**
 * tick_setup_sched_timer - setup the tick emulation timer
 */
void tick_setup_sched_timer(void)
{
1114
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1115 1116 1117 1118 1119 1120 1121 1122
	ktime_t now = ktime_get();

	/*
	 * Emulate tick processing via per-CPU hrtimers:
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	ts->sched_timer.function = tick_sched_timer;

1123
	/* Get the next period (per cpu) */
1124
	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1125

1126
	/* Offset the tick to avert jiffies_lock contention. */
M
Mike Galbraith 已提交
1127 1128 1129 1130 1131 1132 1133
	if (sched_skew_tick) {
		u64 offset = ktime_to_ns(tick_period) >> 1;
		do_div(offset, num_possible_cpus());
		offset *= smp_processor_id();
		hrtimer_add_expires_ns(&ts->sched_timer, offset);
	}

1134 1135
	hrtimer_forward(&ts->sched_timer, now, tick_period);
	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1136
	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1137
}
1138
#endif /* HIGH_RES_TIMERS */
1139

1140
#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1141 1142 1143 1144
void tick_cancel_sched_timer(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

1145
# ifdef CONFIG_HIGH_RES_TIMERS
1146 1147
	if (ts->sched_timer.base)
		hrtimer_cancel(&ts->sched_timer);
1148
# endif
1149

1150
	memset(ts, 0, sizeof(*ts));
1151
}
1152
#endif
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

/**
 * Async notification about clocksource changes
 */
void tick_clock_notify(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
}

/*
 * Async notification about clock event changes
 */
void tick_oneshot_notify(void)
{
1170
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180

	set_bit(0, &ts->check_clocks);
}

/**
 * Check, if a change happened, which makes oneshot possible.
 *
 * Called cyclic from the hrtimer softirq (driven by the timer
 * softirq) allow_nohz signals, that we can switch into low-res nohz
 * mode, because high resolution timers are disabled (either compile
1181
 * or runtime). Called with interrupts disabled.
1182 1183 1184
 */
int tick_check_oneshot_change(int allow_nohz)
{
1185
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1186 1187 1188 1189 1190 1191 1192

	if (!test_and_clear_bit(0, &ts->check_clocks))
		return 0;

	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
		return 0;

1193
	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1194 1195 1196 1197 1198 1199 1200 1201
		return 0;

	if (!allow_nohz)
		return 1;

	tick_nohz_switch_to_nohz();
	return 0;
}